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Abstract. We obtain precise estimates relating the phase space and the pa-
rameter space of analytic families of unimodal maps, which generalize the case
of the quadratic family obtained in [AM1]. This result implies a statistical
description of the dynamics of typical analytic quasiquadratic maps which is
much sharper than what was previously known: as an example, we can con-
clude that the recurrence of the critical point is polynomial with exponent one.
To complete the picture, we show that typical analytic non-regular unimodal
maps admit a quasiquadratic renormalization, so that the previous result ap-
plies also without the quasiquadratic assumption. Those ideas lead to a proof
of a theorem of Shishikura: the set of non-renormalizable parameters in the
boundary of the Mandelbrot set has zero Lebesgue measure. Further applica-
tions of those results can be found in [AM3].
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1. Introduction

A unimodal map is a smooth (at least C2) map f : I → I, where I ⊂ R is an
interval, which has one unique critical point c ∈ int I which is a maximum. Let
us say that f is regular if it has a quadratic critical point, is hyperbolic and its
critical point is not periodic or preperiodic. By a result of Kozlovski [K2], the set
of regular maps coincides with the set of structurally stable unimodal maps, and

Date: December 19, 2004.
Partially supported by Faperj and CNPq, Brazil.

1



2 ARTUR AVILA AND CARLOS GUSTAVO MOREIRA

it follows that the set of regular maps is open and dense in all smooth (and even
analytic) topologies.

A central problem in dynamical systems is to give a good statistical description
of “typical systems”, for some reasonable measure-theoretical notion of typical:
Ideally (according to the Palis Conjecture [P]) the set of systems with a good
statistical description should correspond to a Lebesgue full measure set in (a large
set of) parametrized families.

In order to establish such a picture, one should understand well how the dynamics
varies with the parameter. In one-dimensional dynamics, a basic approach has been
to investigate thoroughly the dynamics of an individual map and show that some of
its properties are reflected on the nearby parameter space. As described by Adrien
Douady: “You first plow in the dynamical plane and then harvest in the parameter
plane”. More specifically, in the situations we will discuss one uses the dynamics to
define tilings of both the phase and parameter spaces. Estimates on the geometry
of the tilings are done first in the phase space and later one tries to transfer them
to the parameter space.1

The most studied family of unimodal maps is the quadratic family pλ = λ− x2,
−1/4 ≤ λ ≤ 2. The analysis of the relation between phase space and parameter
space in this case has been efficiently carried out using complex methods. Estimates
of this type are central to the proof of Yoccoz [H] of the local connectivity of
the Mandelbrot set for finitely renormalizable parameters. In [L3], Lyubich used
holomorphic motions2 to relate phase and parameter in a rather robust way (in the
finitely renormalizable case). This was used in a probabilistic argument to show that
almost every non-regular finitely renormalizable pλ satisfies the Martens-Nowicki
criterion [MN] for the existence of an absolutely continuous invariant measure.
Later in [L5] Lyubich also established that infinitely renormalizable parameters
have zero Lebesgue measure, thus concluding that almost every non-regular pλ is
stochastic (admits an absolutely continuous invariant measure).

In [AM1], the analysis of [L3] was pushed further. It was shown that for a
typical non-regular quadratic map pλ0 , the phase space of pλ0 near the critical
point 0 and the parameter space near λ0 are related by some metric rules called
the Phase-Parameter relation. Informally, those rules state that a phase-parameter
map corresponding to certain tilings (arising naturally in the consideration of first
return maps to some small intervals around the critical point) is quasisymmetric
with good constants. The importance of this particular set of rules is that it can
be efficiently used in probabilistic arguments (in [AM1] those rules are used to
establish the Collet-Eckmann condition and polynomial recurrence for the critical
orbit for almost every non-regular parameter, we will come back to those properties
later).

The proof of [L3], and hence of [AM1], was tied to the combinatorial theory
of the Mandelbrot set, so it can only work for quadratic maps (or, at most, full
unfolded families of quadratic-like maps, see [L3]).

Let us say that an analytic family of unimodal maps (depending on finitely many
parameters) is non-trivial if regular parameters are dense. Such a definition has the
advantage of brevity, but at first it may seem to be too strong. However, it actually

1In order to have this picture it is of course convenient that the phase and parameter space
have the same dimension.

2Here it is crucial that the parameter space has dimension one.
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can be shown that it corresponds to two natural non-degeneracy conditions: there
is no open subset of parameters where either (1) there is a persistently degenerate
periodic orbit or (2) the family is contained in a leaf of a certain codimension-one
lamination (the “hybrid lamination” of [ALM]). In particular non-trivial analytic
families are dense in any topology. The first main result of this paper is the following
(see §7 for the precise definition of the Phase-Parameter relation):

Theorem A. Let fλ be a one-parameter non-trivial analytic family of unimodal
maps. Then fλ satisfies the Phase-Parameter relation at almost every non-regular
parameter.

As previously discussed, the Phase-Parameter relation has many remarkable con-
sequences for the study of the dynamical behavior of typical parameters. Our second
main result is an application of the Phase-Parameter relation:

Theorem B. Let fλ be a non-trivial analytic family of unimodal maps.3 Then
almost every parameter is either regular or has a renormalization which is topolog-
ically conjugate to a quadratic polynomial.

This result allows one to reduce the study of typical unimodal maps to the special
case of unimodal maps which are quasiquadratic (i.e., persistently topologically
conjugate to a quadratic polynomial).

1.1. Statistical properties of typical unimodal maps. Typical quasiquadratic
maps had been previously studied in [ALM], [AM2], which extend several results
([L3], [MN], [L5] and [AM1]) first obtained for the quadratic family. In particular it
was concluded that the dynamics of typical quasiquadratic maps have an excellent
statistical description (in terms of physical measures, decay of correlations and
stochastic stability), thus answering the Palis Conjecture (see [AM2] for details) in
the unimodal quasiquadratic case.

For regular maps, the good statistical description comes for free. For a non-
regular map f , it is related to essentially two properties regarding its critical point
c: the Collet-Eckmann condition4 and subexponential recurrence5.

Thus, [AM2] achieves the good statistical description via a dichotomy: typical
quasiquadratic maps are either regular or Collet-Eckmann and subexponentially
recurrent. This is done in both the analytic case and the smooth case (Ck, k =
3, ...,∞). For typical non-regular analytic quasiquadratic maps, it is proved even
more, that the critical point is polynomially recurrent6.

Our Theorem B allows us to immediately obtain the analytic case in our more
general setting (see Theorem 10.1 for a more precise statement):

Corollary C. Let fλ be a non-trivial analytic family of unimodal maps. Then
almost every non-regular parameter is Collet-Eckmann and its critical point is poly-
nomially recurrent.

This allows us not only to generalize the smooth case of [AM2] besides quasi-
quadratic maps, but to reduce the differentiability requirements, including the C2

case in the description (see Theorem 10.3 for a more precise statement):

3Notice that here we do not assume that the parameter space is one-dimensional.
4A unimodal map f is Collet-Eckmann if |Dfn(f(c))| > Cλn for some constants C > 0 and

λ > 1.
5That is, for every α > 0, |fn(c) − c| > e−αn for n sufficiently big.
6That is, there exists γ > 0 such that |fn(c) − c| > n−γ for every n sufficiently big.
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Corollary D. In generic smooth (Ck, k = 2, ...,∞) families of unimodal maps,
almost every parameter is regular, or has a renormalization which is conjugate
to a quadratic map, is Collet-Eckmann and its critical point is subexponentially
recurrent.

Remark 1.1. The dichotomies in Corollaries C and D imply that the dynamics of
typical non-regular unimodal maps have the same excellent statistical description
of the quasiquadratic case studied by [AM2] (some of the statistical properties one
obtains are discussed in Remark 10.1). In particular, our Corollaries C and D give
an answer to the Palis Conjecture in the general unimodal case.

1.2. Sharpness. The Phase-Parameter relation allows one to obtain very precise
estimates on the dynamics of typical parameters. For instance, the statistical anal-
ysis of [AM1] could compute the exact exponent of the polynomial recurrence7 in
the case of the quadratic family. The method used in [AM2] to extend results from
the quadratic family to other non-trivial families of quasiquadratic maps (based on
comparison of the respective parameter spaces) introduces unavoidable distortion
and can not be used to estimate the exponent of the recurrence even in the quasi-
quadratic case. Our Theorem A implies that the same sharp estimates obtained
for the quadratic family remain valid for general analytic maps.

Corollary E. Let fλ be a non-trivial analytic family of unimodal maps. Then
almost every parameter is either regular or has a polynomially recurrent critical
point with exponent 1.

We call the attention of the reader to [AM3] where much more refined statistical
applications of Theorem A are obtained. Those results are inaccessible by the
methods of [AM2], and indeed are used to show the limitations of estimates based
on comparison of parameter spaces of different families with respect to direct Phase-
Parameter estimates.

1.3. Complex parameters. A very natural question raised by the description of
typical parameters in the real quadratic family is if the results generalize to complex
parameters. Actually it can be hoped for

In this direction, let us remark that the argument of the proof of Theorem B
can be also applied in the complex setting. In this setting, it gives a proof of the
following result of Shishikura (unpublished, a sketch can be found as Theorem 4 in
[Sh]):

Theorem F. The set of non-hyperbolic, non-infinitely renormalizable complex
quadratic parameters has zero Lebesgue measure.

We discuss this application in Appendix B.

1.4. Outline of the proof of Theorem A. The proof of Theorem A can be
divided in four parts. The crucial step of this paper is step (2) below, which allows
us to integrate the work of [AM1] and [ALM].
(1) Following [L3] and the Appendix of [AM1], we describe a complex analogous
of the Phase-Parameter relation for certain families of complex return type maps,
which model complex extensions of the return maps Rn : In → In to the principal

7The exponent of the polynomial recurrence of the critical point c of a unimodal map f is the
infimum of all γ > 0 such that, for n sufficiently big, |fn(c) − c| > n−γ .
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nest of a unimodal map f . This study is restricted to the class of so called full
families.
(2) We show that through any given analytic unimodal map f which is at most
finitely renormalizable with a recurrent critical point, there exists an analytic family
f̃λ (constructed explicitly) which gives rise (after a generalized renormalization
procedure) to a full family of complex return type maps. Using step (1), we conclude
that the Phase-Parameter relation is valid at f for this special family f̃λ. By
construction, this family is tangent to a certain special infinitesimal perturbation
considered in [ALM], where this perturbation had been shown to be transverse to
the topological class of f (which is a codimension-one analytic submanifold).
(3) We show that if the Phase-Parameter relation is valid for one transverse family
at f , then it is valid for all transverse families at f . This step is heavily based on
the results of [ALM]: in order to compare the parameter space of both families,
one uses the local holonomy of the lamination associated to the partition of spaces
of unimodal maps into topological classes.
(4) Using a simple generalization of [ALM] we conclude that a non-trivial family
of unimodal maps is transverse to the topological class of almost every non-regular
parameter, and that typical parameters are finitely renormalizable with a recurrent
critical point. This concludes the proof of Theorem A.

1.5. Structure of the paper. In §2 we give some basic background on quasicon-
formal maps and holomorphic motions. In §3, we discuss the dynamics of families of
complex return-type maps (this is based on [L3]) and obtain some Phase-Parameter
estimates in this context (following the sketch of the Appendix of [AM1]). In §4
we present the results of Lyubich in [L2] and [L3] in the generality needed for our
applications. In §5 we present the basic theory of unimodal maps, and in §5.6 we
introduce the results of [ALM] on the lamination structure of topological classes
of unimodal maps and state some straightforward generalizations (some details are
given in Appendix A). In §6 we construct a special analytic family of unimodal
maps which induces a full family of return type maps and in §7 we state and prove
the Phase-Parameter relation for the special family. In §8 and §9 we prove Theo-
rems A and B, and in §10 we show the relation to the corollaries. In Appendix B
we give a proof of Theorem F.

Acknowledgements: Most of the results of this paper were announced in [Av2],
and, together with [AM1], [AM2] and [ALM], formed the thesis of the first author.
The first author would like to thank Welington de Melo and Mikhail Lyubich who
collaborated in those works, and to Viviane Baladi and Jean-Christophe Yoccoz for
useful conversations.

2. Preliminaries

2.1. General notation. Let Ω be the set of finite sequences (possibly empty) of
non-zero integers d = (j1, ..., jm).

A Jordan curve T is a subset of C homeomorphic to a circle. A Jordan disk is a
bounded open subset U of C such that ∂U is a Jordan curve.

We let Dr(w) = {z ∈ C||z − w| < r}. Let Dr = Dr(0), and D = D1. If r > 1,
let Ar = {z ∈ C|1 < |z| < r}. An annulus A is a subset of C such that there exists
a conformal map from A to some Ar. In this case, r is uniquely defined and we
denote the modulus of A as mod(A) = ln(r).
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2.2. Graphs and sections. Let us fix a complex Banach space E. If Λ ⊂ E, a
graph of a continuous map φ : Λ → C is the set of all (z, φ(z)) ∈ E ⊕ C, z ∈ Λ.

Let 0 : E → E ⊕ C be defined by 0(z) = (z, 0).
Let π1 : E ⊕ C → E, π2 : E ⊕ C → C be the coordinate projections. Given a set

X ⊂ E ⊕ C we denote its fibers X[z] = π2(X ∩ π−1
1 (z)).

A fiberwise map F : X → E ⊕ C is a map such that π1 ◦ F = π1. We denote its
fibers F [z] : X[z] → C, so that F(z, w) = (z, F [z](w)).

Let Br(E) be the ball of radius r around 0.

2.3. Quasiconformal and quasisymmetric maps. Let U ⊂ C be a domain. A
map h : U → C is K-quasiconformal (K-qc) if it is a homeomorphism onto its
image and for any annulus A ⊂ U , mod(A)/K ≤ mod(h(A)) ≤ K mod(A). The
minimum such K is called the dilatation Dil(h) of h.

A homeomorphism h : R → R is said to be γ-quasisymmetric if it has a real-
symmetric extension h : C → C which is quasiconformal with dilatation bounded
by γ. If X ⊂ R, we will also say that h : X → R is γ-qs if it has a γ-qs extension.

A quasiconformal vector field α of C is a continuous vector field with locally
integrable distributional derivatives ∂α and ∂α in L1 and ∂α ∈ L∞.

2.4. Holomorphic motions. Let Λ be a connected open set of a Banach space
E. A holomorphic motion h over Λ is a family of holomorphic maps defined on
Λ whose graphs (called leaves of h) do not intersect. The support of h is the set
X ⊂ C2 which is the union of the leaves of h.

The transition (or holonomy) maps h[z, w] : X[z] → X[w], z, w ∈ Λ, are defined
by h[z, w](x) = y if (z, x) and (w, y) belong to the same leaf.

Given a holomorphic motion h over a domain Λ, a holomorphic motion h′ over
a domain Λ′ ⊂ Λ whose leaves are contained in leaves of h is called a restriction of
h.8 If h is a restriction of h′ we also say that h′ is an extension of h.

Let K : [0, 1) → R be defined by K(r) = (1 + ρ)/(1− ρ) where 0 ≤ ρ = ρ(r) < 1
is such that the hyperbolic distance in D between 0 and ρ is r.

λ-Lemma ([MSS], [BR]) Let h be a holomorphic motion over a hyperbolic
domain Λ ⊂ C and let z, w ∈ Λ. Then h[z, w] extends to a quasiconformal map of
C with dilatation bounded by K(r), where r is the hyperbolic distance between z
and w in Λ.

In the general case (Λ not one-dimensional), the same estimate holds with the
Kobayashi distance instead of the hyperbolic distance. In particular, if h is a
holomorphic motion over Br(E), and if z, w ∈ Br/2(E) then h[z, w] = 1 + O(‖z −
w‖).

If h = hU is a holomorphic motion of an open set, we define Dil(h) as the
supremum of the dilatations of the maps h[z, w].

A completion of a holomorphic motion means an extension of h to the whole
complex plane: X[z] = C for all z ∈ Λ. The problem of existence of completions is
considerably different in one-dimension or higher:

Extension Lemma ([Sl]) Any holomorphic motion over a simply connected
domain Λ ⊂ C can be completed.

8Notice that the notion of restriction allows shrinking of both the parameter and the moving
set.
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Canonical Extension Lemma ([BR]) Let h be a holomorphic motion over
Br(E). Then the restriction of h to Br/3(E) can be completed in a canonical way.

2.4.1. Symmetry. Let us assume that E is the complexification of a real-symmetric
space ER, that is, there is a anti-linear isometric involution conj fixing ER. Let us
use conj to denote also the map (z, w) → (conj z, w) in E ⊕ C.

A set X ⊂ E, E ⊕ C is called real-symmetric if conj(X) = X. Let Λ ⊂ E be a
real-symmetric domain. A holomorphic motion h over Λ is called real-symmetric if
the image of any leaf by conj is also a leaf.

The systems we are interested on are real, so they naturally possess symmetry.
In many cases, we will consider a real-symmetric holomorphic motion associated
to the system, which will need to be completed using the Extension Lemma (in
one-dimension) or the Canonical Extension Lemma (in higher dimensions).

The Canonical Extension Lemma implies that a real-symmetric holomorphic
motion over Br extends to a real-symmetric holomorphic motion over Br/3 (see
Remark 2.2 of [ALM]). On the other hand, the Extension Lemma adds ambiguity
on the procedure, since the extension is not unique. In particular, this could lead
to loss of symmetry. In order to avoid this problem, we will choose a little bit more
carefully our extensions. The relevant result is then the following:

Real Extension Lemma. Any real-symmetric holomorphic motion over a
simply connected domain Λ ⊂ C can be completed to a real-symmetric holomorphic
motion.

This version of the Extension Lemma can be proved in the same way as the
non-symmetric one9.

So we can adopt the following convention:

Symmetry assumption. Extensions of real-symmetric motions will always be
taken real-symmetric.

2.4.2. Notation conventions. We will use the following conventions. Instead of talk-
ing about the sets X[z], fixing some z ∈ Λ, we will say that h is the motion of X
over Λ, where X is to be thought of as a set which depends on the point z ∈ Λ. In
other words, we usually drop the brackets from the notation.

We will also use the following notation for restrictions of holomorphic motions:
if Y ⊂ X, we denote Y ⊂ X as the union of leaves through Y .

2.5. Codimension-one laminations. Let F be a Banach space. A codimension-
one holomorphic lamination L on an open subset W ⊂ F is a family of disjoint
codimension-one Banach submanifolds of F, called the leaves of the lamination such
that for any point p ∈ W , there exists a holomorphic local chart Φ : W̃ → V ⊕ C,
where W̃ ⊂ W is a neighborhood of p and V is an open set in some complex Banach
space E, such that for any leaf L and any connected component L0 of L ∩W , the
image Φ(L0) is a graph of a holomorphic function V → C.

9This is particularly easy to check in Douady’s [D] proof of the Extension Lemma (similar
considerations can be applied also to Astala-Martin’s proof [AsM]). Indeed, there exists only one
step which could lead to loss of symmetry, and thus needs to be looked more carefully in order to
obtain the Real Extension Lemma: in Proposition 1 we should make sure that the (not uniquely
defined) diffeomorphism F is chosen real-symmetric (the proof that this is possible is the same).
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It is clear that the local theory of codimension-one laminations is the theory of
holomorphic motions. For instance, the λ-Lemma implies that holonomy maps of
codimension-one laminations have quasiconformal extensions, and gives bounds on
the dilatation of those extensions.

3. Complex dynamics

In this section we introduce some basic language necessary to describe precisely
the constructions of [L3]. Although this language may seem at first technical and
heavy, it will allow us to give formal and concise proofs of the results we need
(which are extensions of the results of [L3]). We warn the reader that the notation
is different from [L3].

Through this section, we will deal exclusively with one-dimensional holomorphic
motions over some Jordan domain Λ ⊂ C.

3.1. R-maps and L-maps. Let U be a Jordan disk and U j , j ∈ Z be a family of
Jordan disks with disjoint closures such that U j ⊂ U for every j ∈ Z. We assume
further that 0 ∈ U0. A holomorphic map R : ∪U j → U is called a R-map (return
type map) if for j �= 0, R|U j extends to a homeomorphism R : U j → U and R|U0

extends to a double covering map R : U0 → U ramified at 0.
For d ∈ Ω, d = (j1, ..., jm), we define Ud = {z ∈ U |Rk−1(z) ∈ U jk , 1 ≤ k ≤ m}

and we let Rd = Rm|Ud. Let W d = (Rd)−1(U0).
Given an R-map R we define an L-map (landing type map) L(R) : ∪W d → U0,

by setting L(R)|W d = Rd (thus L(R) is the first landing map to U0 under the
dynamics of R). We will say that L(R) is the landing map associated with (or
induced from) R.

3.1.1. Renormalization. Given an R-map R such that R(0) ∈ ∪W d we can define
the (generalized in the sense of Lyubich) renormalization N(R) as the first return
map to U0 under the dynamics of R. It follows that N(R) = L(R) ◦ R|U0 where
defined in U0, and that N(R) is also an R-map.

3.2. Tubes and tube maps. A proper motion of a set X over Λ is a holomorphic
motion of X over Λ such that for any z ∈ Λ, the map h[z] : Λ × X[z] → X
defined by h[z](w, x) = (w, h[z, w](x)) has an extension to Λ × X[z] which is a
homeomorphism.

An equipped tube hT is a holomorphic motion of a Jordan curve T . Its support
is called a tube. We say that an equipped tube is proper if it is a proper motion. Its
support is called a proper tube. The filling of a tube T is the set U ⊂ Λ × C such
that U [z] is the bounded component of C \ T [z], z ∈ Λ.

A special motion is a holomorphic motion h = hX∪T such that X is contained
in the filling U of T , h|T is an equipped proper tube and the closure of any leaf
through X does not intersect the closure of T .

If T is a tube over Λ, and U is its filling, a fiberwise holomorphic map F : U → C2

is called a tube map if it admits a continuous extension to U .

3.2.1. Tube pullback. Let F : V → C2 be a tube map such that F(∂V) = ∂U , where
U is the filling of a tube over Λ and let h be a holomorphic motion supported on
U ∩ π−1

1 (Λ). Let Γ be a (parameter) open set such that Γ ⊂ Λ and W be a (phase)
open set which moves holomorphically by h over Λ and such that W ⊂ U . Assume
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that W contains critical values of F|(V ∩ π−1
1 (Γ)), that is, if λ ∈ Γ, z ∈ V [λ] and

DF [λ](z) = 0 then F [λ](z) ∈ W [λ].
Let us consider a leaf of h through z ∈ U \ W , and let us denote by E(z) its

preimage by F intersected with π−1
1 (Γ). Each connected component of E(z) is a

graph over Γ, moreover, E(z) ⊂ U . So the set of connected components of E(z),
z ∈ U \ W is a holomorphic motion over Γ. We define a new holomorphic motion
over Γ, called a lift of h by (F , Γ, W ), as an extension to the closure of V of the
holomorphic motion whose leaves are the connected components of E(z), z ∈ U \W
(the lift is not uniquely defined). It is clear that this holomorphic motion is a
special motion of V over Γ and its dilatation over F−1(U \W ) is bounded by K(r)
where r is the hyperbolic diameter of Γ in Λ.

3.2.2. Diagonal and Phase-Parameter holonomy maps. Let h be an equipped proper
tube supported on T . A diagonal of T is a holomorphic section Φ : Λ → C2 (so
that π1 ◦ Φ = id), admitting a continuous extension to Λ, and such that Φ(Λ) is
contained in the filling of T and for λ ∈ Λ, h[λ] ◦ Φ|∂Λ has degree one onto T [λ].

Let h = hX∪T be a special motion and let Φ be a diagonal of h|T . It is a
consequence of the Argument Principle (see [L3]) that any leaf of h|X intersects
Φ(Λ) at a unique point (with multiplicity one). From this we can define a map
χ[λ] : X[λ] → Λ such that χ[λ](z) = w if (λ, z) and Φ(w) belong to the same leaf
of h. It is clear that each χ[λ] is a homeomorphism onto its image. Moreover,
if U ⊂ X is open, χ[λ]|U [λ] is locally quasiconformal, and if Dil(h|U) < ∞ then
χ[λ]|U [λ] is globally quasiconformal with dilatation bounded by Dil(h|U).

We will say that χ is the holonomy family associated to the pair (h, Φ).

Remark 3.1. Let hU∪T be a special motion, Φ a diagonal, and let χ be the holonomy
family associated to (h, Φ). Let X be compactly contained in U . Then the λ-lemma
implies that for every λ ∈ X, χ[λ]|X[λ] extends to a qc map of the whole plane10.

If χ(X) has small hyperbolic diameter in χ(U) then one can say more: this qc
extension has dilatation close to 1. Indeed, in this case there is a Jordan domain
X ⊂ U ′ ⊂ U such that χ(U ′) has small hyperbolic diameter in χ(U) and χ(X) has
small hyperbolic diameter in χ(U ′). Using the λ-lemma, one sees that for λ ∈ U ′,
χ[λ]|U ′[λ] has dilatation close to 1, and we may apply the previous argument. (This
does not work if we only know that X has small hyperbolic diameter in U .)

3.3. Families of R-maps. An R-family is a pair (R, h), where R is a holomorphic
map R : ∪Uj → U such that the fibers R[λ] of R are R-maps, for every j, R|Uj

is a tube map, and h = hU is a holomorphic motion such that h|(∂U ∪ ∪j∂Uj) is
special. If additionally R ◦ 0 is a diagonal to h, we say that the R is full.

3.3.1. From R-families to L-families. Given an R-family R with motion h = hU

we induce a family of L-maps as follows. If d ∈ Ω, d = (j1, ..., jm), we let Ud =
{(λ, z) ∈ U|Rk−1[λ](z) ∈ U jk [λ]} and define Rd = Rm|Ud. Let Wd = (Rd)−1(U0).
We define L(R) : ∪Wd → U0 by L(R)|Wd = Rd. Notice that the L-maps which
are associated with the fibers of R coincide with the fibers of L(R).

We define a holomorphic motion L(h) in the following way. The leaf through
z ∈ ∂U is the leaf of h through z. If there is a smallest Ud such that z ∈ Ud, we

10Here we use that the restriction of a quasiconformal map χ to a compact subset of its
domain always admits a global qc extension (the bounds on the dilatation of the global extension
depending on the original bounds and on the hyperbolic diameter of X in U).
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let the leaf through z be the preimage by Rd of the leaf of h through Rd(z). We
finally extend it to U using the Extension Lemma.

The L-family associated to (R, h) is the pair (L(R), L(h)).

3.3.2. Parameter partition and family renormalization. Let (R, h) be a full R-
family. Since L(h)|(U ∪ ∪jU j) is special, we can consider the holonomy family
of the pair (L(h)|(U ∪ ∪jU j),R(0)), which we denote by χ. We use χ to partition
Λ: we will denote Λd = χ(Ud) and Γd = χ(W d).

The d-renormalization of (R, h) is the R-family (Nd(R), Nd(h)) over Γd defined
as follows. We take Nd(h) as the lift of L(h) by (R|U0, Γd, W d) where defined. It
is clear that (Nd(R), Nd(h)) is full, and its fibers are renormalizations of the fibers
of (R, h). Moreover, Nd(h) is a special motion.

3.3.3. Chains. An R-chain over λ0 is a sequence of full R-families (Ri, hi), over
domains Λi, i ≥ 1, such that λ0 ∈ ∩Λi and which are related by renormalization:
Ri+1 = Ndi(Ri), hi+1 = Ndi(hi) for some sequence di. We will say that a level Ri

of the chain is central if |di| = 0.

3.3.4. Gape motion. In the situations we shall face, the central puzzle piece U0
i

degenerates to a figure eight when λ goes to the boundary of ∂Λi. This will force
us to consider a technical modification of the holomorphic motion hi as follows.

For i > 1, let G(hi−1) be a holomorphic motion of Ui−1 over Λ
di−1
i−1 which

coincides with L(hi−1) on Ui−1 \ U0
i−1, and coincides with the lift of L(h) by

(R|U0
i−1, Λ

di−1
i−1 , U

di−1
i−1 ) on U0

i−1.
Notice that for i > 1, the motion hi (and hence L(hi)) is special, since it is

obtained by renormalization. So for i > 2, the motion G(hi−1) is special. Moreover,
it is easy to see that (R|di−1|+1

i−1 ◦0)|Λdi−1 (which extends (Ri◦0)|Λi+1) is a diagonal
to G(hi−1).

3.3.5. Real chains. A fiberwise map F : X → C2 is real-symmetric if X is real-
symmetric and F ◦ conj = conj ◦F . We will say that a chain {Ri} over a parameter
λ ∈ R is real-symmetric if each Ri and each underlying holomorphic motion hi is
real-symmetric.

Because of the Symmetry assumption, a chain {Ri} over a parameter λ ∈ R is
real-symmetric provided the first step data R1 and h1 is real-symmetric. In this
case, all objects related to the chain are real-symmetric.

Remark 3.2. If R1 is real-symmetric then h1 can always be modified to be real-
symmetric. Indeed if R1 is real-symmetric then ∂U1 ∪ ∪∂Uj

1 is a real-symmetric
set and it is enough to check that h1|(∂U1 ∪ ∪∂U j

1 ) is already real-symmetric. To
see this, first notice that if X[λ] moves holomorphically and X has empty interior
then the holomorphic motion of X is unique11. This implies that if X[λ] is real
symmetric with empty interior then any motion of X[λ] is also real-symmetric.

11In this case C \ X also moves holomorphically by some motion hC\X obtained from the
Extension Lemma, and the motion of X can be seen as coming from the extension of hC\X to the

closure C \ X = C, and this extension is unique.
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3.4. Complex Phase-Parameter estimates. We shall now show how estimates
on the geometry of parapuzzle pieces yield automatically estimates on the regularity
of holonomy maps. We shall need four specific statements, contained in two lemmas.

Lemma 3.1. Let us consider an R-chain (Ri, hi) over λ0, and let τi be such
Ri[λ0](0) ∈ Uτi

i [λ0]. For i > 1, let χi be the holonomy family associated to
(L(hi),Ri ◦0). For every γ > 1 there exists K > 0 such that if mod(Λi−1 \Λi) > K

and mod(Ui−1[λ0] \ Ui[λ0]) > K then
[CPhPh1] For every λ ∈ Λτi

i [λ0], L(hi)[λ0, λ]|Ui[λ0] has a γ-quasiconformal exten-
sion to the whole complex plane,
[CPhPa1] χi[λ0]|Uτi

i [λ0] has a γ-quasiconformal extension to the whole complex
plane.

Moreover, if the R-chain (Ri, hi) is real then the claimed extensions can be taken
real as well.

Proof. Both items (1) and (2) follow easily from the λ-lemma (see also Remark 3.1)
if we can establish that mod(Λi \ Λτi

i ) is big.
The hypothesis on mod(Ui−1[λ0]\Ui[λ0]) implies that mod(Ui[λ0]\Uτi

i [λ0]) and
mod(Ui[λ0] \ U0

i [λ0]) are bigger than K/2. If K is big, this implies that there is
an annulus of big modulus contained in Ui[λ0] \ U0

i [λ0] and going around Uτi
i [λ0].

Using again that K is big and the hypothesis on mod(Λi−1 \ Λi), we see that the
dilatation of hi|(Ui \ U0

i ) is small (λ-lemma). We conclude that mod(Λi \ Λτi
i ) is

big as required. �
Lemma 3.2. Let us consider an R-chain (Ri, hi) over λ0. For i > 2, let χ̃i be the
holonomy family associated to (G(hi−1),R

|di−1|+1

i−1 ◦ 0) For every γ > 1 there exists
K > 0 such that if mod(Λi−2 \ Λi−1) > K and mod(Ui−1[λ0] \ Ui−1[λ0]) > K then
[CPhPh2] For every λ ∈ Λi, G(hi−1)[λ0, λ]|Ui−1[λ0] has a γ-quasiconformal exten-
sion to the whole complex plane,
[CPhPa2] χ̃i[λ0]|Ui[λ0] has a γ-quasiconformal extension to the whole complex
plane.

Moreover, if the R-chain (Ri, hi) is real then the claimed extensions can be taken
real as well.

Proof. Both items (1) and (2) follow easily from the λ-lemma (see also Remark 3.1)
if we can establish that mod(Λ

di−1
i−1 \ Λi) is big.

The hypothesis on mod(Λi−2\Λi−1 implies that the dilatation of L(hi−1)|(Ui−1\
Ui) is less than 2 (provided K is sufficiently big). Notice that Λ

di−1
i−1 \ Λi =

χi−1[λ0](U
di−1
i−1 [λ0] \ W

di−1
i−1 [λ0]), where χi−1 is the holonomy family associated to

(L(hi−1),Ri−1 ◦ 0). The hypothesis on mod(Ui−1[λ0] \ U0
i−1[λ0]) (which equals

mod(U
di−1
i−1 [λ0]\W

di−1
i−1 [λ0])) then implies that mod(Λ

di−1
i−1 \Λi) is big (at least K/2)

as required. �

4. Puzzle and parapuzzle geometry

In this section we will recall an important part of Lyubich’s theory of the qua-
dratic family (regarding linear growth of moduli of certain phase and parameter
annuli), and will discuss the validity of those results in the context of more general
R-chains.
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4.1. Puzzle estimates. The following result is contained on (the proof of) Theo-
rem II of [L2]:

Theorem 4.1. For every C > 0, there exists C ′ > 0 with the following property.
Let Ri be a sequence of R-maps such that Ri+1 = N(Ri) and let nk − 1 be the
sequence of non-central levels, so that Rnk−1(0) /∈ U0

nk−1. If mod(U1 \ U0
1 ) > C ′

then mod(Unk
\ U0

nk
) > C.

(In Lyubich’s notation, R-maps are called generalized quadratic maps.)
The following result is Theorem III of [L2]:

Theorem 4.2. For every C ′ > 0, there exists C ′′ > 0 with the following property.
Let Ri be a sequence of R-maps such that Ri+1 = N(Ri) and let nk − 1 be the
sequence of non-central levels. If mod(U1 \ U0

1 ) > C ′ then mod(Unk
\ U0

nk
) > C ′′k.

4.2. Parapuzzle estimates.

4.2.1. The quadratic family. Let pc(z) = z2 + c be the quadratic family. The
following result is contained in Lemma 3.6 of [L3]:

Theorem 4.3. Let us fix a non-renormalizable quadratic polynomial pc0 with a
recurrent critical point and no neutral periodic orbits. Then there exists a full R-
family R1 over some c0 ∈ Λ1 such that if c ∈ Λ1 then R[c] : ∪U j

1 [c] → U1[c] is the
first return map under iteration by pc.

The following is Theorem A of [L3]:

Theorem 4.4. In the setting of Theorem 4.3, let Ri be the R-chain over c0 with
first step R1. If nk−1 denotes the k-th non-central return, then mod(Λnk

\Λnk+1) >
Tk, for some constant T > 0.

Remark 4.1. In Lyubich’s notation he lets ∆i = Λni
and Πi = Λ0

ni
. He states that

both mod(∆i \ ∆i+1) and mod(∆i \ Πi) grow linearly. His statement implies ours
after one notices that if ni + 1 = ni+1 then ∆i+1 = Λni+1, otherwise Πi = Λni+1.

Those two results are proved in a slightly more general setting then we state here:
they are valid for so-called full unfolded families of quadratic-like maps. This version
allows one to state results also for finitely renormalizable quadratic polynomials (via
renormalization).

4.2.2. General case. The following more general theorem can be proved using the
ideas of Theorem A of [L3] but it is a little bit tedious to check the details (it is
necessary to get deep into the construction of [L2]).

Theorem 4.5. For every K > 1, T > 0, there exists T ′ > 0 with the following
property. Let (Ri, hi) be a R-chain over λ0 and let nk − 1 be the sequence of
non-central levels. If Dil(h1|(U1 \ U0

1 )) < K and mod(U1[λ] \ U0
1 [λ]) > T then

mod(Λnk
\ Λnk+1) > T ′k.

Since we do not need the full strength of the previous theorem, we will state and
prove a weaker estimate using a simple inductive argument.

Theorem 4.6. For every K > 1, there exists constants T ′ > 0, T ′′ > 0 with the
following properties. Let (Ri, hi) be a R-chain over λ0 and let nk−1 be the sequence
of non-central levels. If Dil(h1|(U1 \ U0

1 ) < K and mod(U1[λ0] \ U0
1 [λ0]) > T ′ then

mod(Λnk
\ Λnk+1) > T ′′k.
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Proof. Let νi = mod(Λi \ Λi+1), µi = mod(Ui[λ0] \ Ui+1[λ0]), ki = Dil(hi|Ui[λ0] \
Ui+1[λ0]). For i > 1, denote by χ0

i the holonomy family associated to (hi,Ri ◦ 0).
Notice that if νi > C0 = 1000 then ki+1 ≤ 2. Moreover, for i > 1, and in

particular for i = nk, we have νi = mod(χ0
i (Ui[λ0] \ Ui+1[λ0])) ≥ µi/ki.

Let T = (4+2C0)(2+K) and let T ′ > T be so big that if µ1 > T ′ then µnk
> T ,

k ≥ 1. Let also T ′′ be such that if µ1 > T ′ then µnk
> kT ′′(2 + K).

Let us assume that for some m, we have µm > T and km ≤ (2 + K), and let
m′ ≥ m be the next non-central return.

For λ ∈ Λm′+1, we have Rm′−m+1
m (0) ∈ W

d
m for some d. Let Υ be the com-

ponent of Rm(0) of (Rm′−m
m |Um′)−1(Ud

m) and Υ′ be the component of Rm(0) of
(Rm′−m

m |Um′)−1(W d
m).

Let Hm = L(hm) outside of U
d
m and let the leaves of Hm|Ud

m be the preimages
by R

d
m of the leaves of hm. If m = m′, let H = Hm. Otherwise, notice that if

λ ∈ Λm′−1, then Rm′−m
m |U0

m′−1[λ] is a 2m′−m branched covering map over Um[λ],
and for λ ∈ Λm′ , Rm′−m

m |Um′ [λ]\U0
m′ [λ] is unbranched. Let H be the lift of Hm by

(Rm′−m
m |Um′ , U0

m′ , Λm′). So in both cases, H is a holomorphic motion over Λm′ .
With this definition, Υ and Υ′ (which are apriori defined over Λm′+1) move

holomorphically with H (over Λm′).
Let χ be the holonomy family of the pair (Rm′ ◦ 0, H|∂Um′ ∪ Υ). It is clear

that Dil(χ|Υ) is bounded by km. In particular, we can estimate νm′ ≥ mod(Υ[λ0]\
Υ′[λ0])/km = µm/km ≥ µm/(2 + K) > C0. With m = 1, we have k1 ≤ K ≤ 2 + K
by hypothesis and m′ = n1 − 1, so νn1−1 ≥ µ1/(2 + K) ≥ T/(2 + K) ≥ C0 and
kn1 ≤ 2 ≤ 2 + K. With m = nk, we have that m′ = nk+1 − 1 and νnk+1−1 ≥
µnk

/(2 +K) ≥ T/(2 + K) ≥ C0 and knk+1 ≤ 2 ≤ 2 + K, provided knk
≤ 2+ K. By

induction, we have knk
≤ 2 + K for every k, so νnk

≥ µnk
/(2 + K) > T ′′k. �

This simple inductive argument does not seem to work easily to get the full
Theorem 4.512.

5. Unimodal maps

We refer to the book of de Melo & van Strien [MS] for the general background
in one-dimensional dynamics.

We will say that a smooth (at least C2) map f : I → I of the interval I = [−1, 1]
is unimodal if f(−1) = −1, f(x) = f(−x) and 0 is the only critical point of f and
is non-degenerate, so that D2f(0) �= 0.

Remark 5.1. The introduction of normalization and symmetry assumptions was
made in order to avoid cumbersome notations: all results and proofs generalize to
the non-symmetric case. See also Appendix C of [ALM].

Remark 5.2. The assumption that the critical point is non-degenerate is made
just for convenience: typical unimodal maps certainly have non-degenerate critical
point. If one is not willing to make this assumption already in the definition, one
should add the non-degeneracy condition to the Kupka-Smale definition below. In
this case it would still hold that in non-trivial analytic families the set of parameters

12However, we will see that this is enough to yield the full power of Theorem B of [L3] (almost
every non-regular finitely renormalizable quadratic map is stochastic), through the arguments of
this paper. This approach only uses geometric estimates of puzzle pieces for real maps, and may
be useful for generalizations beyond unimodal maps with a quadratic critical point.
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with a degenerate critical point have zero Lebesgue measure (and is contained in a
countable number of analytic subvarieties with codimension at least 1), see Lemma
9.6.

The theory of unimodal maps with fixed non-quadratic criticality is considerably
different and less complete than the typical case, and the proofs of this work do
not apply.

Let Uk, k ≥ 2 be the space of Ck unimodal maps. We endow Uk with the Ck

topology.
Basic examples of unimodal maps are given by quadratic maps

(5.1) qτ : I → I, qτ (x) = τ − 1 − τx2,

where τ ∈ [1/2, 2] is a real parameter.
A map f ∈ U2 is said to be Kupka-Smale if all periodic orbits are hyperbolic. It

is said to be hyperbolic if it is Kupka-Smale and the critical point is attracted to a
periodic attractor. It is said to be regular if it is hyperbolic and its critical point
is not periodic or preperiodic. It is well known that regular maps are structurally
stable.

A k-parameter Cr (or analytic) family of unimodal maps is a Cr (or analytic)
map F : Λ × I → I such that fλ ∈ U2, where fλ(x) = F (λ, x) where Λ ⊂ Rk is a
bounded open connected domain with smooth (C∞) boundary. We denote UF

r(Λ)
the space of Cr families of unimodal maps, endowed with the Cr topology. Notice
that UF

r(Λ) is a separable Baire space.
We will not introduce a topology in the space of analytic families of unimodal

maps.

5.1. Combinatorics and hyperbolicity. Let f ∈ U2. A symmetric interval
T ⊂ I is said to be nice if the iterates of ∂T never return to int T . A nice interval
T �= I is said to be a restrictive (or periodic) interval of period m for f if fm(T ) ⊂ T
and m is minimal with this property. In this case, the map A ◦ fm ◦ A−1 : I → I
is again unimodal for some affine map A : T → I: this map is usually called a
renormalization of f if m > 1 or a unimodal restriction if m = 1.

If T ⊂ I is a nice interval, the domain of the first return map RT to T consists
of a (at most) countable union of intervals which we denote T j . We reserve the
index 0 for the component of 0: 0 ∈ T 0, if 0 returns to T . From the nice condition,
RT |T j is a diffeomorphism if 0 /∈ T j , and is an even map if 0 ∈ T j . We call T 0 the
central domain of RT . The return RT is said to be central if RT (0) ∈ T 0.

Under the Kupka-Smale condition, the dynamics outside a nice interval is hy-
perbolic, and in particular persistent:

Lemma 5.1. Let f ∈ U2 and let T ⊂ I be a symmetric interval. If all periodic
orbits contained if I \ int T are hyperbolic (in particular if f is Kupka-Smale), then

(1) The set of points X ⊂ I which never enter int T splits in two forward invari-
ant sets: an open set U attracted by a finite number of periodic orbits and a closed
set K such that f |K is uniformly expanding: |Dfn(x)| > Cλn, for x ∈ K and for
some constants C > 0, λ > 1. Moreover, preperiodic points are dense in K.

(2) There exists a neighborhood V ⊂ U2 of f and a continuous family of homeo-
morphisms H[g] : I → I, g ∈ V such that g ◦H[g]|I \ T = H[g] ◦ f , and H[f ] = id.
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Proof. The first item is a consequence of Mañé’s Theorem (see [MS], Theorem 5.1
and Corollary 1, page 248). Since hyperbolic sets are persistent, the second item
follows. �

The following well known result shows that nice intervals allow one to study
arbitrarily small neighborhoods of 0.

Lemma 5.2. Let f ∈ U2 be Kupka-Smale. If f is not hyperbolic and the critical
orbit is infinite, then for every ε > 0, there exists a nice interval [−p, p] ⊂ (−ε, ε)
with p preperiodic.

Proof. Let T be the intersection of all nice intervals containing 0 whose boundary
is preperiodic. If T �= {0}, then the domain of RT is either T or empty. In the
first case, RT : T → T has no fixed point in int T and it follows that Rm

T (intT )
converge to a periodic attractor in ∂T . Otherwise, by Lemma 5.1, int f(T ) must
be contained in the basin of a periodic attractor, so f is either hyperbolic or the
critical point is preperiodic. �

The following is an easy consequence of Lemma 5.1.

Lemma 5.3. Let fλ, λ ∈ (−ε, ε) be a C2 family of unimodal maps, and let T be
a nice interval with preperiodic boundary for f = f0. Assume that there exists an
interval 0 ∈ J and a family T [λ] of intervals with preperiodic boundary, such that
T [0] = T and for λ ∈ J , all non-hyperbolic periodic orbits of fλ intersect int T [λ].
Then there exists a continuous family of homeomorphisms H[λ] : I → I, λ ∈ J
such that H[λ](T ) = T [λ] and fλ ◦ H[λ]|(I \ T ) = H[λ] ◦ f and H[0] = id.

5.1.1. Principal nest. We say that f is infinitely renormalizable if there exists ar-
bitrarily small restrictive intervals T ⊂ I. Otherwise we say that f is finitely
renormalizable.

Let F ⊂ U2 be the class of Kupka-Smale finitely renormalizable maps whose
critical point is recurrent, but not periodic. If f ∈ F , the first return map fm :
T → T to its smallest restrictive interval has an orientation reversing fixed point
which we call p. Let I1 = [−p, p]. Define a nested sequence of intervals Ii as follows.
Assuming Ii defined, let Ri be the first return map to Ii and let Ii+1 be the central
domain I0

i of Ri.
The sequence Ii is called the principal nest of f . A level of the principal nest is

called central if Ri is a central return. We say that a map f ∈ F is simple if there
are only finitely many non-central levels in the principal nest.

5.2. Negative Schwarzian derivative. The Schwarzian derivative of a C3 map
f : I → I is defined by

Sf =
D3f

Df
− 3

2

(
D2f

Df

)2

in the complement of the critical points of f . If Sf and Sg are simultaneously
positive (or negative) then S(g ◦ f) is positive (or negative).

If f is a unimodal map the condition of negative Schwarzian derivative is very
useful and can be exploited in several ways. One of the most used tools is the
Koebe Principle:

Lemma 5.4 (Koebe Principle, see [MS], page 258). Let f : T → R be a diffeomor-
phism with non-negative Schwarzian derivative. Then for every K0, there exists a
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constant k0 such that if T ′ ⊂ T and both components L and R of T \ T ′ are bigger
than K|T ′| for some constant K > K0 then the distortion of f |T ′ is bounded by k0.
In particular, we have min{|f(L)|, |f(R)|} ≥ k̂0K|f(T ′)|, for some k̂0 depending
only on K0. Moreover, k0 → 1 as K0 → ∞.

Quadratic maps have negative Schwarzian derivative. Moreover, one can often
reduce to this situation as is shown by the following well known estimate:

Lemma 5.5. If f ∈ U3 is infinitely renormalizable, then if T ⊂ I is a small enough
periodic nice interval, the first return map to T has negative Schwarzian derivative.

Recently, Kozlovski showed that the assumption of negative Schwarzian can be
often removed. The next result follows from Lemma 5.1 and [GSS] (which is based
on the work of Kozlovski [K1]).

Lemma 5.6. Let f ∈ F ∩ U3. There exists i > 0, an analytic diffeomorphism
s : I → I and a neighborhood V ⊂ U3 of f , such that there exists a continuation
Ii[g], g ∈ V of Ii (H[g](Ii) = Ii[g] in the notation of Lemma 5.1) such that the first
return map to s(Ii[g]) by s ◦ g ◦ s−1 : I → I has negative Schwarzian derivative.

5.3. Decay of geometry. The following result is due to Lyubich [L1] in the case
of negative Schwarzian derivative and holds in general due to the work of Kozlovski:

Lemma 5.7. Let f ∈ F be at least C3, and let nk − 1 denote the sequence of
non-central levels in the principal nest of f . Then |Ink+1|/|Ink

| < Cλk for some
constants C > 0, λ < 1.

5.4. Quasiquadratic maps. A map f ∈ U3 is quasiquadratic if any nearby map
g ∈ U

3 is topologically conjugate to some quadratic map. By the theory of Milnor-
Thurston and Guckenheimer [MS], a map f ∈ U3 with negative Schwarzian deriva-
tive and D2f(−1) < 0 is quasiquadratic, so quadratic maps are quasiquadratic. The
following results give sufficient conditions for a unimodal map to be quasiquadratic:

Theorem 5.8 (see Lemma 2.13 of [ALM]). Let f ∈ U3 be a Kupka-Smale unimodal
map which is topologically conjugate to a quadratic map. Then f is quasiquadratic.

Theorem 5.9 (see Remark 2.6 of [ALM]). Let f ∈ U
3. If f is not conjugate to a

quadratic polynomial then there exists a (not necessarily hyperbolic) periodic orbit
which attracts an open set. In particular, if all periodic orbits of f are repelling
then f is quasiquadratic.

Remark 5.3. Theorem 5.8 is the reason that the quasiquadratic condition considers
only C3 maps and the C3 topology (otherwise it would not be possible to guarantee
that even quadratic maps are quasiquadratic).

5.5. Spaces of analytic unimodal maps. Let a > 0, and let Ωa ⊂ C be the
set of points at distance at most a of I. Let Ea be the complex Banach space
of holomorphic maps v : Ωa → C continuous up to the boundary which are 0-
symmetric (that is, v(z) = v(−z)) and such that v(−1) = v(1) = 0, endowed with
the sup-norm ‖v‖a = ‖v‖∞. It contains the real Banach space ER

a of “real maps”
v, i.e, holomorphic maps symmetric with respect to the real line: v(z) = v(z).

Let us consider the constant function −1 ∈ Ωa. The complex affine subspace
−1 + Ea will be denoted as Aa.

Let Ua = U
2 ∩ Aa. It is clear that any analytic unimodal map belongs to some

Ua. Note that Ua is the union of an open set in the affine subspace AR
a = −1 + ER

a

and a codimension-one space of unimodal maps satisfying f(0) = 1.
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5.6. Hybrid lamination. One of the main results of [ALM] is to describe the
structure of the partition in topological classes of spaces of analytic unimodal maps.
In that paper, they consider only the quasiquadratic case, but their proof works for
the general case (due to the results of Kozlovski) and gives the following:

Theorem 5.10 (Theorem A of [ALM]). Let f ∈ Ua be a Kupka-Smale map. There
exists a neighborhood V ⊂ Aa of f endowed with a codimension-one holomorphic
lamination L (also called hybrid lamination) with the following properties:

(1) the lamination is real-symmetric;
(2) if g ∈ V ∩AR

a is non-regular, then the intersection of the leaf through g with
AR

a coincides with the intersection of the topological conjugacy class of g with V;
(3) Each g ∈ V ∩ AR

a belongs to some leaf of L.

(For the definition of the leaves of L in the regular case, see Appendix A.)

Theorem 5.11. In the setting of Theorem 5.10, if g1, g2 ∈ V are in the same
leaf of L and γ1(λ), γ2(λ) are real analytic paths in V ∩ AR

a , transverse to the
leaves of V and such that γ1(λ1) = g1, γ2(λ2) = g2, then the local holonomy map
ψ : (λ1−ε, λ1+ε) → (λ2−ε′, λ2+ε′) is quasisymmetric. Moreover, for δ sufficiently
small, ψ|(λ1 − δ, λ1 + δ) is 1 + O(‖g1 − g2‖a)-qs.

Proof. This estimate is just the λ-Lemma in the context of codimension-one com-
plex laminations. �

Moreover, each non-regular topological class is like a Teichmuller space:

Theorem 5.12. In the setting of Theorem 5.10, if g1, g2 ∈ V ∩ Ua belong to the
same leaf of L, then there exists a 1 + O(‖g1 − g2‖a)-qs map h : I → I such that
g2 ◦ h = h ◦ g1.

Proof. This follows from Proposition 8.9 of [ALM] and the λ-Lemma. �

The tangent space to topological classes has a nice characterization:

Theorem 5.13 (Theorem 8.10 of [ALM]). If f ∈ Ua is a non-regular Kupka-Smale
map then the tangent space to the topological class of f is given by the set of vector
fields v ∈ Ea which do not admit a representation v = α ◦ f − αDf on the critical
orbit with α a qc vector field of C.

5.7. Analytic families. Let {fλ}λ∈Λ be an analytic family of unimodal maps.
Then for a > 0 sufficiently small, λ → fλ is an analytic map from Λ to Ua. We say
that fλ is non-trivial if the set of regular parameters is dense.

If λ0 ∈ Λ is a Kupka-Smale parameter, transversality to the topological class of
λ0 has the obvious meaning (using Theorem 5.10). We remark that this definition
does not depend on the choice of Ua.

Remark 5.4. Let Bi be an enumeration of all open balls contained in Λ of rational
radius and center. The condition of non-triviality of a family {fλ}, λ ∈ Λ is an
intersection of a countable number of conditions (existence of a regular parameter
λ ∈ Bi). Each of those conditions is open in UF

2(Λ). The set of non-trivial analytic
families is also dense in the UF

∞(Λ) (this would still hold natural topology of
analytic families in Λ, which we did not introduce), due to Theorem 5.10.

We should remark that for an analytic family of quasiquadratic maps, non-
triviality is equivalent to existence of one regular parameter (since all non-regular
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topological classes are analytic submanifolds in the quasiquadratic case). In par-
ticular, non-triviality is a C3 open condition in the quasiquadratic case.

6. Construction of the special family

6.1. Puzzle maps. Let f ∈ Ua be a finitely renormalizable unimodal map with
a recurrent critical point. Let us consider some nice interval A0 and let {Aj} be
the connected components of the domain of the first landing map from I to A0.
We call the family {Aj} the real puzzle for f associated to A0. The basic object
used in [ALM] to analyze the dynamics of unimodal maps can be viewed as a
complexification of such real puzzles, which are called simply a puzzle.

The definition of puzzle in [ALM] is too general and technical for our purposes.
In this paper, we will simply describe how to construct a puzzle for f (or rather a
geometric puzzle, in the language of [ALM]). Instead of giving the precise definitions
of a puzzle, we will just obtain the properties that are needed for our results.

Let us fix some advanced level n of the principal nest of f and assume that
|In|/|In−1| is very small. Let us fix the following notation: let A0 = In and let
{Aj} be the real puzzle associated to A0. We let A1 be such that f(0) ∈ A1.

Given 0 < θ ≤ π/2, and A ⊂ R, let Dθ(A) be the intersection of two round
disks D1 and D2 where D1 ∩ R = A, ∂D1 intersects R making an angle θ, and D2

is the image of D1 by symmetry about R. The complexification of the real puzzle
{Aj} should be imagined as {Dθ(Aj)} for a suitable value of θ. Of course, since
the system is non-linear, the definition can not be so simple. Nevertheless, the
condition |In|/|In−1| small allows one to bound the nonlinearity of the first landing
map to In and we can obtain (see [ALM], Lemma 5.5):

Lemma 6.1. Let 0 < φ < ψ < γ < π/2 be fixed. For arbitrarily big k > 0, if
|In|/|In−1| is small enough, there exists a sequence V j of open Jordan disks such
that Dφ(Aj) ⊂ V j ⊂ Dψ(Aj) and V 0 = D(φ+ψ)/2(A0) with the following properties:

(1) If j �= 0 and f(Aj) ⊂ Ak then f : V j → V k is a diffeomorphism;
(2) If f(A0) ∩ Aj �= ∅, then mod f(V 0) \ Dγ(Aj) > k.

6.2. A special Banach space of perturbations. Let A1 = [l, r] with l < r, and
let N = [−l, l]. Domains V j which do not intersect A1 or N will play no role in the
construction to follow. Let V be the union of all V j such that Aj ⊂ N ∪ A1.

One of the main problems of [ALM] is to obtain a direction v (or infinitesimal
perturbation) which is transverse to the topological class of f . The idea is to
consider a perturbation which does not affect much f in N , but causes a bump
near the critical value, localized in A1. There are several difficulties related to this
scheme, the first of which is that such a bump can only be reasonably controlled up
to its first derivative. Another difficulty is that we want an analytic perturbation, so
it cannot vanish in N and be a bump at A1. The solution involves the consideration
of certain Banach spaces of smooth (C1) functions in N ∪ A1 which are analytic
in int N ∪ int A1, which allows one to construct perturbations that, while badly
behaved in the real line (can be only controlled up to the first derivative), are well
behaved with respect to the complex puzzle structure.

While the proof in [ALM] involves two steps, construction of a transverse smooth
vector field and approximation of this vector field by polynomials, which need
two different Banach spaces, we will realize the same construction with just one
Banach space. This is important to estimate the asymmetric roles of perturbations
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concentrated in N and A1. The proof of our main perturbation estimate (Lemma
6.4) is a mixture of two estimates, Lemma 7.4 (for perturbations localized in A1)
and Lemma 7.9 (for perturbations supported on N ∪ A1) of [ALM].

Let Z = Dγ(A1)∪Dγ(N), and let Υ be the space of all vector fields v holomorphic
on Z and whose derivative admits a continuous extension to Z, which vanish up to
the first derivative in ∂A1 and its forward iterates (this is a finite set) and such that
v|Dγ(N) is a symmetric (odd) vector field. We use the norm ‖v‖ = supz∈Z |Dv|.

Let Υ = Υ1 ⊕ Υ2, where v ∈ Υ1 if v|Dγ(N) = 0 and v ∈ Υ2 if v|Dγ(A1) = 0.
Let fv = f ◦ (id +v). The reader should think of vector fields v ∈ Υ as pertur-

bations of f acting by v → fv. One of the main advantages of the definition of Υ
is that, for small v ∈ Υ, “the puzzle persists”, that is, there exists a continuation
V v of the set V inside Z, whose connected components behave, under iteration by
fv, in the same way that the connected components of V behaved under iteration
by f .

To make this more precise, let us say that v ∈ Υ is admissible if there exists a
holomorphic motion hv over D, which is real-symmetric if v is real-symmetric, and
is defined by the family of transition maps hv[0, λ] ≡ hv

λ : C → C, λ ∈ D such that:
(1) hv

λ|C \ Z = id, hv
λ|∂f(V 0) = id;

(2) fλv ◦ hv
λ|V \ V 0 = hλ ◦ f , fλv ◦ hv

λ|∂V 0 = f .
The holomorphic motion hv will be said to be compatible with v.
The following is a restatement of Lemma 7.9 of [ALM].

Lemma 6.2. There exists ε > 0 such that if v belongs to {v ∈ Υ|‖v‖ < ε} then v
is admissible.

We also need the following simple estimate (see the proof of Lemma 7.4 of
[ALM]):

Lemma 6.3. Let 0 < θ < γ < π/2. There exists ε′ > 0 such that if A is an
interval and v is holomorphic on Dγ(A) whose derivative extends continuously to
Dγ(A) satisfying |Dv| < ε′ then id +v : Dγ(A) → C is a diffeomorphism and
Dθ(A) ⊂ (id+v)(Dγ(A)).

Now we can prove:

Lemma 6.4. There exists constants ε1 > 0, ε2 > 0, where ε1 depends only on ψ
and γ such that if v1 ∈ Υ1, ‖v1‖ < ε1 and v2 ∈ Υ2, ‖v2‖ < ε2 then v = v1 + v2 is
admissible.

Proof. Let n1 be such that fn1(V 1) = V 0 and let θ = (ψ + γ)/2.
Let v ∈ Υ with ‖v‖ < ε. By Lemma 6.2, there exists a holomorphic motion hv

compatible with v.
We claim that if 0 < ε2 < ε is small enough and ‖v‖ < ε2 then for λ ∈ D,

hv
λ(V 1) ⊂ Dθ(A1). Indeed, if this is not the case, there would be a sequence

zk ∈ ∂Dθ(A1), vk ∈ Υ, vk → 0, such that fn1+1
vk

(zk) ∈ f(V 0). It clearly follows
that zk → ∂A1 = {l, r}, let us say that zk → l. It is clear that

fn1+1
vk

(zk) = fn1+1
vk

(l) + Dfn1+1
vk

(l)zk + o(zk) = fn1+1(l) + Dfn1+1(l)zk + o(zk).

In particular, the sequence fn1+1
vk

(zk) converges to fn1+1(l) along a direction which
makes angle θ with the real line (since Dfn1+1(l) ∈ R \ {0}), so fn1+1

vk
(zk) /∈ f(V 0)

for k big, which is a contradiction.
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Let ε1 be as in Lemma 6.3. If v = v1 + v2, with vi ∈ Υi and ‖vi‖ < εi,
let hv

λ : C \ (Dγ(A1) \ V 1) be given by hv
λ|(C \ Dγ(A1)) = hv2

λ and hv
λ|V 1 =

((id+λv1)|Dγ(A1))−1 ◦ hv2
λ . Any extension of hv

λ to C is clearly compatible with
v. �

We will also need the following easy lemma:

Lemma 6.5. If |In|/|In−1| is sufficiently small, then for w = w1+w2 with wi ∈ Υi,
‖wi‖ < εi, and for λ ∈ D, then (fλw|hw

λ (V 0))−1(Dγ(V 1)) ⊂ Dρ|A0|(0), where ρ → 0
as |In|/|In−1| → 0.

Proof. Let U = hλ(V 0) and U0 = (fλw|W )−1(Dγ(A1)). Notice that fλw(0) =
f(0) ∈ Dγ(V 1). Thus, fλw|(U \ U0) is a double covering of f(U0) \ Dγ(A1). By
Lemma 6.1, if |In|/|In−1| is small then mod(f(U0)\Dγ(A1)) is large, and so mod(U\
U0) is also big. Since the derivative of id +λw is smaller than max{1+ε1, 1+ε2}, we
see that the diameter of U is at most 2|A0|, so the diameter of U0 can be bounded
by ρ|A0|/2 with small ρ as required. �

6.3. Analytic vector fields. We will be specially concerned with special types
of w which generate analytic families of unimodal maps. The following lemma is
obvious:

Lemma 6.6. If w ∈ Υ is real-symmetric and has an analytic extension w : I → I
of C1 of norm less than one, such that w(−1) = w(1) = 0, then fλw, λ ∈ (−1, 1)
is an analytic family of unimodal maps, and In is a nice interval with preperiodic
boundary for each fλw.

The following is a consequence of the Mergelyan Polynomial Approximation
theorem:

Lemma 6.7. Let w ∈ Υ. Then there exists a sequence wm ∈ Υ such that the C1

norm of wm|I is less than ‖w‖, wm(−1) = wm(1) = 0 and wm → w in Υ. If w is
real-symmetric then we can also choose wm real-symmetric.

Lemma 6.8. Let w ∈ Υ be as in Lemma 6.6. If w is admissible, then the domain
of the first return map to In under iteration by fλw is ((id+λw)|hw

λ (V 0))−1(V )∩R.

Proof. By construction, all components of ((id+λw)|hw
λ (V 0))−1(V ) ∩ R are com-

ponents of the first return map to In, so we just have to check that all components
are of this form. Notice that each x ∈ V ∩ (f(−l), l) has two preimages by f in
V ∩ ((−l, l) \ In). It follows that each x ∈ hw

λ (V ) ∩ (f(−l), l) has two preimages
by fw

λ in hw
λ (V ) ∩ ((−l, l) \ In). Let now T be a component of the first return

map to In under iteration by fλw. If T is the central component, then T must be
the preimage of A1. Otherwise, all iterates of T up to the return are contained in
(f(−l), l). Since int In ⊂ hw

λ (V ), we conclude that all iterates of T up to the return
belong to hw

λ (V ). �

6.4. A special perturbation. Let us consider an affine map Q : A1 → I, and let

ṽn(z) = (1 − z2)(1 − e−2n) +
2
n

(e−n(1+z) + e−n(1−z) − e−2n − 1),

and let vn ∈ Υ1 be such that vn|Dγ(A1) = Q∗ṽnε1/8. Notice that ‖vn‖ < ε1.
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6.4.1. Infinitesimal transversality. The importance of the sequence vm in [ALM] is
that it is eventually transverse to the topologically class of f .

Let us say that w is formally transverse at f if there is no quasiconformal vector
field α of C, such that for z ∈ orbf (0), w(z) = f∗α(z) − α(z). (This definition is
motivated by Theorem 5.13, see also Lemma 7.3.)

The following summarizes Lemmas 7.6, 7.7 and 7.8 of [ALM].

Lemma 6.9. Let vm be defined as above. If |In|/|In−1| is sufficiently small, then
for m sufficiently big, vm is formally transverse at f .

The following is due to (a version of) the so called Key estimate of [ALM] (more
precisely we use Corollary 7.14 of [ALM]):

Lemma 6.10. The set of vector fields w ∈ Υ which are not formally transverse at
f is a closed subspace of Υ.

Remark 6.1. In particular, if m is sufficiently big and w is close to vm then w is
formally transverse at f .

6.4.2. Macroscopic transversality. The following result can be interpreted as the
macroscopic counterpart to the infinitesimal transversality of vm.

Let r > 0 be minimal with fr+1(0) ∈ V 1.

Lemma 6.11. There exists a constant τ0 > 0 depending only on ε1 and φ, such
that if |In|/|In−1| is sufficiently small the following holds. Let vm be defined as
above and let r > 0 be minimal with fr+1(0) ∈ V 1. Then for m sufficiently big,
there exists a domain Θ̂ ⊂ D such that the map θ : Θ̂ → C given by θ(λ) = fr

λvm
(0)

is a diffeomorphism onto Dτ0|In|.

Proof. Since ‖vm‖ < ε1, there exists a holomorphic motion hvm which is compatible
with vm.

Let Ψ : D → C, Ψ(λ) = (id +λvm)(f(0)). It is clearly a diffeomorphism over a
round disk Dm centered on 0. Let dm be the hyperbolic distance between f(0) and
∂Dm in Dπ/2(A1). It is easy to estimate directly dm from below in terms of ε1 and
m. In particular, for m big, dm > τ̃ > 0 where τ̃ depends only on ε1, not on the
position of f(0) in A1.13

Now let Q be the connected component of f(0) on f−(r−1)(V 0), so that fr−1 :
Q → V 0 is a diffeomorphism. The hyperbolic distance between ∂D∩Q and f(0) in
Q is bounded from below by τ̃ by the Schwarz Lemma (if ∂D ∩ Q = ∅, we let this
distance be ∞). It follows that fr−1(Q∩D) contains a τ̃ hyperbolic neighborhood
of fr(0) on V 0. Now, if |In|/|In−1| is very small, then |In+1|/|In| is also very small,
so fr(0) (which is contained in In+1) is τ̃ /2 close to 0 in the hyperbolic metric of
V 0 ⊃ Dφ(A0).

As a consequence, fr−1(Q ∩ D) contains a τ̃ /2 hyperbolic neighborhood of 0 in
V 0, and since V 0 ⊃ Dφ(A0), it must contain Dτ |A0|, where τ depends on ε1 and
φ. �

13To see this, notice that DΨ(0) = vm(f(0)), and the norm of vm(f(0)) in the hyperbolic
metric of Dπ/2(A

1) at f(0) is at least ε1/10 for m big. Let P : Dπ/2(A
1) → D be a Moebius

transformation taking f(0) to 0. The the norm of D(P ◦ Ψ)(0) in the hyperbolic metric of D at
0 is at least ε1/10, so the Euclidean norm of D(P ◦ Ψ)(0) is at least ε1/10. By the Koebe 1/4
Theorem, P (Dm) contains a round disk of radius ε1/40 around 0, thus the hyperbolic distance
from ∂P (Dm) to 0 in D is at least ε1/40.
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6.4.3. Construction of a full R-family. Let τ0 be the constant of Lemma 6.11 and
let |In|/|In−1| be such that Lemma 6.5 holds with ρ < τ0/4.

Let m be big and let us fix v = vm such that Lemmas 6.11 and 6.9 are valid,
and let Θ̂ be the domain of Lemma 6.11.

Let w = w1 + w2 with wi ∈ Υi, ‖wi‖ < εi.
Let U [0] = V 0 and let the family {U j [0]} denote the connected components of

(f |V 0)−1(∪V j), letting 0 ∈ U0[0].
Let us consider a holomorphic motion H̃ over D given by the transition maps

H̃ [0, λ] = H̃λ : C → C such that:

H̃λ|C \ U [0] = hλw

fλw ◦ H̃λ|U [0] \ U0[0] = hλw ◦ f.

Let U [λ] = H̃λ(U [0]), U j [λ] = H̃λ(U j [0]).
Let R[λ] be the first return map from U j [λ] to U0. It is clear that (R[λ], H̃λ)

has a structure of a (non-full) R-family over D. Let us consider the landing family
(L[λ], Hλ) associated to (R[λ], H̃λ).

Let W d[0] be the domain of L[0] containing R[0](0). Notice that L[λ]|W d[λ]
extends to a diffeomorphism Rd[λ] onto U [λ]. For τ < τ0, let ∆τ [λ] be the preimage
of Dτ |A0|(0) by this diffeomorphism.

If w = v then Rd[λ] = Rd[0] for all λ, since v is supported on Dγ(A1).
In particular, Rd[λ] = Rd[0] and ∆τ [λ] = ∆τ [0] for all λ. So λ → R[λ](0) is a

map which restricts (in some domain 0 ∈ O
v) to a diffeomorphism onto ∆τ [0]. It

follows that taking τ = τ0/2, for any w close to v there exists a domain 0 ∈ Ow

where λ → R[λ](0) is a diffeomorphism onto ∆τ [0] (of course, Ow depends on w).
But for w ∈ Υ close to v and for all λ ∈ D, U0[λ] is contained in Dρ|A0|, so

W d[λ] is contained in ∆τ0/2[0] with space. By the argument principle, letting Θ
be the connected component of 0 of the set of λ ∈ Θ̂ with R[λ](0) ∈ W d[λ], the
map S : Θ → W d[0] such that S(λ) = H−1

λ (R[λ](0)) is a homeomorphism. We also
have that the diameter of Θ is very small if ρ is small (in particular if |In|/|In−1|
is small).

Let U1[0] = U0[0] and let {U j
1 [0]} be the connected components of the preimage

by R[0]|U0[0] of ∪W d[0], and let 0 ∈ U0
1 .

Let h be a holomorphic motion over Θ given by transition maps h[0, λ] = hλ :
C → C such that

hλ|C \ U1 = Hλ,

R[λ] ◦ hλ|U1 \ U0
1 = hλ ◦ R[0].

Let U1[λ] = hλ(U1[0]) and U j
1 [λ] = hλ(U j

1 [0]).
Our construction shows clearly that the first return map R1[λ] from ∪U j

1 [λ] to
U1[λ] is an R-map for λ ∈ Θ, so (R1[λ], hλ) is an R-family, and our choice of Θ
implies that R1[λ] is a full R-family.

Let us summarize the properties we obtained in this construction:

Lemma 6.12. If |In|/|In−1| is small enough, there exists a real-symmetric vector
field v ∈ Υ and a neighborhood v ∈ V ⊂ Υ such that for any w ∈ V real-symmetric,
there exists a domain 0 ∈ Θ ⊂ D, a family of R-maps R1[λ] : U j

1 [λ] → U1[λ], λ ∈ Θ,
and a real-symmetric holomorphic motion h over Θ such that:

(1) For λ ∈ Θ ∩ R, U1[λ] ∩ R = In+1;
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(2) R1[λ] is the first return map from ∪U j
1 [λ] to U1[λ] under iteration by fλw;

(3) (R1[λ], h) form a full real-symmetric R-family.
And moreover, if w is as in Lemma 6.6 and λ ∈ Θ ∩ R then:
(4) In+1[λ] ≡ U1[λ]∩R is the component of 0 of the first return map to In under

iteration by fλw;
(5) Ij

n+1[λ] ≡ U j
1 [λ]∩R are the domains of the first return map to In+1[λ] under

iteration of the real analytic extension fλw : I → I.

The construction of the R-family gives us also a good control of its geometry.

Lemma 6.13. In the setting of Lemma 6.12, Dil(h|C\U0
1 ) < 1+ε, and mod(U1[0]\

U0
1 [0]) > C, where ε → 0 and C → ∞ when |In|/|In−1| → 0.

Proof. Indeed, Dil(h|C \U0
1 ) < 1+ ε is bounded by the hyperbolic diameter of Θ in

D, which is small if |In|/|In−1| → 0 is big. On the other hand, mod(U1[0]\U0
1 [0]) ≥

mod(U [0] \U0[0])/2 ≥ mod(f(V 0) \ V 1)/4 > k/4, which is big if In \ In−1 is small
by Lemma 6.1. �

6.5. Remarks on the infinitesimal transversality of the special perturba-
tion. We would like to point out that the “macroscopic transversality” of vm is
very much related to its infinitesimal transversality. The (formalizable) argument
relating both properties is as follows (notice that this argument is different from
the one given in [ALM], which emphasizes estimates at the infinitesimal level):

(1) vm can be C1 extended to I as an odd vector field which vanishes on [r, 1],
[−1,−r] and [−l, l]. This vector field is not C2 but its C1 norm is small (ε1).

(2) (Macroscopic transversality implies a C1 connecting lemma) Notice that
the interval (fr

−vm
(0), fr

vm
(0)) contains the interval In+1 (with lots of space). We

conclude that the family fλvm
, λ ∈ (−1, 1) must go through a parameter λ where

fr
λvm

(0) = 0, and so changes the combinatorics of f .
(3) Using the Key Estimate of [ALM], we see that, if vm is not formally transverse

at f , then it is actually tangent to the topological class of f in the following sense.
There exists a (real-symmetric) holomorphic motion h over D whose transition maps
h[0, λ] ≡ hλ : C → C are such that fλ = hλ ◦ f ◦h−1

λ is a family of so called “puzzle
maps” (which behave as unimodal maps) such that

d

dλ
fλ

∣∣∣∣
λ=0

=
d

dλ
fλvm

∣∣∣∣
λ=0

= Df · vm

(the maps hλ are characterized by ∂hλ/∂hλ = λ∂α for a specially chosen quasicon-
formal vector field α satisfying vm = f∗α − α on the critical orbit). This family
can be considered the Beltrami path through f in the direction of Df · vm.

(4) The family fλ is tangent to fλvm
at λ = 0 and both families have big

extensions (to D). In particular, they must be close together in a slightly smaller
disk, where we can detect the change of combinatorics: there is a parameter λ ∈ D

such that fr
λ(0) = 014.

(5) In particular, the family fλ must change combinatorics, but this is a con-
tradiction, since it consists of maps topologically conjugate to f . So we conclude

14More precisely, we use that the holomorphic map λ �→ fr
λ(0) has the same derivative at 0 as

the almost linear map λ �→ fr
λvm

(0), and a simple estimate shows that there exists a parameter

λ ∈ D such that fr
λvm

(0) = 0.
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that vm is formally transverse at f . Notice that our argument is that a “reasonably
efficient”15 tangent path to vm closes macroscopically the critical orbit.

(6) (Infinitesimal analytic connecting lemma) Although vm is only C1 in the
interval, we can approximate it in the topology of Υ by polynomials w which will be
still formally transverse to f . Those vector fields w are transversal to the topological
class of f : they close “infinitesimally” the critical orbit.

7. The Phase-Parameter relation

7.1. Phase-Parameter relation for the special family. Let f ∈ F and let
Ri : ∪Ij

i → Ii be the first return map. For d ∈ Ω, d = (j1, ..., jm), let I
d
i = {x ∈

Ii|Rk−1
i (x) ∈ I

ji+1
i , 1 ≤ k ≤ m}, and let R

d
i = Rm

i |Id
i . Let C

d
i = (Rd

i )−1(I0
i ). The

map Li : ∪C
d
i → I0

i is the first landing map from Ii to Ii+1.

Definition 7.1. Let us say that a family fλ of unimodal maps satisfies the Topo-
logical Phase-Parameter relation at a parameter λ0 if f = fλ0 ∈ F , and there exists
i0 > 0 and a sequence of nested intervals Ji, i ≥ i0 such that:

(1) Ji is the maximal interval containing λ0 such that for all λ ∈ Ji there exists
a homeomorphism Hi[λ] : I → I such that fλ ◦Hi[λ]|(I \ Ii+1) = Hi[λ] ◦ f .

(2) There exists a homeomorphism Ξi : Ii → Ji such that Ξi(C
d
i ) (respectively,

Ξi(I
d
i )) is the set of λ such that the first return of 0 to Hi[λ](Ii) under

iteration by fλ belongs to Hi[λ](Cd
i ) (respectively, Hi[λ](Id

i )).

Definition 7.2. Let fλ be a family of unimodal maps. We say that fλ has Decay
of Parameter Geometry at λ0 if f = fλ0 ∈ F , it satisfies the Topological Phase-
Parameter relation at λ0 and |Jnk+1|/|Jnk

| < Cλk for some constants C > 0, λ < 1,
where nk − 1 counts the non-central levels of the principal nest of f .

Theorem 7.1. Let f ∈ F be analytic. There exists a polynomial vector field w such
that the family fλw = f ◦ (id+λw), λ ∈ (−ε, ε) is an analytic family of unimodal
maps which satisfies the Topological Phase-Parameter relation and has Decay of
Parameter Geometry at 0.

Proof. Let w and n be as in Lemma 6.12. Denote by (R1, h1) the R-family of that
lemma. Since f ∈ F , the critical point is recurrent and we can clearly construct a
R-chain (Ri, hi) over λ = 0. It is clear that the real trace of Ri[0] : ∪U j

i [0] → Ui[0]
is the first return map to In+i. Let Jn+i = Λi ∩ R, let Ξn+i = χi[0]|In+i. It
is clear that |Jnk+1|/|Jnk

| decays exponentially by Lemma 6.13 and Theorem 4.6,
where nk − 1 counts the non-central levels of the principal nest of f . In particular,
|Jn| → 0.

In order to conclude the result, we just have to show the existence of the continu-
ous family of homeomorphisms Hi[λ], for i sufficiently big. Notice that if λ ∈ Jn+i,
if p ∈ In+i[λ] is a periodic orbit for fλ which never enters I0

n+i[λ] then p is hyper-
bolic by the Schwarz Lemma. So, if λ ∈ Jn+i, the only non-hyperbolic periodic
orbits for fλ must be entirely contained in I \ In+1. But since f |I \ In+1 is hyper-
bolic, there exists ε > 0 such that if λ ∈ (−ε, ε), all periodic orbits in I \ In+1[λ] of
fλ are hyperbolic (by Lemma 5.1). In particular, if i is sufficiently big, Ji ⊂ (−ε, ε),
and all periodic orbits of fλ in I \ Ii+1[λ] are hyperbolic. The result follows by
Lemma 5.3. �

15In the sense of admitting a controlled extension to a big domain, as the Beltrami path we
constructed.
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Let Ki be the closure of the union of all ∂C
d
i and ∂I

d
i . Notice that Hi and Ξi

are only uniquely defined in Ki. Condition (2) of the Topological Phase-Parameter
relation can be equivalently formulated as the existence of a homeomorphism Ξi :
Ii → Ji such that the first return of the critical point (under iteration by fλ) to
Hi[λ](Ii) belongs to Hi[λ](Ki) if and only if λ ∈ Ξi(Ki).

Let us now estimate the metric properties of Hi|Ki and Ξi|Ki. In order to do
so, we will need to consider convenient restrictions of those maps.

Let Ĩi+2 = (Ri|I0
i )−1(Id

i ), where d is such that (Ri|I0
i )−1(Cd

i ) = Ii+2.
Let τi be such that Ri(0) ∈ Iτi

i .
Let K̃i = (∪j∂Ij

i ∪ ∂Ii) \ int Ĩi+1.
Let Jj

i = Ξi(I
j
i ).

Definition 7.3. Let fλ be a family of unimodal maps. We say that fλ satisfies
the Phase-Parameter relation at λ0 if f = fλ0 is simple, fλ satisfies the Topological
Phase-Parameter relation at λ0 and for every γ > 1, there exists i0 > 0 such that
for i > i0 we have:

PhPa1: Ξi|(Ki ∩ Iτi
i ) is γ-qs,

PhPa2: Ξi|K̃i is γ-qs,
PhPh1: Hi[λ]|Ki is γ-qs if λ ∈ Jτi

i ,
PhPh2: the map Hi[λ]|K̃i is γ-qs if λ ∈ Ji.

Theorem 7.2. In the same setting of the previous theorem, if f is simple, the
family fλw satisfies the Phase-Parameter relation at 0.

Proof. Let (Ri, hi) be the R-chain of the proof of Theorem 7.1. By Theorems 4.2
and 4.6, mod(Ui[0] \ U0

i [0]) → ∞ and mod(Λi \ Λi+1) → ∞ (notice that since f is
simple, all deep enough levels Ri are non-central). This implies that, for any fixed
γ > 1, there exists i0 > 0 such that for i > i0 the hypothesis of Lemmas 3.1 and 3.2
are fulfilled and hence their conclusions (CPhPa1, CPhPh1, CPhPa2, and CPhPh2)
apply. Those immediately imply the four conditions (PhPa1, PhPh1, PhPa2, and
PhPh2) of the Phase-Parameter relation by restriction to the real line. �

7.2. Phase-parameter relation for transverse families. Let fλw be the special
family constructed before.

Lemma 7.3. The family fλw is transverse to the topological class of f at λ = 0.

Proof. Indeed, if fλw is not transverse then by Theorem 5.13, there exists a qc
vector field α : C → C such that

wDf =
d

dλ
fλw

∣∣∣∣
w=0

= α ◦ f − αDf

on orbf (0). Dividing by Df we get w = f∗α − α on orbf (0). But this contradicts
Remark 6.1. �

We will now show how to use the lamination of [ALM] to transfer the Phase-
Parameter relation from the transversal family fλw to any transversal family fλ.
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The basic idea is contained in the following diagram:

Phase of fλw
Theorem 5.12−→
qs conjugacy

Phase of fλ

Phase-Parameter for fλw

� �Phase-Parameter for fλ

Parameter of fλw
Theorem 5.11−→

holonomy map of L
Parameter of fλ

(notice that the estimates for all arrows are all ultimately based on the λ-Lemma).

Theorem 7.4. Let f ∈ F , and let fλ be a one-parameter analytic family of uni-
modal maps through f such that fλ0 = f and fλ is transverse to the topological
class of f at λ = λ0. Then the Topological Phase-Parameter relation and Decay of
Parameter Geometry holds for the family fλ at λ0. Moreover, if f is simple, then
the Phase-Parameter relation also holds.

Proof. Using Theorems 7.1, 7.2 and Lemma 7.3 consider the family fλw through
f , which is transverse to the hybrid class of f and which satisfies the Topologi-
cal Phase-Parameter relation and Decay of Parameter Geometry (and the Phase-
Parameter relation if f is simple). Fix a such that both fλw and fλ are analytic
paths in Ua. Let L be the lamination from Theorem 5.10. Since both fλ and fλw

are transverse to the topological class of f (at λ0 and 0), we can consider the local
holonomy map of the lamination L, ψ : (−ε, ε) → (λ0 − ε′, λ0 + ε′).

Let Ξ̃i : Ii → J̃i be the phase-parameter map for the family fλw, and let H̃i[λ] be
the phase-phase map. We obtain the phase-parameter map for fλ as a composition
Ξi = ψ ◦ Ξ̃i. Since |J̃i| → 0,

lim
i→∞

sup
λ∈J̃i

‖fλw − fψ(λ)‖a = 0.

In particular, by Theorem 5.11, ψ|J̃i is γi-qs with lim γi = 1.
Since for each λ ∈ Ji = ψ(J̃i), fλ is qs conjugate to fψ−1(λ)w, we see that if

λ ∈ Ji then there are no non-hyperbolic periodic orbits for fλ in the complement
of the continuation of Ii+1. Using Lemma 5.1 we conclude as in Theorem 7.1 the
existence of a continuous family Hi[λ] of phase-phase maps for the family fλ. It
follows that the Topological Phase-Parameter relation holds for fλ at λ0.

Since ψ is quasisymmetric, it is Hölder and the Decay of Parameter Geometry
also follows from Theorem 7.1. If f is simple, estimates PhPa1 and PhPa2 follow
from Theorem 7.2.

Let hλ : I → I be a quasisymmetric conjugacy between fλw and fψ(λ) which is
1+O(‖fλw − fψ(λ)‖a)-qs. This family might not be continuous, but Hi[ψ(λ)]|Ki =
hλ ◦ H̃i[λ], which is enough for our purposes. In particular, if f is simple, PhPh1
and PhPh2 follow from Theorem 7.2. �
Remark 7.1. Notice that even if we are only interested in the phase-parameter
relation for individual families, this proof needs the knowledge of the behavior
of topological conjugacy classes of unimodal maps in infinite dimensional spaces.
For the case of the quadratic family, this is not needed: the argument of [L3]
is based on the combinatorial theory of the Mandelbrot set (Douady-Hubbard,
Yoccoz), which allows to show directly that the real quadratic family gives rise
to full unfolded complex return type families. In particular, our proof also gives
a somewhat different approach to the phase-parameter relation on the quadratic
family itself.
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8. Proof of Theorem A

Let fλ be a one-parameter non-trivial analytic family of unimodal maps. In view
of Theorem 7.4, to conclude Theorem A it is enough to show that

(1) Almost every non-regular parameter belongs to F , that is, it is Kupka-
Smale, has a recurrent critical point and is not infinitely renormalizable,

(2) Almost every parameter in F is simple,
(3) fλ is transverse to the topological class of almost every parameter.

We will take care of these issues separately below: item (1) will follow from
Lemmas 8.1, 8.4, and 8.5, item (2) from Lemma 8.6 and item (3) from Lemma 8.3.

8.1. Transversality.

Lemma 8.1. Let fλ be a non-trivial analytic family of unimodal maps. Then
at most countably many parameters are not Kupka-Smale or have a periodic or
preperiodic critical point.

Proof. Indeed, the set of parameters which are not Kupka-Smale correspond to
solutions of countably many analytic equations of the type fn

λ (p) = p, Df2n
λ (p) = 1,

n > 0. Similarly, the set of parameters with periodic or preperiodic critical point
corresponds to countably many equations of the type fm

λ (0) = fn
λ (0), 0 ≤ m < n.

So the set of parameters which are not Kupka-Smale is either countable or contains
intervals. Since regular parameters are dense, the first possibility holds. �

The following result is due to Douady, see Lemma 9.1 of [ALM]:

Lemma 8.2. Let L be a codimension-one complex lamination on an open set V of
some Banach space, and let γ be an analytic path in V. If γ is not contained in a
leaf of L, then the set of parameters where γ is not transverse to the leaves of L
consists of isolated points.

This result immediately implies:

Lemma 8.3. Let fλ be a non-trivial analytic family of unimodal maps. Then the
set of non-regular Kupka-Smale parameters λ0 such that fλ is not transverse to the
topological class of fλ0 at λ0 is countable.

8.2. Non-recurrent parameters. The following result is due to Duncan Sands
[S], but we will provide a quick proof based on holomorphic motions and Lemma
8.2.

Lemma 8.4. Let fλ be a non-trivial analytic family of unimodal maps. Then
almost every parameter is regular or has a recurrent critical point.

Proof. If this is not the case, there would exist ε > 0 and a set X of parameters λ
of positive measure such that for λ ∈ X,
(1) infm≥1 |fm

λ (0)| > ε (by hypothesis),
(2) fλ is non-regular, Kupka-Smale and the critical orbit is infinite (Lemma 8.1).

Let us fix a density point λ0 ∈ X of X. Using Lemma 5.2, consider a nice interval
T = T [λ0] = [−p, p] ⊂ (−ε, ε) for fλ0 , with p preperiodic. Let T [λ], λ−λ0 ∈ (−δ, δ),
δ > 0 small denote the continuation of T . Let K[λ], λ − λ0 ∈ (−δ, δ) denote the
set of points in I \ T [λ] which never enter T [λ] and do not belong to the basin of
hyperbolic attractors.
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Since K = K[λ0] is an expanding set by Lemma 5.1, it persists in a complex
neighborhood of λ0: there exists a family of homeomorphisms hλ : K → C, λ ∈
Dδ′(λ0), δ′ < δ depending continuously on λ, such that hλ0 = id and fλ ◦ hλ =
hλ ◦ fλ0 . It is easy to see (using Lemma 5.1) that for λ ∈ R, hλ(K) = K[λ]. For
each preperiodic orbit p of f in K, it is clear that λ → hλ(p) is holomorphic in
Dδ′(λ0). Since preperiodic orbits are dense in K, it follows that h[λ0, λ] ≡ hλ are
actually transition maps of a holomorphic motion h over Dδ′(λ0).

Since fλ is non-trivial, fλ(0) does not belong to K[λ] for a dense set of λ ∈ (−δ, δ),
so by Lemma 8.2, the path λ → (λ, fλ(0)) is transverse to the leaves of h outside
of countably many parameters λ. So there exist parameters λ ∈ X arbitrarily close
to λ0 which are density points of X and transversality points of the above path. In
order to avoid cumbersome notation, let us assume that λ0 is itself a transversality
point.

It follows that there exists a real-symmetric quasiconformal map χ (phase-
parameter holonomy map16) taking a neighborhood V of fλ0(0) to a neighborhood
of λ0, and taking points in K ∩ V to parameters λ ∈ χ(V ) with fλ(0) ∈ K[λ]. In
particular, χ(K ∩ V ) ⊃ X ∩ χ(V ).

Since K is an expanding set, it follows that there exists ρ > 0 such that in every
r neighborhood of fλ0(0) there exists an interval of size at least ρr disjoint from
K. Since χ|V ∩R is quasisymmetric, this property is preserved: there exists ρ′ > 0
such that in every r neighborhood of λ0 there exists an interval of size at least ρ′r
not intersecting X. This contradicts the hypothesis that λ0 is a density point of
X17. �

8.3. Infinitely renormalizable maps.

Lemma 8.5. Let fλ be a non-trivial analytic family of unimodal maps. Then the
set of infinitely renormalizable parameters has Lebesgue measure zero.

Proof. Let X be the set of parameters λ such that fλ is infinitely renormalizable,
and let λ0 ∈ X be a density point of X. By Lemma 5.5, there exists a nice interval
T [λ], |λ − λ0| < δ, which is periodic (of period, say, m) such that fm|T [λ] has
negative Schwarzian derivative. In particular, if Aλ : T [λ] → I is affine, gλ =
Aλ ◦ fm

λ ◦ A−1
λ , |λ − λ0| < δ′ is an analytic family of quasiquadratic maps, which

is non-trivial (because fλ is). By Theorem B of [ALM], for almost every λ, gλ is
not infinitely renormalizable. It is clear that if λ ∈ X and |λ − λ0| < δ′ then gλ is
infinitely renormalizable, so λ0 is not a density point of X, contradiction. �

8.4. Simple maps. The following argument is adapted from the corresponding
result of Lyubich for the quadratic family [L3].

16More precisely, χ is obtained by applying first the local holonomy map between the two
transverse holomorphic curves {λ0} × V (V a small neighborhood of fλ0 (0)) and {(λ, fλ(0))|λ ∈
Dδ′ (λ0)} followed by the projection in the first coordinate.

17It is easy to see that this argument gives much more information on the size of X. One
can see for instance that the Hausdorff dimension of X in λ0 (defined as the infimum of the
Hausdorff dimension of X ∩ Dε(λ0)) is no greater than the Hausdorff dimension of K in fλ0 (0),
which is known to be less than 1. Notice that X is essentially the set of non-regular non-recurrent
parameters avoiding a definite neighborhood of 0. We should remark that these ideas show also
that the Hausdorff dimension of the set of non-regular non-recurrent parameters is usually 1 except
for some trivial situations.
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Lemma 8.6. Let fλ be a non-trivial analytic family of unimodal maps. Then
almost every parameter λ with fλ ∈ F is simple.

Proof. If this is not the case, we could find C > 0, ρ < 1, m ≥ 0 and a set X of
parameters of positive measure such that if λ0 ∈ X then

(1) fλ0 ∈ F and is not simple (by hypothesis),
(2) fλ is transverse at λ0 (by Theorem 8.3),
(3) The sequence of parameter windows Jn[λ0] associated to λ0 are defined for

n ≥ m (by Theorem 7.4),
(4) If nk,λ0 − 1 denotes the sequence of non-central levels of the principal nest

of fλ0 then for nk,λ0 ≥ m, |Jnk,λ0+1[λ0]|/|Jnk,λ0
[λ0]| < Cρk (by Theorem

7.4).
Consider now the set Xk, k ≥ m of parameters λ0 ∈ X such that the return of

level nk,λ0 is central. Let ∆k be the union of Jnk,λ0
[λ0], λ0 ∈ Xk and Πk be the

union of Jnk,λ0+1[λ0], λ0 ∈ Xk.
Then each connected component Jnk,λ0

[λ0] of ∆k contains a single connected
component Jnk,λ0+1[λ0] of Πk, and thus |Πk|/|∆k| < Cρk, so that |Xk| ≤ |Πk| <

Cρk|∆k| ≤ Cρk|∆m|. On the other hand, X ⊂ ∩k0≥m ∪k≥k0 Xk and thus, |X| ≤
infk0≥m

∑
k≥k0

Cρk|∆m| = 0, contradiction. �

The proof of Theorem A is concluded.

9. Proof of Theorem B

We will give now a proof of Theorem B using a parameter exclusion argument.
In the first version of this work (in [Av1]), a different proof was given relying on
the refined statistical analysis of [AM1], but we will give a much simpler argument
based on a modified version of the quasisymmetric capacities of [AM1], which allows
us to get rid of distortion estimates and at the same time to work with a fixed
quasisymmetric constant.

9.1. Measure estimate. Define the modified γ-qs capacity of a set X in an inter-
val I as

pγ(X|I) = sup
|h1 ◦ h2(X ∩ I)|

|h1 ◦ h2(I)|
where h1 : R → R is γ-qs and h2 : I → R is a diffeomorphism (onto its image) with
non-negative Schwarzian derivative.

Notice that if F : T1 → T2 is a diffeomorphism with non-positive Schwarzian
derivative and X ⊂ T1 then

pγ(X|T1) ≤ pγ(F (X)|T2).

This is the main advantage of modified quasisymmetric capacities over the tradi-
tional ones of [AM1].

By the Koebe Principle, if h : I → I is a diffeomorphism and has non-positive
Schwarzian derivative then h([−ε, ε]) = O(ε). By Hölder continuity of γ-qs maps,
we get

pγ([−ε, ε]|[−1, 1]) = O(εκ)
for some 0 < κ < 1 depending on γ.

For a map f ∈ F with principal nest {In}, let s be as in Lemma 5.6, and let

αn = pγ(s(∪Ij
n)|s(In)).
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Let us consider the components T k
n of (Rn−1|I0

n−1)−1(∪Ij
n−1). We reserve the

index 0 for the component containing 0, and the indexes −1 and 1 for the compo-
nents of (Rn−1|I0

n−1)
−1(I0

n−1). If |k| > 1 then Rn−1|T k
n is a diffeomorphism onto

some Ij
n−1, j �= 0 and R2

n−1|T k
n is a diffeomorphism onto In−1. Let

εn = pγ(s(∪|k|>1T
k
n )|s(In)).

Lemma 9.1. If n is sufficiently large, (1 − αn+1) ≥ (1 − εn+1)(1 − αn).

Proof. If |k| > 1 then s(T k
n+1) is taken to s(In) by s ◦ R2

n ◦ s−1 which has negative
Schwarzian derivative for n big. In particular

pγ(s(∪Ij
n+1)|s(T k

n+1)) ≤ pγ(s(∪Cd
n)|s(In)) ≤ αn.

Thus pγ(s(∪Ij
n+1)|In+1) ≤ εn+1 + (1 − εn+1)αn. �

Lemma 9.2. If f is simple then the εn decay exponentially fast.

Proof. If f is simple then |s(In+1)|/|s(In)| decays exponentially fast by Lemma 5.7.
In particular, by the Koebe Principle, for each j, each of the connected components
of s(In+1 \ Ij

n+1) is exponentially (in n) bigger than s(Ij
n+1). This implies that, for

each k, each component of s(In+2 \ T k
n+2) is exponentially bigger than s(T k

n+2)
(using the Koebe Principle), so pγ(s(T k

n+2)|s(In+2)) decays exponentially and so
does εn. �

Lemma 9.3. If f ∈ F does not admit a quasiquadratic renormalization then ∪Ij
n

is not dense in In, for n sufficiently big.

Proof. Up to considering a renormalization or unimodal restriction, we may assume
that f is non-renormalizable and does not admit unimodal restriction. It is easy to
see that if x ∈ I never enters I1 then the iterates of x accumulate on an orientation
preserving fixed point of f , and since f does not admit a unimodal restriction, we
conclude that x ∈ ∂I.

Since f is not conjugate to a quadratic map, there exists an interval T whose
orbit does not accumulate on the critical point (Lemma 5.9). Let n be biggest
with the orbit of T intersecting In (T intersects I1 by the previous discussion). Of
course, the set of points which land on In+1 does not intersect the orbit of T , and
so is not dense in In.

It is easy to see that if the set of points in Im which eventually land in Im+1 is
not dense in In then ∪Ij

m+1 is not dense on Im+1. In particular, by induction, ∪Ij
m

is not dense in Im for m ≥ n + 1. �

Lemma 9.4. If f does not admit a quasiquadratic renormalization then for n large
enough, αn < 1.

Proof. Let n be large enough such that there exists an open interval E ⊂ In disjoint
from ∪Ij

n, and s ◦ Rn ◦ s−1 has negative Schwarzian derivative. We may assume
that E ⊂ T , where T ⊂ int In is a symmetric interval containing I0

n. By the
Koebe Principle, there exists C > 0 such that if h2 : s(In) → R has non-positive
Schwarzian derivative then |h2(s(E))| > C|h2(s(T ))|. In particular, there exists
ε > 0 such that if h1 : R → R is γ-qs, then, with h = h1 ◦ h2, we have |h(s(E))| >
ε|h(s(T ))| ≥ ε|h(s(I0

n))|.
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For d ∈ Ω, let Ed = (Rd
n)−1(E). Since (Rd

n)−1 has non-positive Schwarzian
derivative, we see that for any h as above, |h(s(Ed))| > ε|h(s(Cd

n))|. Notice that
all the intervals Ed, d ∈ Ω are disjoint, and ∪Ed does not intersect ∪C

d
n so

pγ(s(∪Cd
n)|s(In)) ≤ 1

1 + ε
.

By a previous argument of the proof of Lemma 9.1,

pγ(s(∪Ij
n+1)|s(T k

n+1)) ≤ pγ(s(∪Cd
n)|s(In)) < 1

for |k| > 1.
Thus, pγ(s(∪Ij

n+1)|s(In+1)) ≤ εn+1 + (1 − εn+1)pγ(s(∪C
d
n)|s(In)) < 1. �

Lemma 9.5. Let fλ be a one-parameter non-trivial analytic family of unimodal
maps satisfying the Phase-Parameter relation at a parameter λ0 (in particular,
f = fλ0 is simple). Assume that f does not admit quasiquadratic renormalization.
Then λ0 is not a density point of non-hyperbolic parameters18.

Proof. Let Jn and Ξn be as in the Topological Phase-Parameter relation. Since
|Jn| → 0, and λ0 ∈ Ξn(Iτn

n ) ⊂ Jn, it is enough to show that then there exists α < 1
such that

lim sup
|Ξn(∪C

d
n ∩ Iτn

n )|
|Ξn(Iτn

n )| ≤ α < 1.

Indeed, if λ /∈ Ξn(∪C
d
n) then the critical point is non-recurrent. By Lemma 8.4, for

almost every non-recurrent parameter, fλ is hyperbolic.
Fix 1 < γ̂ < γ By PhPa1, Ξn|Kn ∩ Iτn

n is γ̂-qs for n big enough. On the other
hand, for n big enough, s−1|s(Iτn

n ) is C1 close to being linear (because s is analytic,
and in particular C1, and s(Iτn

n ) is small). So Ξn ◦ s−1|s(Kn ∩ Iτn
n ) is γ-qs for n big

enough. In particular

|Ξn(∪C
d
n ∩ Iτn

n )|
|Ξn(Iτn

n )| ≤ |Ξn ◦ s−1s(∪C
d
n ∩ Iτn

n )|
|Ξn ◦ s−1s(Iτn

n )| ≤ pγ(s(∪Cd
n)|s(Iτn

n ) ≤ αn.

By Lemmas 9.1, 9.2 and 9.3, α = lim sup αn < 1. �
Theorem A and Lemma 9.5 imply Theorem B for one-parameter families.

9.1.1. Many parameters. The argument of Lemma 8.1 implies the following:

Lemma 9.6. Let {fλ}λ∈Λ be a k-parameter non-trivial analytic family of unimodal
maps. The set of parameters which are not Kupka-Smale or have a periodic or
preperiodic critical point is contained in a countable union of analytic submanifolds
of Λ, of codimension at least 1, and so has Lebesgue measure zero.

Let us now show how the one-dimensional version of Theorem B implies the
general case. Let {fλ}λ∈Λ be a k-parameter analytic family of unimodal maps. By
Lemma 9.6, we just have to show that for any Kupka-Smale parameter λ0 ∈ int Λ,
there exists a small ε > 0, such that, letting Bε ⊂ Λ be the ball around λ0 of
radius ε, almost every parameter in Bε is either regular or admits a quasiquadratic
renormalization.

Using Theorem 5.10, if ε is sufficiently small, λ → fλ is an analytic map from
Bε to some open set V where the hybrid lamination L is defined. Let λ1 ∈ Bε

18One can actually use those techniques to show that λ0 is a density point of hyperbolic
parameters, see Remark B.3 for the complex counterpart.
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be a regular parameter. If L is a line in Rk through λ1, then by Lemma 8.2,
L ∩ Bε is not contained in the topological class of a non-regular parameter, and so
regular parameters are dense in L∩Bε. By the one-dimensional Theorem B, we see
that almost every non-regular parameter in L ∩ Bε is quasiquadratic. By Fubini’s
Theorem, almost every non-regular parameter in Bε is quasiquadratic.

This completes the proof of Theorem B.

10. Proof of corollaries

10.1. Some conditions related to good ergodic properties. Let us first recall
the conditions on the critical orbit stated in the introduction. Let f ∈ U2. We say
that f is Collet-Eckmann if the lower Lyapunov exponent of the critical value is
bigger than zero:

(10.1) lim inf
ln |Dfn(f(0))|

n
> 0.

We say that f has subexponential recurrence if

(10.2) lim sup
− ln |fn(0)|

n
= 0.

We say that f has polynomial recurrence if

(10.3) γ = lim sup
− ln |fn(0)|

ln(n)
< ∞,

and in this case, we call γ the exponent of the recurrence.
We introduce the following additional condition: f is called Weakly Regular if

(10.4) lim
δ→0

lim inf
n→∞

1
n

∑
1≤k≤n

fk(0)∈(−δ,δ)

ln |Df(fk(0))| = 0.

Notice that polynomial recurrence is much stronger than subexponential recur-
rence.

Remark 10.1. Maps satisfying the Collet-Eckmann and the subexponential recur-
rence conditions have been intensively studied after the works of Benedicks and
Carleson. Those two conditions give a very precise control of the critical orbit.
They are not sufficient to show that f has good statistical properties however: one
must also ask that f has a renormalization with all periodic orbits repelling (which
is then conjugate to a quadratic polynomial). Under this additional assumption,
it is possible to show that f has an absolutely continuous invariant measure (see
[BY]).

In order to study further the properties of µ, it is convenient to consider the
smallest periodic nice interval T of f (f is not infinitely renormalizable, since it has
an absolutely continuous invariant measure). The first return map fm : T → T can
be then rescaled to a unimodal map f̂ , which also possess an absolutely continuous
invariant measure µ̂.

Assuming that f is also Kupka-Smale and using Lemma 5.1, we see that the
dynamics of f splits in a hyperbolic part, that describes points x ∈ I which never
enter int T , and an interesting part described by f̂ .
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The measurable dynamics of f̂ are described by µ̂: for almost every x ∈ I and
any continuous function φ : I → R we have

1
n

n−1∑
k=0

φ(f̂k(x)) =
∫

φdµ̂.

Since f̂ is non-renormalizable, it follows that µ̂ is supported on [f̂2(0), f̂(0)], and
(f̂ , µ̂) is exponentially mixing19 (see [Y]).

The condition of Weak Regularity is important to show that (f̂ , µ̂) is stochas-
tically stable20 (see [T2]). If we assume a little bit more smoothness, f ∈ U3, the
Weak Regularity condition is not necessary, and it is possible to show that (f̂ , µ̂)
is stochastically stable in a stronger sense21 (see [BV]).

10.2. Analytic families. We will actually prove the following result, which is a
more precise form of Corollaries C and E:

Theorem 10.1. Let fλ, be a non-trivial analytic family of unimodal maps. Then
almost every non-regular parameter is Kupka-Smale and has a quasiquadratic renor-
malization which satisfies the Collet-Eckmann condition and is polynomially recur-
rent with exponent 1.

Proof. We will prove the stated result for one-parameter families, the general case
reducing to this one by the argument of §9.1.1.

By Theorems A and B of [AM1], the conclusion of the theorem holds for the
quadratic family. However, the only properties of the quadratic family that are
actually used in the proof is that it is an analytic family of quasiquadratic maps
with negative Schwarzian derivative for which the Phase-Parameter relation holds
at almost every parameter, see Remark 3.3 of that paper. Due to the work of
Kozlovski, the hypothesis of negative Schwarzian derivative can also be removed
(this can be checked directly using Lemma 5.6). Using our Theorem A, we get the
result for analytic families of quasiquadratic maps.

Let us now consider the general case. By Theorem A, almost every non-regular
parameter is simple, and by Theorem B, almost every non-regular parameter has a
quasiquadratic renormalization. Let us fix such a parameter λ0.

Let T be the smallest periodic nice interval for fλ0 (of period m). For λ near
λ0, the interval T has a continuation T [λ]. Consider the analytic family f̂λ =
A[λ] ◦ fm

λ ◦ A[λ]−1, |λ − λ0| < ε, where A[λ] : T [λ] → I is affine. Then f̂λ is
C∞ close to f̂λ0 , which is quasiquadratic, so we conclude that for ε > 0 small, f̂λ,
|λ − λ0| < ε is an analytic family of quasiquadratic maps. Since fλ is non-trivial,
f̂λ is also non-trivial.

In particular, by the quasiquadratic case, for almost every λ near λ0, f̂λ is either
regular or satisfy the Collet-Eckmann condition and its critical point is polynomially
recurrent with exponent 1. In particular, the same holds for fλ, which concludes
the proof of the theorem. �

19For a certain class of observables, for instance, of bounded variation.
20For a certain class of i.i.d. absolutely continuous stochastic perturbations, the perturbed

system possess a stationary measure which is close to µ̂ in the weak topology.
21Densities of stationary measures of perturbed systems are close to the density of µ̂ in the L1

sense.
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Remark 10.2. Notice that the proof of Theorem A in [AM2] could not use directly
the proof of [AM1] (the argument needs modifications which are dealt in the Ap-
pendix of [AM2]), since their main phase-parameter tool essentially amounts to
comparing the phase-space of a non-trivial family with the parameter space of the
quadratic family. This distorts the estimates and makes it impossible to obtain the
exponent of the recurrence.

10.3. Smooth families. Recall that if Λ ∈ Rk is a bounded open connected do-
main with smooth boundary, UF

r(Λ) is the space of Cr families of unimodal maps
parametrized by Λ, and is a Baire space.

Theorem 10.2. Let fλ, λ ∈ Λ be a non-trivial family of unimodal maps. For
every ε > 0 there exists a neighborhood V ⊂ UF

2(Λ) of fλ such that if gλ ∈ V
then, outside a set of parameters λ of measure at most ε, gλ is either regular or is
Kupka-Smale and has a renormalization with all periodic orbits repelling satisfying
the Collet-Eckmann, subexponential recurrence, and Weak Regularity conditions.

Proof. Using Vitali’s Covering Lemma, let {Bi}, {Ci} be finite families of disjoint
closed balls covering the parameter space up to a set of Lebesgue measure ε/2 such
that:
(1) For λ ∈ Bi, fλ is regular;
(2) For λ ∈ Ci, there exists a nice interval Ti[λ], which is periodic of period mi,
depending continuously on λ such that fmi

λ : Ti[λ] → Ti[λ] can be rescaled to a
quasiquadratic map f̂i,λ.

It is easy to see that if gλ is C2 close to fλ, then:
(1) For every λ ∈ Bi, gλ is regular;
(2) For every λ ∈ Ci, there exists an interval T g

i [λ], depending continuously on λ,
close to T g

i [λ], such that gmi

λ : T g
i [λ] → T g

i [λ] can be rescaled to a unimodal map
ĝi,λ, and the family ĝi,λ is C2 close to f̂i,λ.

The family f̂i,λ is non-trivial, so by Theorem B of [ALM], the set of parameters
in Ci such that ĝi,λ is either regular or has all periodic orbits repelling and satisfies
the Collet-Eckmann, subexponential recurrence, and Weak Regularity conditions,
has Lebesgue measure at least |Ci|(1− ε/4), provided gλ is close enough to fλ. The
result follows. �

Remark 10.3. In particular, if fλ is a non-trivial analytic family of unimodal maps,
almost every parameter is Weakly Regular.

Recall that by Remark 5.4, non-trivial analytic families are dense in UF
r(Λ).

Using Theorem 10.2 and an easy Baire argument we obtain the following precise
version of Corollary D:

Theorem 10.3. In a generic family fλ in UF
r(Λ), r = 2, ...,∞ for almost every

non-regular parameter λ0 ∈ Λ, f = fλ0 is Kupka-Smale and has a renormalization
which has all periodic orbits repelling and satisfies the Collet-Eckmann, subexpo-
nential recurrence, and Weak Regularity conditions.

Appendix A. Hybrid classes

In this section we will give a global characterization of the leaves of the lamination
L of Theorem 5.10.
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Notice that the leaves of L are claimed to coincide with topological classes only in
the non-regular case: the partition in topological classes is not a lamination because
regular topological classes are open sets. It turns out that the behavior of the regular
leaves of L can be quite arbitrary. In order to give a global characterization of the
leaves of L, we need to introduce once and for all an arbitrary, but fixed, way to
refine the topological classes of regular maps. We shall call this refinement the
hybrid lamination.

If f is non-regular, the hybrid class of f is just the set of all non-regular maps g
which are topologically conjugate to f .

Let f be a regular map, and let A be the set of attracting periodic orbits of
f and let B = {x ∈ I|fn(x) → A} denote the basins of the attracting periodic
orbits of f . Notice that if f is a regular map, there exists a minimal m ≥ 0 such
that fm(0) belongs to a periodic connected component of B. It is possible to show
that if f is quasiquadratic, then m = 0. It turns out that if m = 0 (this case will
be called essential), there is a natural way to refine the topological class of f : the
hybrid class of f is the set of all regular maps g which are topologically conjugate
to f and the multiplier of the periodic orbit that attracts 0 is the same for both
maps (this definition agrees with the one of [ALM] in the quasiquadratic case).

In the non-essential case, there is no natural way to refine the topological class
of f , so we fix an arbitrary way that works.

Definition A.1. Let f be a Kupka-Smale map. We say that a homeomorphism
h : I → C is f -admissible if the following holds. Let T be a periodic component of
B \A which does not contain 0, and, writing T = (a, b) with |a| < |b|, we have that
the interval [−a, a] is nice. Then h takes d = (a + b)/2 to h(d) = (h(a) + h(b))/2
and h|[d, fq(d)] is affine, where q is the period of T .

Definition A.2. Let f be a regular map of non-essential type. The hybrid class of
f is defined as the set of all regular maps g such that there exists an f -admissible
topological conjugacy between f and g.

The following proposition is elementary, and shows that the definition of hybrid
class is minimally adequate:

Proposition A.1. Let f be a regular map. Then its hybrid class intersects Ua in
a codimension-one analytic submanifold.

Moreover, with this definition, it is possible to prove the full Theorem 5.10 in
the case of hyperbolic maps f . The case of infinitely renormalizable f can be dealt
by reduction to the quasiquadratic case using renormalization (dealt in Theorem A
of [ALM]), see Lemma 5.5.

A.1. Persistent puzzle. The remaining case of Theorem 5.10 is trickier and one
needs to go into the proof of [ALM]. We will discuss here only the main modification
one needs to make in order to adapt the argument. This modification concerns the
main tool used in the finitely renormalizable case, the concept of persistent puzzle,
whose definition needs to be adapted. We follow basically the approach of [Av1].

Assume that f ∈ F . As in §6.1, fix a level n of the principal nest and assume
that |In|/|In−1| is very small. Let us consider the first landing map to A0 = In,
the connected components of its domain are denoted Aj . Let A1 be the component
of f(0), and let A1 = [l, r], with l < r. Let V j be the complexification of the Aj
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obtained as in Lemma 6.1. Let V be the union of all V j such that V j ∩R ⊂ [−1, r].
We shall informally call V the puzzle.

Let V ⊂ Aa be a real-symmetric neighborhood of f . We will say that the puzzle
persists in V if there exists a real-symmetric holomorphic motion h over V given by
a family of transition maps h[f, g] = hg : C → C, g ∈ V such that:

(1) hg|C \ Ωa = id;
(2) g ◦ hg|V \ V 0 = hg ◦ f , g ◦ hg|∂V 0 = f ;
(3) hg|I is f -admissible and g ◦ hg|([−1, r] \ V ) = hg ◦ f .

The following plays the role of Lemma 5.6 of [ALM].

Lemma A.2. Let f ∈ F ∩Ua. If |In|/|In−1| is sufficiently small, then there exists
a neighborhood of f where the puzzle persists.

The proof is the same as of Lemma 5.6 of [ALM], and we will not reproduce the
whole argument here, but only comment the main steps:

(1) One considers a holomorphic motion h′ of [−1, r] \ V which is f -admissible
and equivariant: g ◦ h′

g = h′
g ◦ f (this holomorphic motion exists because the

dynamics of f |[−1, r] \ V is hyperbolic) over a small neighborhood of f .
(2) Using the Canonical Extension Lemma, we extend h′ to a holomorphic mo-

tion defined also on ∂f(V0). Considering a slightly smaller neighborhood V ′ of f
we may extend h′ to C \ Ω as id.

(3) One considers a holomorphic motion h0 of V
0

such that g ◦ h0
g|∂V 0 = h′

g ◦ f

over a neighborhood V0 of f .
(4) One notices that for each V i, i �= 0, we can define (uniquely) a holomorphic

motion hi on V i as a lift of h0|V 0 over a small neighborhood V i of f .
(5) The (countably many) holomorphic motions h′, hi are defined apriori over

different neighborhoods of f , but using again hyperbolicity of f |[−1, r]\V , one sees
that all those holomorphic motions are defined over a definite neighborhood of f .

(6) An estimate of hyperbolic geometry shows that the several regions of def-
inition of those different holomorphic motions cannot collide in a slightly smaller
neighborhood of f , so they define a common holomorphic motion which can be
completed using the Canonical Extension Lemma and satisfies automatically (1),
(2), and (3).

Remark A.1. The last condition of the definition of persistence defines uniquely hg

in [−1, r] \ V . This set is empty in the quasiquadratic case (and so this condition
does not appear in [ALM]). This (obvious) observation concerning the first step
is the only formal difference in the proof, the remaining steps do not need to be
modified.

Remark A.2. If f is a Kupka-Smale, finitely-renormalizable, non-hyperbolic map,
with a non-recurrent critical point, a similar construction can be made. In this
case, we take T ⊂ T ′ nice intervals with preperiodic boundary such that 0 does not
return to T ′ and |T |/|T ′| is very small. We let A0 = T , and put A1 as a domain of
the first landing map to A0 which is contained in [f(0), f(0) + ε], ε very small.

Remark A.3. If g1, g2 ∈ V ∩Ua are regular maps in the same hybrid class then they
are of non-essential type if and only if for all m sufficiently big,

h−1
g1

(gm
1 (0)), h−1

g2
(gm

2 (0)) /∈ [−1, r] \ V
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(use the Schwarz Lemma). The definition of hybrid class implies

h−1
g1

(gm
1 (0)) = h−1

g2
(gm

2 (0)).

This is important for the application of the several pullback arguments of [ALM].

One obtains Theorem 5.10 in the finitely renormalizable, non-regular case by
repetition of the proof of Theorem A of [ALM], taking into consideration the above
remarks.

Appendix B. Non-renormalizable parameters in the Mandelbrot set

Let pc = z2 + c and let M (the Mandelbrot set) be the set of parameters c ∈ C

such that the orbit of 0 does not escape to infinity under iteration by pc. The aim
of this appendix is to show how the idea of the proof of Theorem B can be coupled
with Lyubich’s result of [L3] to obtain the following theorem:

Theorem B.1. Let NR be the set of non-renormalizable quadratic parameters
with recurrent critical point and no indifferent periodic orbits in the boundary of
the Mandelbrot set. Then NR has Lebesgue measure 0.

Theorem B.1 implies easily Shishikura’s Theorem F stated in the introduction.

Remark B.1. The reduction of Theorem F to Theorem B.1 is obtained using the
following three steps:

(1) It is easy to pass from the non-renormalizable case to the finitely renormal-
izable case using renormalization techniques: the (countably many) little copies
of the Mandelbrot set are related by renormalization to the original Mandelbrot
set by a quasiconformal (and thus absolutely continuous) transformation, see [L4].
Alternatively, we can also repeat the proofs for the little Mandelbrot copies.

(2) Quadratic polynomials with a neutral fixed point are contained in the bound-
ary of the main cardioid of the Mandelbrot set, which is a real analytic curve (with
one singularity) and thus has Lebesgue measure zero.

(3) The case of non-recurrent non-renormalizable polynomial without neutral
fixed points can be treated easily using holomorphic motions, see our proof of
Lemma 8.4 (it is enough to use that under those conditions the set of points that
never enter a small neighborhood of 0 is a hyperbolic set and thus persistent22).

To prove Theorem B.1 we will make use of the Phase-Parameter estimates de-
scribed in Lemma 3.1 and Lyubich’s parapuzzle estimate (Theorem 4.3). Then,
we will redo the estimates of Theorem B in the complex setting to show that non-
renormalizable parameters have Lebesgue measure zero, because the critical point
has a tendency to fall in the basin of infinity (in the same way that in the real setting
the critical point has a tendency to fall in the basin of non-essential attractors).

Remark B.2. Lyubich has another proof of Theorem B.1, also based on [L3] and
estimates on the area of the set of points that return to deep puzzle pieces. Graczyk
and Swiatek have also obtained a different proof of Shishikura’s Theorem.

22This actually holds for any non-renormalizable quadratic polynomial without neutral fixed
points.
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B.1. Parapuzzle notation. Let us fix c0 ∈ NR. By Theorem 4.3, there exists a
neighborhood Λ1 ⊂ C of c0 and domains 0 ∈ U1[λ] ⊂ C, λ ∈ Λ1 such that the first
return map to U1[λ] by pλ induces a full R-family over Λ1. To prove Theorem B.1,
it is clearly sufficient to show that Λ1 ∩ NR has Lebesgue measure zero.

For λ ∈ NR ∩ Λ1, we can define a R-chain over λ since the critical point is
recurrent. Let us denote the parameter domains of this chain by Λi[λ]. Let NR∞ ⊂
NR∩Λ1 be the set of parameters λ such that the chain Ri over λ has infinitely many
central levels, and let NR0 be the complementary set in NR∩Λ1. By Theorem 4.4,
there exists a constant C(λ) > 0, λ ∈ NR∩Λ1 such that mod(Λnk

[λ]\Λnk+1[λ]) >
C(λ)k, where nk − 1 counts the non-central levels of the chain. If λ ∈ NR0, we
actually have linear growth of moduli (without passing through a subsequence), and
by Lemma 3.1, conditions CPhPa1 and CPhPh1 are satisfied (with the dilatation
parameter γ arbitrarily close to 1) for i sufficiently big.

B.2. Finitely many central cascades. The argument of Lyubich which shows
that almost every real quadratic maps in F is simple applies in the complex setting
and gives:

Lemma B.2. |NR∞| = 0.

Proof. Let NR∞
ε be the set of parameters λ ∈ NR∞ such that C(λ) ≥ ε. If

NR∞ has positive Lebesgue measure then we can select ε such that NR∞
ε also has

positive Lebesgue measure. Let NR∞
ε (k) ⊂ NR∞

ε be the set of parameters such
that the nk level is central. If λ ∈ NR∞

ε (k), NR∞
ε (k) ∩ Λnk

[λ] ⊂ Λ0
nk

[λ], thus
|NR∞

ε (k) ∩ Λnk
[λ]| ≤ |Λ0

nk
[λ]|.

Since C(λ) ≥ ε, there exists δ and k0 which only depend on ε such that if
k > k0 then Λnk

[λ]\Λ0
nk

[λ] contains a round annuli of moduli kδ. This implies that
|Λ0

nk
[λ]| ≤ e−kδ′ |Λnk

[λ]| for some δ′ depending on δ. For each k, the domains Λnk
[λ],

λ ∈ NR∞
ε (k) are either equal or disjoint, and their union has Lebesgue measure

at most |Λ1|, so |NR∞
ε (k)| decays exponentially on k. It follows immediately that

NR∞
ε = ∩k≥1 ∪n≥k NR∞

ε (k) has Lebesgue measure zero, contradiction. �

B.3. Area estimate. Let U be a bounded open set of C and Z be a measurable
set of C. Let

cγ(Z|U) = sup
|h(Z ∩ U)|
|h(U)|

where h ranges over all quasiconformal homeomorphisms h : U → C with dilatation
bounded by γ and such that h(U) is bounded. The following two properties are
immediate:

(1) If V j ⊂ U are disjoint open subsets and Z ⊂ ∪V j then

cγ(Z|U) ≤ sup
j

cγ(Z|V j)cγ(∪V j |U).

(2) If A, B ⊂ U are disjoint open subsets and Z ⊂ A ∪ B then

cγ(Z|U) ≤ cγ(B|U) + (1 − cγ(B|U))cγ(Z|B).

Denote by V k
n [λ] the connected components of the preimages of

(Rn−1[λ]|U0
n[λ])−1(∪U j

n−1[λ]).

We reserve the index 0 for the component of 0, so that 0 ∈ V 0
n . We also reserve the

indexes −1 and 1 for the components of the preimages of Un[λ].
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Fix some γ > 1. Let

εn(λ) = cγ(∪|k|≤1V
k
n [λ]|Un[λ])(B.1)

αn(λ) = cγ(∪jU
j
n[λ]|Un[λ]).(B.2)

Lemma B.3. Let λ ∈ NR0. Then α2 < 1.

Proof. Notice that ∪U j
1 [λ] is not dense in U1[λ] (otherwise the filled-in Julia set of

pλ would have to contain U1[λ], but in our situation the filled-in Julia set of pλ

has empty interior). Thus, there exists a domain U0
1 [λ] ⊂ D[λ] ⊂ U1[λ] such that

U1[λ] \D[λ] is an annulus, and a non-empty open set E[λ] ⊂ D[λ] \∪U j
1 [λ]. By the

Koebe distortion Lemma, if h : U1[λ] → C is a γ-qc map with bounded image then
|h(E[λ])| > C|h(U0

1 [λ])| for some constant C > 0.
For d ∈ Ω, let Ed[λ] = (Rd

1[λ])−1(E[λ]). We conclude that, for any γ-qc map
h : U1[λ] → C with bounded image, we have |h(∪Ed[λ])| > C|h(∪W

d
1 [λ])|, so

cγ(∪W
d
1 [λ]|U1[λ]) < 1.

If |k| > 1 then R2
1[λ]|V k

2 [λ] is a diffeomorphism onto U1[λ] and we conclude that
cγ(∪U j

2 [λ]|V k
2 [λ]) = cγ(∪W

d
1 [λ]|U1[λ]).

Thus cγ(∪U j
2 [λ]|U2[λ]) ≤ ε2 + (1 − ε2)cγ(∪W

d
1 [λ]|U1[λ]) < 1. �

Lemma B.4. If λ ∈ NR0 then εn(λ) → 0 exponentially fast.

Proof. Notice that if Rn−1[λ](V k
n [λ]) = U j

n−1[λ] then

mod(Un[λ] \ V k
n [λ]) ≥ mod(Un−1[λ] \ U j

n−1[λ])/3,

mod(Un−1[λ] \ U j
n−1[λ]) ≥ mod(Un−2[λ] \ U0

n−2[λ])/2.

For λ ∈ NR0, mod(Un−2[λ]\U0
n−2[λ]) grows linearly in n, so infk mod(Un[λ]\V k

n [λ])
also grows linearly, and this implies exponential decay of supk cγ(V k

n [λ]|Un[λ]),
which implies exponential decay of εn. �

Lemma B.5. If λ ∈ NR0 then α(λ) = supn≥2 αn(λ) < 1.

Proof. Indeed, if |k| > 1 then R2
n[λ]|V k

n+1[λ] is a diffeomorphism onto Un[λ]. In
particular, cγ(∪U j

n+1[λ]|V k
n+1[λ]) ≤ cγ(∪U j

n[λ]|Un[λ]) = αn(λ). Thus

cγ(∪U j
n+1[λ]|Un+1[λ] \ ∪|k|≤1V

k
n+1[λ]) ≤ αn(λ),

which implies αn+1(λ) ≤ εn+1(λ) + (1 − εn+1(λ))αn(λ) and

1 − αn+1(λ) ≥ (1 − εn+1(λ))(1 − αn(λ)).

If λ ∈ NR0, εn(λ) decays exponentially (Lemma B.4) and α2(λ) < 1 (Lemma
B.3), so the result follows. �

If NR0 has positive measure, there exists α > 0, k > 0 and a positive measure
set X such that for λ ∈ X, α(λ) < α and for n > k the estimate CPhPa1 of
Lemma 3.1 is valid with a constant smaller than γ.

Let Y ⊃ X be an open set such that α|Y | < |X|. For every parameter λ ∈ X,
let µ(λ) be the smallest j > k such that λ ∈ Z[λ] = Λτj(λ)

j [λ] ⊂ Y (such a j

exists since ∩Λj [λ] = {λ}). The resulting collection of parameter domains Z[λ],
λ ∈ X are either disjoint or equal. To reach a contradiction, it is enough to show
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that α|Z[λ]| ≥ |X ∩ Z[λ]|, for in this case α|Y | ≥ |X|. But this is an immediate
consequence of CPhPa1, for

|X ∩ Z[λ]|
|Z[λ]| ≤ cγ(∪W

d
µ(λ)|U

τµ(λ)(λ)

µ(λ) ) ≤ cγ(∪U j
µ(λ)|Uµ(λ)) ≤ α,

since τµ(λ) �= 0 by hypothesis (notice that we even have |M∩Z[λ]|/|Z[λ]| ≤ α, that
is, a definite proportion of parameters in Z[λ] have escaping critical point).

Remark B.3. Our estimates can be easily pushed further to obtain more precise
results. For instance, it is clear that

αn+1 ≤ εn+1 + (1 − εn+1)εn

∞∑
k=0

αk
n ≤ εn+1 +

εn

1 − α
,

so αn → 0 (exponentially fast) for all parameters in NR0. This in turn can be used
to show that each parameter in NR0 is a density point of the complement of M23.
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