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ABSTRACT. We prove the phase-parameter relation (in the sense of [AM1]) for
analytic families of unimodal maps. This result enables very precise estimates
on the dynamics of typical unimodal maps. Using the phase-parameter re-
lation, we show that typical analytic unimodal maps admit a quasiquadratic
renormalization. This reduces the study of typical unimodal maps to the quasi-
quadratic case which had been studied in [AM2]. As another application, we
conclude that for typical analytic unimodal maps the exponent of the polyno-
mial recurrence of the critical orbit is exactly 1. We also show that those ideas
lead to a new proof of the Theorem of Shishikura on the Lebesgue measure of
non-renormalizable parameters in the boundary of the Mandelbrot set.
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1. INTRODUCTION

A unimodal map f is a smooth (at least C?) self map of an interval. Let us say
that f is regular if it has a quadratic critical point, is hyperbolic and its critical
point is not periodic or preperiodic (this definition is such that regular maps coincide
with structurally stable maps). The set of regular maps is (open and) dense in all
topologies by a result of Kozlowski [K2].

The most studied family of unimodal maps is the quadratic family py = X — 22,
—1/4 < XA < 2. In [AM1] it was shown that for a typical non-regular quadratic map
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Do the phase space of py, near 0 and the parameter space near A\ are related by
some metric rules called the Phase-Parameter relation (notice that it is crucial that
the phase and parameter of the quadratic family have the same dimension). The
proof of [AM1] was tied to the combinatorial theory of the Mandelbrot set, so it can
only work for quadratic maps (or, at most, full unfolded families of quadratic-like
maps).

Let us say that an analytic family of unimodal maps is non-trivial if regular
parameters are dense (in particular non-trivial analytic families are dense in any
topology). The first main result of this paper is the following:

Theorem A. Let f) be a one-parameter non-trivial analytic family of unimodal
maps. Then f, satisfies the Phase-Parameter relation at almost every parameter.

The Phase-Parameter relation has many remarkable consequences for the study
of the dynamical behavior of typical parameters. Our second main result is an
application of the Phase-Parameter relation:

Theorem B. Let f\ be a non-trivial analytic family of unimodal maps (any
number of parameters). Then almost every parameter is either regular or has a
renormalization which is topologically conjugate to a quadratic polynomial.

This result allows one to reduce the study of typical unimodal maps to the
special case of unimodal maps which are quasiquadratic (persistently topologically
conjugate to a quadratic polynomial).

1.1. Application: statistical properties of typical unimodal maps. Typi-
cal quasiquadratic maps had been previously studied in [AM2]. Their main result
is that the dynamics of typical quasiquadratic maps have an excellent statistical
description (in terms of physical measures, decay of correlations and stochastic sta-
bility), thus answering the Palis Conjecture (see [AM2] for details) in the unimodal
quasiquadratic case.

For regular maps, the good statistical description comes for free. For a non-
regular map f, it is related to essentially two properties regarding its critical point
c: the Collet-Eckmann condition! and subexponential recurrence?.

Thus, [AM2] achieves the good statistical description via a dichotomy: typical
quasiquadratic maps are either regular or Collet-Eckmann and subexponentially
recurrent. This is done in both the analytic case as in the smooth case (C*, k =
3,...,00). For typical non-regular analytic unimodal maps, it is proved even more,
that the critical point is polynomially recurrent?®.

Our Theorem B allows to immediately obtain the analytic case in our more
general setting (see Theorem 11.1 for a more precise statement):

Corollary C. Let fy be a non-trivial analytic family of unimodal maps (in any
finite number of parameters). Then almost every non-regular parameter is Collet-
Eckmann and its critical point is polynomially recurrent.

This allows us not only to generalize the smooth case of [AM2] besides quasi-
quadratic maps, but to reduce the differentiability requirements, including the C?
case in the description (see Theorem 11.3 for a more precise statement):

LA unimodal map f is Collet-Eckmann if |[Df"(f(c))| > CA™ for some constants C > 0 and
A> 1.

2That is, for every a > 0, |f™(c) — c| > e~" for n sufficiently big.

3That is, there exists v > 0 such that |f™(c) = ¢| > n~7 for every n sufficiently big.
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Corollary D. In generic smooth (C*, k = 2,...,00) families of unimodal maps
(any number of parameters), almost every parameter is regular, or has a renor-
malization which is conjugate to a quadratic map, Collet-Eckmann and its critical
point is subexponentially recurrent.

(Theorem C of [ALM] considered only families which are at least C3.)

Remark 1.1. The dichotomies in Corollaries C and D implies that the dynamics of
typical non-regular unimodal maps have the same excellent statistical description
of the quasiquadratic case studied by [AMZ2], see also Remark 11.1 for a list of
references. In particular, our Corollaries C and D give an answer to the Palis
Conjecture in the general unimodal case.

The Phase-Parameter relation allows to obtain very precise estimates on the
dynamics of typical parameters. For instance, the statistical analysis of [AM1]
allows one to compute the exact exponent of the polynomial recurrence?. (In [AM2],
it was impossible to estimate the exponent even in the quasiquadratic case.)

Corollary E. Let f\ be a non-trivial analytic family of unimodal maps (any
number of parameters). Then almost every parameter is either regular or has a
polynomially recurrent critical point with exponent 1.

We call the atention of the reader to [AM3] where much more refined statistical
applications of Theorem A are obtained (which are inacessible with the methods of
[AM2]).

1.2. Complex parameters. A very natural question raised by the description
of typical parameters in the real quadratic family is if the results generalize to
complex parameters. It is widely expected that the description should be actually
simpler: almost every complex parameter should be hyperbolic. However, only
partial results are available.

In this direction, let us remark that the argument of the proof of Theorem B can
be also applied in the complex setting, and leads to a new proof of the following
result of Shishikura (unpublished):

Theorem F. The set of non-hyperbolic, non-infinitely renormalizable complex
quadratic parameters has zero Lebesgue measure.

We discuss this application in Appendix B.

1.3. Outline of the proof of Theorem A. The proof of Theorem A can be
divided in four parts. The crucial step of this paper is step (2) below, which allows
to integrate the work of [AM1] (step (1)), and [ALM] (step (3)).

(1) We study the complex phase-parameter relation for certain families of complex
return type maps, which model complex extensions of the return maps R,, : I, — I,
to the principal nest of a unimodal map f. This analysis is based on the scheme of
[AM1] which is based on [L3]. The class of families which we will study are so called
full families, and we prove a complex analogous of the Phase-Parameter relation
for them.

(2) We show that through any given analytic unimodal map f (assumed finitely
renormalizable with a recurrent critical point), there exists an analytic family f)\

4The exponent of the polynomial recurrence of the critical point ¢ of a unimodal maps f is the
infimum infimum of all v > 0 such that for n sufficiently big |f"(c) — ¢/ > n~7.
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which gives rise to a full family of complex return type maps. This step is based
on the perturbation idea of [ALM] which is used in that paper to show existence of
a transverse direction to the topological class of f. Using the argument of [ALM]
we can also show that this analytic family is transverse to the topological class of
f. Using step (1), we conclude that the Phase-Parameter relation is valid at f for
this special family fj.

(3) We show that if the Phase-Parameter relation is valid for one transverse family
at f, then it is valid for all tranverse families at f. This step is heavily based on
the results of [ALM]: in order to compare the parameter space of both families,
one uses the local holonomy of the lamination associated to the partition of spaces
of unimodal maps in topological classes.

(4) Using a simple generalization of [ALM] we conclude that a non-trivial family
of unimodal maps is transverse to the topological class of almost every non-regular
parameter. This concludes the proof of Theorem A.

1.4. Structure of the paper. In §2 we give some basic background on quasi-
conformal maps and holomorphic motions. In §3 we recall the work of [AM1] to
deal with the so-called R-chains (sequences of families of return-type maps related
by renormalization). In §3.5 we state the Complex Phase-Parameter relation for
chains, which follows from [AM1]. In §4 we discuss the results of Lyubich in [L2]
and [L3], and consider extensions of [L3] to more general chains than quadratic
ones. In §5 we introduce the basic theory of unimodal maps. In §6 we construct a
special analytic family of unimodal maps which induce a full family of return type
maps, and in §7 we state and prove the Phase-Parameter relation for the special
family. In §8 we introduce the results of [ALM] on the lamination structure of
topological classes of unimodal maps and state some straightforward generaliza-
tions (some details are given in Appendix A). In §9 and §10 we prove Theorems A
and B, and in §11 we show the relation to the corollaries. In Appendix B we give
a proof of Theorem F.

Acknowledgements: Most of the results of this paper were announced in [Av2],
and formed my thesis together with [AM1], [AM2] and [ALM]. I would like to thank
Welington de Melo, Mikhail Lyubich and Carlos Gustavo Moreira who collaborated
with me in those works, and to Viviane Baladi and Jean-Christophe Yoccoz for
useful conversations.

2. PRELIMINARIES

2.1. General notation. Let  be the set of finite sequences (possibly empty) of
non-zero integers d = (j1,---, jm)-

A Jordan curve T is a subset of C homeomorphic to a circle. A Jordan disk is a
bounded open subset U of C such that 9U is a Jordan curve.

We let D, (w) = {z € C||z —w| <r}. Let D, =D,(0), and D =Dy. If r > 1,
let A, = {z € C|]1 < |z| <r}. An annulus A is a subset of C such that there exists
a conformal map from A to some A,. In this case, r is uniquely defined and we
denote the modulus of A as mod(A) = In(r).

2.2. Graphs and sections. Let us fix a complex Banach space E. If A C E, a
graph of a continuous map ¢ : A — C is the set of all (z,¢(z)) e E®C, z € A.
Let 0: E — E @ C be defined by 0(z) = (z,0).
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Let 1 :E®C — E, m3 : E® C — C be the coordinate projections. Given a set
X C E® C we denote its fibers X[z] = w2 (X N7 (2)).

A fiberwise map F : X — E @ C is a map such that m; o F = ;. We denote its
fibers F'[z] : X[2] = C such that F(z,w) = (2, F[z](w)).

Let B,(E) be the ball of radius r around 0.

2.3. Quasiconformal maps and quasisymmetric maps. Let U C C be a do-
main. A map h : U — C is K-quasiconformal (K-qc) if it is a homeomorphism
onto its image and for any annulus A C U, mod(A4)/K < mod(h(A)) < K mod(A4).
The minimum such K is called the dilatation Dil(h) of h.

A homeomorphism h : R — R is said to be y-quasisymmetric if it has a real-
symmetric extension A : C — C which is quasiconformal with dilatation bounded
by 7. If X C R, we will also say that h: X — R is v-gs if it has a -qs extension.

2.4. Holomorphic motions. Let A be a connected open set of a Banach space
E. A holomorphic motion h over A is a family of holomorphic maps defined on
A whose graphs (called leaves of h) do not intersect. The support of h is the set
X C C? which is the union of the leaves of h.

We have naturally associated maps h[z] : X — X|[z], z € A defined by h[z](z,y) =
w if (z,w) and (z,y) belong to the same leaf. The transition (or holonomy) maps
hlz,w] : X[z] = X[w], z,w € A, are defined by h[z,w](z) = hlw](z, z).

Given a holomorphic motion h over a domain A, a holomorphic motion A’ over
a domain A’ C A whose leaves are contained in leaves of h is called a restriction of
h. If h is a restriction of h’ we also say that h' is an extension of h.

Let K :[0,1) — R be defined by K (r) = (1+ p)/(1 — p) where 0 < p < 1 is such
that the hyperbolic distance in ) between 0 and p is r.

A-Lemma ([MSS], [BR]) Let h be a holomorphic motion over a hyperbolic
domain A C C and let z,w € A. Then h[z,w] extends to a quasiconformal map of
C with dilatation bounded by K(r), where r is the hyperbolic distance between z
and w in A.

In the general case (A not one-dimensional), the same estimate holds with the
Kobayashi distance instead of the hyberbolic distance. In particular, if h is a
holomorphic motion over B, (E), and if z,w € B, 3(IE) then h[z,w] = O(||z —w]).

If h = hy is a holomorphic motion of an open set, we define Dil(h) as the
supremum of the dilatations of the maps h[z,w].

A completion of a holomorphic motion means an extension of h to the whole
complex plane: X[z] = C for all z € A. The problem of existence of completions is
considerably different in one-dimension or higher:

Extension Lemma ([Sl]) Any holomorphic motion over a simply connected
domain A C C can be completed.

Canonical Extension Lemma ([BR]) Let h be a holomorphic motion over
B,.(E). Then the restriction of h to B, 3(IE) can be completed in a canonical way.

2.4.1. Symmetry. Let us assume that E is the complexification of a real-symmetric
space E® | that is, there is a anti-linear isometric involution conj fixing EX. Let us
use conj to denote also the map (z,w) — (conjz,w) in E & C.
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A set X C E/E @ C is called real-symmetric if conj(X) = X. Let A C E be a
real-symmetric domain. A holomorphic motion h over A is called real-symmetric if
the image of any leaf by conj is also a leaf.

The systems we are interested on are real, so they naturally possess symmetry.
In many cases, we will consider a real-symmetric holomorphic motion associated
to the system, which will need to be completed using the Extension Lemma (in
one-dimension) or the Canonical extension lemma (in higher dimensions).

Since the Canonical Extension Lemma is canonical, it can be used to produce
real-symmetric holomorphic motions out of real-symmetric holomorphic motions.
On the other hand, the Extension Lemma adds ambiguity on the procedure, since
the extension is not unique. In particular, this could lead to loss of symmetry. In
order to avoid this problem, we will choose a little bit more carefully our extensions.
Indeed, in [AM1] it is remarked that the proof of the Extension Lemma actually
shows:

Real Extension Lemma. Any real-symmetric holomorphic motion can be
completed to a real-symmetric holomorphic motion.

So we can make the following:

Symmetry assumption. Extensions of real-symmetric motions will always be
taken real-symmetric.

2.4.2. Notation warning. We will use the following conventions. Instead of talking
about the sets X|[z], fixing some z € A, we will say that h is the motion of X over
A, where X is to be thought of as a set which depends on the point z € A. In other
words, we usually drop the brackets from the notation.

We will also use the following notation for restrictions of holomorphic motions:
if Y C X, we denote ) C X as the union of leaves through Y.

2.5. Codimension-one laminations. Let F' be a Banach space. A codimension-
one holomorphic lamination £ on an open subset W C F' is a family of disjoint
codimension-one Banach submanifolds of F', called the leaves of the lamination such
that for any point p € W, there exists a holomorphic local chart ® : W — V& C
where V is a neighborhood in some complex Banach space E, such that for any leaf
L and any connected component Ly of L NV, the image ®(Lg) is a graph of a
holomorphic function V — C.

The neighborhood W in the above definition is called a flow box, and the con-
nected components Lg are called local leaves in this flow box.

It is clear that the local theory of codimension-one laminations is the theory of
holomorphic motions. For instance, the A-Lemma imply that holonomy maps of
codimension-one laminations have quasiconformal extensions, and gives bounds on
the dilatation of those extensions.

3. COMPLEX DYNAMICS

In this section, we will deal exclusively with one-dimensional holomorphic mo-
tions over some Jordan domain A C C.
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3.1. R-maps and L-maps. Let U be a Jordan disk and U7, j € Z be a family
of Jordan disks with disjoint closures such that U7 C U. A holomorphic map
R : UU’ — U surjective in each component is called a R-map (return type map) if
for j # 0, R|U7 extends to a homeomorphism onto U and R|U° extends to a double
covering map onto U ramified at 0.

Given a R-map R we induce an L-map (landing type map) as follows. For d € Q,
d = (j1,.,Jm), we define U? = {z € U|R¥"1(2) € U’*,;1 < k < m} and we let
R® = R™U4L. Let W¢ = (R%)1(U°). The L-map associated to R is defined as
L(R) :uW¢ - U° L(R)|WZ = RZ

3.1.1. Renormalization. Given a R-map R such that R(0) € UW¢< we can define the
(generalized in the sense of Lyubich) renormalization N(R) by N(R) = L(R) o R
where defined in U°: its domain is the R-puzzle (V, V) such that V = U° and the
V7 are connected components of (R|U°) L(UW4).

3.2. Tubes and tube maps. A proper motion of a set X over A is a holomorphic
motion of X over A such that the map h[z] : A x X[z] = & defined by h[z](w,z) =
(w, h[z](w,z)) has an extension to A x X[z] which is a homeomorphism.

An equipped tube hr is a holomorphic motion of a Jordan curve T'. Its support
is called a tube. We say that an equipped tube is proper if it is a proper motion. Its
support is called a proper tube. The filling of a tube T is the set Y C A x C such
that Ulz] is the bounded component of C\ T'[z], z € A.

A special motion is a holomorphic motion h = hxyr such that X is contained
in the filling & of T, h|T is an equipped proper tube and the closure of any leaf
through X does not intersect the closure of 7.

If 7 is a tube over A, and U is its filling, a fiberwise map F : i — C? is called
a tube map if it admits a continuous extension to .

3.2.1. Tube pullback. Let F :V — C? be a tube map such that F(9V) = U, where
U is the filling of a tube over A and let h be a holomorphic motion supported on
Unrit(A).

Let I be a (parameter) open set such that I C A and W be a (phase) open
set which moves holomorphically by h over A and such that W C U. Assume
that W contains critical values of F|(V N7y (T)), that is, if A € T, z € V[\] and
DF[X(z) = 0 then F[\(z) € W[A].

Let us consider a leaf of h through z € U \ W, and let us denote by £(z) its
preimage by F intersected with 7 (I'). Each connected component of £(z) is a
graph over ', moreover, £(z) C U. So the set of connected components of £(z),
z € U\ W is a holomorphic motion over T.

We define a new holomorphic motion over I, called the lift of h by (F,T', W), as
an extension to the closure of V' of the holomorphic motion whose leaves are the
connected components of £(z), z € U \ W (the lift is not uniquely defined). It is
clear that this holomorphic motion is a special motion of V' over I' and its dilatation
over F~1(U\ W) is bounded by K (r) where r is the hyperbolic diameter of I in A.

3.2.2. Diagonal and phase-parameter holonomy maps. Let h be an equipped proper
tube supported on 7. A diagonal of T is a holomorphic section ¥ : A — C? (so
that m; o ¥ = 71 ), admitting a continuous extension to A, and such that ¥(A) is
contained on the filling of 7 and for A € A, h[\] o ¥|0A has degree one onto T[A].



8 ARTUR AVILA

Let h = hxyur be a special motion and let ® be a diagonal of h|T. It is a
consequence of the Argument Principle (see [L3]) that the leaves of h|X intersect
®(A) in a unique point (with multiplicity one). From this we can define a map
X[A] : X[A] = A such that x[A](z) = w if (\, z) and ®(w) belong to the same leaf of
h. It is clear that each x[A] is a homeomorphism onto its image, moreover, if U C X
is open, x[A]|U[A] is locally quasiconformal, and if Dil(h|U) < oo then x[A]|U[A] is
globally quasiconformal with dilatation bounded by Dil(h|U).

We will say that x is the holonomy family associated to the pair (h, ®).

3.3. Families of R-maps. A R-family is a pair (R, h), where R is a holomorphic
map R : UU? — U such that the fibers R[\] of R are R-maps, for every j, R|U7 is
a tube map, and h is a holomorphic motion h = hg such that h|(OU U U;0U;) is
special. If additionally R o 0 is a diagonal to h, we say that the R is full.

3.3.1. From R-families to L-families. Given a R-family R with motion h = h we
induce a family of L-maps as follows. If d € |omega, d = (ji, .., jm), We let UL =
{(\,z) € UIR *(2) € U*[N]} and define RE = R™|UL. Let W = (RL)~HUO).
We define L(R) : UWL — U° by L(R)|[WZ = R4, Notice that the L-maps which
are associated with the fibers of R coincide with the fibers of L(R).

We define a holomorphic motion L(h) in the following way. The leaf through
z € QU is the leaf of h through z. If there is a smallest U? such that z € U%, we
let the leaf through 2z be the preimage by R% of the leaf through R%(z). We finally
extend it to U using the Extension Lemma. The L-family associated to (R, h) is a
pair (L(R), L(h)).

3.3.2. Parameter partition. Let (R,h) be a full R-family. Since L(h)|(U UU;U7) is
special, we can consider the holonomy family of the pair (L(h)|(U UU,;U7), R(0)),
which we denote by xy. We use y to partition A: let A4 = x(U%) and let T'¢ = x(W2).

3.3.3. Family renormalization. Let (R, h) be a full R-family. The d renormalization
of (R, h) is the R-family (N4(R), N4(h)) over I'¢ defined as follows. We take N<(h)
as the lift of L(h) by (R|U°, T4, W) where defined.

It is clear that (N4(R), N(h)) is full, and its fibers are renormalizations of the
fibers of (R, h). Moreover, N¢(h) is a special motion.

3.3.4. Truncation and gape renormalization. Let (R,h) be a full R-family and let
d € Q. We define the d truncation of L(R) as LLR) = L(R) outside /2 and
LYR) = R%in UL. Let GLR) = LLR) o R|(Uy N7y * (A2L)) where defined.

If d is empty, let G4(h) = L(h). Otherwise, let G4(h) be a holomorphic motion
of U over A%, which coincides with L(h) on U \ U° and coincides with the lift of
L(h) by (RIU°, AL, U<) on Uy.

The d gape renormalization of (R, h) is the pair (G4(R),G%(h)).

3.4. Chains. Assume now that we are given a full R-family, which we will denote
R1 (over some domain A;, with motion h;) together with a parameter A € R.
If A belongs to some renormalization domain (that is, there exists d; such that
A€ A%l), let Ry = Nli(Rl) (over Az). Assume we can continue this process
constructing R;+1 = N?", n > 1. Then the sequence R; (over A;) will be called the
R-chain over A\. The holomorphic motion associated to R; is denoted h; (so that
hit1 = N% (h;)),
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To simplify the notation for the gape renormalization, we let G% (R;) = G(R;)
and G4 (h;) = G(h;). Let 7; be such that R;[\o](0) € U/".

3.4.1. Holonomy maps. Notice that for ¢ > 1, the holomorphic motion h; is special
(since it is obtained by renormalization and so coincides with N%-1(h;_;)). In
particular, we can consider the holonomy family associated to (h;, R; o 0), which
we denote by XV : U; — A;.

For ¢ > 1, L(h;) is also special, let x; : U; — A; be the holonomy family
associated to (L(h;),R; 0 0).

For i > 2, G(hi_1) is also special, let ¥; : Ui—_; — A; be the holonomy family of
the pair (G(hi_l),G(Ri_l) o 0)

3.4.2. Real chains. A fiberwise map F : X — C? is real-symmetric if X' is real-
symmetric and F oconj = conjoF. We will say that a chain {R;} over a parameter
A € R is real-symmetric if each R; and each underlying holomorphic motion h; is
real-symmetric.

Because of the Symmetry assumption, a chain {R;} over a parameter A € R is
real-symmetric provided the first step data Ry and h; is real-symmetric. In this
case, all objects related to the chain are real-symmetric, including the holonomy
families x?, x; and ;.

3.5. Complex Phase-Parameter relation.

Definition 3.1. Let us say that a R-chain R; over )\ satisfies the Complex Phase-

Parameter relation if for every « > 1, there exists igp such that for ¢ > ¢y the

following holds:

CPhPal: x;[Ao]|U;* admits an extension to a y-qc map of C,

CPhPa2: y;[\o]|U; admits an extension to a y-qc map of C,

CPhPhl: For A € AT, L(h;)[Xo, A]|U; admits an extension to a y-qc map of C,

CPhPh2: For A € A;, G(hi—1)[M\o, A]|U; admits an extension to a y-qc map of C.
And, moreover, if R; is real-symmetric, all the above extensions can be taken

real-symmetric.

The following result is a direct consequence of the arguments of §5 of [AM1], see
Remark 5.3 of that paper.

Theorem 3.1. Let R; be a R-chain over Ay, and assume that mod(A;\ A1) — o0

and mod(U;[Xo] \ U2[No]) — oo. Then R; satisfies the complex phase-parameter
relation.

4. PUZZLE AND PARAPUZZLE GEOMETRY

4.1. Puzzle estimates. The following result is contained on (the proof of) Theo-
rem IT of [L2]:

Theorem 4.1. For every C > 0, there exists C' > 0 with the following property.
Let R; be a sequence of R-maps such that R;y; = N(R;) and let ni, — 1 be the

sequence of non-central levels. If mod(Uy \ UY) > C' then mod(U,,, \U2)>C.

(In Lyubich’s notation, R-maps are called generalized quadratic maps.)
The following result is Theorem IIT of [L2]:

Define non-central
returns and levels
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Theorem 4.2. For every C' > 0, there exists C'"' > 0 with the following property.
Let R; be a sequence of R-maps such that_RH_l = N(R;) and let ng, — 1 be the
sequence of non-central levels. If mod(Uy \ UY) > C' then mod(U,, \ UY,) > C"k.

4.2. Parapuzzle estimates.

4.2.1. The quadratic family. Let p.(z) = 2% + ¢ be the quadratic family. The
following result is contained in Lemma 3.6 of [L3]:

Theorem 4.3. Let us fix a non-renormalizable quadratic polynomial p., with a
recurrent critical point and no neutral periodic orbits. Then there exists a full R-
family R1 over some ¢y € Ay such that if ¢ € Ay then R[c] : UU] [¢] = Uilc] is the
first return map under iteration by p..

The following is Theorem A of [L3]:

Theorem 4.4. In the setting of Theorem 4.3, let R; be the R-chain over ¢y with
first step Ra. If ng—1 denotes the k-th non-central return, then mod(Ay,, \Ap,+1) >
Tk, for some constant T > 0.

Remark 4.1. In Lyubich’s notation he lets A* = A,,; and IT* = A) . He states that

both mod(A* \ A##T) and mod(A? \ TI grow linearly. His statement implies ours
after one notices that if n; + 1 = n;;; then At = A, , otherwise II' = A,,, 4.

Those two results are proved in a slightly more general setting then we state
here: they are valid for so-called full unfolded families of quadratic-like maps. This
version allows to state results also for finitely renormalizable quadratic polynomials
(via renormalization).

4.2.2. General case. The following more general theorem can be proved using the
ideas of Theorem A of [L3] but it is a little bit tedious to check the details (it is
necessary to get deep into the construction of [L2]).

Theorem 4.5. For every K > 1, T > 0, there exists T' > 0 with the following
properties. Let (R;, h;) be a R-chain over Ao and let ny — 1 be the sequence of
non-central levels. If Dil(hi|(Uy \ UY) < K and mod(Ui[A\] \ UP[A]) > T then
mod (A, \ Ap,41) > T'k.

Since we do not need the full strength of the previous theorem, we will state and
prove a weaker estimate using an inductive argument based on the obvious estimate
below:

Lemma 4.6. There exists a constant Co with the following property. Let h be a
holomorphic motion over A and let A' C A be such that v = mod(A \ A’) > Cp.
Then the dilatation of h over A' is bounded by 2.

Theorem 4.7. For every K > 1, there exists constants T' > 0, T" > 0 with the
following properties. Let (R;, h;) be a R-chain over Ao and let ny—1 be the sequence
of non-central levels. If Dil(hy|(Uy \ UY) < K and mod(Uy[Ao] \ U2[Ao]) > T" then
mod(Ap, \ Ape+1) > T"k.

Proof. Let v; = mod(A; \ Ait1), s = mod(Us[Ao] \ Usir1[ro]), ki = Dil(h;|Us[Ao] \
Uitr1[Mo]). Notice that if v; > Cp then k;y; < 2, where Cj is the constant of
Lemma 4.6. Moreover, for ¢ > 1, and in particular for i = ng, we have v; =

mod(x7 (Ui[Xo] \ Uir1[Xo])) > pi/ki-
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Let T = 400(2 + Cp)(2 + K) and let 7' > T be so big that if uy > 7" then
tn, > T, k> 1. Let also T" be such that if gy > 7" then pp, > kT"(2 + K).

Let us assume that for some m, we have p,, > T and k,, < (2+ K), and let
m’ > m be the next non-central return.

For A € Apyy1, we have R™ —m+1(0) W for some d. Let Y be the com-
ponent of R, (0) of (R:’n""_m|Umr)_1(U,%) and Y’ be the component of R,,(0) of
(R =™ U) ™ (W)

Let Hy, = L(hy,) outside of U and let the leaves of H,,|Us be the preimages
by RZ of the leaves of hm. If m = m/, let H = Hy,. Otherwise, notice that if
A € A1, then R =™|UC, [\ is a 2™ ~™ branched covering map over U, [\,
and for A € Ay,

R =™ U [N\ U2, [N]

is unbranched. Let H be the lift of H,, by (R ~™U%, _,,U%,, A,.s). So in both
cases, H is a holomorphic motion over A,,.

With this definition, T and Y’ (which are apriori defined over A,, 1) move
holomorphically with H (over A,,).

Let x be the holonomy family of the pair (R, o 0, H|0U,, U Y). It is clear
that Dil(x|Y) is bounded by ky,. In particular, we can estimate v,,» > mod(Y[Ao]\
Y'[Nol)/km = pm/km > m/(2+ K) > Co. With m =1, we have by < K <2+ K
by hypothesis and m' =ny — 1,80 vp,—1 > 1 /(2+ K) > T/(2+ K) > Cp and
kn, <2 <24 K. With m = ng, we have that m' = ngy1 — 1 and vy, 1 >
Pny/(2+K)>T/(24+ K) > Cp and k,,,, <2 <2+ K, provided k,, <2+ K. By
induction, we have k,, < 2+ K for every k, 80 vn, > n,/(2+ K) > T"k. O

This simple inductive argument does not seem to work easily to get the full
Theorem 4.5.

5. UNIMODAL MAPS

We refer to the book of de Melo & van Strien [MS] for the general background
in one-dimensional dynamics.

We will say that a smooth (at least C?) map f : I — I of the interval I =[—1,1]
is unimodal if f(—1) = —1, f(x) = f(—z) and 0 is the only critical point of f and
is non-degenerate, so that D?f(0) # 0.

Remark 5.1. The introduction of normalization and symmetry assumptions are
in order to avoid cumbersome notations: all results and proofs generalize to the
non-symmetric case. See also Appendix C of [ALM].

Remark 5.2. The assumption that the critical point is non-degenerate is made
just for convenience: typical unimodal maps certainly have non-degenerate critical
point. If one is not willing to make this assumption, one should add the non-
degeneracy condition to the Kupka-Smale definition below. In this case it would
still hold that in non-trivial analytic families parameters with a degenerate critical
point have zero Lebesgue measure (and are contained in a countable number of
analytic submanifolds with codimension at least 1), see Lemma 10.6.

The theory of unimodal maps with fixed non-quadratic criticality is considerably
different and less complete than the typical case, and the proofs of this work do
not apply
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Let U*, £ > 2 be the space of C* unimodal maps. We endow U¥ with the C*
topology.
Basic examples of unimodal maps are given by quadratic maps

(5.1) ¢:I—=1I, q¢(z)=17-1-712?%
where 7 € [1/2,2] is a real parameter.

A map f € U? is said to be Kupka-Smale if all periodic orbits are hyperbolic. It
is said to be hyperbolic if it is Kupka-Smale and the critical point is attracted to a
periodic attractor. It is said to be regular if it is hyperbolic and its critical point
is not periodic or preperiodic. It is well known that regular maps are structurally
stable.

A k-parameter C" (or analytic) family of unimodal maps is a C" (or analytic)
map F : A x I — I such that f, € U?, where f\(z) = F(\,x) where A € R is a
bounded open connected domain with smooth (C°°) boundary. We denote UF"(A)
the space of C" families of unimodal maps, endowed with the C" topology. Notice
that UF"(A) is a separable Baire space.

We will not introduce a topology in the space of analytic families of unimodal
maps.

5.1. Combinatorics and hyperbolicity. Let f € U?. A symmetric interval
T C I is said to be nice if the iterates of 9T never return to int 7. A nice interval
T # I is said to be a restrictive (or periodic) interval of period m for f if f™(T) C T
and m is minimal with this property. In this case, the map Ao ffo A=l : ] = T
is again unimodal for some affine map A : T' — [I: this map is usually called a
renormalization of f if m > 1 or a unimodal restriction if m = 1.

If T C I is a nice interval, the domain of the first return map R7 to T' consists
of a (at most) countable union of intervals which we denote T7. We reserve the
index 0 for the component of 0: 0 € T°, if 0 returns to T. From the nice condition,
Rr|T7 is a diffeomorphism if 0 ¢ 77, and is an even map if 0 € T7. We call T° the
central domain of Ry. The return Ry is said to be central if Rr(0) € T°.

The following well known result shows that nice intervals allow to study arbi-
trarily small neighborhoods of 0.

Lemma 5.1. Let f € U? be non-reqular Kupka-Smale and assume the critical orbit
is infinite. Then for every € > 0, there exists a nice interval [—p,p] C T with p
preperiodic.

Under the Kupka-Smale condition, the dynamics outside a nice interval is hy-
perbolic, and in particular persistent:

Lemma 5.2. Let f € U? and let T C I be a nice interval. If all periodic orbits
contained if I\ intT are hyperbolic (in particular if f is Kupka-Smale), then

(1) The set of points X C I which never enter int T splits in two forward invari-
ant sets: an open set U attracted by a finite number of periodic orbits and a closed
set K such that f|K is uniformly expanding: |Df"(x)| > CA", for x € K and for
some constants C >0, A > 1. Moreover, preperiodic points are dense in K.

(2) There exists a neighborhood V C U? of f and a continuous family of home-
omorphisms Hlg] : T — I, g € V such that go H[g]|[I\ T = hlg]o f, and h[f] = id.

The following is an easy consequence of Lemma 5.2.



PHASE-PARAMETER RELATION 13

Lemma 5.3. Let fy, A € (—¢,¢€) be a C? family of unimodal maps, and let T be
a nice interval with preperiodic boundary for f = f\,. Assume that there exists an
interval 0 € J and a family T[\] of intervals with preperiodic boundary, such that
T[0] =T and for X\ € J, all non-hyperbolic periodic orbits of fx intersect int T'[)\].
Then there ezists a continuous family of homeomorphisms H[A| : [ — I, A € J
such that HIN(T) =T[\ and fxo HN|(I\T) = H[\o f and H[0] =id.

5.1.1. Principal nest. We say that f is infinitely renormalizable if there exists ar-
bitrarily small restrictive intervals ' C I. Otherwise we say that f is finitely
renormalizable.

Let F C U? be the class of Kupka-Smale finitely renormalizable maps whose
critical point is recurrent, but not periodic. If f € F, the first return map f™ :
T — T to its smallest restrictive interval has a orientation reversing fixed point
which we call p. Let I = [—p,p]. Define a nested sequence of intervals I; as
follows. Assuming I; defined, let R; be the first return map to I; and let I;; be
the central domain I? of R;.

The sequence I; is called the principal nest of f. A level of the principal nest is
called central if R; is a central return.

5.2. Negative Schwarzian derivative. The Schwarzian derivative of a map C?
map f : I — I is defined by

D3 3 (Df\?
s1=57 -3 (57)

in the complement of the critical points of f. If Sf and Sg are simoultaneously
positive (or negative) then S(g o f) is positive (or negative).

If f is a unimodal map the condition of negative Schwarzian derivative is very use-
ful and can be exploited in several ways. Quadratic maps have negative Schwarzian
derivative. Moreover, one can often reduce to this situation as is shown by the fol-
lowing well known estimate:

Lemma 5.4. If f € U? is infinitely renormalizable, then if T C I is a small enough
periodic nice interval, the first return map to T has negative Schwarzian derivative.

Recently, Kozlowski showed that the assumption of negative Schwarzian can be
often removed. The next result follows from Lemma 5.2 and [GSS] (which is based
on the work of Kozlowski [K1]).

Lemma 5.5. Let f € FNU. There exists i > 0, an analytic diffeomorphism
s: I — I and a neighborhood V C U of f, such that there ewists a continuation
Lilgl, g €V of I; (H[g|(I;) = L;[g] in the notation of Lemma 5.2) such that the first
return map to s(I;[g]) by sogos~™!: I — I has negative Schwarzian derivative.

5.3. Decay of geometry. The following result is due to Lyubich in the case of
negative Schwarzian derivative and holds in general due to the work of Kozlowski:

Lemma 5.6. Let f € F be at least C°, and let n, — 1 denote the sequence of
non-central levels in the principal nest of f. Then |Ly,+1|/|In.| < CA* for some
constants C' > 0, A < 1.
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5.4. Quasiquadratic maps. A map f € U? is quasiquadratic if any nearby map
g € 12 is topologically conjugate to some quadratic map. By the theory of Milnor-
Thurston and Guckenheimer [MS], a map f € U? with negative Schwarzian deriva-
tive and D f(—1) > 1 is quasiquadratic, so the quadratic maps are quasiquadratic.
The following result gives conditions for a unimodal map to be quasiquadratic:

Theorem 5.7 (see Lemma 2.13 of [ALM]). Let f € U? be a Kupka-Smale unimodal
map which is topologically conjugate to a quadratic map. Then [ is quasiquadratic.

Remark 5.3. The previous result is the reason that the quasiquadratic condition
considers only C® maps and the C? topology (otherwise it would not be possible
to guarantee that even quadratic maps are quasiquadratic).

Theorem 5.8 (see Remark 2.4 of [ALM]). Let f € U*. If f is not conjugate to a
quadratic polynomial then there ezists a (not necessarily hyperbolic) periodic orbit
which attracts an open set. In particular, if all periodic orbits of f are repelling
then f is conjugate to a quadratic polynomial.

6. CONSTRUCTION OF THE SPECIAL FAMILY

6.1. Puzzle maps. Let f € U, be a finitely renormalizable unimodal map with
a recurrent critical point. Let us consider some nice interval A° and let {47} be
the connected components of the domain of the first landing map from I to A°.
We call the family {47} the real puzzle for f associated to A°. The basic object
used in [ALM] to analyze the dynamics of unimodal maps can be viewed as a
complexification of such real puzzles, which are called simply a puzzle.

The definition of puzzle in [ALM] is too general and technical for our purposes.
In this paper, we will simply describe how to construct a puzzle for f (or rather a
geometric puzzle, in the language of [ALM]). Instead of giving the precise definitions
of a puzzle, we will just obtain the properties that are needed for our results.

Let us fix some advanced level n of the principal nest of f and assume that
|In|/|In_1] is very small. Let us fix the following notation: let A° = I, and let
{A7} be the real puzzle associated to A°. We let A be such that f(0) € A.

Given 0 < 6 < 7/2, and A C R, let Dy(A) be the intersection of two round
disks Dy and Dy where D1 NR = A, 0D, intersects R making an angle €, and D»
is the image of Dy by symmetry about R. The complexification of the real puzzle
{ A7} should be imagined as {Dy(A47)} for a suitable value of . Of course, since the
system is non-linear, the definition can not be so simple. Neverthless, the condition
[Tn|/|In=1] small allows to bound the nonlinearity of the first landing map to I,
and we can obtain:

Lemma 6.1. Let 0 < ¢ < ¥ < v < 7w/2 be fized. For arbitrarily big k > 0, if
|In|/|In—1| is small enough, there exists a sequence VI of open Jordan disks such
that Dg(A7) C VI C Dy(A7) and VO = D44 y)/2(A°) with the following properties:
(1) If j # 0 and f(A)) C A* then f: VI — VF is a diffeomorfism;
(2) If fF(A%) N AT # 0, then mod f(V°)\ D, (A7) > k.

6.2. A special Banach space of perturbations. Let A! = [I,r] with [ < r, and
let N = [—[,1]. Domains V7 which do not intersect A* or N will play no role in the
construction to follow. Let V be the union of all V7 such that 47 ¢ N U A'.

One of the main problems of [ALM] is to obtain a direction v (or infinitesimal
perturbation) which is transverse to the topological class of f. The idea is to
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consider a perturbation which does not affect much f in N, but causes a bump
near the critical value, localized in A'. There are several difficulties related to this
scheme, the first of which is that such a bump can only be reasonably controlled up
to its first derivative. Another difficulty is that we want an analytic perturbation, so
it cannot vanish in NV and be a bump at A'. The solution involves the consideration
of a certain Banach spaces of smooth (C!) functions in N U A! which are analytic
in int N Uint A', which allows to construct perturbations that, while badly behaved
in the real line (can be only controled up to the first derivative), are well behaved
with respect to the complex puzzle structure.

While the proof in [ALM] involves two steps, construction of a transverse smooth
vector field and approximation of this vector field by polynomials, which need
two different Banach spaces, we will realize the same construction with just one
Banach space. This is important to estimate the assymmetric roles of perturbations
concentrated in N and A'. The proof of our main perturbation estimate (Lemma
6.4) is a mixture of two estimates of [ALM], Lemmas 7.4 (for perturbations localized
in A') and 7.9 (for pertubations supported on N U A!) of that paper.

Let Z = D,(A")UD,(N), and let T be the space of all vector fields v holomorphic
on Z and whose derivative admits a continuous extension to Z, which vanish up to
the first derivative in 9A' and its forward iterates (this is a finite set) and such that
v|D+(N) is a symmetric (odd) vector field. We use the norm ||v[| = supy z € Z}|Dv|.

Let Y =71, &Yy, where v € Ty if v]|D,(N) =0 and v € T if v|D,(A') =0.

The reader should think of vector fields v € T as acting as perturbations on f by
v — fo(id+v). Let f, = fo(id +v). One of the main advantages of the definition of
T is that, for small v € T, “the puzzle persists”, that is, there exists a continuation
V'V of the set V inside Z, whose connected components behave, under iteration by
fv, in the same way that the connected components of V' behaved under iteration
by f.

To make this more precise, let us say that v € T is admissible if there exists a
holomorphic motion h? over D, defined by the family of transition maps h[0, A\] =
hy :C— C, X € D such that:

(1) hYIC\ Z = id, hY|OF(V°) = id;

(2) f)\v OhK|V\V0 = h)\Of, f)\v OhK|aV0 = f
The holomorphic motion AY will be said to be compatible with v.
The following is a restatement of Lemma 7.9 of [ALM].

Lemma 6.2. There exists € > 0 such that if v belongs to {v € YT|||v|| < €} then v
is admissible.

We also need the following simple estimate (see the proof of Lemma 7.4 of
[ALM]):
Lemma 6.3. Let 0 < 0 < v < w/2. There exists € > 0 such that if A is an
interval and v is holomorphic on D,(A) whose derivative extends continuously to
D, (A) satisfying |Dv| < € then id+v : D,(A) — C is a diffeomorphism and
Dy(A) C (id +v)(D4(A4)).

Now we can prove:

Lemma 6.4. There exists constants €1 > 0, €2 > 0, where €1 depends only on ¢
and 7y such that if v belongs to {v € YT1|||v]| < €1} x {v € Ts|||v|| < €2} then v is
admissible.
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Proof. Let ny be such that f™ (V') = V0 and let § = (¢ + ) /2.

Let v € {v € T|||v|| < €}. By Lemma 6.2, there exists a holomorphic motion
hY compatible with v. We claim that if 0 < e2 < € and ||v|| < €2 then for A € D,
R (V') C Dy(AY).

Indeed, if this is not the case, there would be a sequence z, € ODg(A'), vy € T,
vr — 0, such that f* ! (z;) € f(V°). It clearly follows that z; — 0A' = {I,r}, let
us say that zp — [. It is clear that

A (zg) = f () + DER T Dz + o(z) = F7 1) + DF )2k + olzk)-

In particular, the sequence f;'* ™' (z;) converges to f™ *1(l) along a direction which
makes angle 6 with the real line (since Df™ (1) € R\ {0}), so fi ' (z) ¢ f(V°)
for k big, which is a contradiction.

Let €; be as in Lemma 6.3. If v = vy + v9, with v; € T; and |Jv;]] < €,
let h{ : C\ (D,(A") \ V') be given by h%|(C\ D,(A')) = h}* and h§|V' =
((id 4+, )| Do (AY)) ! o 2. Any extension of hY to C is clearly compatible with
. a

We will also need the following easy lemma:

Lemma 6.5. If |I,|/|In—1]| is sufficiently small, then for w in {w € Yi|||lw|] <
e1} x {w € To||lw]| < €2} and X € D, then (frwlhy (V) (D4 (V1)) C Dyja0((0),
where p = 0 as |In|/|In-1] — 0.

Proof. Let U = hx(V°) and U° = (fau|W) 1(D,(A!)). Notice that fi,(0) =
f(0) € D,(V'). Thus, fr,|(U \ U°) is a double covering of f(Up) \ D.(AL). By
Lemma 6.1, if |In|/|In—1] is small then mod(f(Uo)\ D~ (A!)) is large, and so mod(U'\
U9) is also big. Since the derivative of id +w is smaller than max{1+e€;, 1+€5}, we
see that the diameter of U is at most 2|A°|, so the diameter of U° can be bounded

by p|A°|/2 with small p as required. O

6.3. Analytic vector fields. We will be specially concerned with special types
of w which generate analytic families of unimodal maps. The following lemma is
obvious:

Lemma 6.6. If w has an analytic extension w : I — I of C' of norm less than
one, such that w(—1) = w(l) = 0, then faw, A € (—1,1) is an analytic family of
unimodal maps.

The following is a consequence of the Mergelyan Polynomial Approximation
theorem:

Lemma 6.7. Let w € Y. Then there exists a sequence w,, € Y such that the C"
norm of wy|I is less than or equal to ||wl||, wy,(—1) = wy(1) =0 and wy, = w in
Y. If w is real-symmetric then we can also choose w real-symmetric.

The proof of the following lemma is obvious using Lemma 5.2.

Lemma 6.8. If w belongs to {w € T1|||w|| < &1} x {w € Ts|l|lw|| < €2} and has
an analytic extension to I with w(—1) = w(1) = 0, the following holds. For e > 0
small and X\ € (—¢,¢€),
(1) the boundary points of In are preperiodic points for frw,
(2) there exists homeomorphsims H[)], depending continuously on A such that
faw o HAI\ In = H[M] o f,
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(3) HN(In) = In, |

(4) the connected components of ((id +Aw)|hY (V?))~1(UVY) intersect the real
line at the connected components of the domain of the first return map to
I, under iteration by fay.

6.4. A special perturbation. Let us consider an affine map @ : A' — I, and let
. . 2 .
Tn(2) = (1 —2H)(1 —e ") + —(e*”(lﬂ) +el=2) g2 _ 1)
n
and let v, € Y1 be such that v,|D,(A') = Q*v,€1/8. Notice that ||v,]| < ;.

6.4.1. Infinitesimal transversality. The importance of the sequence v, in [ALM]
is that it is eventually transverse to the topologically class of f in a certain sense
which we will precise later.

A quasiconformal vector field o of C is a continuous vector field with locally
integrable distributional derivatives da and d« in L and da € L.

Let us say that w is formally transverse at f if there is no quasiconformal vector
field a of C, such that w(z) = f*a — «, z € orbs(0).

The following summarizes Lemmas 7.6, 7.7 and 7.8 of [ALM].

Lemma 6.9. Let v, be defined as above. If |I,|/|In—1| is sufficiently small, then
for m sufficiently big, v, is formally transverse at f.

The following is due to (a version of) the so-called Key estimate of [ALM] (more
precisely we use Corollary 7.14 of [ALM]):

Lemma 6.10. The set of vector fields w € T which are not formally transverse at
f is a closed subspace of Y.

In particular, if m is sufficiently big and w is close to v,, then w is formally
transverse at f.

6.4.2. Macroscopic transversality. The following result can be interpreted as the
macroscopic counterpart to the infinitesimal transversality of vy,.
Let 7 > 0 be minimal with f"+1(0) € V1.

Lemma 6.11. There exists a constant 19 > 0 depending only on €; and ¢, such
that if |In|/|In-1]| is sufficiently small the following holds. Let v,, be defined as
above and let v > 0 be minimal with f7T1(0) € V. Then for m sufficiently big,
there exists a domain © C D such that the map 6 : © — C given by O(\) = f1(0) is
a diffeomorphism onto Dy |1, |-

Proof. Since ||vy,|| < €1, there exists a holomorphic motion A’ which is compatible
with v,,.

Let ¥ : D — C, ¥(A) = (id + vy )(f(0)). Tt is clearly a diffeomorphism over a
round disk D,, centered on 0. Let d,, be the hyperbolic distance between f(0) and
0Dy, in Dy /5 (A'). Tt is easy to estimate directly dy, by below in terms of €; and
m. In particular, for m big, d,,, > 7 > 0 where 7 depends only on €;, not on the
position of f(0) in A

(To see this, notice that D¥(0) = v, (f(0)), and the norm of v,,(f(0)) in the hy-
perbolic metric of D /5(A"') at f(0) is at least €1 /10 for m big. Let P : D, 5(A') —
D be a Moebius transformation taking f(0) to 0. The the norm of D(Po¥)(0) in the
hyperbolic metric of D at 0 is at least €1 /10, so the Euclidean norm of D(P o ¥)(0)
is at least €;/10. By the Koebe 1/4 Theorem, P(D,,) contains a round disk of
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radius €; /40 around 0, thus the hyperbolic distance from dP(D,,) to 0 in D is at
least €;/40.)

Now let @ be the connected component of f(0) on f~"=1(V?), so that f7=' :
Q — VY is a diffeomorphism. The hyperbolic distance between 9D N Q and f(0) in
@ is bounded from below by 7 by the Schwarz Lemma, (if 0D N Q = 0, we let this
distance be 00). It follows that f™~1(Q N D) contains a 7 hyperbolic neighborhood
of f7(0) on V. Now, if |I|/|In—1| is very small, then |I,11|/|Ia| is also very small,
so f7(0) (which is contained in In41) is 7/2 close to 0 in the hyperbolic metric of
Voo D¢ (AO)

As a consequence, f"~1(Q N D) contains a 7/2 hyperbolic neighborhood of 0 in
V0, and since V° D Dy(A°), it must contain D40, where 7 depends on €; and

o. O

6.4.3. Construction of a full R-family. Let 179 be the constant of Lemma 6.11 and
let |In|/|In—1] be such that Lemma 6.5 holds with p < 79/4.

Let m be big and let us fix v = v, such that Lemmas 6.11 and 6.9 are valid,
and let © be the domain of Lemma 6.11.

Let w € {w € T1]|w|]| < &1} x {w € Tsl|w]| < €.

Let U[0] = V° and let the family {U7]0]} denote the connected components of
(FIVO)~Y(uVY), letting 0 € U°[0].

Let us consider a holomorphic motion H over D given by the transition maps
H[0,)\] = Hy : C — C such that:

H\|C\ U[0] = hxw

Frw o HAJU[O]\ U°[0] = hy o f.

Let U[\] = H\(U[0]), U/[A] = HA(U[0]).

Let R[)\] be the first return map from U/[)] to Up. It is clear that (R[], H))
has a structure of a (non-full) R-family over ID. Let us consider the landing family
(LX), Hy) associated to (R[], Hy).

Let W4[0] be the domain of L[0] containing R[0](0). Notice that L[A]|W<[A]
extends to a diffeomorphism RZ[\] onto U[)\]. For 7 < 79, let A, [\] be the preimage
of D1 40/(0) by this diffeomorphism.

If w = v then RZ[\] = R4[0] for all A, since v is supported on D, (A!).

In particular, R4\ = R4[0] and A,[A] = A.[0] for all A. So A — R[N](0) is a
map which restricts (in some domain 0 € Q") to a diffeomorphism onto A;[0]. It
follows that taking 7 = 79/2, there exists a domain 0 € Q¥ where A — R[A](0) is a
diffeomorphism onto A;[0], for any w close to v (of course, O* depends on w).

But for w € T close to v, for all A € I, U°[A] is contained in D, 40, so W4[\] is
contained in A /»[0] with space, for all A € D. By the argument principle, letting
© be the connected component of 0 of the set of A € © with R[](0) € W4[)], the
map S : © — W[0] such that S(\) = H; ' (R[\](0)) is a homeomorphism. We also
have that the diameter of © is very small if p is small (in particular if |I,|/|In—1]
is small).

Let U,[0] = U°[0] and let {U7[0]} be the connected components of the preimage
by R[0]|U°[0] of UW2[0], and let 0 € U?.

Let h be a holomorphic motion over @ given by transition maps h[0,A] = hy :
C — C such that

hA|C\ Uy = Hy,
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R[] o H\|Uy \ U} = Hy o R[0).
Let U1[A] = ha(U1[0]) and U{[A] = hy (U7 [0]).
Our construction shows clearly that the first return map R[] from UU?[)] to
Ui[A] is a R-map for A € ©, and so (Ri[A], hy) is a R-family.
Our choice of © implies that R;[\] is a full R-family.
Let us summarize the construction:

Lemma 6.12. If |I|/|In-1| is small enough, there exists a real-symmetric vector
field v € T and a neighborhood v € V C Y such that for any w € V real-symmetric
there ezists a real-symmetric domain 0 € © and domains Ui[\], UJ[\], A € ©
and a real-symmetric holomorphic motion h over © defined by the transition maps
h[0,A] = hy : C — C such that

(1) ha(UL[0]) = Ui [N, ha (U3 [0]) = U7 X

(2) For A€ ©NR, hx(In) = In;

(3) The first return map from WU [X] to Ui [\] under iteration by fa, is o R-map
R1 [)\],

(4) (Ri[A], hy) form a full R-family.

And moreover, if w has an analytic extension to I such that w(—1) = w(l) =0
then:

(5) For A € ©NR, Ini1[A] = Ui[A\]NR is the component of O of the first return
map to In under iteration by fiw;

(6) For \e ONR, I}, [\] = U{[\]NR are the domains of the first return map
to InJrl [)\]

The construction of the R-family gives us also a good contral of its geometry.

Lemma 6.13. In the setting of Lemma 6.12, Dil(h\|C \ UP[0]) < 1+ €, and

mod (U1 [0] \ UP[0]) > C, where € = 0 and C — oo if |In|/|In—1] — 0.

Proof. Indeed, Dil(hy|C \ UP[0]) < 1+ € is bounded by the hyperbolic diameter of
© on D, which is small if |I|/|In—1] — 0 is big. On the other hand, mod(U;[0] \
U?[0]) > mod(U[0]\ U°[0])/2 > mod(f(V°)\V1)/4 > k/4, which is big if I, \ In—1
is small by Lemma 6.1. g

6.5. Remarks on the infinitesimal transversality of the special perturba-
tion. We would like to point out that the “macroscopic transversality” of v, is
very much related to its infinitesimal transversality. The argument is as follows:

(1) vy, can be C! extended to I as an odd vector field which vanishes on [r,1],
[-1,—r] and [—[,[]. This vector field is not C? but its C* norm is small (e;).

(2) (Macroscopic transversality implies a C' connecting lemma) Notice that
the interval (f”, (0), f; (0)) contains the interval In;; (with lots of space). We
conclude that the family f+ Av,,, A € (=1,1) must go through a parameter A where
fxv,, (0) = 0, and so changes the combinatorics of f.

(3) Using the Key Estimate of [ALM], we see that if vy, is not formally transverse
at f then it is actually tangent to the topological class of f in the following sense.
There exists a (real-symmetric) holomorphic motion h over D whose transition maps
Rh[0,A] = hy : C — C are such that f\ = hyo fohy ' is a family of so-called “puzzle
maps” (which behave as unimodal maps) such that

d d
af/\h:o = afxvml,\:o =Dfup,
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(the maps hy are characterized by 0hy/0hy = A« for a specially chosen quasicon-
formal vector field « satisfying v,, = f*a — « on the critical orbit). (This family
can be considered the Beltrami path through f in the direction of v.)

(4) The family fy is tangent to fi,,, at A = 0 and both families have big
extensions (to D). In particular, they must be close together in a slightly smaller
disk, where we can detect the change of combinatorics: there is a parameter A € D
such that f§(0) = 0°.

(5) In particular, the family f, must change combinatorics, but this is a con-
tradiction, since it consists of maps topologically conjugate to f. So we conclude
that v, is formally transverse at f. Notice that our argument is that a “reasonably
efficient5” tangent path to v,, closes macroscopically the critical orbit.

(6) (Infinitesimal analytic connecting lemma) Although v, is only C' in the
interval, we can approximate it in the topology of T by polynomials w which will be
still formally transverse to f. Those vector fields w are transversal to the topological
class of f: they close “infinitesimally” the critical orbit.

7. PHASE-PARAMETER RELATION FOR THE SPECIAL FAMILY

Let f € F and let R; : Ulg — I; be the first return map. For d € Q, d =
1y oy jm), let I¢ = {z € L|RY(z) € I'**,0 < k < m}, and let RY = R™|IY. Let
C% = (RYH~L(I"). The map L; : UCE — I? is the first landing map from I; to Iy ;.
Definition 7.1. Let us say that a family f\ of unimodal maps satisfies the Topo-
logical Phase-Parameter relation at a parameter Ao if f = f), € F, and there exists
1o > 0 and a sequence of nested intervals J;, i > ig such that:

(1) J; is the maximal interval containing 0 such that for all A € .J; there exists
a homeomorphism H;[A] : I — I such that f) o H;[A]|(I\ Li+1) = H;[A\]o f.
(2) There exists a homeomorphism =; : I; = J; such that Ei(Ci@) is the set of
A such that the first return of 0 to H;[A](f;) under iteration by fx belongs

to Hi[A|(CH).

Definition 7.2. Let f) be a family of unimodal maps. We say that f) has Decay
of Parameter Geometry at Ao if f = f\, € F, it satisfies the Topological Phase-
Parameter relation at Ao and |J,+11/]Jn, | < CAF for some constants C' > 0, A < 1,
where nj — 1 counts the non-central levels of the principal nest of f.

Theorem 7.1. Let f € F be analytic. There exists a polynomial vector field w such
that the family fr, = fo (id+Aw), A € (—¢,¢€) is an analytic family of unimodal
maps which satisfies the Topological Phase-Parameter relation and has Decay of
Parameter Geometry at 0.

Proof. Let w and n be as in Lemma 6.12. Denote by (R, hy1) the R-family of that
lemma. Since f € F, the critical point is recurrent and we can clearly construct a
R-chain (R;, h;) over A = 0. It is clear that the real trace of R;[0] : UU7[0] — U;[0]
is the first return map to Inti. Let Jori = A; N R, let Zn4 = xG[0]|Ingi- It
is clear that |Jy, +1|/|Jn,| decays exponentially by Lemma 6.13 and Theorem 4.7,

5More precisely, we use that the holomorphic map A — f/{(O) has the same derivative at 0 as
the almost linear map A — fivm (0), and a simple estimate shows that there exists a parameter
A € D such that 3, (0) =0.

6In the sense of admitting a controlled extension to a big domain, as the Beltrami path we
constructed.
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where ng — 1 counts the non-central levels of the principal nest of f. In particular,
|Jn| = 0.

In order to conclude the result, we just have to show the existance of the continu-
ous family of homeomorphisms H;[A], for i sufficiently big. Notice that if A € Jy 14,
if p € I,4i[A] is a periodic orbit for f which never enters Ig+i[)\] then p is hyper-
bolic by the Schwarz Lemma. So, if A € Ju4;, the only non-hyperbolic periodic
orbits for fy must be entirely contained in I\ Ih41. But since f|I'\ Iny1 is hyper-
bolic, there exists € > 0 such that if A € (—¢,¢€), all periodic orbits in I\ In41[A] of
fx are hyperbolic (by Lemma 5.2). In particular, if ¢ is sufficiently big, J; C (—¢,€),
and all periodic orbits of fy in I\ I;1+1[\] are hyperbolic. The result follows by
Lemma 5.3. g

Let K; = I; \ UC?. Notice that H; and Z; are only uniquely defined in K;.
Condition (2) of the Topological Phase-Parameter relation can be equivalently for-
mulated as the existence of a homeomorphism =; : I; — J; such that the first return
of the critical point (under iteration by f\) to H;[A](I;) belongs to H;[A](K;) if and
only if Ae Ez(Kl)

Let us now estimate the metric properties of H;|K; and Z;| K.

Let [iso = (Ri|I?) "1 (If), where d is such that (R;|I?)~(C8) = Ii11.

Let 7; such that R;(0) € IJ. Let K] = K; N I]* and K; = I; \ (UI] U I;1).

Definition 7.3. Let f) be a family of unimodal maps. We say that f) satisfies
the Phase-Parameter relation at Ao if f = f), is simple, f\ satisfies the Topological
Phase-Parameter relation at Ay and for every v > 1, there exists 9 > 0 such that:

PhPal: =, ;7 is 7-as,

PhPa2: =z is ~¥-qs,

PhPhl: H;[\|k, is y-gs if A € J7,

PhPh2: the map H;[\]|, is y-gs if A € J;.

Theorem 7.2. In the same setting of the previous theorem, if f is simple, the
family fr, satisfies the Phase-Parameter relation at 0.

Proof. This is an immediate consequence of Theorem 3.1 and Theorem 4.7, since
the Phase-Parameter relation is just the real trace of the Complex Phase-Parameter
relation (see [AM1] for details). O

8. LAMINATION IN SPACES OF UNIMODAL MAPS

8.1. Spaces of analytic unimodal maps. Let a > 0, and let 2, C C be the
set of points at distance at most a of I. Let &, be the complex Banach space
of holomorphic maps v : 2, — C continuous up to the boundary which are 0-
symmetric (that is, v(z) = v(—z)) and such that v(—1) = v(1) = 0, endowed with
the sup-norm [[v]|, = ||v]|co- It contains the real Banach space £ of ”real maps”
v, 1.e, holomorphic maps symmetric with respect to the real line: v(z) = ﬁ

Let us consider the constant function —1 € Q,. The complex affine subspace
—1+ &, will be denoted as A,.

Let U, = U? N A,. It is clear that any analytic unimodal map belongs to some
U,. Note that U, is the union of an open set in the affine subspace Ay = —1 + X
and a codimension-one space of unimodal maps satisfying f(0) = 1.

More details, more
precise reference
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8.2. Laminations. One of the main results of [ALM] is to describe the structure
of the partition in topological classes of spaces of analytic unimodal maps. In that
paper, they consider only the quasiquadratic case, but their work holds for the
general case (due to the results of Kozlowski). The main result is that each non-
hyperbolic topological class is a codimension-one analytic submanifold, which form
an analytic lamination near any Kupka-Smale quasiquadratic map.

Theorem 8.1 (Theorem A of [ALM]). Let f € U, be a Kupka-Smale map. There
exists a neighborhood V C A, of f endowed with a codimension-one holomorphic
lamination L (also called hybrid lamination) with the following properties:

(1) the lamination is real-symmetric;

(2) if g € VN AR is non-regular, then the intersection of the leaf through g with
coincides with the intersection of the topological conjugacy class of g with V;

(3) Each g € VN AR belongs to some leaf of L.

(For the definition of the leaves of £ in the non-regular case, see Appendix A.)

AR

a

Theorem 8.2. In the setting of Theorem 8.1, if g1,92 € V are in the same leaf
of L and 1 (N\), v2()\) are real analytic paths in V N A%, transverse to the leaves
of V and such that v1 (A1) = g1, 72(A2) = g2, then the local holonomy map ¥ :
M =6 A1 +€) = (Ao — €, X+ €) is quasisymmetric. Moreover, for § sufficiently
small, Y|(A1 — 0, A1 +6) is 14+ O(|lg1 — 92|a)-gs-

Proof. This is just the A\-Lemma. d
Moreover, each non-regular topological class is like a Teichmuller space:

Theorem 8.3. In the setting of Theorem 8.1, if g1,g2 € VNU, belong to the same
leaf, then there exists 14+ O(||g1 — g21|a)-gs map h : I — I such that gyoh = hog;.

Proof. This follows from Proposition 8.9 of [ALM] and the A-Lemma. O
The tangent space to topological classes has a nice characterization:

Theorem 8.4 (Theorem 8.10 of [ALM]). If f € U, is a non-regular Kupka-Smale
map then the tangent space to the topological class of f is given by the set of vector
fields v € &, which do not admit a representation v =« o f —aDf on the critical
orbit with « a gc vector field of C.

8.3. Analytic families. Let {fy}rca be an analytic family of unimodal maps.
Then for a > 0 sufficiently small, A — f) is an analytic map from A to U,.

If Ag € A is a Kupka-Smale parameter, transversality to the topological class of
Ao has the obvious meaning (using Theorem 8.1). We remark that this definition
does not depend on the choice of U, .

Remark 8.1. Let B; be an enumeration of all open balls contained in A of rational
radius and center. The condition of non-triviality of a family {fy}, A € A is an
intersection of a countable number of conditions (existence of a regular parameter
\ € B;). Each of those conditions is open in UF?(A). The set of non-trivial analytic
families is also dense in the UF°°(A) (this would still hold natural topology of
analytic families in A, which we did not introduce), due to Theorem 8.1.

We should remark that for an analytic family of quasiquadratic maps, non-
triviality is equivalent to existence of one unique regular parameter (since all non-
regular topological classes are analytic submanifolds in the quasiquadratic case).
In particular, non-triviality is a C® open condition in the quasiquadratic case.
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8.4. Phase-parameter relation for transverse families. We will now show
how to use the lamination of [ALM] to transfer the Phase-Parameter relation from
the transversal family f\,, to any transversal family f\. The idea is to exploit the
following commutative diagram

Thi 8.3
Phase of f elﬁ)n Phase of f
s conjugacy
Phase-Parameter for wal lPhase-Parameter for fi

Theorem 8.2
—

Parameter of fy, Parameter of f

holonomy map of £

(notice that the estimates for all arrows are all ultimately based on the A\-Lemma).

Theorem 8.5. Let f € F, and let f) be an analytic family of unimodal maps
through f such that fx, = f and fx is transverse to the topological class of f at
A = Xo. Then the Topological Phase-Parameter relation and Decay of Parameter
Geometry holds for the family fx at Ag. Moreover, if f is simple, then the Phase-
Parameter relation also holds.

Proof. Using Theorems 7.1 and 7.2, consider a family fy,, through f which is trans-
verse to the hybrid class of f and which satisfies the Topological Phase-Parameter
Relation/Decay of Parameter Geometry/Phase-Parameter relation. Fix a such
that both fy, and f\ are analytic paths in U,. Let £ be the lamination from
Theorem 8.1. Since both f) and fy, are transverse to the topological class of
f (at Ao and 0), we can consider the local holonomy map of the lamination £,
Y (—€€) = (Ao — €, +€).

Let Z; : I; — J; be the phase-parameter map for the family fx,, and let I:Ii[)\] be
the phase-phase map. We obtain the phase-parameter map for fy as a composition
Z; = 1 o ;. Since |J~Z| — 0,

lim  sup |[faw = fyolla = 0.
OO NE(—¢,€)
In particular, by Theorem 8.2, ¥|J; is 7;-qs with lim; = 1.

Since for each A € J; = zp(jl-), fx is gs conjugate to fy-1(x)w, We see that if
A € J; then there are no non-hyperbolic periodic orbits for f in the complement
of the continuation of I;;;. Using Lemma 5.2 we conclude as in Theorem 7.1 the
existence of a continuous family H;[A] of phase-phase maps for the family fy. It
follows that the Topological Phase-Parameter relation holds for fy at Ag.

Since 9 is quasisymmetric, it is Holder and the Decay of Parameter Geometry
also follows from Theorem 7.1. If f is simple, estimates PhPal and PhPa2 follow
from Theorem 7.2.

Let hy : I — I be a quasisymmetric conjugacy between fy, and fy ) which
is O(||fxw — fy(xlla)-as. This family might not be continuous, but H;[t)(\)]|K; =
hy o H; [A], which is enough for our purposes. In particular, if f is simple, PhPhl
and PhPh2 follow from Theorem 7.2. |

Remark 8.2. Notice that even if we are only interested in the phase-parameter
relation for individual families, this proof needs the knowledge of the behavior of
topological conjugacy classes of unimodal maps in infinite dimensional spaces. For
the case of the quadratic family, this is not needed: the argument of [L3] is based on
the combinatorial theory of the Mandelbrot set (Douady-Hubbard, Yoccoz), which
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allows to show directly that the real quadratic family gives rise to full unfolded
complex return type families. In particular, our proof also gives a somewahat
different approach to the phase-parameter relation on the quadratic family itself.

9. PROOF OoF THEOREM A

Let f) be a non-trivial analytic family of unimodal maps. In view of Theorem
8.5, to conclude Theorem A it is enough to show that

(1) Almost every non-regular parameter belongs to F, that is, it is Kupka-
Smale, has a recurrent critical point and is not infinitely renormalizable,

(2) Almost every parameter in F is simple,

(3) fx is transverse to the topological class of almost every parameter.

We will take care of these issues separately below: item (1) will follow from
Lemmas 9.1, 9.4, and 9.5, item (2) from Lemma 9.6 and item (3) from Lemma 9.3.

9.1. Transversality.

Lemma 9.1. Let f) be a non-trivial analytic family of unimodal maps. Then
at most countably many parameters are not Kupka-Smale or have a periodic or
preperiodic critical point.

Proof. Indeed, the set of parameters which are not Kupka-Smale correspond to
solutions of countably many analytic equations of the type f(p) = p, Df3"(p) = 1,
n > 0. Similarly, the set of parameters with periodic or preperiodic critical point
corresponds to countably many equations of the type fi*(0) = f(0), 0 < m < n.
So the set of parameters which are not Kupka-Smale is either countable or contains
intervals. Since regular parameters are dense, the first possibility holds. a

The following result is due to Douady, see Lemma 9.1 of [ALM]:

Lemma 9.2. Let L be a codimension-one complex lamination on an open set V of
some Banach space, and let v be an analytic path in V. If v is not contained in a
leaf of L, then the set of parameters where v is not transverse to the leaves of L
consists of isolated points.

This result immediately implies:

Lemma 9.3. Let fy be a non-trivial analytic family of unimodal maps. Then the
set of non-regular Kupka-Smale parameters Ao such that fy is not transverse to the
topological of class fx, at Ao is countable.

9.2. Non-recurrent parameters. The following result is due to Duncan Sands
[S], but we will provide a quick proof based on holomorphic motions and Lemma
9.2.

Lemma 9.4. Let f) be a non-trivial analytic family of unimodal maps. Then
almost every parameter is reqular or has a recurrent critical point.

Proof. If this is not the case, there would exist € > 0 and a set X of parameters A
of positive measure such that for A € X,

(1) inf,,>1 [f{*(0)] > € (by hypothesis).
(2) fa is non-regular and Kupka-Smale (by Lemma 9.1).
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Let us fix a density point Ay € X of X. Using Lemma 5.1, consider a nice interval
T = T[N = [-p,p] C (—¢€,¢) for fy, with p periodic. Let T[A], A — Ao € (—4,9),
0 > 0 small denote the continuation of T'. Let K[A], A — Ay € (—J,) denote the
set of points in I \ T[A\] which never enter T[A] and do not belong to the basin of
hyperbolic attractors.

Since K = K[\g] is an expanding set by Lemma 5.2, it persists in a complex
neighborhood of Ay: there exists a family of homeomorphisms hy : K — C, A €
Dy (No), 6" < 0 depending continuously on A, such that hy = id and f) o hy =
hx o fr,. It is easy to see (using Lemma 5.2) that for A € R, hy(K) = K[A]. For
each preperiodic orbit p of f in K, it is clear that A — hy(p) is holomorphic in
Dy (Ao). Since preperiodic orbits are dense in K, it follows that h[Ag, A] = hy are
actually transition maps of a holomorphic motion h over Dy (Ag).

Since fy is non-trivial, fx(0) does not belong to K[\ for a dense set of A\ €
(=4,0), so by Lemma 9.2, the path A — (\, fA(0)) is transverse to the leaves of h
outside of countably many parameters A. Perturbing Ay if necessary (keeping both
properties (1) and (2) above), we may assume that Ao is a point of transversality. It
follows that there exists a real-symmetric quasiconformal map x (phase-parameter
holonomy map) taking a neighborhood V of fy,(0) to a neighborhood of A, and
taking points in K NV to parameters A € x(V) with f(0) € K[A]. In particular,
X(ENV)D>Xnx(V).

Since K is an expanding set, it follows that there exists p > 0 such that in every
r neighborhood of fy,(0) there exists an interval of size at least pr disjoint from
K. Since x|V NR is quasisymmetric, this property is preserved: there exists p’ > 0
such that in every r neighborhood of Ay there exists an interval of size at least p'r
not intersecting X. This contradicts the hypothesis that Ag is a density point of X.

(It is easy to see that this argument gives much more information on the size
of X. One can see for instance that the Hausdorff dimension of X in )¢ (defined
as the infimum of the Hausdorff dimension of X N D, ()g)) is no greater than the
Hausdorff dimension of K in fy,(0), which is known to be less than 1. Notice that
X is essentially the set of non-regular non-recurrent parameters avoiding a definite
neighborhood of 0. We should remark that these ideas show also that the Hausdorff
dimension of the set of non-regular non-recurrent parameters is usually 1 except
for some trivial situations.) O

9.3. Infinitely renormalizable maps.

Lemma 9.5. Let fy be a non-trivial analytic family of unimodal maps. Then the
set of infinitely renormalizable parameters has Lebesque measure zero.

Proof. Let X be the set of parameters A such that f is infinitely renormalizable,
and let A\g € X be a density point of X. By Lemma 5.4, there exists a nice interval
T[A], |A — Xo|] < 9§, which is periodic (of period, say m) such that f™|T[\] has
negative Schwarzian derivative. In particular, if Ay : T[A] — I is affine, gy = Ay o
fto A;l is an analytic family of unimodal maps, which is non-trivial (because fy
is). By Theorem B of [ALM], for almost every A, gy is not infinitely renormalizable.
It is clear that if A € X and |A — Ag| < J then g, is infinitely renormalizable, so Ag
is not a density point of X, contradiction. a

9.4. Simple maps. The following argument is adapted from the corresponding
result of Lyubich for the quadratic family [L3].
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Lemma 9.6. Let f) be a non-trivial analytic family of unimodal maps. Then
almost every parameter A with f\ € F is simple.

Proof. If this is not the case, we could find C > 0, p <1, Kk > 0m > 0 and a set X
of parameters of positive measure such that if Ay € X then

(1) fx, € F and is not simple (by hypothesis),

(2) fa is transverse at Ag (by Theorem 9.3),

(3) The sequence of parameter windows J,,[Ag] associated to Ao are defined for
n > m (by Theorem 8.5, item (1)),

(4) If ng(Xo) — 1 denotes the sequence of non-central levels of the principal
nest of fx, then for ng(Xo) > m, |5, (ae)+1[A0]l/[Tng(ro) [Mo]] < CpF (by
Theorem 8.5).

Consider now the set X, kK > m of parameters A\g € X such that the return of
level ny(Ao) is central. Let Ay be the union of J,, (r,)[Ao], Ao € Xy and II; be the
union of Jnk(Ao)+1[>‘0]’ Ao € X

Then each connected component .J,, (,)[Ao] of A contains a single connected
component J,, (x)+1[Ao] of I, and thus |II;|/|Ax| < Cp*, so that [ X;| < |I] <
Cp*F|Ar] < 2Cp*. On the other hand, X C Ngy>m Uksk, Xk and thus, [ X| <
infry>m gk, 2Cp% = 0, contradiction. a

10. Proor or THEOREM B

We will give now a proof of Theorem B using a parameter exclusion argument.
The first proof of this result in [Av1] relied on the refined statistical argument of
[AM1], but we will give a much simpler argument based on a modified version of
the quasisymmetric capacities of [AM1], which allows us to get rid of distortion
estimates and at the same time to work with a fixed quasisymmetric constant.

10.1. Measure estimate. Define the modified y-gs capacity of a set X in an
interval I as by o ha(X A D)
10hz(A N
py(X|I) = sup o (D]
where h; : R = R is y-gs and hy : I — R has non-negative Schwarzian derivative.
Notice that if F' : Ty — T is a diffeomorphism with non-positive Schwarzian
derivative and X C T; then

py(X[Th) < py(F(X)|T2).
This is the main advantage of modified quasisymmetric capacities over the tradi-
cional ones of [AM1].

By the Koebe Principle (see [MS]), if h : I — I is a diffeomorphism and has
non-positive Schwarzian derivative then h([—¢, €]) = O(e). By Holder continuity of
Y-qs maps, we get

py([=e€l[-1,1]) = O(€")
for some 0 < k < 1 depending on 7.
For a map f € F with principal nest {I,,}, let s be as in Lemma 5.5, and let

an = py(s(UL)|s(In))-

Let us consider the components TX of (R,|I2)~*(UI}). We reserve the index 0
for the component containig 0, and the indexes —1 and 1 for the components of
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(Rp|I2)~1(I0). If |k| > 1 then R,|T} is a diffeomorphism onto some I}, j # 0 and
R2|TF is a diffeomorphism onto I,,. Let

en = Dy (s(Ui= 1 T3) 5 (Ing1)-
Lemma 10.1. The following estimate holds for n big:
(1 - an-‘rl) > (1 - En)(l - an)

Proof. Indeed, if |k| > 1 then s(T}¥, ) is taken to s(I,) by s o R2 o s~ which has
negative Schwarzian derivative for n big. In particular

p’Y(S(UITJ;/+1)|S(T’I’If+1)) < pv(S(UC%NS(In)) < ap.
Thus )
Py (UL [ Tns) < €+ (1= €n)an.

Lemma 10.2. If f is simple then the €, decay exponentially fast.

Proof. Indeed, if f is simple then |s(I11)|/|s(I)| decays exponentially fast by
Lemma 5.6. In particular, by the Koebe Principle, for each j, each of the connected
components of s(In41 \ I} ) is exponentially (in n) bigger than s(I ). This
implies that, for each k, each component of s(I,4» \ TF ») is exponentially bigger
than 77", , (using the Koebe Principle), so p,(s(T¥,,)|s(I,+2)) decays exponentially
and so does €,,. O

Lemma 10.3. If f does not admit a quasiquadratic renormalization then UI} is
not dense in I, for n sufficiently big.

Proof. Indeed, up to considering a renormalization or unimodal restriction, we may
assume that f is non-renormalizable and does not admit unimodal restriction. It
is easy to see that if x € I never enters I; then x accumulate on a orientation
preserving fixed point of f, and since f does not admit a unimodal restriction, we
conclude that x € d1.

Since f is not conjugate to a quadratic map, there exists an interval 7" whose
orbit does not accumulate on the critical point (Lemma 5.8). Let n be biggest
with the orbit of T intersecting I,, (T intersects I; by the previous discussion). Of
course, the set of points which land on I,,+1 does not intersect the orbit of 7', and
so is not dense in I,,.

It is easy to see that if the set of points in I,;, which eventually land in I,,,4 is
not dense in I,, then UI,];l+1 is not dense on I,,,11. In particular, by induction, UI},
is not dense in I,,, for m > n. O

Lemma 10.4. If f does not admit a quasiquadratic renormalization then for n
large enough, o, < 1.

Proof. Let n be large enough such that there exists an interval £ C I,, disjoint
from UIJ. For j # 0, let B/ = (R,|I7)~1(T). Notice that E/ does not intersect
UCH.

If hy : R — R is a y-gs map and hs : s(I,) = R has non-negative Schwarzian
derivarive, we see that ha|s(I}) has bounded distortion by the Koebe Principle.
Notice that this implies that for some € > 0, if j # 0, |hyoha(s(E7))| > €|hyoha(I3)].
Thus

Py (s(In \UE?)|5(Ln)) < py(s(Lp)]s(In)) + (1 = py (s(L3)]s(Ln))(1 — €) < 1.
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By a previous argument of the proof of Lemma 10.1,

Py (s(ULL ) Is(Th 1) < py(s(UCH)[s(10)) < py(s(In \ UE)[s(1)).
Thus,

Py (UL 1) |s(ns1) < €+ (1= €n)py (s(Ln \ UEY)|s(15)) < 1.

O

Lemma 10.5. Let f) be a one-parameter non-trivial analytic family of unimodal
maps satisfying the Phase-Parameter relation at a parameter \o (in particular,
f = fx, is simple). Assume that f does not admits quasiquadratic renormalization.
Then Ao is not a density point of non-hyperbolic parameters.

Proof. Since |J,| — 0, and Ay € E,(I7*) C J,, it is enough to show that if n
is big enough then |2, (UCE N IT)| < an|Zn(I77)]. Indeed, if A ¢ Z,(UCL) then
the critical point is non-recurrent. By Lemma 9.4, almost every non-recurrent
parameter in f) is hyperbolic.

Fix 1 < 4 < v By PhPal, =|K] has a §-qs extension (that we denote =,,) for n
big enough. On the other hand, s~!|s(I7") is essentially linear for n big (because
s is analytic, and in particular C*, and s(I7*) is small), so =, o s~*|s(I7") is y-gs.
In particular

2UCEN I - |Z0s ts(UCEN IT)|
=)~ [EesTls(Int)

< p, (5(UCH) (L") < .
By Lemmas 10.1, 10.2 and 10.3, lim sup o), < 1. a

For one-parameter families, Theorem B follows from Theorem A and Lemma
10.5.

10.1.1. Many parameters. The argument of Lemma 9.1 implies:

Lemma 10.6. Let {f\}rca be a k-parameter non-trivial analytic family of uni-
modal maps. The set of parameters which are not Kupka-Smale or have a periodic
or preperiodic critical point is contained in a countable union of analytic submani-
folds of codimension at least 1 of A and so has Lebesgue measure zero.

Let {fa}rea be a k-parameter analytic family of unimodal maps, and let Ag €
int A be a Kupka-Smale parameter. Let us consider a small ball B, around Ay of
radius € contained in A. By Theorem 10.6, it is clearly enough to show Theorem B
for the family fy restricted to B..

Using Theorem 8.1, if € is sufficiently small, A — fy is an analytic map from B,
to some open set V where the hybrid lamination £ is defined. Let A\; € B¢ be a
regular parameter. If L is a line in R¥ through A;, then by Lemma 9.2 L N B, is
not contained in the topological class of a non-regular parameter, and so regular
parameters are dense in L N B.. By the one-dimensional Theorem B, we see that
almost every parameter in L N B, is quasiquadratic. By Fubini’s Theorem, almost
every parameter in B, is quasiquadratic.
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11. PROOF OF COROLLARIES

11.1. Some conditions related to good ergodic properties. Let us first recall
the conditions on the critical orbit stated in the introduction. Let f € U?. We say
that f is Collet-Eckmann if the lower Lyapunov exponent of the critical value is
bigger than zero:

In |Df*(f(0))

lim inf > 0.
n
We say that f has subexponential recurrence if
—In|fm
lim sup M =0.
n
We say that f has polynomial recurrence if
—1In|f™(0
v = limsupM < 00,
In(n)

and in this case, we call v the exponent of the recurrence.

We introduce the following additional condition: we say that f is Weakly Regular
if

1
11.1 im lim inf — k =0.
(11.1) limliminf — % In[Df(£*(0))| =0
1<k<n
fr(0)e(-0,0)

Notice that polynomial recurrence is much stronger than subexponential recur-

rence.

Remark 11.1. Maps satisfying the Collet-Eckmann and the subexponential recur-
rence conditions have been intensively studied after the works of Benedicks and
Carleson. Those two conditions give a very precise control of the critical orbit.
They are not sufficient to show that f has good statistical properties however: one
must also ask that f has a renormalization with all periodic orbits repelling (and
so is conjugate to a quadratic polynomial). Under this additional assumption, it is
possible to show that f has an absolutely continuous invariant measure (see [BY]).

In order to study further the properties of u, it is convenient to consider the
smallest periodic nice interval T" of f (f is not infinitely renormalizable, since it has
an absolutely continuous invariant measure). The first return map f™ : T — T can
be then rescaled to a unimodal map f , which also possess an absolutely continuous
invariant measure fi.

Assuming that f is also Kupka-Smale and using Lemma 5.2, we see that the
dynamics of f splits in a hyperbolic part, that describes points « € I which never
enter int 7', and an interesting part described by f .

The measurable dynamics of f are described by j: for almost every € I and
any continuous function ¢ : I — R we have

1 n—1 R
> o) = [ oda.
k=0

Since f is non-renormalizable, it follows that 1 is supported on [f2 (0), f(O)], and
(f, 1) is exponentially mixing (see [Y]).

The condition of Weak Regularity is important to show that (f, ) is stochas-
tically stable (see [T2]). If we assume a little bit more smoothness, f € U*, the
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Weak Regularity condition is not necessary, and it is possible to show that ( f )
is stochastically stable in a stronger sense (see [BV]).

11.2. Analytic families. We will actually prove the following result, which is a
more precise form of Corollaries C and E:

Theorem 11.1. Let fy, be a non-trivial analytic family of unimodal maps. Then
almost every non-regular parameter is Kupka-Smale and has a quasiquadratic renor-
malization which satisfies the Collet-Eckmann condition and is polynomially recur-
rent with exponent 1.

Proof. We will prove the stated result for one-parameter families, the general case
reducing to this one by the argument of §10.1.1.

By Theorems A and B of [AMI1], the conclusion of the theorem holds for the
quadratic family. However, the only properties of the quadratic family that are
actually used in the proof is that it is an analytic family of quasiquadratic maps
with negative Schwarzian derivative for which the Phase-Parameter relation holds
at almost every parameter, see Remark 3.3 of that paper. Due to the work of
Kozlowski, the hypothesis of negative Schwarzian derivative can also be removed
(this can be checked directly using Lemma 5.5). Using our Theorem A, we conclude
that the conclusion also holds for analytic families of quasiquadratic maps.

Let us now consider the general case. By Theorem A, almost every non-regular
parameter is simple, and by Theorem B, almost every non-regular parameter has a
quasiquadratic renormalization. Let us fix such a parameter \g.

Let T be the smallest periodic nice interval for fy, (of period m). For A near
Ao, the interval T' has a continuation T'[\]. Consider the analytic family g\ =
AN o f o AN, IA = Xo| < €, where A[A] : T[\] — I is affine. Then g, is
C™ close to gy,, which is quasiquadratic, so we conclude that for € > 0 small, gy,
A — Ao| < € is an analytic family of quasiquadratic maps.

In particular, for almost every A near \g, gy is either regular or satisfy the Collet-
Eckmann condition and its critical point is polynomially recurrent with exponent
1. In particular, the same holds for fy, which concludes the proof of the theorem.

O

Remark 11.2. Notice that the proof of Theorem A in [AM2] could not use directly
the proof of [AM1] (the argument needs modifications which are dealt in the Ap-
pendix of [AM2]), since their main phase-parameter tool essentially amounts to
comparing the phase-space of a non-trivial family with the parameter space of the
quadratic family. This distorts the estimates and makes it impossible to obtain the
exponent of the recurrence.

11.3. Smooth families.

Theorem 11.2. Let fy, A € A be a non-trivial family of unimodal maps. For
every € > 0 there exists a neighborhood V C UF?(A) of fx such that if g\ € V then,
outside a set of parameters A of measure at most €, gy is either reqular or is Kupka-
Smale and has a renormalization with all periodic orbits repelling and satisfies the
Collet-Eckmann, subexponential recurrence and Weak Regularity conditions.

Proof. Using Vitali’s covering Lemma, let {B;}, {C;} be finite families of disjoint
closed balls covering the parameter space up to a set of Lebesgue measure €/2 such
that:
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(1) For X\ € By, fy is regular;

(2) For A € C;, there exists a nice interval T;[A], which is periodic of period m;,
depending continuously on A such that f™ : T;[A\] — T;[\] can be rescaled to a
quasiquadratic map f}\

It is easy to see that if gy is C? close to fy, then for every A € UB; gy is regular,
and for every A € UC;, there exists a continuously depending interval T7[)], close
to TY[A] such that g* : TY[A] = T[] can be rescaled to a unimodal map g5, and
the family g;[\] is C? close to fi.

The family f;\ is non-trivial, so by Theorem B of [ALM], the set of parameters in
C; such that g% is non-regular or fails to satisfy conditions (1) and (2) has Lebesgue
measure less then |C;|e/2, provided V is small enough. The result follows. O

Remark 11.3. In particular, if fy is a non-trivial analytic family of unimodal maps,
almost every parameter is Weakly Regular.

Recall that if A € R¥ is an bounded open connected domain with smooth bound-
ary, UF"(A) is the space of C" families of unimodal maps parametrized by A, and
is a Baire space. Recall also that by Remark 8.1, non-trivial analytic families are
dense in UF"(A). Using Theorem 11.2 and an easy Baire argument we obtain the
following precise version of Corollary D:

Theorem 11.3. In a generic family fy in UF"(A), r = 2,...,00 for almost every
non-regular parameter Ao € A, f = f\, is Kupka-Smale and has a renormalization
which has all periodic orbits repelling and satisfies the Collet-Eckmann, subexpo-
nential recurrence and Weak Regularity conditions.

APPENDIX A. HYBRID CLASSES

In this section we will give a global characterization of the leaves of the lamination
L of Theorem 8.1.

Notice that the leaves of £ are claimed to coincide with topological classes only in
the non-regular case: the partition in topological classes is not a lamination because
regular topological classes are open sets. It turns out that the behavior of the regular
leaves of £ can be quite arbitrary. In order to give a global characterization of the
leaves of £, we need to introduce once and for all an arbitrary, but fixed, way to
refine the topological classes of regular maps. We shall call this refinement the
hybrid lamination.

If f is non-regular, the hybrid class of f is just the set of all non-regular maps g
which are topologically conjugate to f.

Let f be a regular map, and let A be the set of attracting periodic orbits of
fand let B = {z € I|f"(z) — A} denote the basins of the attracting periodic
orbits of f. Notice that if f is a regular map, there exists a minimal m > 0 such
that f™(0) belongs to a periodic connected component of B. It is possible to show
that if f is quasiquadratic, then m = 0. It turns out that if yn = 0 (this case will
be called essential), there is a natural way to refine the topological class of f: the
hybrid class of f is the set of all regular maps g which are topologically conjugate
to f and the multiplier of the periodic orbit that attracts 0 is the same for both
maps (this definition agrees with the one of [ALM] in the quasiquadratic case).

In the non-essential case, there is no natural way to refine the topological class
of f, so we fix an arbitrary way that works.
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Definition A.1. Let f be aregular map. We say that a homeomorphism h : I — C
is f-admissible if the following holds. Let T be a periodic component of B\ A which
does not contain 0, and, writing T' = (a,b) with |a| < |b|, we have that the interval
[—a,a] is nice. Then h takes d = (a+b)/2 to h(d) = (h(a)+ h(b))/2 and h|[d, f7(d)]
is affine, where ¢ is the period of T'.

In the non-essential case, we let the hybrid class of f be defined as the set of all
regular maps g such that there exists a f-admissible topological conjugacy between
fand g.

The following lemma is elementary, and shows that the definition of hybrid class
is at least adequate:

Lemma A.1. Let f be a reqular map. Then its hybrid class intersects U, in a
codimension-one analytic submanifold.

With this definition, it is possible to prove Theorem 8.1 in the case of hyperbolic
maps f. The case of infinitely renormalizable f can be dealt by reduction to
the quasiquadratic case using renormalization (dealt in Theorem A of [ALM]), see
Lemma 5.4.

We will now explain the relation of f-admissible map with the main tool of
[ALM]: the concept of persistent puzzle.

A.1. Persistent puzzle. Assume that f € F. As in §6.1, fix a level n of the
principal nest and assume that |I,|/|In—1| is very small. Let us consider the first
landing map to A° = I, the connected components of its domain are denoted AJ.
Let A! be the component of £(0), and let A' = (I,r), with » > 0. Let V7 be the
complexification of the A7 obtained as in Lemma 6.1. Let V be the union of all VJ
such that V/ NR C [—1,7]. We shall informally call V the puzzle.

Let V C A, be a real-symmetric neighborhood of f. We will say that the puzzle
persists in V if there exists a real-symmetric holomorphic motion h over V given by
a family of transition maps h[f,g] = hy : C — C, g € V such that:

(1) hy|C\ Q, =id;
(2) gohg|V\V0:hgof,gohg|8V0:f.
(3) hg|Iis f-admissible and g o hy|[—1,7]\V = hgo f.

The following plays the role of Lemma 5.6 of [ALM].

Lemma A.2. Let f € FNU,. If |In|/|In-1] is sufficiently small, then there exists
a neighborhood of f where the puzzle persists.

The proof is the same as of Lemma 5.6 of [ALM]. It follows a sequence of steps:

(1) One considers a holomorphic motion A’ of [-1,7] \ V which is f-admissible
and equivariant: g o hj = h’f o f (this holomorphic motion exists because the
dynamics of f|[—1,7]\ V is hyperbolic). Over a small neighborhood of f.

(2) Using the Canonical extension Lemma, we extend h' to a holomorphic motion
defined also on 9f (V). Considerting a slightly smaller neighborhood V' of f we
may extend h’' to C\ Q as id.

(3) One considers a holomorphic motion h° of 7 such that gohJloVO =h'o f
over a neighborhood V° of f.

(4) One notices that for each V', i # 0, we can define uniquely a holomorphic
motion A’ on V¢ by a finite lift of h°|V° over a small neighborhood V¢ of f.
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(5) The (countably many) holomorphic motions A', hi are defined apriori over
different neighborhoods of f, but using again hyperbolicity of f|[—1,7]\V, one sees
that all those holomorphic motions are defined over a definite neighborhood of f.

(6) An estimate of hyperbolic geometry shows that the several regions of def-
inition of those different holomorphic motions cannot collide in a slightly smaller
neighborhood of f, so they define a common holomorphic motion which can be
completed using the Canonical Extension Lemma and satisfies automatically (1),
(2), and (3).

Remark A.1. The last condition of the definition of persistence defines uniquely h,
in [—1,7] \ V. This set is empty in the quasiquadratic case (and so this condition
does not appear in [ALM]). This (obvious) observation concerning the first step
is the only formal difference in the proof, the remaining steps do not need to be
modified.

Remark A.2. If f is a Kupka-Smale, finitely-renormalizable, non-hyperbolic map,
with a non-recurrent critical point, a similar construction can be made. In this
case, we take T' C T" nice intervals with preperiodic boundary such that 0 does not
return to 7' and |T'|/|T"| is very small. We let A° = T, and put A' as a domain of
the first landing map to A which is contained in [f(0), f(0) + €], € very small.

Remark A.3. If g1, g2 € VNU, are regular maps in the same hybrid class then they
are of non-essential type if and only if for all m sufficiently big,

hg, (97"(0)), hg,' (95°(0)) & [=1,7]\ V/
(use the Schwarz Lemma). The definition of hybrid class implies
hg,' (97(0) = hg;'(95"(0)).
This is important for the application of the several pullback arguments of [ALM].

One obtains Theorem 8.1 by repetition of the proof of Theorem A of [ALM],
taking into consideration the above remarks.

APPENDIX B. NON-RENORMALIZABLE PARAMETERS IN THE MANDELBROT SET

The aim of this appendix is to show how the idea of the proof of Theorem B can
be coupled with Lyubich’s result of [L3] to obtain the following theorem:

Theorem B.1. Let N'R be the set of non-renormalizable quadratic parameters
with recurrent critical point and no indifferent periodic orbits in the boundary of
the Mandelbrot set. Then N'R has Lebesque measure 0.

This theorem implies easily the following result due to Shishikura:

Theorem B.2. The set of parameters in the boundary of the Mandelbrot set which
are not infinitely renormalizable has Lebesgue measure 0.

Remark B.1. The reduction of Theorem B.2 to Theorem B.1 is obtained using the
following three steps:

(1) It is easy to pass from the non-renormalizable case to the finitely renormal-
izable case using renormalization techniques: the (countably many) little copies
of the Mandelbrot set are related by renormalization to the original Mandelbrot
set by a quasiconformal (and thus absolutely continuous) transformation, see [L4].
Alternatively, we can also repeat the proofs for the little Mandelbrot copies.
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(2) Quadratic polynomials with a neutral fixed points are contained in the
boundary of the main cardioid of the Mandelbrot set, which is an analytic curve
(with one singularity) and thus has Lebesgue measure zero.

(3) The case of non-recurrent non-renormalizable polynomial without neutral
fixed points can be treated easily using holomorphic motions, see our proof of
Lemma 9.4 (it is enough to use that under those conditions the set of points that
never enter a small neighborhood of 0 is a hyperbolic set and thus persistent?).

To prove Theorem B.1 we will make use of the Complex Phase-Parameter rela-
tion (Theorem 3.1) and Lyubich’s parapuzzle estimate (Theorem 4.3). Then, we
will redo the estimates of Theorem B in the complex setting to show that non-
renormalizable parameters have Lebesgue measure zero, because the critical point
has a tendency to fall in the basin of infinity (in the same way that in the real setting
the critical point has a tendency to fall in the basin of non-essential attractors).

Remark B.2. Lyubich has another proof of Theorem B.1, also based on [L3] and
estimates on the area of the set of points that return to deep puzzle pieces.

B.1. Parapuzzle notation. Let us fix ¢p € N'R. By Theorem 4.3, there exists a
neighborhood A; C C of ¢y and domains 0 € Uy [A] C C, A € Ay such that the first
return map to Ui[A] by py induces a full R-family over A;.

To prove Theorem B.1, it is clearly sufficient to show that A; NAN'R has Lebesgue
measure zero.

For A € N'R N A1, we can define a R-chain over X since the critical point is
recurrent. Let us denote the parameter domains of this chain by A;[A].

Let NR® Cc NR N A; be the set of parameters X such that the chain R; over
A has infinitely many central levels, and let NR® be the complementary set in
NRNA;.

By Theorem 4.4, there exists a constant C'(A) > 0, A € N'R N A; such that
mod(Ap, [A] \ An,+1[A]) > C(N)k, where np, — 1 counts the non-central levels of
the chain. If A € N'R°, we actually have linear growth of moduli (without passing
through a subsequence), and by Theorem 3.1, the complex phase-parameter relation
holds.

B.2. Finitely many central cascades. The argument of Lyubich which shows
that almost every real quadratic maps in F is simple applies in the complex setting
and gives:

Lemma B.3. I[NVR*| =0.

Proof. Let NR° be the set of parameters A € NR> such that C(\) > e. If
NR™ has positive Lebesgue measure then we can select € such that NRE also has
positive Lebesgue measure. Let NR(k) C NRE° be the set of parameters such
that the ny level is central. If A € Z*,

NRE (k) 0 A, [N C A7 [N

thus
IWRE (k) N Ap, [N < JAD [N

TThis actually holds for any non-renormalizable polynomial without neutral fixed points.
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Since C'(A) > ¢, there exists § and ko which only depend on € such that if & > ko
then Ay, [A] \ A9, [A] contains a round annuli of moduli k6. This implies that
AD ] < e ™A, |

for some ¢’ depending on §. For each k, the domains A, [N, A € NRX(k) are
either equal or disjoint, and their union has Lebesgue measure at most |A], so
INRX (k)| decays exponentially on k. It follows immediately that

NRSO = mel UnZk NRSO(]C)

has Lebesgue measure zero, contradiction. O

B.3. Area estimate. Let U be a bounded open set of C and Z be a measurable

set of C. Let
|h(ZNU)|

|h(U)]

where h ranges over all quasiconformal homeomorphisms h : U — C with dilatation
bounded by « and such that h(U) is bounded. The following two properties are
immediate:

(1) If VJ C U are disjoint open subsets and Z C UV7 then
e, (Z|U) < supe, (Z|VI)e, (UVI|U).
J

cv(Z|U) = sup

(2) If A, B C U are disjoint open subsets and Z C AU B then
(V) < e, (BIU) + (1= e, (BIU))e, (2]B).
Denote by V,¥[A] the connected components of the preimages of
(Ro—1 NUR )~ (WU _1 [A))-

We reserve the index 0 for the component of 0, so that 0 € V,°. We also reserve the
indexes —1 and 1 for the components of the preimages of U, [A].
Fix some v > 1. Let

en(A) = CW(U|I«|§1V7{C[>\]|U7L[>‘])
an(A) = ¢y (LU UR ).
Lemma B.4. Let A € NR°. Then as < 1.

Proof. Notice that UUY[A] is not dense in U;[A] (otherwise the filled-in Julia set of
px would have to contain U;[)]). Thus, there exists a domain UP[A] C D[A] C Uy[)]
such that U;[A]\D[)] is an annulus, and a non-empty open set E[\] C Uy [A]\UU7 [A].
By the Koebe distortion Lemma, if h : U;[A] = Cis a y-qc map with bounded image
then |h(E[X])| > C|h(U?[A])] for some constant C > 0.

To each d € Q we associate E4[\] = (RI[A])~(E[\]). We conclude that if h :
Uy[A] = C is a y-qc map then |h(UEZ[A])| > Clh(UWEA])], so cW(UWli[)\HUl [A]) <
1.

If |k| > 1 then R2[\]|VF[)] is a diffeomorphism onto U;[A] and we conclude that

&y (WUSINVE D) = e (U IO N

Thus
ey (WU U[A) < €2 + (1 — €2)ey (UWEAULA) < 1.
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Lemma B.5. If A € NR? then €,(\) = 0 exponentially fast.
Proof. Notice that if R, 1[A](V*[\]) = U ,[)] then

mod(Up[A] \ V;E[N]) > mod(U,—1 [N \ U}, [\])/3,

mod(Un—1[A] \ Uj_1[A]) > mod(Un—2[A] \ UR_,[A])/2.

For A € N'RY, mod (U, _s[N]\U2_,[\]) grows linearly in n, so infj, mod (U, [A\]\V;¥[\])
also grows linearly, and this implies exponential decay of supj, c,(V,¥[\]|Un[N]),
which implies exponential decay of €,. a

Lemma B.6. If A € NR" then a()\) = SUP,,>2 n(A) < 1.

Proof. Indeed, if |k| > 1 then RZ[A]|V,¥ |[A] is a diffeomorphism onto U,[A]. In
particular, '
ey (VU5 NIV A < 3 (WUR TR = an ().
Thus .
3 (WU 4y U1 N\ D Vi ) < 0 ()
which implies
nt1(A) < €n(A) + (1 = €n(A))an(A)
and
L= anpi(A) 2 (1 —€en(N)(1 = an(X).
If A € NR®, €,()\) decays exponentially (Lemma B.5) and a»(A) < 1 (Lemma B.4),
so the result follows. O

If NRY has positive measure, there exists & > 0, k > 0 and a positive measure
set X such that for A € X, a(A) < a and for n > k the estimate CPhPal of the
Complex Phase-Parameter relation is valid with a constant smaller than ~.

Let Y D X be an open set such that a|Y| < |X|. For every parameter A € X,

let (M) be the smallest j > k such that A € Z[\] = A]T.j()‘) [A] CY (such aj

exists since NA;[A] = {A}). The resulting collection of parameter domains Z[\],
A € X are either disjoint or equal. To reach a contradiction, it is enough to show
that a|Z[A]| > |X N Z[A]], for in this case a|Y| > |X|. But this is an immediate
consequence of CPhPal, for

X N Z[Al d (o) j
< CW(UW;(A) |U,L(>(3) ) < CW(UUﬁ(A)|UH(A)) < aq,
|Z[A]l

since 7,,(x) # 0 by hypothesis (notice that we even have [MNZ[)]|/|Z[A]| < a, that
is, a definite proportion of parameters in Z[A] have escaping critical point).
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