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Foreword. This note came from an attempt by the author to understand the basis
for the analogy between renormalization and universality in statistical mechanics,
and in one-dimensional dynamics, which ever since the original works of Feigen-
baum [Feig], and Collet and Tresser [CT] has motivated the development of the
latter. We present the evidence that the two fields are related directly. We begin
by discussing the best understood statistical-mechanical model of phase transi-
tions - the Dyson’s Hierarchical model studied by Bleher and Sinai [BS1, BS2| and
others. We then proceed to discuss various constructions of Hamiltonians corre-
sponding to renormalizable unimodal maps, beginning with the works of [VSK],
and [Sull], and show how some recent works in the field may be used to construct
a thermodynamical analogue of the Feigenbaum-Collet-Tresser renormalization.

Date: July 23, 2002.
This note is in a preliminary stage, and should be treated with caution. The author also
requests that you do not circulate it. All comments and suggestions are most welcome.
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1. RENORMALIZATION IN STATISTICAL MECHANICS

1.1. A brief review of phase transitions. The purpose of this section is to
broadly describe the phenomenology of phase transitions in statistical mechanics,
and in this way to set the stage for further discussion. We will not attempt to
give an introduction to the subject of statistical mechanics here, and will instead
refer the reader to one of the numerous textbooks on the subject. We recall that
the central object of study of the theory is the definition and properties of Gibbs
probability distributions. For an infinite set A C R? (most often A is the lattice
Z4, but not in the examples considered in this note), which is invariant under the
action of the symmetry G, the set of spins on A is the collection ® of functions
mapping A to some set A (which for our purposes can be assumed to be finite). A
Hamiltonian H is a G-equivariant functional ® — R, which should be interpreted
as the energy of the spin configuration ¢. In the case when A is finite, the Gibbs
measure /iy 3 defined for every 8 > 0 is the probability distribution on ® given by

o P 0)
(11) ) = S5 o)

pedP

When A is infinite, one chooses a sequence of finite subsets A” — A and considers
the set of measures obtained as weak limits of the expressions of the form (1.1)
with ¢ restricted to A™. Such measures form a convex set, and the extremal points
of this set are called the Gibbs measures. Other quantities described the system
can be introduced using a similar thermodynamical limit procedure. For instance,
the function

£(5) = lim [A"|"log Y _exp(—FH(9))
n—r0oQ
}lan
is the free energy per unit volume which relates the canonical and microcanonical
ensembles.

One possible way to define a phase transition, is as a value of 5 = . for which
the structure of the set of Gibbs distributions changes. There are two kinds of
phase transitions: in the first kind there is a discontinuous change in the thermo-
dynamical parameters defining the system; in the second the change is continuous,
but not smooth. It is the latter that will concern us. The simplest example, the
kind of which occurs in ferromagnetics, would be a system in which for g < (.,
there is a single Gibbs distribution, and for 8 > f. there are two. The phe-
nomenological picture of a phase transition is characterized by the appearance of
critical exponents. Let us describe a typical such picture, following the exposition
in Sinai’s book [Sin]. For the Gibbs distribution p., corresponding to § = ., the
correlation length becomes infinite, and we have

B d(x) - 0(y) =

const
||z — yl]*
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for the two-point correlation function. This implies, in particular, that for a finite
volume V C A

2
E,. (Z qﬁ(x)) ~ const -| V%, for a = a(§).

eV

On the other hand, for 5 < f., the corresponding right-hand side is o(3)|V]. One
then expects that

o(B) ~ const (e — )7 Bjﬁzr 00,

which gives another example of a critical exponent. Also, for 5 > [, the two Gibbs
distributions produce two distinct average values for the spin ¢(z). Denoting them
a1(f) and ay(S) we expect that

la1(B) — aa(B)| ~ const |5 — Ber|“.

The list of critical exponents can be continued, there are also various algebraic
connections between them, which we will not dwell upon. The main goal of under-
standing a phase transition lies in estimating the values of the critical exponents.
To this end a renormalization transformation R is introduced. Without attempt-
ing to give a general definition (indeed, finding an appropriate definition is usually
the crux of the matter!) let us summarize its properties. Th operator R acts on
Hamiltonians ‘H by averaging out some of the degrees of freedom in the system.
It is expected to preserve the sets of Gibbs measures, and the correlation speed &.
On an appropriate Banach manifold of Hamiltonians it is expected to have a fixed
point H, which is hyperbolic. In the simplest scenario, it has a single unstable
eigenvalue A € C \ D, whose value determines all other critical exponents.

To conclude this section let us discuss hierarchical models, which are the main
subject of this note. They are somewhat different from the usual lattice models.
We will not attempt to give a definitive description of such models here, but just
summarize the common features of the models that we will consider. A model is
hierarchical if the symmetry group G acts on A by piecewise-linear transformations
which properly map A into itself. We thus obtain a hierarchy of images A, C
Agg, C ---. It is worth noting that in this context it is reasonable to expect R
to be defined in such a way as to propagate a Hamiltonian from A" to a larger set

UgeGgil (An) .

1.2. Dyson’s Hierarchical models. The principal thermodynamical example
which will concern us in the Dyson’s Hierarchical models. These are well-studied
objects, and their renormalization theory is presented in the books of Sinai [Sin],
and Collet and Eckmann [CE]. Sinai’s book, in particular, gives a clear and concise
account of the theory, to which we do not have anything to add, therefore in this
section we will simply recap its main points for future reference. The main results
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FIGURE 1

in the study of Dyson’s Hierarchical models were obtained by Bleher and Sinai
[BS1, BS2], these papers will serve as our general references.
Let us denote A™ the set of binary sequences of length n

A" = {(z1, 29, ..., 2,)| 2; € {0,1}}.

This set is naturally partitioned in two, AT™! = (0, 7y, ..., 7,) and AT™! = (1, 1y, ...
and more generally, for every k£ < n and every sequence (yi,...,yx) € {0,1}* we
can define

AZ;.I?.,yk = {(yb <oy Yky Te41y - - - 7xn)| T; € {07 1}}
to partition A™ into 2" * subsets of equal size. The space of spins on A" is ®,, = {¢ :
A" — {—1,1}}. A Dyson’s Hierarchical model is a Hamiltonial H" : &, — Rs,.
To define it we need the following set of data: ny < n; a “start-up” Hamiltonial
Huo © Pny — Rsg, and a number ¢ € (1,2). The functional H" is then defined
inductively by the following formula:

(1.2)  H(dlan) = H" (| pn-1) + H T (Dlpn1) +

Cn

5om [Scear (O] -

We shall denote the triple (ng, H,,,c) = ©, and sometimes write Hg to denote
the Dyson’s Hamiltonian given by this data. It is natural to interpret the formula
(1.2) as the definition of a renormalization transformation

. -1
Riygson : HI5h — HE.

Given a Hamiltonian H" and a value § > 0 we obtain a probability measure
tyn g on @, given by

exp[—BH"(¢)]
i) = expl—BH (§)]
For an even integer ¢t € [—2",2"] let us define the function f,(¢; 5) as the probablity
that the sum X,cxn¢(y) takes the value t. Some calculations lead to the following
recurrent relations:



HIERARCHICAL MODELS 5

2n—1

(13)  fultB) = Pu(B) exp(B272) S fuia(tis B)fur(t — 13 B),

tj=—2n-1

where P,(() is a normalizing factor. Further considerations depend on the fol-
lowing heuristic understanding of the behaviour of the model near the critical f,,.
For f < [, we expect that the typical values of the sum X,can¢(y) are of order
t ~ 272 For such ¢ the multiple exp(3c"272"t?) — 1 as n — oo, and the equation
(1.3) for large n behaves like the convolution.

On the other hand, for 5 > f.,, the typical values of t become of order n, and
the multiple exp(3c"272"t?) becomes dominating. We then assume that at £,
the typical values of ¢ are such that ¢"272"¢? ~ 1. If that is so, it is natural to
introduce a new variable z by t = 22"¢~™? and expect that z ~ 1 for 8 = B,
Setting g, (z; 8) = fu(22"c™™/%; )27+ ¢™"/2 | we have

2 —n—
gn(z; 6) = Ln(ﬂ)eﬂz Z gn—l(ZIQ 6)911—1(22; 5)Cn/22 nl
(71t+22)/2=2/Vc
Our assumptions lead us to expect that g,(z; ) has a limit g(z;3) as n — oo.
Passing to n — oo in the above equation and dropping the normalizing factor we
obtain the following integral equation for g(z; 3):

(1.4) g(z: ) = / " S Ao — i B

Note that if g(z; fy) is a solution of (1.4) for some 3y > 0, then

L B B
g(zaﬂ)—g<\/; ;50) \/;

Hence we may fix [y as convenient, and solve the integral equation to find a
function of z.

z V4

Solving the integral equation. It is natural at this point to interpret the
right side of the equation (1.4) as an integral operator R g(z; ) and also call it a
renormalization transformation. Bleher and Sinai observe, that for every ¢ € (1,2)
the operator R, has a Gaussian fixed point

90 9) = | 2 explan(5)22] where au(5) = e/ (2~ )

They then show that in an appropriate Hilbert space of functions, for ¢ € (\/5, 2)
this fixed point is hyperbolic with a single unstable eigenvalue A = 2/¢ > 1. For
¢ < /2 other unstable eigenvalues appear for the linearization of Ry, at g\,
However, for ¢ small enough they are able to show for ¢ = V2 — € the existence
of a different fixed point g.(z; §) with a single unstable eigenvalue. The numerical
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evidence suggests that such a solution exists for every ¢ € (1,2), but no proof of
that exists as of yet.

For a given ny € N the space of real-valued functionals on ®,, is a real vector
space; the space of start-up Hamiltonians "™ with the property that H™(¢) =
H™(—¢) is a closed subset of this space.

Definition 1.1. We will say that a fixed point g(z; #) is thermodynamically stable
if there exists ng and an open set U of start-up Hamiltonians H™ such that the
following holds.

e For each ™ € U there exists S (H") such that the probability distribu-
tion g,(z; Ber) weakly converges to ¢(z; Be;) as n — o0.
e For 8 < [, there exists a function h(f) such that as n — oo

1 t?
fu(t; B) ~ Wexp {_W}

for ¢ such that [t27"/2| < A for every A. There exists v depending only on
g(z; B) such that h(B) ~ const (B, — B)~7 for B 7 Bey.

e For f > [ there exists a function m(f5) such that the average spint
27" ) ean @(2) converges to £m(f3) as n — oo in probability generated by
the Hamiltonian SH"™. Moreover, there exists w depending only on ¢(z; ()
such that m(f) ~ const |5 — Ber|”.

One expects that for ¢ € (v/2, 2) the Gaussian fixed point ¢(¥) is thermodynamically
stable. This is indeed so, as was shown by Bleher and Sinai:

Theorem 1.1. For every 5((;2) >0,€>0, c€ (v2,2) there exists ng € N and an
open set U in the space of start-up Hamiltonians H™ such that for every H™ € U
there exists Be(H™) such that |Ber — 522)|; and gn(z; Ber) converges weakly to the
Gaussian distribution. The Gaussian distribution is thermodynamaically stable with
respect to the start-up Hamiltonians in the set U.

2. UNIMODAL MAPS

2.1. A review of the Feigenbaum Renormalization Theory after Sullivan,
McMullen, and Lyubich. We briefly recall here the main results and conjec-
tures of the celebrated Feigenbaum renormalization theory of unimodal maps. We
will only discuss the case of period-doublings, for a more detailed exposition in-
cluding a review of the general case we refer the reader to Lyubich’s paper [Lyul].

Let us fix v > 1. Consider an even unimodal map f : [-1,1] — [-1,1],
f(=1) = f(1) = —1. We will require that f be C? smooth, except at the critical
point. The latter will be further assumed to be of order v, that is f(x) = ¢(|z|")
near 0, where v > 1, and ¢ is a local diffeomorphism.
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Definition 2.1. The map f is Feigenbaum-Collet-Tresser (FCT) renormalizable
if the following holds: the critical value f(0) lies above the diagonal 2 = y, which
means, in particular, that f has a fixed point py = 1/a; € (0,1); and the iterate
f? maps the interval [—p;, py] into itself.

If f is FCT renormalizable, then the rescaled second iterate

_Oéff © f(—.’L‘/Oéf) : [_17 1] - [_17 1]
is again a unimodal map, we shall call it the FCT renormalization of f, and denote

We shall say that a map f is of Feigenbaum combinatorial type if the above
procedure may be repeated indefinitely.

Feigenbaum-Collet-Tresser renormalization hyperbolicity conjecture. For
every v > 1 there exists a Banach manifold B, of unimodal maps such that Rrcr
is a smooth mapping of an open subset of B, into B,. The mapping Rrcr has a
fixed point f, € B, with the following hyperbolicity property: Dy Rpcr is a com-
pact operator with a single eigenvalue 6, > 0 outside the closed unit disk, and the
rest of the spectrum inside D. The stable manifold of f, consists of unimodal maps
with Feigenbaum combinatorics, and for every f with Feigenbaum combinatorics
and the critical point of order -,

rerf = fy

in the uniform topology.
The eigenvalue 9, is called the Feigenbaum exponent, and the limit

o= lm arge,s

is called the Feigenbaum scaling factor.

The real renormalization theory. The main achievement of this theory is
Lanford’s computer-assisted proof [Lan] of the existence of a fixed point of Rpcr
for v = 2 with the right hyperbolicity properties. Without the assistance of a
computer, it has been shown that the renormalizations {R}.,f} belong to a
compact set in the C! topology. In particular, there exists a bound C' = C(v) > 1
such that 1/C < 1/a, < C for ¢ = Ry for all n sufficiently large. As a
consequence, the w-limit set of the critical point of f is a dyadic Cantor set with
bounded geometry.

The complex renormalization theory. This theory has been developed by
Sullivan [Sul2, MvS], and later by McMullen [McM], and Lyubich [Lyul, Lyu2]. It
applies when v is an even integer, we will only discuss the case v = 2. Denote Ap
the Banach manifold of analytic maps f defined in a real-symmetric topological
disk D C C with the sup norm, and such that 0 is a simple critical point of f.
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Renormalization hyperbolicity theorem. There exists a unique fixed point
f« of Rper with v = 2. For every unimodal f with v = 2 and Feigenbaum
combinatorics, R%-rf — f. in the C' topology. The mapping f, is an analytic
mapping of a domain D C C which is quadratic-like (that is f, : D — f.(D)
is a double-covering, branched at 0, and D & f.(D)). There is an open subset
QL C Ap which consists of quadratic-like maps, such that Rpcr extends to an
analytic operator of an open neighborhood of f, in QL to QL, such that Dy Rrcr
has the right hyperbolicity properties.

2.2. Vul-Sinai-Khanin Hamiltonians. The paper of Vul, Sinai, and Khanin
[VSK] ! offered a direct link between the Feigenbaum renormalization and the
world of statistical mechanics. We will take it as the departure point for our
investigation, and will briefly recap the main points of the construction below.
We will begin by fixing an even unimodal mapping f : [-1,1] — [-1,1] with
Feigenbaum combinatorics, with a critical exponent v > 1 and will assume that
the Feigenbaum-Collet-Tresser Hyperbolicity Conjecture holds for . That is, our
statements will be founded for v = 2¢, ¢ € N, and should be treated as conjectures
for other values of 7. We note that the authors of [VSK] actually take f to
be a Feigenbaum renormalization fixed point, however, such a restriction is not
necessary for their construction.

Let us begin by introducing some supporting notation. We will denote A(()n) >

0 the symmetric renormalization interval of level n, that is, A(()l) = [—ps, 0yl

FAYy = AW and (Al = lps, f(0)] C AV, The cycle of intervals of level
n will be denoted A = f5(AM). The invariant Cantor set of f is then the

intersection
2n—1
_ _ (n)
Cf —wf(()) = m U Akn .
n>1 k=0
For an integer number k£ > 0 let us also denote

Bin(k) = eper€9- - €, 1, € € {0,1}
its binary extension, k = €y +€; -2+ -+ + €,_1 - 2" L. We obviously have:
Proposition 2.1. Suppose A A?T:)l. IfBin(k) = €pe1€2 -+ - €51, then Bin(m) =
€p€1€2 * - €.

In view of the previous proposition, we have a well-defined one-to-one map ¥ :
T > €€y - - €, -+ - from Cy to the space of one-sided binary sequences Yy 13.

Proposition 2.2. The map V conjugates the action of f to the adding one trans-
formation
Addy :eger €y €€ €y - - - + 100000 - - -,

'In Russian the order of the names becomes alphabetic: Bya, Cunan, Xanus.
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Let us define the lattices A = N and A" = {1,...,n}, and the spaces of spins
o ={¢p: AN — {01}}, &, = {¢ : A" — {0,1}}. The Vul-Sinai-Khanin
Hamiltonian which we define below is a functional Hysg : ® — Ryy. Let

Aggn,kﬂ C Aﬁj};jlk,m for 0 < p < 2%, The map ¥ carries them respectively
into
n—k n—~k

— —
1000---0efe ... el and 1000 - - -0 ke ... 2

A .
log (h EUk(€1,€2,...,€k).

noindent Let

|Ap/.2n—k—1+1
Proposition 2.3. For a fived sequence €', €2, ... €* the function Ul (!, €2, ..., €")
has a limit as n — oo which we denote Uy(€', €2, ..., e¥). In fact, if o = lim, o0 |ATY]/| AT
then
(2.1) U (', 2. ) — Up(el, €, ..., éF)| < const -a=2("R a2k,
Moreover, the functions Uy (e', €2, ..., €*) converge to a limit as k — oo, which will
be denoted U(e', €%,...,€",...), and
(2.2) U(e', ... ¢", ) = Ui(e, é,...,€")| < const -(2a7) .
We have a natural identification of ® with ¥ ;. In view of this, the authors of
[VSK] proposed to view the function U(e!,€?,... €, ...) as the interaction po-

tential of the first coordinate with the remaining coordinates. They have thus
obtained a sequence of Hamiltonians H{,¢x : ®,, — R given by

Hyusr(€r,. o €,) ==X Ules, €5.1,...,€2,1,0,...,0,...).

In view of (2.2) the Hamiltonian Hy gk : & — R>( may be naturally defined as the
limit of the above sequence of finite Hamiltonians. Observe that the Feigenbaum-
Collet-Tresser renormalization hyperbolicity implies that

Proposition 2.4. The values of the Hamiltonians HY, g, and Hy sk do not depend
on the choice of a particular mapping f, but only on its universality class, that is,
the value of the critical exponent v > 0.

This property of Hy sk makes it a convenient tool of the study of the geometric
properties of Cy, as will be seen below. However, the independence from the choice
of f makes Hy sk a poor candidate for defining a statistical-mechanical analogue
of the Feigenbaum renormalization. We will dwell on the later point further, for
the moment, let us proceed with describing the results of [VSK].

The following estimate of [VSK] is fundamental for their analysis: there exists a
constant C' > 1 such that for every g > 0

(n)8
Vsk | S Cn
exp{—BHV g (€0, €n-1)}

(2.3) c1t<
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where Bin(k) = ¢€y...€,_1, and ¢y = 1. The free energy of Hy i is, by definition,
the following limit

1
f(8) = lim —log[Xe,, ., exp{AEi_U(€s, €5-1,...,€2,1,0,0,...,0,...)}].

n—oo 1,

This limit is seen to exist, and to produce a smooth and monotonously decreasing
function with f(0) = log2, limg_,, f() = —oo. The unique value of 5y > 0 for
which f(5y) = 0 corresponds to a phase transition. For this value of § the sum
in the square brackets is bounded by above and below by two positive constants,
which in conjunction with (2.3) can be shown to imply that

Hdim(C;) = .

Sullivan’s observation on C!'**-self-similar Cantor sets. The existence of
the limiting scaling ratios U(e!, €2, ..., €",...) may be seen at this point as a prop-
erty intrinsic to the Feigenbaum functional equation. However, their nature is more
general as seen from the work of Sullivan [Sull]. Firstly, let g be a fixed point of
the Feigenbaum renormalization transformation with the critical exponent v, set

—aT xEA(l)
2.4 = ’ 0
2.4 o={ Zom, S Eah

where « is the Feigenbaum scaling factor, as before. The function o(z) will play
a significant role in what follows, at the moment, however, let us simply note
that it is smooth, has no critical points, and leaves C, invariant. The reader is
invited to verify the last property, which is a ready consequence of the Feigen-
baum functional equation. More specifically, the function o(x) shifts the binary
sequences in X ;, parametrizing the points in Cy to the left, thus transforming
(e!,€%,...) into (€%,€%,...). Sullivan then asks a question, when would the shift
operation on a Cantor set be realized as a smooth mapping. The answer comes
in the form of a theorem. Before formulating it, let us give several definitions.
Let us consider a general binary Cantor set C which is the intersection of nested
intervals My,>; Uinzgl Afcn) indexed in such a way that Proposition 2.1 holds. Recall
that the Cantor set C has bounded geometry if for every finite binary sequence
wy, = {€'}7, the triple of scaling ratios

g |A€n6n—l...el| |A€n6n—l...el| |A€n6n—l,,,€1|
n(wn) =
|A€n€n71,,,€11| ’ |A€n€n71,,,€10| ’ |G€n€n71,,,€1|

is bounded from above and below by positive constants independent of w,, and n,
where Gnen—1...1 is the middle gap between the two sub-intervals of A nen-1.. 1. For
B € (0,1] let C*# denote the class of smooth local diffeomorphisms with 3-Holder
continuous derivatives. Change of coordinates by such diffeomorphisms have the
following effect on the scaling ratios:
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Proposition 2.5. Suppose C has bounded geometry. Then for every 3 > 0, the
values of the scaling ratios g,(w,) become independent of C**P-coordinate changes
exponentially fast in n.

Let us say that the set of scaling functions {g,(e', € €, ..., €")} for the Cantor
set C is Holder continuous if the value of each scaling function is determined
exponentially fast in k£ by the first £ arguments. In particular, in this case, we have
limiting scaling functions g(e!, €?,...,€*,...) associated to every sequence in ¥ ;.
Moreover, if C has bounded geometry, Proposition 2.5 implies that these scaling
functions are independent of C'*# coordinate changes, and thus only depend on

the choice of the C1*# differentialble structure on the Cantor set.

Theorem 2.6. Suppose a bounded geometry Cantor set C is such that its scaling
functions are Holder continuous. Then the action of the binary shift on the Cantor
set is realized as a CYP-expanding map in some smooth metric.

Conwversely, if the shift on the Cantor set is C'*P smooth in a differentiable
structure on the interval in which the geometry of the Cantor set is bounded, then
its scaling functions are Holder continuous, and, in particular, the limiting scaling
functions {g(e', €%, €3,...)} exist for every infinite sequence (e',€*,...) € Xg ;.

Since the functions U(e!, €?,...,¢",...) introduced in [VSK] are nothing but logs

of particular limiting scaling functions, the Proposition 2.3 is a corollary of the
above theorem.

“Naive” Hamiltonians. The above considerations, in particular, the estimate
(2.3) suggest a different approach in associating Hamiltonians to a unimodal map
f with the Feigenbaum combinatorics. We may define HR (f) : &, — Ry simply
by

HT]]\//'(f)(ely .. .,Gk) = _1Og|Al(gn)|7

where Bin(k) = €1e3---¢,. Such “naive” approach has the advantage that the
Hamiltonians H'%(f) depend on the mapping f, and thus are eligible candidates
for defining renormalization. We shall see in the next section, that more complex
definitions are required, however, this is a step in the correct direction. For the
moment, let us make note, that the estimate (2.3) may be shown to imply that
denoting [ the critical values of 3 for HR} (f), we have i — By = Hdim(Cy).
However, the Hamiltonians H% (f) themselves do not converge to any particular
limit.

2.3. Martens’ result in thermodynamical terms. As we shall see in this
section, a thermodynamical definition for renormalization of unimodal maps has
already appeared in the literature. We will present an interpretation of a paper
of Martens [Mar|, which ties the Feigenbaum-Collet-Tresser Renormalization op-
erator with a hierarchical renormalization transformation acting on Hamiltonians
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related to the ones considered above. The main result of Martens’ work is the
following theorem:

Theorem 2.7. For every v > 1, every n > 2 and every permutation T € S,
there exists an even unimodal map f which is renormalizable with period n, and
combinatorial type T, and whose critical point 0 has the order .

While uniqueness of f is not shown, an upshot of the argument is that f belongs
to a very restrictive class of maps (the so-called Epstein class). H. Epstein has
obtained the same results by a different method in [Ep]. Of main interest to us
will be not the theorem itself, but the rather remarkable method which Martens
used to prove it. We will therefore confine ourselves exclusively to the case of the
Feigenbaum combinatorics.

Let us begin by fixing v > 1, and denoting ¢(z) : [-1,1] — [—1,1] for each
t € [0, 1] the unimodal mapping

q(x) = —2t|x|” + 2t — 1.

For a closed oriented interval I = [a,b] C R let us denote ¢; : R — R the affine

orientation preserving mapping which transforms [—1,1] into I. An elementary
property of the folding mappings ¢; which is useful to note is the following:

Proposition 2.8. Let J = [—p,p| be a proper subinterval of [—1,1|, and I =
lq:(p), l] such that 1 > q;(0) =2t — 1. Then there exists s = s(l,p) such that

(Ll)il OqlyoLy =qs.

Let f = ¢ o ¢ be an even infinitely renormalizable unimodal mapping of the
Feigenbaum combinatorial type, whose critical point has the order 7. As before,
let us denote {A;")}inzgl the cycle of renormalization intervals of level n. The
standard considerations of one-dimensional dynamics (see e.g. [MvS]) imply that
the restrictions of f to these intervals are approximated geometrically fast in n
by restrictions of ¢; in the smooth metric. This will motivate to some extent the
following definition.

Definition 2.2. For every n € N a Martens’ Hamiltonian of level n is a map-
ping HY., @ ®, — [—1,1]* which corresponds to every finite binary sequence
{€0,€1,...,€,_1} a closed interval

Hirar (€05 €15 - oy €n1 = Deyey e, C [—1,1] \ {0}

Similarly, a Martens’ Hamiltonian My, : ® — [—1, 1] corresponds an interval to
each infinite binary sequence. An extended Martens’ Hamiltonian Hp,, is a pair
(HYy. t) with ¢ € [0, 1].

Let us denote Mar” the set ([—1,0)2 U (0, 1])" viewed as the collection of Martens’
Hamiltonians of level n. The extended Hamiltonians then correspond to points in
Mar" U [0,1]. For the moment, we shall view them simply as topological spaces,
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whose topology in a natural way comes from the topology of R. For an infinitely
renormalizable mapping f of Feigenbaum type we obtain a sequence of Martens’
Hamiltonians H},, . (f) in an obvious fashion, taking as the intervals A" ., the
elements of the cycle of renormalization of level n, indexed as before. To define
an extended Hamiltonian H2,, (f), we set H2 (f) = (Hi..(f), s) where

(LAgn))_l o f|A(()O) SONG (0) = ¢s(0).
Before proceeding any further, let us note that there is a natural way of associating
a naive Hamiltonian H7% (f) to My, (f) by a forgetful transformation ¢ which
replaces each of the intervals Afcn) with its length.
More importantly, there is also a way to recover a unimodal map from an extended

Martens’ Hamiltonian. To that end, let us define a composition operation Comp” :
Nar > ¢ € Diff([—1,1]) as follows.

Definition 2.3. The composition
27=0 mod 2"

Comp™ (M) = | ((wian) "o @la, 0 ta,)
k=1

For an extended Martens Hamiltonian H2;, = (H,.,t) we get a unimodal map-
pig

fan = Comp" (Hiyy) 0 @i : [—1,1] — [—1,1].
These definitions are natural in the following sense:

Proposition 2.9. Let g = ¢4, be the map in the folding family with the Feigenbaum
combinatorics. For every n € N we have

f Hyorle) = Ricr(9)-

Of course, the composition operation behaves well with respect to the usual norm

on Mar". However, we will be interested also in making sense out of com-

posing infinite Hamiltonians. To that end, a different notion of distance needs

to be introduced. Let us recall that the nonlinearity of a C2-diffeomorphism

¢:[-1,1] = [-1,1] is

2

n(6)@) = 20

D¢(x)

This map is a bijection between Diff% ([—1,1]) and the space of continuous func-
tions C'([—1,1]), the inverse being given by

f““ el )y g ¢

f—11 el W)y g ¢

We will denote || - || the norm on Diff2 which is the pull-back of the sup-norm
on C'([—1,1]) under this bijection. Suppose H}., : {€0y- - €n1} = Degoe,_, and

= D|ln D¢(z)|.

¢(n)(z) = 2
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HYpr - {€0s---s€n1} — AEO...En_l are two Martens’ Hamiltonians. We will define
a pseudo-distance between them as

—_—
n

diSt( nMar’ Mar) = Z ||(L11t(Ak))_1 ° Qt|A,€ ola, — (th(Ak))_l © qt|Ak o LAkH'
k

It is clear that distinct Hamiltonians may become indistinguishable with respect
to dist. In order to understand the situation better, let us note that

w2 (@) = (7 — 1)

e
Hence, the nonlinearity of each of the terms (iq,(a,)) " © ¢¢|a, © ta, for a Martens’
Hamiltonian is an expression of the form d/(ax + b). We may thus denote Mar?
the space of triples a, b, d > 0 such that b — a? > 0, and naturally identify

U : Mar"/dist — Mar?.

The distance induced by dist on Mar” is seen to be equivalent to the L!-distance
on R3 on compact sets. Let us endow the set Mar with the same notion of
distance. Martens shows then that the composition operator Comp may be defined
for bounded sets in Mar as limits of finite compositions. Further:

Proposition 2.10. The composition operation Comp s continuous with respect
to the above distance. Moreover, it is Lipschitz on every bounded set.

Remark 2.1. It is appropriate to note here that there are other choices of distance
on Mar” which allow the composition to be extended to the case of infinitely many
maps. One example would be to use the weigthed L'-norm

||HnMar||ﬂ:Z Z Pn|«’13|, f0rp> 1.

k z€0Ay
Uniform boundedness in this norm would imply that the intervals shrink in size

geometrically fast — while such an approach would be essentially equivalent to
what we did above, it may still be technically useful.

Renormalization. Let us say that an extended Martens’ Hamiltonian 7:[”Mar =
(Htar, t) is renormalizable if the unimodal map Jn isrenormalizable with period
2 in the usual sense. In this case, f; ~—has a pair of periodic intervals Jy =
[—p,p] 2 0 and J; whose boundaries touch at a repelling fixed point p > 0.

Definition 2.4. The renormalization of a renormalizable extended Martens’ Hamil-
tonian HY,,, = (Hi., 1) is a pair RHY,, = (HitL £) defined as follows.

—_—
e The intervals A,,..., = Hy;l are given by
-1

Agrey = H (LQt(Ak))_l o qtla, ©ta, Je,-

k>ep-€p—1
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e The value of £ is the critical value of the folding map ¢; such that
RFCTf”,QnM . COIHanrl(HnMZi) O g;-

This definition is seen to naturally extend to the infinite Hamiltonians in Mar.

FIGURE 2

Proposition 2.11. By virtue of the construction, RFCTfﬁ% = fm-l;;[

Proof of the existence of a fixed point. The reader should see the virtue of
using Martens’ Hamiltonians to represent unimodal maps at this stage. While gen-
eral unimodal mappings form an unwieldy infinite-dimensional real Banach space,
those represented by Martens’ Hamiltonians of level n are an open subset of RF!
The only obstacle to defining finite-dimensional approximation to the renormal-
ization is that a Hamiltonian of level n is transformed by R into a Hamiltonian of
level n+1. A way to circumvent it is the following. Let us define a Martens’ tree
of depth k as a sequence 7% = {HY, . }*_,, k € NU {oo} and an extended tree as
a pair (7%,t). Renormalization naturally acts on extended trees of infinite depth,
and transforms trees of depth & into trees of depth £+ 1. A truncation of level
[ < k is the tree trunc'(7T*) = {Hy.,.}7_,. Let us equip the set of trees with the
same notion of distance, by summing up the distances between the levels. As seen
above, modulo this distance, the space of trees may be identified with an open set
in a real Banach space B.

Remark 2.2. Let us note that using the norm || - ||, from Remark 2.1 to define
the L' norm on trees has the following geometric advantage. If p is sufficiently
large, and 7 is the infinite tree corresponding to an infinitely renormalizable map,
then all trees in its sufficiently small neighborhood may be interpreted as dyadic
Cantor sets with bounded geometry.
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Martens proved the following theorem:
Theorem 2.12. For every k > 1 there exists an extended tree (T*,ty) such that
truncf (R(T", tx)) = (T*, ).

Moreover, there is an infinite depth tree T = {H?%,,,}, and a subsequence ny, such
that

tn, — t, and dist(7"*, trunc™ (7°°)) — 0.
Hence, the extended infinite tree (T, t) is a fized point of R.

As a consequence, the unimodal map f = lim f(,H:/[k PRUE! fixed point of Rpcr.
At the heart of the argument is the following topological statement *:

Lemma 2.13 (“Bottom goes down, top goes up”). Suppose D,, is a closed
n-dimensional ball, and let F' : D, x [0,1] — D, x R be a continuous map. If

F(D, x{0}) € D, x (=00,0) and F(D, x {1}) C D,, x (1,00),
then F has a fized point in D, x [0, 1].

t(T)

0 Bounded open set B

FIGURE 3

It is not difficult to understand where the bottom goes down, top goes up condition
comes into play. If we denote ¢_(7%), ¢,(7*) the minimal and the maximal values
of ¢ for which (7*,¢) is renormalizable, then (7*,¢) is renormalizable for all ¢ €
[t (T*),t.(T")], and the considerations of maximality imply that this interval of
values is transformed by R into [—1, 1]. To show that there is an open and bounded
set of trees which is mapped inside itself, Martens applies a version of real a priori

2Martens attributes the idea to Dennis Sullivan
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bounds to get an a priori bound on the nonlinearity of renormalized maps. The
same bounds also imply the existence of a convergent subsequence of 7% with the
desired property. We will postpone our comments on the proof and on the method
till the final chapter. At this point, let us note that we now have a new object to
study - a termodynamical renormalization operator which is functorially related
to the Feigenbaum-Collet-Tresser renormalization. As we shall see in the next
section, there has been a previous instance when such a renormalization appeared
in the literature.

2.4. Geometric interpretation of renormalization: a Perron—Frobenius
type operator. We will discuss in this section the results of Jiang, Morita, and
Sullivan from [JMS]. The central objective of [JMS] was to attempt to justify the
existence of an expanding eigenvalue for the Feigenbaum-Collet-Tresser renormal-
ization operator at a fixed point.

Let us fix vy =2/, £ € N, and let g(x) denote the period doubling fixed point with
critical point of order 7. Being an analytic mapping, ¢g(x) extends to an open
topological disk U of [—1,1]. Let o(x) be the expanding mapping (2.4). Denote
Jo = [¢%(0), —¢*(0)] and J; = g(J;) = [¢*(0),g(0)]. Using the expansiveness of
o, we may select a real-symmetric topological disk Q C g(U), 2 3 [-1, 1], small
enough so that Jy U J; € (2, and there exist disjoint open neighborhoods €2; 3 J;
such that 2; € €2, and o : ; — €2 is a conformal mapping. Let us further denote
by V the connected component of g~*(€2) which contains the origin. Denote Ay the
Banach space of analytic functions on V' continuous up to the boundary equipped
with the uniform norm. Let By C Ay be the Banach manifold of unimodal
mappings f with a single critical point at the origin of order v which have analytic
extensions to V' continuous up to the boundary, and such that

£2(0) > =f£2(0) > f4(0) > 0 > f*(0).

Let Vg denote the space of real-symmetric analytic vector fields on € with a
continuous extension to the boundary, again with a uniform norm. The following
proposition is straightforward:

Proposition 2.14. The mapping g. from Vg into T,By defined by
g:(v)(z) = v(g(x)) for v € Q and v € V§
18 an isomorphism.

Definition 2.5. The Perron-Frobenius type operator £, : Vs — Vg is defined as
(Lov)(2) = Z o' (w)v(w).
weo~1(z)

The next statement relates the Perron-Frobenius type operator £, with the Feigenbaum-
Collet-Tresser renormalization:
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FIGURE 4

Proposition 2.15. The operators L, and DyRpcr (the latter viewed as an oper-
ator on T,By ) have the same eigenvalues except for the value 1. More precisely,

LO’ - (g*)_l o DgRFC’T O g« + €1,

where ey 1s a projection onto the eigenspace of eigenvalue one generated by the
vector (g.) ' (¢'()z — g()).

As a remark, the authors of [JMS] note that for every m € N the vector

Vom—t1 = (9:) 7' (@)™ = (g(2))*™ "] € V§

is an eigenvector of £, with eigenvalue Ay, | = a~?m=2),

The statement of the last proposition should not come as a surprise after the results
of the previous sections. Indeed, according to the Remark 2.2, Martens’ trees in
a small neighborhood of the tree of ¢ in an appropriate norm may be viewed
as Cantor sets with bounded geometry. Since o acts as a shift on the Cantor
set Cy, the operator L, is naturally interpreted as a linearization of Martens’
renormalization at the fixed point in a suitable smooth structure. We thus have
a geometric interpretation for the statistical-mechanical renormalization of the
previous section given by the embeddig of the invariant Cantor set in the plane.
Since the operator L, is not positive, the Ruelle-Perron-Frobenius theory does not
apply to show the existence of the single expanding eigenvalue. The main result
of [JMS] is the following:

Theorem 2.16. Suppose g : [—1,1] — [—1,1] is a concave function. Then L, has
an eigenvalue A\ > 1.

We remark that the assumption of concavity is supported by the numerical exper-
iments for v = 2, and is false if v is sufficiently large.
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Remark on critical circle maps. We would like to remark here that a similar
construction may be carried out for the commuting pair (1, §) which is the golden-
mean fixed point for the renormalization of critical circle maps. Namely, we may
define an expanding map

| —ax, x € [£(0),&0n(0)]
@) ={ Zakle) s < 001 = 0)
where the scaling factor @ = —1/£(0). In this case, the operator £, is negative,
/n_\\ -
£(0) o;onﬁ) 1=N(0) &0 0 &n(0 n(0)
g c
FIGURE 5

and the Ruelle-Perron-Frobenius theory applies to establish the existence of a
single expanding eigenvalue. This aspect of the renormalization theory of critical
circle maps, however, is quite trivial. On the other hand, constructing a Banach
manifold in which the renormalization is an analytic operator is highly nontrivial.
One may hope therefore that there is a possibility for an alternative approach to
the hyperbolicity problem in the renormalization theory of critical circle maps —
the study of the spectrum of a linear operator £, in a real Banch space.

2.5. Concluding remarks.

Comparison of the two cases. Let us summarize the obvious similarities be-
tween the two examples considered in this note: the Dyson’s Hierarchical Hamil-
tonians, and the Hamiltonians for the unimodal maps. In both cases one begins by
considering an action of a renormalization transformation acting on Hamiltonians:
in the first instance it is Rpygon, in the second, the Martens’ renormalization R.
For a fixed point of such a renormalization, the self-similarity produces functional
equations for the thermodynamical parameters of the system (in the first case,
g(z; f), in the second, the unimodal map f). For the Dyson’s models it is the
equation (1.4), for the unimodal maps, the FCT fucntional equation. The equa-
tion is then interpreted as a renormalization operator acting on an appropriate
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function space. We may call these two approaches to renormalization a micro-
scopic and a macroscopic ones. In both instances the macroscopic renormalization
is studied by analytic methods: the properties of the Gauss integral operator in
the first, the Sullivan-McMullen-Lyubich theory in the second. For the unimodal
maps there is now Martens’ proof of the existence of a fixed point for the micro-
scopic renormalization, as well as the Jiang-Morita-Sullivan approach to proving
its hyperbolicity. To our knowledge, such microscopic approach is missing in the
Dyson’s case.

Dyson’s Hierarchical models Unimodal maps
Dyson’s Hamiltonian He Martens’ Hamiltonian Hyga,
Microscopic renormalization Rpyson Microscopic renormalization R
Martens’ proof of the existence of
? fixed point;
JMS analysis of hyperbolicity
Distribution g(z; ) Unimodal map f
Rind (52 B) = ] 9(5 + w:0)g(5 — whdu| Recrlf) = —asf o [(—a]ay)
Bleher-Sinai analysis of Gauss Sullivan-McMullen-Lyubich theory
integral operator

Some open problems. Several questions on hierarchical models were posed in
Sinai’s book [Sin]. The main open problem is:

e Eixtend the existence of the hyperbolic fixed point of R;,; with a single
unstable eigenvalue to the whole interval ¢ € (1,v/2).

In view of our analysis we will add:

e Find a critical fixed point of the microscopic renormalization. In a forth-
coming article with M. Benedicks we will show how such a problem may
be attacked with Martens’ approach to renormalization.

In the case of the dynamical renormalization it is natural to pose the following
problems:

e Develop a complete hyperbolic picture for the Martens’ renormalization.
A possible approach to this is given by the study of the Perron-Frobenius
type operator of [JMS].

e Use the same approach, as indicated in the previous section, to construct
an alternative renormalization theory for critical circle maps.

Finally, we would like to speculate that the microscopic approach to renormaliza-

tion could prove useful in other contexts, both statistical-mechanical, and dynam-
ical (such as the conservative mappings of T?, for instance).
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