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Abstract. We consider quasisymmetric reparametrizations of the parameter space of the quadratic family. We
prove that the set of quadratic maps which are either regular or Collet-Eckmann with polynomial recurrence of
the critical orbit has full Lebesgue measure, for any such reparametrization.

1. Introduction

Here we consider the quadratic family, fa = a−x2, where −1/4 ≤ a ≤ 2 is the parameter. In [AM1], a thorough
understanding of the dynamics of typical (with respect to Lebesgue measure) quadratic maps was obtained. More
specifically, it was shown that a typical quadratic map is either regular (with a periodic attractor) or Collet-
Eckmann (positive Lyapunov exponent of the critical value) with polynomial recurrence of the critical orbit.
The first possibility corresponds to a hyperbolic deterministic setting, with the well known good properties of
hyperbolic systems. The second is a particularly well studied case of non-uniformly hyperbolic chaotic dynamics:
in the 90’s such maps were shown to possess many hyperbolic-like properties like stochastic stability, exponential
decay of correlations and others ([KN], [Y], [BV] and [BBM]). In particular it was possible to answer affirmatively
Palis Conjecture [Pa] for the quadratic family.

It was shown in [ALM] that the parameter space of general analytic families of unimodal maps (with negative
Schwarzian derivative) can be related to the parameter space of quadratic maps through a quasisymmetric
‘holonomy map’. It becomes then feasible to transfer results from the quadratic family to other families, but
there is one obstruction: quasisymmetric maps are not absolutely continuous.

Here we show that the set of “good” parameters has not only full Lebesgue measure, but is resistent to a
quasisymmetric reparametrization:

Theorem A. Consider a quasisymmetric reparametrization of the parameter space of the quadratic family.
The set of parameters which are either regular or Collet-Eckmann:

(1.1) lim inf
n→∞

ln(|Dfn(f(0))|)
n

> 0

has full Lebesgue measure.

Theorem B. Consider a quasisymmetric reparametrization of the parameter space of the quadratic family.
The set of parameters which are either regular or have polynomial recurrence of the critical orbit

(1.2) 0 < lim inf
n→∞

− ln(fn(0))
ln(n)

≤ lim sup
n→∞

− ln(fn(0))
ln(n)

< ∞

has full Lebesgue measure.

In [AM2] those results are used to obtain a proof of the Palis Conjecture for unimodal maps with negative
Schwarzian derivative. Here we give a detailed proof of those results following essentially the sketch provided in
[AM2] (we simplified a couple of arguments), with all estimates worked out. We refer the reader to [AM2] and
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[AM3] for discussions on the heuristics of the approaches in this paper, as well as in the original argument of
[AM1].

2. Basic background

This section will introduce the basic language of this paper, and corresponds essentially (with minor modifi-
cations) to sections §1 and §2 and parts of §3 of [AM1].

2.1. General definitions.

2.1.1. Maps of the interval. Let f : I → I be a C1 map defined on some interval I ⊂ R. The orbit of a point
p ∈ I is the sequence {fk(p)}∞k=0. We say that p is recurrent if there exists a subsequence nk → ∞ such that
lim fnk(p) = p.

We say that p is a periodic point of period n of f if fn(p) = p, and n ≥ 1 is minimal with this property. In this
case we say that p is hyperbolic if |Dfn(p)| is not 0 or 1. Hyperbolic periodic orbits are attracting or repelling
according to |Dfn(p)| < 1 or |Dfn(p)| > 1.

We will often consider the restriction of iterates fn to intervals T ⊂ I, such that fn|T is a diffeomorphism.
In this case we will be interested on the distortion of fn|T ,

(2.1) dist(fn|T ) =
supT |Dfn|
infT |Dfn| .

This is always a number bigger than or equal to 1, we will say that it is small if it is close to 1.

2.1.2. Trees. We let Ω denote the set of finite sequences of non-zero integers (including the empty sequence).
Let Ω0 denote Ω without the empty sequence. For d ∈ Ω, d = (j1, ..., jm), we let |d| = m denote its length.

We denote σ+ : Ω0 → Ω by σ+(j1, ..., jm) = (j1, ..., jm−1) and σ− : Ω0 → Ω by σ−(j1, ..., jm) = (j2, ..., jm).
For the purposes of this paper, one should view Ω as a (directed) tree with root d = ∅ and edges connecting

σ+(d) to d for each d ∈ Ω0. We will use Ω to label objects which are organized in a similar tree structure (for
instance, certain families of intervals ordered by inclusion).

2.2. Borel-Cantelli. We will repeatedly use the following version of the Borel-Cantelli Lemma (Lemma 4.1 of
[AM1]).

Lemma 2.1. Let X ⊂ R be a measurable set such that for each x ∈ X is defined a sequence Dn(x) of nested
intervals converging to x such that for all x1, x2 ∈ X and any n, Dn(x1) is either equal or disjoint to Dn(x2).
Let Qn be measurable subsets of R and qn(x) = |Qn∩Dn(x)|/|Dn(x)|. Let Y be the set of all x ∈ X which belong
to at most finitely many Qn. If

∑
qn(x) is finite for almost any x ∈ X then |Y | = |X |.

The following reformulation will be often convenient (Lemma 4.2 of [AM1]).

Lemma 2.2. In the same context as above, assume that we are given sequences Qn,m, m ≥ n of measurable sets
and let Yn be the set of x belonging to at most finitely many Qn,m. Let qn,m(x) = |Qn,m ∩Dm(x)|/|Dm(x)|. Let
n0(x) ∈ N ∪ {∞} be such that

∑∞
m=n qn,m(x) < ∞ for n ≥ n0(x). Then for almost every x ∈ X, x ∈ Yn for

n ≥ n0(x).

2.3. Quasisymmetric maps. Let k ≥ 1 be given. We say that a homeomorphism f : R → R is quasisymmetric
with constant k if for all x and all h > 0

(2.2)
1
k
≤ f(x + h) − f(x)

f(x) − f(x − h)
≤ k.

The space of quasisymmetric maps is a group under composition, and the set of quasisymmetric maps with
constant k preserving a given interval is compact in the uniform topology of compact subsets of R. It also follows
that quasisymmetric maps are Hölder.
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To describe further the properties of quasisymmetric maps, we need the concept of quasiconformal maps and
dilatation so we just mention a result of Ahlfors-Beurling which connects both concepts: any quasisymmetric
map extends to a quasiconformal real-symmetric map of C and, conversely, the restriction of a quasiconformal
real-symmetric map of C to R is quasisymmetric. Furthermore, it is possible to work out upper bounds on the
dilatation (of an optimal extension) depending only on k and conversely.

The constant k is awkward to work with: the inverse of a quasisymmetric map with constant k may have a
larger constant. We will therefore work with a less standard constant: we will say that h is γ-quasisymmetric
(γ-qs) if h admits a quasiconformal symmetric extension to C with dilatation bounded by γ. This definition
behaves much better: if h1 is γ1-qs and h2 is γ2-qs then h2 ◦ h1 is γ2γ1-qs.

If X ⊂ R and h : X → R has a γ-quasisymmetric extension to R we will also say that h is γ-qs.
Let QS(γ) be the set of γ-qs maps of R.

2.3.1. Capacities. If X ⊂ R is measurable, let us denote |X | its Lebesgue measure. Let us explicit the metric
properties of γ-qs maps we will use.

To each γ, there exists a constant k ≥ 1 such that for all f ∈ QS(γ), for all J ⊂ I intervals,

(2.3)
1
k

( |J |
|I|
)k

≤ |f(J)|
|f(I)| ≤

(
k|J |
|I|
)1/k

.

Furthermore limγ→1 k(γ) = 1. So for each ε > 0 there exists γ > 1 such that k(2γ − 1) < 1 + ε/5. From now
on, once a given γ close to 1 is chosen, ε will always denote a small number with this property.

2.3.2. Capacities and trees. The γ-capacity of a set X in an interval I is defined as follows:

(2.4) pγ(X |I) = sup
h∈QS(γ)

|h(X ∩ I)|
|h(I)| .

This geometric quantity is well adapted to our context, since it is well behaved under tree decompositions of
sets. In other words, if Ij are disjoint subintervals of I and X ⊂ ∪Ij then

(2.5) pγ(X |I) ≤ pγ(∪jIj |I) sup
j

pγ(X |Ij).

2.4. The combinatorics of real quadratic maps.

2.4.1. Real quadratic maps. If a ∈ R we let fa : R → R denote the quadratic map a− x2. If −1/4 ≤ a ≤ 2, there
exists an interval Ia = [β,−β] with β = −1−√

1+4a
2 such that fa(Ia) ⊂ Ia and fa(∂Ia) ⊂ ∂Ia. For such values of

the parameter a, the map f = fa|Ia is unimodal, that is, it is a self map of Ia with a unique turning point. To
simplify the notation, we will usually drop the dependence on the parameter and let I = Ia.

We will now introduce objects related to the dynamics of a fixed quadratic map f .

2.4.2. Return maps. Given an interval T ⊂ I we define the first return map RT : X → T where X ⊂ T is the
set of points x such that there exists n > 0 with fn(x) ∈ T , and RT (x) = fn(x) for the minimal n with this
property.

2.4.3. Nice intervals. An interval T is nice if it is symmetric around 0 and the iterates of ∂T never intersect int T .
Given a nice interval T we notice that the domain of the first return map RT decomposes in a union of intervals
T j, indexed by integer numbers (if there are only finitely many intervals, some indexes will be corresponded to
the empty set). If 0 belongs to the domain of RT , we say that T is proper. In this case we reserve the index 0
to denote the component of the critical point: 0 ∈ T 0.

If T is nice, it follows that for all j ∈ Z, RT (∂T j) ⊂ ∂T . In particular, RT |T j is a diffeomorphism onto T
unless 0 ∈ T j (and in particular j = 0 and T is proper). If T is proper, RT |T 0 is symmetric (even) with a unique
critical point 0. As a consequence, T 0 is also a nice interval. If RT (0) ∈ T 0, we say that RT is central. If T is
a proper interval then both RT and RT 0 are defined, and we say that RT 0 is the generalized renormalization of
RT .
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2.4.4. Landing maps. Given a proper interval T we define the landing map LT : X → T 0 where X ⊂ T is the
set of points x such that there exists n ≥ 0 with fn(x) ∈ T 0, and LT (x) = fn(x) for the minimal n with this
property. We notice that LT |T 0 = id.

2.4.5. Trees. We will use Ω to label iterations of non-central branches of RT , as well as their domains. If d ∈ Ω,
we define T d inductively in the following way. We let T d = T if d is empty and if d = (j1, ..., jm) we let
T d = (RT |T j1 )−1(T σ−(d)). We denote R

d
T = R

|d|
T |T d which is always a diffeomorphism onto T .

Notice that the family of intervals T d is organized by inclusion in the same way as Ω is organized by (right
side) truncation (the previously introduced tree structure).

If T is a proper interval, the first return map to T naturally relates to the first landing to T 0. Indeed, denoting
Cd = (Rd

T )−1(T 0), the domain of the first landing map LT is easily seen to coincide with the union of the Cd,
and furthermore LT |Cd = R

d
T . Notice that this allows us to relate RT and RT 0 since RT 0 = LT ◦ RT .

2.4.6. Renormalization. We say that f is renormalizable if there is an interval 0 ∈ T and m > 1 such that
fm(T ) ⊂ T and f j(intT ) ∩ intT = ∅ for 1 ≤ j < m. The maximal such interval is called the renormalization
interval of period m, it has the property that fm(∂T ) ⊂ ∂T .

The set of renormalization periods of f gives an increasing (possibly empty) sequence of numbers mi, i =
1, 2, ..., each related to a unique renormalization interval T (i) which form a nested sequence of intervals. We
include m0 = 1, T (0) = I in the sequence to simplify the notation.

We say that f is finitely renormalizable if there is a smallest renormalization interval T (k). We say that f ∈ F
if f is finitely renormalizable and 0 is recurrent but not periodic. We let Fk denote the set of maps f in F which
are exactly k times renormalizable.

2.4.7. Principal nest. Let ∆k denote the set of all maps f which have (at least) k renormalizations and which
have an orientation reversing non-attracting periodic point of period mk which we denote pk (that is, pk is the
fixed point of fmk |T (k) with Dfmk(pk) ≤ −1). For f ∈ ∆k, we denote T

(k)
0 = [−pk, pk]. We define by induction

a (possibly finite) sequence T
(k)
i , such that T

(k)
i+1 is the component of the domain of R

T
(k)
i

containing 0. If this
sequence is infinite, then either it converges to a point or to an interval.

If ∩iT
(k)
i is a point, then f has a recurrent critical point which is not periodic, and it is possible to show that

f is not k + 1 times renormalizable. Obviously in this case we have f ∈ Fk, and all maps in Fk are obtained in
this way: if ∩iT

(k)
i is an interval, it is possible to show that f is k + 1 times renormalizable.

We can of course write F as a disjoint union ∪∞
i=0Fi. For a map f ∈ Fk we refer to the sequence {T (k)

i }∞i=1

as the principal nest.
It is important to notice that the domain of the first return map to T

(k)
i is always dense in T

(k)
i . Moreover,

the next result shows that, outside a very special case, the return map has a hyperbolic structure.

Lemma 2.3. Assume T
(k)
i does not have a non-hyperbolic periodic orbit in its boundary. For all T

(k)
i there

exists C > 0, λ > 1 such that if x, f(x), ..., fn−1(x) do not belong to T
(k)
i then |Dfn(x)| > Cλn.

This lemma is a simple consequence of a general theorem of Guckenheimer on hyperbolicity of maps of the
interval without critical points and non-hyperbolic periodic orbits (Guckenheimer considers unimodal maps with
negative Schwarzian derivative, so this applies directly to the case of quadratic maps, the general case is also true
by Mañé’s Theorem, see [MvS]). Notice that the existence of a non-hyperbolic periodic orbit in the boundary of
T

(k)
i depends on a very special combinatorial setting, in particular, all T

(k)
j must coincide (with [−pk, pk]), and

the k-th renormalization of f is in fact renormalizable of period 2.
By Lemma 2.3, the maximal invariant of f |

I\T
(k)
i

is an expanding set, which admits a Markov partition (since

∂T
(k)
i is preperiodic, see also the proof of Lemma 6.1): it is easy to see that it is indeed a Cantor set1 (except if

1Dynamically defined Cantor sets with such properties are usually called regular Cantor sets.
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i = 0 or in the special period 2 renormalization case just described). It follows that the geometry of this Cantor
set is well behaved: for instance, its image by any quasisymmetric map has zero Lebesgue measure.

In particular, one sees that the domain of the first return map to T
(k)
i has infinitely many components (except

in the special case above or if i = 0) and that its complement has well behaved geometry.

2.4.8. Simple maps. A map f ∈ Fk is called simple if the principal nest has only finitely many central returns,
that is, there are only finitely many i such that R|

T
(k)
i

is central.

2.5. Parameter partition. Part of our work is to transfer information from the phase space of some map f ∈ F
to a neighborhood of f in the parameter space. This is done in the following way. We consider the first landing
map Li: the complement of the domain of Li is a hyperbolic Cantor set Ki = Ii \ ∪C

d
i . This Cantor set persists

in a small parameter neighborhood Ji of f , changing in a continuous way. Thus, loosely speaking, the domain
of Li induces a persistent partition of the interval Ii.

Along Ji, the first landing map is topologically the same (in a way that will be clear soon). However the critical
value Ri[g](0) moves relative to the partition (when g moves in Ji). This allows us to partition the parameter
piece Ji in smaller pieces, each corresponding to a region where Ri(0) belongs to some fixed component of the
domain of the first landing map.

The relation between the partitions on the phase space and on the parameter space can be described, topo-
logically, as follows.

Theorem 2.4 (Topological Phase-Parameter relation). Let f ∈ Fκ. There is a sequence {Ji}i∈N of nested
parameter intervals (the principal parapuzzle nest of f) with the following properties.

(1) Ji is the maximal interval containing f such that for all g ∈ Ji the interval Ii+1[g] = T
(κ)
i+1[g] is defined

and changes in a continuous way. (Since the first return map to Ri[g] has a central domain, the landing
map Li[g] : ∪C

d
i [g] → Ii[g] is defined.)

(2) Li[g] is topologically the same along Ji: there exists homeomorphisms Hi[g] : Ii → Ii[g], such that
Hi[g](Cd

i ) = C
d
i [g]. The maps Hi[g] may be chosen to change continuously.

(3) There exists a homeomorphism Ξi : Ii → Ji such that Ξi(C
d
i ) is the set of g such that Ri[g](0) belongs

to C
d
i [g].

The formulation above is the same as Theorem 2.2 of [AM1] (the result itself was known much before).
The homeomorphisms Hi and Ξi are not uniquely defined, it is easy to see that we can modify them inside

each C
d
i window keeping the above properties. However, Hi and Ξi are well defined maps if restricted to Ki.

With this result we can define for any f ∈ Fκ intervals Jj
i = Ξi(I

j
i ) and J

d
i = Ξi(I

d
i ). From the description

we gave it immediately follows that two intervals Ji1 [f ] and Ji2 [g] associated to maps f and g are either disjoint
or nested, and the same happens for intervals Jj

i or J
d
i . Notice that if g ∈ Ξi(C

d
i ) ∩ Fκ then Ξi(C

d
i ) = Ji+1[g].

We will concentrate on the analysis of the regularity of Ξi for the special class of simple maps f : one of the
good properties of the class of simple maps is better control of the phase-parameter relation. Even for simple
maps, however, the regularity of Ξi is not great: there is too much dynamical information contained in it. A
solution to this problem is to forget some dynamical information.

2.5.1. Gape interval. If i > 1, we define the gape interval Ĩi+1 as follows.
We have that Ri|Ii+1 = Li−1 ◦ Ri−1 = R

d
i−1 ◦ Ri−1 for some d, so that Ii+1 = (Ri−1|Ii)

−1(Cd
i−1). We define

the gape interval Ĩi+1 = (Ri−1|Ii)−1(Id
i−1).

Notice that Ii+1 ⊂ Ĩi+1 ⊂ Ii. Furthermore, for each Ij
i , the gape interval Ĩi+1 either contains or is disjoint

from Ij
i .
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2.5.2. The Phase-Parameter relation. As we discussed before, the dynamical information contained in Ξi is
entirely given by Ξi|Ki : a map obtained by Ξi by modification inside a C

d
i window has still the same properties.

Therefore it makes sense to ask about the regularity of Ξi|Ki . As we anticipated before we must erase some
information to obtain good results.

Let f ∈ Fκ and let τi be such that Ri(0) ∈ Iτi

i . We define two Cantor sets, Kτ
i = Ki ∩ Iτi

i which contains
refined information restricted to the Iτi

i window and K̃i = Ii \ (∪Ij
i ∪ Ĩi+1), which contains global information,

at the cost of erasing information inside each Ij
i window and in Ĩi+1.

Theorem 2.5 (Phase-Parameter relation). Let f be a simple map. For all δ > 0 there exists i0 such that for all
i > i0 we have

PhPa1: Ξi|Kτ
i

is 1 + δ-qs,
PhPa2: Ξi|K̃i

is 1 + δ-qs,
PhPh1: Hi[g]|Ki is 1 + δ-qs if g ∈ Jτi

i ,
PhPh2: the map Hi[g]|K̃i

is 1 + δ-qs if g ∈ Ji.

This result is stated as Theorem 2.3 of [AM1], where a proof is sketched in the Appendix. A full proof is
given in a more general context in [AM4].

3. Preliminary reductions and basic scheme

3.1. Reduction to the study of simple maps. In [L2] Lyubich has shown that almost every finitely renor-
malizable map is simple, and in [L3] he showed that infinitely renormalizable maps have zero Lebesgue measure.
In [ALM], it is remarked that the proofs of those results actually imply the following:

Theorem 3.1. Consider a quasisymmetric reparametrization of the parameter space of the quadratic family.
The set of parameters which are either regular or simple has full Lebesgue measure.

Thus we can concentrate on the study of simple maps.

3.2. Language. We will now fix, once and for all, an arbitrary quasisymmetric reparametrization of the param-
eter space of the quadratic family. From now on, all mentions to the parameter space will take into account this
reparametrization (unless specified otherwise). For instance, the previous theorem would now be stated “The
set of parameters which are either regular or simple has full Lebesgue measure”, without any mention to the
reparametrization. Our aim is to replace “simple” by “Collet-Eckmann with polynomial recurrence of the critical
orbit” in this formulation.

The quasisymmetric constant of the fixed reparametrization will be denoted γ̂. We will fix an arbitrary γ > γ̂.
We let a be a small positive constant only depending on γ (it should be smaller than 1/20 of the Hölder constant
of 2γ-qs maps), and b = a−1.

We must change the statement of properties PhPa1 and PhPa2 of the Phase-Parameter relation (which was
stated with respect to the unreparametrized parameter space). Taking into account the reparametrization we
replace PhPa1 and PhPa2 by

PhPa1’: Ξi|Kτ
i

is γ-qs,
PhPa2’: Ξi|K̃i

is γ-qs.
We shall fix also the renormalization level κ, and consider only maps in ∆κ. Whenever we say that some

property is valid “with total probability”, it will mean that it is satisfied for a set of maps in Fκ of full Lebesgue
measure. Since there are countably many levels, we can reformulate our aim as showing that the properties
“Collet-Eckmann” and “polynomial recurrence of the critical orbit” hold with total probability.

This will not be done at once: we will show in a sequence of steps that more and more properties are valid
with total probability. Sometimes when proving that a new property has total probability, we will only need
to use that this property is implied by properties that had previously been shown to have total probability.
Sometimes, we will need to use the previous “total probability” properties and still exclude some zero Lebesgue
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measure set of parameters. This will be done always via a Borel-Cantelli argument (either of Lemmas 2.1 or
2.2) coupled with the Phase-Parameter relation. The best way to introduce the argument is by going through
an explicit application.

3.2.1. Example: torrential decay of geometry. We will illustrate the use of Lemma 2.1 and the phase-parameter
relation with an estimate on the decay of geometry. More precisely, we will consider the scaling factor

(3.1) cn =
|In+1|
|In| .

The scaling factor is a particularly important parameter in the subsequent analysis: all statistical estimates that
follow will be related to cn. This variable of course changes inside each Jτn

n window, however, not by much.
From PhPh1, for instance, we get that with total probability

(3.2) lim
n→∞ sup

g1,g2∈Jτn
n

ln(cn[g1])
ln(cn[g2])

= 1.

One initial information on the scaling factors is provided by the following result of Lyubich:

Theorem 3.2 (see [L1]). If f is simple then there exists C > 0, λ < 1 such that cn < Cλn.

We will now show that, with total probability, the decay of cn is much faster than exponential. To express this
decay, let us consider the tower function defined by the recursion T (1) = 2, T (n+1) = 2T (n). We will show that,
with total probability, the cn decrease torrentially to 0, that is, there exists k > 0 such that c−1

n > T (n − k) for
n big enough. More precisely, we will show that c−1

n+1 is bounded from below by an exponential of a (bounded)
power of c−1

n .

We start with an estimate in phase space. For x ∈ In, let d(n)(x) ∈ Ω be defined by x ∈ C
d(n)(x)
n .

Lemma 3.3. With total probability, for all n sufficiently big we have

p2γ(|d(n)(x)| ≤ k|In) < (k + 1)c8a
n ,(3.3)

p2γ(|d(n)(x)| ≥ k|In) < e−kcb/8
n .(3.4)

We also have

p2γ(|d(n)(x)| ≤ k|Iτn
n ) < kc8a

n ,(3.5)

p2γ(|d(n)(x)| ≥ k|Iτn
n ) < e−kcb/8

n .(3.6)

Proof. Let us compute the first two estimates.
Since I0

n is in the middle of In, we have as a simple consequence of the Real Schwarz Lemma (see [L1] and
(4.3) in Lemma 4.1 below) that

(3.7)
cn

4
<

|Cd
n|

|Id
n|

< 4cn.

As a consequence

(3.8) p2γ(|d(n)(x)| = m|x ∈ In) < (4cn)10a.

We get the estimate (3.3) summing up on 0 ≤ m ≤ k.
For the same reason, we get that

(3.9) p2γ(|d(n)(x)| > m|x ∈ In) <

(
1 −

(cn

4

)b/10
)

p2γ(|d(n)(x)| ≥ m|x ∈ In).

This implies

(3.10) p2γ(|d(n)(x)| ≥ k|x ∈ In) ≤
(

1 −
(cn

4

)b/10
)k

.
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Estimate (3.4) follows from

(3.11)
(

1 −
(cn

4

)b/10
)k

< (1 − cb/9
n )k < ((1 − cb/9

n )c−b/9
n )kcb/9

n < e−kcb/9
n .

The two remaining estimates are analogous. �

Let us now transfer this result to the parameter. Let sn = |d(n)(Rn(0))|, so that Rn+1(0) = Rsn+1
n (0).

Lemma 3.4. With total probability, for n sufficiently big we have

(3.12) c−a
n < sn < c−b

n .

Proof. For the moment we only know that simple maps have total probability. Thus, fix a simple map and
consider its principal nest Jn. By the previous lemma, we have

(3.13) pγ(|d(n)(x)| < c−3a/2
n |Iτn

n ) ≤ ca/2
n ,

By PhPa1’, the Lebesgue measure of the set of parameters in Jn such that sn < c
−3a/2
n is at most c

a/2
n . But∑

c
a/2
n < ∞ (cn decays exponentially by Theorem 3.2), so we can apply Lemma 2.1 to get that for almost every

simple map we have sn ≥ c−a
n (in the notation of Lemma 2.1, we have taken X as the set of simple maps,

Dn = Jτn
n , and Qn as the set of parameters such that sn < c−a

n )2. This implies one of the estimates, the other
being analogous. �

From now on, whenever we need the parameter exclusion argument described above we will only say by PhPa1’
or by PhPa2’, and be done with it.

We can now show torrential decay of geometry without any further parameter exclusion:

Lemma 3.5. With total probability, for n large we have

(3.14) c−1
n+1 > ec−a/2

n .

Proof. It is easy to see (using for instance the Real Schwarz Lemma, see [L1], see also item (4.4) in Lemma 4.1
below) that there exists a constant K > 0 (independent of n) such that for each d ∈ Ω, both components of
I

σ+(d)
n \ I

d
n have size at least (eK − 1)|Id

n|. In particular, by induction, if Rn(0) ∈ C
d
n we have that both gaps

of In \ C
d
n have size at least (eKsn − 1)|Cd

n|. Taking the preimage by Rn, and using the Real Schwarz Lemma
again, we see that cn+1 < CeKsn/2 for some constant C > 0 independent of n. We conclude that

(3.15) lim inf
ln(c−1

n+1)
sn

≥ K

2
,

and since cn → 0 as n → ∞, the result follows from the previous lemma. �

4. Initial estimates

4.1. Fine partitions. We use Cantor sets Kn and K̃n to partition the phase space. In many circumstances we
are directly concerned with intervals of this partition. However, sometimes we just want to exclude an interval of
given size (usually a neighborhood of 0). This size does not usually correspond to a union of gaps, so we instead
should consider in applications an interval which is union of gaps, with approximately the given size. The degree
of relative approximation will always be torrentially good (in n), so we usually won’t elaborate on this. In this
section we just give some results which will imply that the partition induced by the Cantor sets are fine enough
to allow torrentially good approximations.

The following lemma summarizes the situation. The proof is based on estimates of distortion using the Real
Schwarz Lemma and the Koebe Principle (see [L1]) and is very simple, so we just sketch the proof.

2We used implicitly the fact that for n large we have cn[g]−a < c
−3a/2
n , see (3.2).
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Lemma 4.1. The following estimates hold:

|Ij
n|

|In| = O(
√

cn−1),(4.1)

|Id
n|

|Iσ+(d)
n |

= O(
√

cn−1),(4.2)

cn

4
<

|Cd
n|

|Id
n|

< 4cn,(4.3)

|Ĩn+1|
|In| = O(e−sn−1).(4.4)

Proof. (Sketch.) Since R
d
n has negative Schwarzian derivative, it immediately follows that the Koebe space3 of

C
d
n inside I

d
n has at least order c−1

n .
It is easy to see that Rn−1|In can be written as φ ◦ f where φ extends to a diffeomorphism onto In−2 with

negative Schwarzian derivative and thus with very small distortion. Since Rn−1(Ij
n) is contained on some C

d
n−1,

we see that the Koebe space of Ij
n in In is at least of order c

−1/2
n−1 which implies (4.1).

Let us now consider an interval I
d
n. Let Ij

n be such that R
σ+(d)
n (Id

n) = Ij
n. We can pullback the Koebe space

of Ij
n inside In by R

σ+(d)
n , so (4.1) implies (4.2). Moreover, this shows by induction that the Koebe space of I

d
n

inside In is at least of order c
−|d|/2
n−1 . Since Rn−1(Ĩn+1) ⊂ I

d
n−1 with |d| = sn−1, the Koebe space of Ĩn+1 in In is

at least c
−|d|/4
n−2 , which implies (4.4).

It is easy to see that R
d
n|Id

n
can be written as φ ◦ f ◦ R

σ+(d)
n , where φ has small distortion. Due to (4.1),

R
σ+(d)
n |

I
d
n

also has small distortion, so a direct computation with f (which is purely quadratic) gives (4.3). �

In other words, distances in In can be measured with precision √
cn−1|In| in the partition induced by K̃n, due

to (4.1) and (4.4) (since e−sn−1 � cn−1).
Distances can be measured much more precisely with respect to the partition induced by Kn, in fact we have

good precision in each I
d
n scale. In other words, inside I

d
n, the central gap C

d
n is of size O(cn|Id

n|) (by (4.3)) and
the other gaps have size O(

√
cn−1|Cd

n|) (by (4.2) and (4.3)).

4.2. Initial estimates on distortion. To deal with the distortion control we need some preliminary known
results. Those estimates are based on the Koebe Principle and the estimates of Lemma 4.1. All needed arguments
are already contained in the proof of Lemma 4.1, so we won’t get into details.

Proposition 4.2. The following estimates hold:
(1) For any j, if Rn|Ij

n
= fk, dist(fk−1|f(Ij

n)) = 1 + O(cn−1),

(2) For any d, dist(Rσ+(d)
n |

I
d
n
) = 1 + O(

√
cn−1).

We will use the following immediate consequence for the decomposition of certain branches.

Lemma 4.3. With total probability,
(1) Rn|I0

n
= φ ◦ f where φ has torrentially small distortion,

(2) R
d
n = φ2 ◦ f ◦ φ1 where φ2 and φ1 have torrentially small distortion and φ1 = R

σ+(d)
n .

3The Koebe space of an interval T ′ inside an interval T ⊃ T ′ is the minimum of |L|/|T ′| and |R|/|T ′| where L and R are the
components of T \T ′. If the Koebe space of T ′ inside T is big, then the Koebe Principle states that a diffeomorphism onto T ′ which
has an extension with negative Schwarzian derivative onto T has small distortion. In this case, it follows that the Koebe space of
the preimage of T ′ inside the preimage of T is also big.
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4.3. Estimating derivatives.

Lemma 4.4. With total probability, the distance between Rn(0) and ∂In∪{0} is at least |In|n−b/2. In particular
Rn(0) /∈ Ĩn+1 for all n large enough.

Proof. This is a simple consequence of PhPa2’, using summability of n−2 (use (4.4) to get the last conclusion). �
Lemma 4.5. With total probability, for n big enough and j = 0

(4.5) dist(f |Ij
n
) < nb/2.

Proof. Denote by P
d
n a |Cd

n|/nb/2 neighborhood of C
d
n. Notice that the gaps of the Cantor set Kn inside I

d
n which

are different from C
d
n are torrentially (in n) smaller then C

d
n, so we can take P

d
n as a union of gaps of Kn up to

torrentially small error.
It is clear that if h is a γ-qs homeomorphism then

(4.6) |h(P d
n \ Cd

n)| ≤ n−2|h(Cd
n)|

Notice that if C
d
n is contained in Ij

n with j = τn, then P
d
n does not intersect Iτn

n . Since the C
d
n are disjoint,

(4.7) pγ(Iτn
n ∩ ∪(P d

n \ Cd
n)|Iτn

n ) ≤ n−2

which is summable.
Transferring this estimate to the parameter using PhPa1’ we see that with total probability, if n is sufficiently

big, if Rn(0) does not belong to C
d
n then Rn(0) does not belong to P

d
n as well. In particular, if n is sufficiently

big, the critical point 0 will never be in a n−b/2|Ij
n+1| neighborhood of any Ij

n+1 with j = 0 (just take the inverse
image by Rn|In+1). �
Lemma 4.6. With total probability, for all n sufficiently big and for all d,

(4.8) dist(Rd
n) < nb ≤ 2n.

In particular, for n big enough, |DRn(x)| > 2, x ∈ ∪j �=0I
j
n.

Proof. Lemmas 4.3 and Lemma 4.5 imply (4.8). If j = 0, by (4.1) of Lemma 4.1 we get that |Rn(Ij
n)|/|Ij

n| =
|In|/|Ij

n| > c
−1/3
n−1 , so dist(Rn|Ij

n
) ≤ 2n implies that for all x ∈ Ij

n, |DRn(x)| > c
−1/3
n−1 2−n > 2. �

Lemma 4.7. With total probability, if n is sufficiently big and if x ∈ Ij
n, j = 0, and Rn|Ij

n
= fK , then for

1 ≤ k ≤ K, |(Dfk(x))| > |x|c3
n−1.

Proof. First notice that by Lemma 4.4 and Lemma 4.3, Rn|I0
n

= φ ◦ f with |Dφ| > 1, provided n is big enough
(since φ has small distortion and there is a big macroscopic expansion from f(I0

n) to Rn(I0
n)). Also, by Lemma 3.5,

|In| decays so fast that
∏n

r=1 |In| > c
3/2
n−1 for n big enough. Finally, by Lemma 4.6, for n big enough, |DRn(x)| > 1

for x ∈ Ij
n, j = 0. Let n0 be so big that if n ≥ n0, all the above properties hold.

From hyperbolicity of f restricted to the complement of In0 (from Lemma 2.3), there exists a constant C > 0
such that if s0 is such that fs(x) /∈ I0

n0
for every s0 ≤ s < k then |Dfk−s0 (fs0(x))| > C.

Let us now consider some n ≥ n0. If k = K, we have a full return and the result follows from Lemma 4.6.
Assume now k < K. Let us define d(s), 0 ≤ s ≤ k such that fs(x) ∈ Id(s) \ I0

d(s) (if fs(x) /∈ I0 we set
d(s) = −1). Let m(s) = maxs≤t≤k d(t). Let us define a finite sequence {kr}l

r=0 as follows. We let k0 = 0 and
supposing kr < k we let kr+1 = max{kr < s ≤ k|d(s) = m(s)}. Notice that d(ki) < n if i ≥ 1, since otherwise
fki(x) ∈ In so k = ki = K which contradicts our assumption.

The sequence 0 = k0 < k1 < ... < kl = k satisfies n = d(k0) > d(k1) > ... > d(kl). Let θ be maximal with
d(kθ) ≥ n0. We have of course

(4.9) |Dfk−kθ (fkθ (x))| > C|Df(fkθ (x))|,
so if θ = 0 then Dfk(x) > |2Cx| and we are done.
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Assume now θ > 0. We have of course

(4.10) |Dfk−kθ (fkθ (x))| > C|Df(fkθ (x))| > C|Id(kθ)+1|
For 1 ≤ r ≤ θ, the action of fkr−kr−1 near fkr−1(x) is obtained by applying the central component of Rd(kr)

followed by several non-central components of Rd(kr). Since d(kr) ≥ n0, we can estimate

(4.11) |Dfkr−kr−1(fkr−1(x))| > |DRd(kr)(fkr−1(x))| > |Df(fkr−1(x))|.
For r = 1, this argument gives |Dfk1(x)| ≥ |Df(x)|, while for r > 1 we can estimate

(4.12) |Dfkr−kr−1(fkr−1(x))| > |Df(fkr−1(x))| > |Id(kr−1)+1|.
Combining it all we get

|Dfk(x)| = |Dfk1(x)| · |Dfk−kθ (fkθ (x))|
θ∏

r=2

|Dfkr−kr−1(fkr−1(x))| > |2x| · C · |Id(kθ)+1|
θ∏

r=2

|Id(kr−1)+1|(4.13)

= |2Cx|
θ∏

r=1

|Id(kr)+1| ≥ |2Cx|
n∏

r=0

|Ir| > |x|c3
n−1.

�

5. Sequence of quasisymmetric constants and trees

5.1. Preliminary estimates. From now on, we will need to consider not only γ′-capacities with some γ′ ≥ γ
fixed, but different constants for different levels of the principal nest. To do so, we will make use of sequences
of constants converging (decreasing) to γ. Let γn = n+1

n γ, γ̃n = 2n+3
2n+1γ. Notice that γn > γ̃n > γn+1 and

lim γn = lim γ̃n = γ.
The generalized renormalization process relating Rn to Rn+1 has two phases, first we go from Rn to Ln

and then we go from Ln to Rn+1. The following remarks shows why it is useful to consider the sequence of
quasisymmetric constants due to losses related to distortion.

Remark 5.1. Let S be an interval contained in I
d
n. Using Lemma 4.3 we have R

d
n|S = ψ2 ◦ f ◦ ψ1, where the

distortion of ψ2 and ψ1 are torrentially small and ψ1(S) is contained in some Ij
n, j = 0. If S is contained in I0

n

we may as well write Rn|S = φ ◦ f , and the distortion of φ is also torrentially small.
In either case, if we decompose S in 2km intervals Si of equal length, where k is the distortion of either

R
d
n|S or Rn|S and m is subtorrentially big (say, m < 2n), the distortion obtained restricting to any interval

Si will be bounded by 1 + m−1. Indeed, in the case S ⊂ I0
n, we have dist(Rn|Si) ≤ dist(φ) dist(f |Si). Now

k = dist(Rn|S) ≥ dist(φ)−1 dist(f |S). Since f is quadratic,

(5.1) dist(f |Si) − 1 ≤ |Si|
|S| (dist(f |S) − 1) ≤ 1

2km
(k dist(φ) − 1) ≤ dist(φ)

2m
.

Since dist(φ) − 1 is torrentially small, dist(f |Si) ≤ 1 + (2/3)m−1 and dist(Rn|Si) ≤ 1 + m−1. The case S ⊂
I

d
n is entirely analogous, considering dist(Rd

n|Si) ≤ dist(ψ2) dist(f |ψ1(Si)) dist(ψ1), and using torrentially small
distortion of ψ1 and ψ2. The estimate now becomes

(5.2) dist(f |ψ1(Si)) − 1 ≤ |ψ1(Si)|
|ψ1(S)| (dist(f |ψ1(S)) − 1) ≤ dist(ψ1)

2km
(k dist(ψ1) dist(ψ2) − 1) ≤ dist(ψ1)2 dist(ψ2)

2m

and we conclude again that dist(Rd
n|Si) ≤ 1 + m−1.

Remark 5.2. We have the following estimate for the effect of the pullback of a subset of In by the central branch
Rn|I0

n
. With total probability, for all n sufficiently big, if X ⊂ In satisfies

(5.3) pγ̃n(X |In) < δ < n−b2
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then

(5.4) pγn+1((Rn|In+1)
−1(X)|In) < δ5a2

.

Indeed, let V be a δ10a|In+1| neighborhood of 0. Then Rn|In+1\V has distortion bounded by 2δ−10a.
Let W ⊂ In be an interval of size λ|In|. Of course

(5.5) pγ̃n(X ∩ W |W ) < δλ−b/15.

Let us decompose each side of In+1 \ V as a union of nb/10δ−5a/2 intervals of equal length. Let W be such an
interval. From Lemma 4.4, it is clear that the image of W covers at least δ5an−2b|In|. It is clear then that

(5.6) pγ̃n(X ∩ Rn(W )|Rn(W )) < δ(δ5an−2b)−b/15 < δ1/2

(using that δ < n−b2). So we conclude that (since the distortion of Rn|W is bounded by 1+ n−3 by Remark 5.1)

(5.7) pγn+1((Rn|In+1)
−1(X) ∩ W |W ) < δ1/2

(we use the fact that the composition of a γn+1-qs map with a map with small distortion in γ̃n-qs). Since

(5.8) pγn+1(V |In+1) < δ10a2
,

we get the required estimate.

5.2. More on trees. Let us see an application of the above remarks.

Lemma 5.1. With total probability, for all n sufficiently big

(5.9) pγ̃n((Rd
n)−1(X)|Id

n) < 2npγn(X |In).

Proof. Decompose I
d
n in nln(n) intervals of equal length, say, {Wi}nln(n)

i=1 . Then by Lemma 4.6, |Rd
n(Wi)| >

n−2 ln n|In|, so we get

(5.10) pγn(Rd
n(Wi) ∩ X |Rd

n(Wi)) < n4 ln(n)pγn(X |In).

Applying Remark 5.1, we see that

(5.11) pγ̃n((Rd
n)−1(X) ∩ Wi|Wi) < n4 ln(n)pγn(X |In),

(we use the fact that the composition of a γ̃n-qs map with a map with small distortion is γn-qs) which implies
the desired estimate. �

By induction we get:

Lemma 5.2. With total probability, for n is big enough, if X1, ..., Xm ⊂ Z \ {0}

(5.12) pγ̃n(d(n)(x) = (j1, ..., jm, ..., j|d(n)(x)|), ji ∈ Xi, 1 ≤ i ≤ m|In) ≤ 2mn
m∏

i=1

pγn(j(n)(x) ∈ Xi|In).

The following is an obvious variation of the previous lemma fixing the start of the sequence.

Lemma 5.3. With total probability, for n is big enough, if X1, ..., Xm ⊂ Z \ {0}, and if d = (j1, ..., jk) we have

(5.13) pγ̃n(d(n)(x) = (j1, ..., jk, ..., jk+m, ..., j|d(n)(x)|), ji+k ∈ Xi, 1 ≤ i ≤ m|Id
n) ≤ 2mn

m∏
i=1

pγn(j(n)(x) ∈ Xi|In).

In particular, with d = (τn),

(5.14) pγ̃n(d(n)(x) = (τn, j1, ..., jm, ..., j|d(n)(x)|), ji ∈ Xi, 1 ≤ i ≤ m|Iτn
n ) ≤ 2mn

m∏
i=1

pγn(j(n)(x) ∈ Xi|In).

The last part of the above lemma will be often necessary in order to apply PhPa1’.
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Lemma 5.4. Let Q ⊂ Z\{0}. Let Q(m, k) denote the set of d = (j1, ..., jm) such that #{1 ≤ i ≤ m, ji ∈ Q} ≥ k.
Define qn(m, k) = pγ̃n(∪d∈Q(m,k)I

d
n|In). Let qn = pγn(∪j∈QIj

n|In).
With total probability, for n large enough,

(5.15) qn(m, k) ≤
(

m

k

)
(2nqn)k.

Proof. We have the following recursive estimates for qn(m, k):
(1) qn(1, 0) = 1, qn(1, 1) ≤ qn ≤ 2nqn, and qn(m + 1, 0) ≤ 1 for m ≥ 1,
(2) qn(m + 1, k + 1) ≤ qn(m, k + 1) + 2nqnqn(m, k).

Indeed, (1) is completely obvious and if (j1, ..., jm+1) ∈ Q(m + 1, k + 1) then either (j1, ..., jm) ∈ Q(m, k + 1)
or (j1, ..., jm) ∈ Q(m, k) and jm+1 ∈ Q, so (2) follows from Lemma 5.1. It is clear that (1) and (2) imply by
induction (5.15). �

We recall that by Stirling Formula,

(5.16)
(

m

qm

)
<

mqm

(qm)!
<

(
3
q

)qm

.

So we can get the following estimate. For q ≥ qn,

(5.17) qn(m, (6 · 2n)qm) <

(
1
2

)(6·2n)qm

.

6. Estimates on time

Our aim in this section is to estimate the distribution of return times to In: they are concentrated around
c−1
n−1 up to an exponent in a bounded range.

The basic estimate is a large deviation estimate and is proven in the next subsection (Corollary 6.5) and states
that for k ≥ 1 the set of branches with time larger then kc−2b

n has capacity less then e−k.

6.1. A Large Deviation lemma for times. Let rn(j) be such that Rn|Ij
n

= f rn(j). We will also use the
notation rn(x) = rn(j(n)(x)), the n-th return time of x (there should be no confusion for the reader, since we
consistently use j for an integer index and x for a point in the phase space).

Let

(6.1) An(k) = pγn(rn(x) ≥ k|x ∈ In)

Since f restricted to the complement of In+1 is hyperbolic, from Lemma 2.3, it is clear that An(k) decays
exponentially with k:

Lemma 6.1. With total probability, for all n > 0, there exists C > 0, λ > 1 such that An(k) < Cλk.

Proof. Consider a Markov partition for f |I\In+1 , that is, a finite union of intervals M1, ..., Mm such that ∪m
i=1Mi =

I \ In+1, f |Mi is a diffeomorphism for 1 ≤ i ≤ m, and f(∪m
i=1∂Mi) ⊂ ∪m

i=1∂Mi. It is easy to see that such a
Markov partition also satisfies: For every 1 ≤ i ≤ m, either

(6.2) f(Mi) =
⋃

Mj⊂f(Mi)

Mj or f(Mi) = In+1 ∪
⋃

Mj⊂f(Mi)

Mj.

(To construct such Markov partition, notice first that the boundary of In+1 is preperiodic to a periodic orbit q
(of period p). In particular we have fs(∂In+1) = q for some integer s > p. Let K be the (finite) set of all x
which never enter int In+1 and such that f j(x) = q for some j ≤ s. Since In+1 is nice, ∂In+1 ⊂ K, and since
s > p, the orbit of q is contained in K. In particular K is forward invariant. It is easy to see that the connected
components of I \ (K ∪ In+1) form a Markov partition of I \ In+1.)
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It follows that if f j(x) ∈ ∪m
i=1 intMi, 0 ≤ j ≤ k then there exists a unique interval x ∈ Mk(x) such that

fk|Mk(x) is a diffeomorphism onto some Mj . Notice that if k ≥ 1, f(Mk(x)) = Mk−1(f(x)).
By Lemma 2.3, if y ∈ Mk(x), |Dfk(y)| is exponentially big in k. In particular,

∑k−1
j=0 |f j(Mk(x))| < C′ for

some constant C′ > 0 independent of Mk(x). Since f is C2, dist(f |Mk(x)) is uniformly bounded in k. Notice
that the bounds on distortion depend on n. (An alternative to this classical argument is to obtain the bounded
distortion from the negative Schwarzian derivative).

By Lemma 2.3 again, the set of points x ∈ I which never enter In+1 has empty interior: for every T ⊂ I
there is an iterate f r(T ) which intersects In+1 (otherwise the exponentially growing intervals f r(T ) ⊂ I would
eventually become bigger than I). So there exists r > 0 such that, for every Mj, there exists x ∈ Mj and tj < r
with f tj (x) ∈ int In+1. It follows that there exists an interval Ej ⊂ Mj such that f tj (Ej) ⊂ int In+1.

Fixing some Mk(x) with fk(Mk(x)) = Mj, let Ek(x) = (fk|Mk(x))−1(Ej). By bounded distortion, it

follows that |Ek(x)|
|Mk(x)| is uniformly bounded from below independently of Mk(x). In particular, p2γ(Mk(x) \

Ek(x)|Mk(x)) < λ for some constant λ < 1.
Let Mk be the union of the Mk(x) and Ek be the union of the Ek(x). Then Mk+r ∩ Ek = ∅. In particular,

p2γ(M (k+1)r |I) < λp2γ(Mkr|I).
We conclude that p2γ(Mk|In) < Cλk/r for some constant C > 0. If k > rn(0), then Mk ∩ In contains the set

of points x ∈ In such that f j(x) /∈ In, 1 ≤ j ≤ k, that is, all points x ∈ In with rn(x) > k. Adjusting C and λ if
necessary, we have An(k) < Cλk. �

Let ζn be the maximum ζ ≤ cn−1 such that for all k ≥ ζ−1 we have

(6.3) An(k) ≤ e−ζk

and finally let αn = min1≤m≤n ζm.
Let ln(d) be such that Ln|Id

n
= f ln(d). We will also use the notation ln(x) = ln(d(n)(x)). Let us define

(6.4) Bn(k) = pγ̃n(ln(x) > k|In).

(6.5) Bτn
n (k) = pγ̃n(ln(x) > k + rn(τn)|Iτn

n ).

Lemma 6.2. If k > c
−b/2
n α

−b/2
n then

Bn(k) < e−cb/2
n αb/2

n k,(6.6)

Bτn
n (k) < e−cb/2

n αb/2
n k.(6.7)

Proof. Let us first show (6.6), the proof of estimate (6.7) being analogous.
Let k > c

−b/2
n α

−b/2
n be fixed. Let m0 = α

b/2
n k.

Notice that by Lemma 3.3

(6.8) pγ̃n(|d(n)(x)| ≥ m0|x ∈ In) ≤ e−cb/4
n αb/2

n k.

Fix now m < m0. Let us estimate

(6.9) pγ̃n(|d(n)(x)| = m, ln(x) > k|x ∈ In).

For each d = (j1, ..., jm) associated to a point in this set, we can associate a sequence of m positive integers
ri such that ri ≤ rn(ji) and

∑
ri = k. The average value of ri is at least k/m so we conclude that

(6.10)
∑

ri≥k/2m

ri > k/2.

Recall also that

(6.11)
k

2m
>

1

(2α
b/2
n )

> α−1
n .
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Given a sequence of m positive integers ri as above we can do the following estimate using Lemma 5.2

pγ̃n(d(n)(x) = (j1, ..., jm), rn(ji) ≥ ri|In) ≤ 2mn
m∏

j=1

pγn(rn(x) ≥ rj |In) ≤ 2mn
∏

rj≥α−1
n

pγn(rn(x) ≥ rj |In)(6.12)

≤ 2mn
∏

rj≥k/2m

e−αnrj ≤ 2mne−αnk/2.

The number of sequences of m positive integers ri with sum k is

(6.13)
(

k + m − 1
m − 1

)
≤ 1

(m − 1)!
(k + m − 1)m−1 ≤ 1

m!
(k + m)m ≤

(
2ek

m

)m

.

Notice that (since x1/x is decreasing for x > e)

(6.14) 2mn

(
2ek

m

)m

≤
(

2n+3k

m

) m

k2n+3 k2n+3

≤
(

2n+3k

m0

) m0
k2n+3 k2n+3

=
(

2n+3

α
b/2
n

)m0

≤ eαb/4
n k.

So we can finally estimate

(6.15) pγ̃n(|d(n)(x)| = m, ln(x) ≥ k|x ∈ In) ≤ 2mn

(
2ek

m

)m

e−αnk/2 < e(α(b/4)−1
n − 1

2 )αnk.

Summing up on m we get (since ln(m0)
k ≤ ln(k)

k ≤ α
b/4
n )

(6.16) pγ̃n(|d(n)(x)| < m0, ln(x) ≥ k|x ∈ In) ≤ m0e
(α(b/4)−1

n − 1
2 )αnk < e(α(b/2)−1

n +α(b/4)−1
n − 1

2 )αnk ≤ e−αnk/3.

As a direct consequence we get

(6.17) Bn(k) < e−αnk/3 + e−cb/4
n αb/2

n k < e−cb/2
n αb/2

n k.

concluding the proof of (6.6). �
Let vn = rn(0) be the return time of the critical point.

Lemma 6.3. With total probability, for n large enough,

(6.18) vn+1 < c−3b/4
n α−3b/4

n .

Proof. By the definition of αn and PhPa2’, it follows that with total probability, for n large enough,

(6.19) rn(τn) < c−1
n−1α

−1
n .

Recall that d(n)(0) is such that Rn(0) ∈ C
d(n)(0)
n . Using Lemma 6.2, more precisely estimate (6.7), together

with PhPa1’, we get with total probability, for n large enough,

(6.20) ln(d(n)(0)) − rn(τn) < nα−b/2
n c−3b/4

n ,

and thus

(6.21) vn+1 < vn + c−1
n−1α

−1
n + nα−b/2

n c−3b/4
n < vn + α−3b/4

n c−3b/4
n /4.

Notice that αn decreases monotonically, thus for n0 big enough and for n > n0,

(6.22) vn < vn0 +
n−1∑
k=n0

α
−3b/4
k c

−3b/4
k /4 < vn0 + α−3b/4

n c−3b/4
n /3.

which for n big enough implies vn+1 < c
−3b/4
n α

−3b/4
n . �

Lemma 6.4. With total probability, for n large enough,

(6.23) αn+1 ≥ min{α2b
n , c2b

n }.
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Proof. Let k ≥ max{α−2b
n , c−2b

n }. From Lemma 6.3 one immediately sees that if rn+1(j) ≥ k then Rn(Ij
n+1) is

contained on some C
d
n with ln(d) ≥ k/2 ≥ α

−b/2
n c

−b/2
n .

Applying Lemma 6.2 we have Bn(k/2) < e−αb/2
n cb/2

n k/2.
Applying Remark 5.2 we get An+1(k) < e−kαb/2

n cb/2
n a2/2 < e−k min{α2b

n ,c2b
n }. �

Since cn decreases torrentially, we get

Corollary 6.5. With total probability, for n large enough αn+1 ≥ c2b
n .

6.2. Consequences. The lemma below contains the basic estimates on return times that we will need (and also
contains estimates already proved).

Lemma 6.6. With total probability, for all n sufficiently large we have

pγ̃n(ln(x) < c−s
n |x ∈ In) < c

a
2−s
n , with s > 0,(6.24)

pγ̃n(ln(x) < c−s
n |x ∈ Iτn

n ) < c
a
2−s
n , with s > 0,(6.25)

pγ̃n(ln(x) > c−s
n |x ∈ In) < e−cb−s

n , with s > b,(6.26)

pγ̃n(ln(x) > c−s
n |x ∈ Iτn

n ) < e−cb−s
n , with s > b,(6.27)

pγn(rn(x) > c−s
n−1|x ∈ In) < e−c2b−s

n−1 , with s > 2b.(6.28)

Moreover we also have

rn(τn) < c−3b
n−1,(6.29)

c−a
n−1 < vn < c

−4b/5
n−1 ,(6.30)

c
−a/2
n−1 < ln(c−1

n ) < c−b
n−1.(6.31)

Proof. The estimate from above in (6.30) is given by Corollary 6.5 together with Lemma 6.3, while the estimate
from below is contained in Lemma 3.4 (since vn > sn−1). Estimate (6.28) is Corollary 6.5.

Estimates (6.24) and (6.25) are contained in Lemma 3.3 (it is enough to use that ln(x) ≥ |d(n)(x)|).
Estimate (6.26) follow from Lemma 6.2 and Corollary 6.5.
Estimate (6.28) implies (6.29) by application of PhPa1’. Using also the estimate from above in (6.29) one also

gets estimate (6.27).
The estimate from below on (6.31) is given by Lemma 3.5. Notice that |Rn(In+1)| > 2−n|In| (by Lemma 4.4),

and since |Df | is bounded (by 4) this implies 4vn |In+1| > 2−n|In| which gives cn > 2−n4−vn . So the estimate
from above in (6.31) follows from the estimate from above in (6.30). �

7. Some kinds of branches and landings

7.1. Standard and fast landings. Let us define the set of standard landings at time n, LS(n) ⊂ Ω as the set
of all d = (j1, ..., jm) satisfying the following:

LS1: c
−a4/2
n < m < c−2b4

n ,
LS2: rn(ji) < c−3b4

n−1 for all i.

We also define the set of fast landings at time n, LF (n) ⊂ Ω by the following conditions

LF1: m ≤ c
−a4/2
n .

LF2: (=LS2): rn(ji) < c−3b4

n−1 for all i.
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Lemma 7.1. With total probability, for all n sufficiently big,

pγ̃n(d(n)(x) /∈ LS(n)|x ∈ In) < ca4/3
n /2,(7.1)

pγ̃n(d(n)(x) /∈ LS(n) ∪ LF (n)|x ∈ In) < cn2

n /2,(7.2)

pγ̃n(d(n)(x) /∈ LS(n)|x ∈ Iτn
n ) < ca4/3

n /2,(7.3)

pγ̃n(d(n)(x) /∈ LS(n) ∪ LF (n)|x ∈ Iτn
n ) < cn2

n /2.(7.4)

Proof. Let us start with the first two estimates.
(LS1) A simple application of (6.24) and (6.26) allows to estimate pγ̃n(|d(n)(x)| ≥ c2b4

n or |d(n)(x)| ≤ c
a4/2
n |In)

and shows that the set of landings violating LS1 has γ̃n-capacity bounded by c
2a4/5
n−1 .

(LS1+LF1) An application of (6.26) allows to estimate pγ̃n(|d(n)(x)| ≥ c2b4

n |In) and shows that the set of
landings violating both LS1 and LF1 has γ̃n-capacity bounded by cn2

n /10.

(LS2=LF2) An application of (6.28) gives pγ̃n(rn(x) ≥ c−3b4

n−1 |In) ≤ e−c−2b4
n−1 . Using Lemma 5.1, this implies

that the set of landings violating LS2 and satisfying either LS1 or LF1 (so that |d| < c−2b4

n ) has γ̃n-capacity
bounded by 2nc−2b4

n pγ̃n(rn(x) ≥ c−3b4

n−1 |In) ≤ cn2

n /10.
Putting those estimates together gives the first two estimates. To get the last two estimates, we proceed in

the same way for estimating LS1 and LS1+LF1. The estimate of LS2=LF2 follows the same lines with one
extra ingredient: we have to be careful since if rn(τn) is very large then automatically LS2 is violated for every
d which starts by τn. But this was taken care by estimate (6.29), and with this observation the estimates are
the same. �

7.2. Very good returns, bad returns and excellent landings. For n0, n ∈ N such that n ≥ n0, define
the set of very good returns, V G(n0, n) ⊂ Z \ {0} and the set of bad returns, B(n0, n) ⊂ Z \ {0}, by induction
as follows. We let V G(n0, n0) = Z \ {0},B(n0, n0) = ∅ and supposing V G(n0, n) and B(n0, n) defined, we
then define the set of excellent landings LE(n0, n) ⊂ LS(n) as the set of all standard landings d = (j1, ..., jm)
satisfying the following extra assumptions

LE1: For all c−2b4

n−1 < k ≤ m, #{1 ≤ i ≤ k, ji /∈ V G(n0, n)} < (6 · 2n)ca8

n−1k,
LE2: For all c

−1/n
n < k ≤ m, #{1 ≤ i ≤ k, ji ∈ B(n0, n)} < (6 · 2n)cn

n−1k.

We then define V G(n0, n+ 1) as the set of j ∈ Z \ {0} such that Rn(Ij
n+1) = C

d
n with d ∈ LE(n0, n) and such

that:
VG: The distance of Ij

n+1 to 0 is bigger than cn2

n |In+1|.
And we define B(n0, n + 1) as the set of j /∈ V G(n0, n + 1) such that Rn(Ij

n+1) = C
d
n with d /∈ LF (n).

Lemma 7.2. With total probability, for all n0 sufficiently big,

pγn(j(n)(x) /∈ V G(n0, n)|x ∈ In) < ca8

n−1,(7.5)

pγn(j(n)(x) ∈ B(n0, n)|x ∈ In) < c2n
n−1,(7.6)

pγ̃n(d(n)(x) /∈ LE(n0, n)|x ∈ In) < c2a4/5
n ,(7.7)

pγ̃n(d(n)(x) /∈ LE(n0, n) ∪ LF (n)|x ∈ In) < cn2

n ,(7.8)

pγ̃n(d(n)(x) /∈ LE(n0, n)|x ∈ Iτn
n ) < c2a4/5

n .(7.9)

Proof. The argument is by induction: if for a given value of n we have (7.5) and (7.6) (this holds trivially for
n = n0), we will show that we also have (7.7), (7.8) and (7.9), and this in turn implies that (7.5) and (7.6) hold
for n + 1.
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Assuming the validity for a given value of n of (7.5) and (7.6) we can estimate the γ̃n-capacity of the set of
landings which fail LE1 or LE2 using the techniques of §5.2 as follows:

(LE1) We use estimate (5.17). Setting q = ca8

n−1 we see that the set of landings which fail LE1 for a specific
value of k ≥ c2b4

n−1 is bounded by 2−(6·2n)qk. Summing up on k ≥ c2b4

n−1 we get the upper bound cn2

n /10.
(LE2) We use estimate (5.17) again, setting this time q = cn

n−1. The upper bound we get using the same
argument as before is

∑
k>c

−1/n
n

2−(6·2n)qk ≤ cn2

n /10.
Those estimates imply (7.7) and (7.8) (it is enough to use (7.1) and (7.2)). An analogous argument shows

that (7.5) and (7.6) imply (7.9).
To see that the validity of (7.7) and (7.8) for n implies the validity of (7.5) and (7.6) for n+1 is just a matter

of applying Remark 5.2 (notice that condition VG is quite weak: it excludes a set of branches of γn+1-capacity
at most c

n2/a
n ). �

This translates immediately (using the measure-theoretical argument of Lemma 2.2) to a parameter estimate
using PhPa2’:

Lemma 7.3. With total probability, for all n0 big enough, for all n big enough, τn ∈ V G(n0, n).

Lemma 7.4. With total probability, for all n0 big enough and for all n ≥ n0, if j ∈ V G(n0, n + 1) then

(7.10) c−a4/2
n ≤ m < rn+1(j) < mc−4b4

n−1 ≤ c−2b4

n c−4b4

n−1 ,

where as usual, m is such that Rn(Ij
n+1) = C

d
n and d = (j1, ..., jm).

Proof. We have c
−a4/2
n ≤ m ≤ c−2b4

n by LS1, while m < rn+1(j) is obvious. We get rn+1(j) < mc−4b4

n−1 from LS2
and (6.30). �
Lemma 7.5. With total probability for all n0 sufficiently big, if n > n0, and if j /∈ V G(n0, n) ∪ B(n0, n) then
rn(j) < c

−a4/2
n−1 c−4b4

n−2 .

Proof. Indeed, if j /∈ V G(n0, n) ∪ B(n0, n) then Rn−1(Ij
n) ∈ LF (n0, n− 1). The estimate follows since a branch

in LF (n0, n − 1) has time bounded by c
−a4/2
n−1 c−3b4

n−2 (using LF1 and LF2) and vn−1 < c−b4

n−2 (using (6.30)). �
Lemma 7.6. With total probability, for all n0 big enough and for all n ≥ n0, the following holds.

Let j ∈ V G(n0, n + 1), as usual let Rn(Ij
n+1) ⊂ C

d
n and d = (j1, ..., jm). Let mk be biggest possible with

(7.11) vn +
mk∑
i=1

rn(ji) ≤ k

(the amount of full returns to level n before time k) and let

(7.12) βk =
∑

1≤i≤mk,
ji∈V G(n0,n)

rn(ji).

(the total time spent in full returns to level n which are very good before time k). Then 1 − βk

k < c
a8/3
n−1 if

k > c
−2/n
n .

Proof. Let us estimate first the time ik which is not spent on non-critical full returns:

(7.13) ik = k −
mk∑
j=1

rn(ji).

This corresponds exactly to vn plus some incomplete part of the return jmk+1 . This part can be bounded by
c−b4

n−1 + c−3b4

n−1 (use (6.30) to estimate vn and LS2 to estimate the incomplete part).
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Using LS2 we conclude now that

(7.14) mk > (k − c−b5

n−1)c
3b4

n−1 > c−1/n
n

so mk is not too small.
Let us now estimate the contribution hk from bad full returns ji. The number of such returns must be less

than c
n/2
n−1mk by LE2 and the estimate on mk. By LS2 their total time is at most c

(n/2)−3b4

n−1 mk < mk.
The non very good full returns on the other hand can be estimated by LE1 (using (7.14)): they are at

most c
2a8/3
n−1 mk. So we can estimate the total time lk of non very good or bad full returns (with time less then

c
−a4/2
n−1 c−4b4

n−2 by Lemma 7.5) by

(7.15) c
2a8/3
n−1 c

−a4/2
n−1 c−4b4

n−2 mk,

while βk can be estimated from below by

(7.16) (1 − c
2a8/3
n−1 )c−a4/2

n−1 mk.

It is easy to see then that ik/βk � c
a4/5
n−1 , hk/βk � c

a4/5
n−1 . We also have lk

βk
< 2c

a8/2
n−1 . So ik+hk+lk

βk
is less then

c
a8/3
n−1 . Since ik + hk + lk + βk = k we have 1 − βk

k < ik+hk+lk
βk

< c
a8/3
n−1 . �

7.3. Cool landings. Let us define the set of cool landings LC(n0, n) ⊂ LE(n0, n), n0, n ∈ N, n ≥ n0 as the set
of all excellent landings d = (j1, ..., jm) satisfying

LC1: ji ∈ V G(n0, n), 1 ≤ i ≤ c
−a8/2
n−1 .

LC2: For all c
−a8/2
n−1 < k ≤ m, #{1 ≤ i ≤ k, ji /∈ V G(n0, n)} < (6 · 2n)ca8/3

n−1 k,
LC3: For c

−n/3
n−1 ≤ k ≤ m, #{1 ≤ i ≤ k, ji ∈ B(n0, n)} < (6 · 2n)cn/6

n−1k,
LC4: ji /∈ B(n0, n), 1 ≤ i ≤ c

−n/2
n−1 .

As usual we obtain:

Lemma 7.7. With total probability, for all n0 sufficiently big and all n ≥ n0,

(7.17) pγ̃n(d(n)(x) /∈ LC(n0, n)|x ∈ In) < c
a8/3
n−1

and for all n big enough

(7.18) pγ̃n(d(n)(x) /∈ LC(n0, n)|x ∈ Iτn
n ) < c

a8/3
n−1 .

Proof. We follow the ideas of the proof of Lemma 7.1. Let us start with the first estimate. Notice that by
Lemma 7.2 we can estimate the γ̃n-capacity of the complement of excellent landings by c

2a4/5
n . The computations

below indicate what is lost going from excellent to cool due to each item of the definition:
(LC1) This is a direct estimate analogous to LS2. By Lemma 7.2, the γn-capacity of the complement of very

good branches is bounded by ca8

n−1, so an upper bound for the γ̃n-capacity of the set of landings which do not

start with c
−a8/2
n−1 very good branches is given by 2nca8

n−1c
−a8/2
n−1 � c

a8/3
n−1 .

(LC2) In order to estimate the set of landings violating LC2, we use the ideas of §5.2. The relevant estimate
is (5.17): setting q = c

a8/3
n−1 and using Lemma 7.2, we see that the γ̃n-capacity of the set of landings violating

LC2 for a specific value of k > c
−a8/2
n−1 is bounded by 2−(6·2n)qk, and summing up on k we get the upper bound∑

k>c
−a8/2
n−1

2−(6·2n)qk � c
a8/3
n−1 .

(LC3) The same argument of LC2 (setting q = c
n/6
n−1) gives the upper bound

∑
k>c

−n/3
n−1

2−(6·2n)qk � cn2

n−1,

(LC4) An argument analogous to LC1 gives the upper bound 2nc
−n/2
n−1 c2n

n−1 � cn
n−1.
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Those imply the first estimate. To get the second estimate we argue in the same way: we only need to use
Lemma 7.3 to guarantee that τn ∈ V G(n0, n) (this avoid problems with LC1 and LC4). �

Using PhPa1’ we get

Lemma 7.8. With total probability, for all n0 big enough, for all n big enough we have Rn(0) ∈ LC(n0, n).

Lemma 7.9. With total probability, for all n0 big enough, for all n ≥ n0, d = (j1, ..., jm) ∈ LC(n0, n), and
1 ≤ s ≤ m we have

(7.19)
∑

1≤i≤s,
ji∈V G(n0,n)

rn(ji) ≥ (1 − 2−2n)
s∑

i=1

rn(ji).

Proof. From LC1, LC2 and Lemma 7.5 we have

(7.20)
∑

1≤i≤s,
ji /∈V G(n0,n)∪B(n0,n)

rn(ji) ≤ (6 · 2n)ca8/3
n−1 sc

−a4/2
n−1 c−4b4

n−2 ≤ ca9

n−1c
−a4/2
n−1 s,

and from LC3, LC4 and LS2 we have

(7.21)
∑

1≤i≤s,
ji∈B(n0,n)

rn(ji) ≤ (6 · 2n)cn/6
n−1sc

−3b4

n−1 ≤ s,

while from LC1, LC2 and Lemma 7.4 we have

(7.22)
∑

1≤i≤s,
ji∈V G(n0,n)

rn(ji) ≥ (1 − (6 · 2n)ca8/3
n−1 )sc−a4/2

n−1 ≥ 1
2
c
−a4/2
n−1 s,

and the result follows from (7.20), (7.21) and (7.22). �

8. Proof of Theorem B

We must obtain, with total probability, upper and lower (polynomial) bounds for the recurrence of the critical
orbit. It will be easier to first study the recurrence with respect to iterates of return branches, and then estimate
the total time of those iterates.

Lemma 8.1. With total probability, for n big enough and for 1 ≤ i ≤ sn,

(8.1)
ln |Ri

n(0)|
ln(cn−1)

< b8

(
1 +

ln(i)
ln(c−1

n−1)

)
.

Proof. From Lemma 4.4, we have

(8.2)
ln |Rn(0)|
ln cn−1

<
ln(2−n|In|)

ln cn−1
< 2

and the result follows for i = 1. Let X ⊂ In be a cb8

n−1 neighborhood of 0. For n big, we can estimate |X|
|In| < cb8−2

n−1 .
Let us show that Ri

n(0) /∈ X for 2 ≤ i ≤ c−2
n−1. This requirement can be translated on Rn(0) not belonging to a

certain set Y ⊂ In such that

(8.3) Y =
⋃

1≤|d|<c−2
n−1

(Rd
n)−1(X).

It is clear that

(8.4) pγ(Y |Iτn
n ) ≤ c−2

n−1c
(b8−2)/b4

n−1 < cb4−3
n−1 .
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Applying PhPa1’, the probability that for some 2 ≤ i ≤ c−2
n−1 we have |Ri

n(0)| < cb8

n−1 is at most cb4−3
n−1 , which is

summable. This implies the result in the range 2 ≤ i ≤ c−2
n−1.

For j ≥ 0, let Xj ⊂ In be a cb4(j+2)

n−1 neighborhood of 0. Let K be maximal with XK ⊃ In+1. Let Yj ⊂ In be
such that

(8.5) Yj =
⋃

c−b4j

n−1 ≤|d|<c−b4(j+1)
n−1

(Rd
n)−1(Xj).

By Lemma 4.4, it is clear that no Xj intersects Iτn
n . Thus we can estimate

(8.6) pγ(Yj |Iτn
n ) ≤ c−b4(j+1)

n−1 cb4(j+2)−2b
n−1 < cb4(j+1)

n−1

and

(8.7) pγ(
K⋃

j=0

Yj |Iτn
n ) <

∞∑
j=0

cb4j

n−1 < 2cn−1.

Applying PhPa1’, with total probability, the critical point does not belong to ∪K
j=0Yj . This means that for

0 ≤ j ≤ K and for c−b4j

n−1 < i ≤ c−b4(j+1)

n−1 , Ri
n(0) /∈ Xj , which implies |Ri

n(0)| > cb4(j+2)

n−1 . This concludes the proof

of the result in the range c−2
n−1 < i ≤ c−b4(K+1)

n−1 .

To conclude the result in the remaining case c−b4(K+1)

n−1 < i ≤ sn, we notice that |Ri
n(0)| > |In|/2 > |XK+1|/2,

so

(8.8)
ln |Ri

n(0)|
ln(cn−1)

<
ln |XK+1|/2

ln cn−1
≤ b4(K+3) ≤ b8 ln(i)

ln(c−1
n−1)

which gives the required estimate. �

For 1 ≤ i ≤ sn, let ki such that Ri
n|In+2 = fki .

Lemma 8.2. With total probability, for n big enough and for 1 ≤ i ≤ sn,

(8.9)
ln(ki)

ln(c−1
n−1)

>
a4

3

(
1 +

ln(i)
ln(c−1

n−1)

)
.

Proof. Let us first assume that c−1
n−1 ≤ i ≤ sn. By Lemma 7.8, Rn(0) belongs to a cool landing, and by LC2 we

get

(8.10)
ki

i − 1
> c

−a4/3
n−1 ,

which clearly implies the required estimate.
Using (6.30), we see that ki ≥ vn ≥ c−a

n−1. Thus for 1 ≤ i < c−1
n−1 we have

(8.11)
ln ki

ln c−1
n−1

≥ a >
a4

3

(
1 +

ln i

ln c−1
n−1

)
,

which gives the result. �

Considering |Rn(0)| = |fvn(0)| < cn−1 and using vn < c−b
n−1 we get

(8.12) lim inf
n→∞

− ln |fn(0)|
ln(n)

≥ a.
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Let now vn ≤ k < vn+1. If |fk(0)| < k−3b12 we have fk(0) ∈ In and so k = ki for some i. It follows from
Lemmas 8.1 and 8.2 that |fk(0)| > k−3b12 . Thus

(8.13) lim sup
n→∞

− ln |fn(0)|
ln(n)

≤ 3b12.

9. Hyperbolicity

For j = 0, we define

(9.1) λn(j) = inf
x∈Ij

n

ln(|R′
n(x)|)

rn(j)
, λn = inf

j �=0
λn(j).

Lemma 9.1. With total probability, for all n sufficiently big, λn > 0.

Proof. By Lemma 2.3, there exists a constant λ̃n > 0 such that each peridic orbit p of f whose orbit is entirely
contained in the complement of In+1 must satisfy ln |Dfm(p)| > λ̃nm, where m is the period of p. On the
other hand, each non-central branch Rn|Ij

n
has a fixed point. By Lemma 4.6, dist(Rn|Ij

n
) ≤ 2n and of course

limj→∞ rn(j) = ∞, so we have lim infj→∞ λn(j) ≥ λ̃n. On the other hand, for any j = 0, λn(j) > 0 by
Lemma 4.6, so λn > 0. �
Lemma 9.2. With total probability, for n0 big enough, we have:

If n ≥ n0 and j ∈ V G(n0, n) then λn(j) ≥ λn0

1 + 2n0−n

2
,(9.2)

If n > n0, j ∈ V G(n0, n) and c
−3

(n−1)
n−1 ≤ k ≤ rn(j) then inf

Ij
n

ln(|Dfk|)
k

≥ λn0

1 + 2n0−n+ 1
2

2
− c

2
(n−1)
n−1 .(9.3)

Proof. Let us prove that if (9.2) holds for a certain value of n ≥ n0 then (9.3) and (9.2) hold for n + 1. This
implies the result by induction, since the definition of λn0 implies that (9.2) holds for n0. Fix j ∈ V G(n0, n + 1)
and define

(9.4) ak = inf
x∈Ij

n+1

ln |Dfk(x)|
k

,

and let us consider values of k in the range c
−3/n
n ≤ k ≤ rn+1(j) (notice that rn+1(j) > c

−3/n
n by Lemma 7.4).

We let Rn(Ij
n+1) ⊂ C

d
n, d = (j1, ..., jm). Notice that by (6.30), vn < c−b4

n−1 < k. Let us say that ji was
completed before k if vn + rn(j1) + ... + rn(ji) ≤ k. Define

(9.5) qk = inf
x∈C

d
n

ln |Dfk−r ◦ f r(x)|

where r = vn + rn(j1) + ... + rn(jmk
) with jmk

the last complete return. By Lemma 4.7 we have

(9.6)
−qk

k
≤ − ln cnc5

n−1

c
−3/n
n

� c2/n
n .

Let us show that |DRn(x)| > cn2

n if x ∈ Ij
n+1. Indeed, by Lemma 4.3, DRn|In+1 = φ ◦ f , where φ has small

distortion, so by Lemma 4.4,

(9.7) |Dφ(f(x))| >
|Rn(In+1)|
2|f(In+1)| >

2−n|In|
|In+1|2 ,

while by VG, |Df(x)| = |2x| > cn2

n |In+1|, so |DRn(x)| > cn2

n .
Notice also that using Lemma 4.6, for any m0 ≤ m, the derivative of Rm0

n in C
d
n is at least 2m0 . So for

m0 = c−2b4

n−1 we have that the derivative of Rm0+1
n in Ij

n+1 is at least 1. Moreover, still by Lemma 4.6 any
complete return (even if not very good) brings in some expansion.
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Notice that from LS2

(9.8) k0 =
m0∑
i=1

rn(ji) < c−2b4

n−1 c−3b4

n−1 � k,

so we can use Lemma 7.6 and get

(9.9) ak >
βk − k0

k

λn0(1 + 2n0−n)
2

− −qk

k
≥ λn0(1 + 2n0−n−1/2)

2
− −qk

k
.

This and (9.6) give (9.3) for n + 1. If k = rn+1(j), qk = 0 which gives (9.2) for n + 1. �

10. Proof of Theorem A

We must show that with total probability, f is Collet-Eckmann. The argument given here is slightly different
from the one in [AM1] and the one sketched in [AM2] (here we use Theorem B to get some estimates, which
makes the argument slightly shorter). Let

(10.1) ak =
ln |Dfk(f(0))|

k
.

Let d(n)(Rn(0)) = (j1, ..., jsn). By Lemma 9.2, each very good return has a definite hyperbolicity by (9.2),
while, by Lemma 4.6, each return which is not very good brings some (possibly weak) expansion. Thus, for
1 ≤ s ≤ sn and for n large, Lemma 7.9 implies

(10.2)
ln |DRs

n(Rn(0))|∑s
i=1 rn(ji)

≥ (1 − 2−2n)λn0

1 + 2n0−n

2
≥ λn0

1 + 2n0−n−1

2
.

In particular,

(10.3) avn+1−1 ≥ avn−1
vn − 1

vn+1 − 1
+ λn0

1 + 2n0−n−1

2
vn+1 − vn

vn+1 − 1
.

Iterating (10.3) implies that for n large we have

(10.4) avn−1 ≥ λn0

1 + 2n0−n−1

2
.

If vn − 1 ≤ k < vn+1 − 1, let 0 ≤ mk < sn be maximal such that

(10.5) tk = vn − 1 +
mk∑
i=1

rn(ji) ≤ k.

By (10.2) and (10.4) we have

(10.6)
|Df tk(f(0))|

tk
=

vn − 1
tk

avn−1 +
ln |DRmk

n (Rn(0))|∑mk

i=1 rn(ji)

∑mk

i=1 rn(ji)
tk

≥ λn0

1 + 2n0−n−1

2
.

Notice that if k−tk

k ≥ 2−2n then k−tk ≥ c
−a/2
n−1 (since k ≥ vn−1 > c−a

n−1−1), so rn(jmk+1) ≥ k−tk > c−a4

n−1c
−4b4

n−2 ,
and we have jmk+1 ∈ V G(n0, n) ∪ B(n0, n) by Lemma 7.5. This in turn implies that jmk+1 ∈ V G(n0, n):
since k − tk ≤ rn(jmk+1) ≤ c−3b4

n−1 (by LS2), if jmk+1 ∈ B(n0, n) then by LC4, k ≥ mk + 1 > c
−n/2
n−1 , so

k−tk

k ≤ rn(jmk+1)

k ≤ c
n/3
n−1 < 2−2n, a contradiction.

Define qk = ln |Dfk−tk(f tk+1(0))|. By Lemma 4.7 and by Theorem B, we have

(10.7)
−qk

k
≤ − ln(|f tk+1(0)|c3

n−1)
k

≤ ca2

n−1,

since |f tk+1(0)| > k−C for some C > 0. Thus, if k−tk

k ≤ 2−2n we have by (10.6)

(10.8) ak ≥ tk
k

λn0

1 + 2n0−n−1

2
− −qk

k
≥ λn0

2
.
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If k−tk

k ≥ 2−2n, we have jmk+1 ∈ V G(n0, n), so we can apply (9.3) and conclude that

(10.9)
qk

k − tk
≥ λn0

1 + 2n0−n+ 1
2

2
− c

2/(n−1)
n−1 ≥ λn0

2
,

which implies, using (10.6) again,

(10.10) ak ≥ tk
k

λn0

1 + 2n0−n−1

2
+

k − tk
k

qk

k − tk
≥ λn0

2
.

Thus ak ≥ λn0
2 for vn − 1 ≤ k < vn+1 − 1, for all n sufficiently large, which implies that f is Collet-Eckmann.
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