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ADIABATIC LIMITS AND SPECTRAL SEQUENCES
FOR RIEMANNIAN FOLIATIONS

J.A. ALvAREZ LOPEZ AND Y.A. KORDYUKOV

Abstract

For general Riemannian foliations, spectral asymptotics of the Lapla-
cian is studied when the metric on the ambient manifold is blown
up in directions normal to the leaves (adiabatic limit). The number
of “small” eigenvalues is given in terms of the differentiable spec-
tral sequence of the foliation. The asymptotics of the corresponding
eigenforms also leads to a Hodge theoretic description of this spec-
tral sequence. This is an extension of results of Mazzeo-Melrose and
R. Forman.

1 Introduction and Main Results

Let F be a C* foliation on a closed Riemannian manifold (M, g), and let
TF C TM denote the subbundle of vectors tangent to the leaves. Then the
metric g can be written as an orthogonal sum, g = g, @ gr, with respect
to the decomposition TM = TFL @& TF; i.e., g1, gr are the restrictions
of g to TFL, TF, respectively. By introducing a parameter h > 0, we can
define a family of metrics

gn=h"?g91 S gr. (1.1)
The “limit” of the Riemannian manifolds (M, g) as h | 0 is what is known
as the adiabatic limit. Observe that, in a foliation chart, the plaques get
further from each other as A | 0. This form of the adiabatic limit was
introduced by E. Witten in [W] for Riemannian bundles over the circle.
Witten investigated the limit of the eta invariant of the Dirac operator.
This question was also considered in [BiF1,2] and [C2], and extended to
general Riemannian bundles in [BiC] and [D1].
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New properties of adiabatic limits were discovered by Mazzeo and Mel-
rose for the case of Riemannian bundles, relating them to the Leray spec-
tral sequence [MaM]. This work was used in [D1], and further developed by
R. Forman in [F], where the very general setting of any pair of complemen-
tary distributions is considered. Nevertheless the most interesting results
of [F] are only proved for foliations satisfying very restrictive conditions.
The ideas from [MaM] and [F] were also applied in the case of the contact-
adiabatic (or sub-riemannian) limit by Z. Ge [G1,2] and M. Rumin [Ru].

For a general C*° foliation F on M, the role of (the differentiable version
of) the Leray spectral sequence is played by the so called differentiable
spectral sequence (Ej,dy), which converges to the de Rham cohomology
of M. The definition of (E}, dy) is given by filtering the de Rham complex
(Q,d) of M as in the bundle case: A differential form w of degree r is said to
be of filtration > k if it vanishes whenever r—k+1 of the vectors are tangent
to the leaves; that is, roughly speaking, if w is of degree > k transversely
to the leaves. Moreover the C*° topology of 2 induces a topological vector
space structure on each term FEj such that dp is continuous. A subtle
problem here is that E; may not be Hausdorff [H]. So it makes sense
to consider the subcomplex given by the closure of the trivial subspace,
0r C Ej, as well as the quotient complex Ek = E} /0, whose differential
operator will be also denoted by dy.

The differentiable spectral sequence is known to satisfy certain good
properties for the so called Riemannian foliations, which are the foliations
with “rigid transverse dynamics”; i.e., foliations with isometric holonomy
for some Riemannian metric on smooth transversals. A characteristic prop-
erty of Riemannian foliations is the existence of a so called bundle-like
metric on the ambient manifold, which means that the foliation is locally
defined by Riemannian submersions [R], [Mo1,2]. For such foliations, each
term Ej is Hausdorff of finite dimension if & > 2, and H(01) = 0 [M], [AK].
So Fy =2 Ej, for k > 2. Moreover it was recently proved by X. Masa and
the first author that, for £ > 2, the terms Ej; are homotopy invariants of
Riemannian foliations [AM] — this generalizes previous work showing the
topological invariance of the so called basic cohomology [EN].

Besides the requirement that F has to be a Riemannian foliation, the
mentioned restrictive hypothesis of Forman in [F] is that the positive spec-
trum of the “leafwise Laplacian” on (2 must be bounded away from zero.
(The leafwise Laplacian is what will be denoted by A in this paper.) Both
conditions together are so strong that the only examples we know are Rie-
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mannian foliations with compact leaves; i.e., Seifert bundles. The purpose
of our paper is to generalize Forman’s work to arbitrary Riemannian folia-
tions. To state our first main result, let Ay, denote the Laplacian defined
by gp on differential forms, and let
0 < Ag(h) < AL(R) < Ay(h) < -

denote its spectrum on ", taking multiplicities into account. It is well
known that the eigenvalues of the Laplacian on differential forms vary con-
tinuously under continuous perturbations of the metric [C1], and thus the
“branches” of eigenvalues Al (h) depend continuously on h > 0. In this
paper, we shall only consider the “branches” A'(h) that are convergent to
zero as h | 0; roughly speaking, the “small” eigenvalues. The asymptotics
as h | 0 of these metric invariants is related to the differential invariant E{
and the homotopy invariants E, k > 2, as follows.

Theorem A. With the above notation, for Riemannian foliations on closed
Riemannian manifolds we have
dim E] = ¢ {i | Al(h) € O(h?) as h | 0}, (1.2)
dim B}, =4 {i | \[(h) € O(h*) ash | 0}, Kk >2. (1.3)
As a part of the proof of Theorem A, and also because of its own inter-
est, we shall also study the asymptotics of eigenforms of Ay, corresponding
to “small” eigenvalues. This study was begun in [MaM] for the case of
Riemannian bundles, and continued in [F] for general complementary dis-
tributions. From both [MaM] and [F], certain rescaling O, of differential
forms, depending on h > 0, is crucial to study this asymptotics.
The following well-known technicality will be useful to explain ©. The
decomposition TM = TF+ @ TF induces a bigrading

u v

AT :@(/\T]-’“@/\T}'*); (1.4)

u,v
roughly speaking, here u denotes transverse degree and v tangential degree.
Then a bigrading of €2 is defined by considering C* sections of (1.4); i.e.,
each Q% is the space of C™ sections of \"TF* @ A" TF*. Then the
de Rham derivative and coderivative decompose as the sum of bihomoge-

neous components,

d=dp1+dip+ds_1, 6= (507_1 + 5_170 + 5_2,1 , (1.5)
where the double subindex denotes the corresponding bidegree (see e.g.

[A1]); observe that d} ; = 6_; ;.
Now define Opw = h*w if w € ATM™* is of transverse degree u. As
pointed out in [MaM] and [F], such a O}, is an isometry of Riemannian vec-
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tor bundles (A TM*, gn) — (ANTM*, g), where g, g5, also denote the metrics
induced by g, g, on A TM*. So we get an isomorphism, also denoted by ©p,,
between the corresponding Hilbert spaces of L? sections because the vol-
ume elements induced by the metrics g, are multiples of each other. Thus
our setting is moved via ©p to the fixed Hilbert space of square integrable
differential forms on M with the inner product induced by g; this Hilbert
space is denoted by € in this paper. Concretely, we have the “rescaled
derivative” d, = ©,dO; !, whose g-adjoint is the “rescaled coderivative”
op = @héghG}jl. It is easy to verify that

dp, = do,l + hdLo + h2d27_1 (1.6)
directly from (1.5) and the definition of ©j. Thus
o = 50,71 + h(sfl,(] + h2(572,1 . (17)

(Another way to check (1.7) is by proving directly that

Sgn = 60,-1 + h26_10+h*_21.)
The “rescaled Laplacian”

Ap = 0Ny, 0,1 = dpby + Spdp
is elliptic and essentially self-adjoint in €. Moreover Ap has the same
spectrum as Ay, , and eigenspaces of A,, are transformed into eigenspaces
of Ap by ©. We shall prove that eigenspaces of Ay corresponding to
“small” eigenvalues are convergent as h | 0 when the metric g is bundle-
like, and the limit is given by a nested sequence of bigraded subspaces,

QDOHIDH2DH3sD - D Ho-
The definition of H;,Hy was already given in [AK] as a Hodge theoretic
approach to (F1,dy) and (Es,ds), which is based on our study of leafwise
heat flow. The other spaces H; are defined in this paper as an extension
of this Hodge theoretic approach to the whole spectral sequence (E}, dy)
(see sections section 2.2 and section 5.1 for the precise definition of Hy).
In particular,

Hi 2 E, Hy~E,, k=23,..., 00, (1.8)
as bigraded topological vector spaces. Thus this sequence stabilizes (we
mean Hy = Ho for k large enough) because the differentiable spectral
sequence is convergent in a finite number of steps. The convergence of
eigenforms corresponding to “small” eigenvalues is precisely stated in the
following result, where L?H; denotes the closure of H; in £2.

Theorem B. For any Riemannian foliation on a closed manifold with a
bundle-like metric, let w; be a sequence in Q" such that |w;|| = 1 and

<Ahiwi,wi> S O(h2(k_1)) (1.9)

i
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for some fixed integer k > 1 and some sequence h; | 0. Then some subse-
quence of the w; is strongly convergent, and its limit is in L*H} if k = 1,
and in ‘H}, if k > 2.

To simplify notation let m] = dim E’f, and let mj = dim Ej, for each
k=2,3,...,00. Thus Theorem A establishes A (h) € O (h%) for i < mg,
yielding A7 (h) = 0 for i large enough. For every h > 0, consider the nested
sequence of graded subspaces

QD Hi(h) D Ha(h) DHs(h) D+ D Holh),
where ‘Hj (h) is the space generated by the eigenforms of Ay, corresponding
to eigenvalues A} (h) with ¢ < mj; in particular, we have Hy(h) = Hoo(h) =
ker Ay, for k large enough. Set also Hj(0) = Hji. We have dim Hj (h) = m),
for all A > 0, so the following result is a sharpening of Theorem A.

COROLLARY C. For any Riemannian foliation on a closed manifold with
a bundle-like metric and k = 2,3,...,00, the assignment h — Hj (h) de-
fines a continuous map from [0, 00) to the space of finite dimensional linear
subspaces of Q" for all v > 0. If dim E’l" < 00, then this also holds for k = 1.

In Corollary C, the continuity of h — Hj (h) for h > 0 is a particular
case of the general property that eigenspaces of the Laplacian on closed
Riemannian manifolds vary continuously as subspaces of 2 when the metric
is perturbed C?-continuously [C1], [BD]. On the other hand, the continuity
of h— Hj(h) at h =0 is a direct consequence of Theorem B.

With an analogous aim, other nested sequences of bigraded subspaces
were introduced by Mazzeo—Melrose in [MaM] and by Forman in [F], which
are respectively denoted by

QDb DheDh3 D Db, 2DH I DHDOHD D Hoo
in this paper. These sequences are defined in the following way. According
to the expressions (1.6) and (1.7), we can consider dj, and 6, as polyno-
mials on the variable h whose coefficients are the differential operators d; ;
and é; ;. Thus dj and 6j canonically become operators on the polynomial
algebra Q[h], and Ay, as well. Then each by, is the space of differential forms
w € Q with some extension w(h) € Q[h] satisfying
Ao (h) € hFQn], (1.10)
where extension means ©(0) = w. And each $); is the space of differential
forms w € Q with some extension @(h) € Q[h] satisfying
dpi(h) € hKEQ[R),  6p0(h) € K*Q[A]. (1.11)
The sequence Hj, also fits in this kind of description as follows (this is a
direct consequence of Theorem 5.1): Each Hj is the space of differential
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forms w € 2 having sequences of extensions &} (h), @?(h) € Q[h] satisfying
dpot (R) + WFQR] — 0, 6,02 (h) + h*Q[h] — 0 (1.12)
in Q[h]/h*Q[h] as i — oco. From (1.6), (1.7), (1.11) and (1.12) it easily
follows that
9 C i C Dy s (1.13)
91=Hi, 9O CHp, k=>2. (1.14)
For the case of Riemannian bundles, Mazzeo and Melrose prove in
[MaM] that the sequence by stabilizes, and ho is the limit of the spaces
ker Ap as h | 0. And for foliations under the restrictive hypothesis of
[F], Forman proves that the sequence $); is a Hodge theoretic version of
the spectral sequence (E},dy), and describes the limit of the eigenspaces
of Ay, corresponding to “small” eigenvalues. This improves the results of
Mazzeo-Melrose by (1.13). But Forman’s sequence $); does not have the
same important properties for general Riemannian foliations and bundle-
like metrics, as follows from the following result, where the notation Hj(g)
and $x(g) is used to emphasize the dependence of Hy and $j on the metric
g — of course, each Hy(g) is independent of g up to isomorphism by (1.8).

Theorem D. Let F be a Riemannian foliation of dimension p on a closed
manifold M. We have:

(i) There is a bundle-like metric g on M such that ﬁg’p(g) = ’Hg’p(g).
(ii) If Og’p # 0, then there is a bundle-like metric ¢’ on M such that
957() = 0.

The condition Gg’p # 0 holds for Kronecker’s flows on T2 whose slope is a
Liouville number [He], [Ro]. This was generalized to linear foliations on tori
of arbitrary dimension in [ArS]. Moreover Eg’p =~ R in these examples [M],
[A2]. Therefore Theorem D implies that, in these examples, the dimension
of ﬁg’p (g) changes when appropriately varying the metric g. Thus 533”’ (g9) 2
Eg P for appropriate choices of g; that is, [F, Corollary 4.4] is not completely
right with that generality — the possibility that E; may not be Hausdorff
is not considered in that paper. So far it is unknown which topological or
geometric conditions imply 0; # 0 for general Riemannian foliations, but
the above examples suggest that this may happen “generically”.

A simple argument shows that $; = H} if h — H} (k) is a C°° map:
In this case, any w € Hj, has an extension depending smoothly on i > 0,
whose Taylor polynomial of degree k at zero is easily seen to satisfy (1.11),
yielding w € 9. Therefore, since both Hj, and §; obviously stabilize at
k = 2 for flows on surfaces, Theorem D shows that the map h +— H. (h)
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is not C™ at h = 0 for Kronecker’s flows on 72 whose slope is a Liouville
number and appropriate bundle-like metrics. So [MaM, Corollary 18] and
[F, Corollary 5.22] have no direct generalizations to arbitrary Riemannian
foliations and bundle-like metrics.

Nevertheless, the arguments of Forman in [F] are right when 0; = 0. In
particular, Sections 24 in [F] show that, in this case, $; = Fj, as bigraded
vector spaces. (Indeed [F, Lemma 2.7] is a version of this isomorphism
— it must be pointed out that the notation used in [F] is very different
from ours.) Therefore, by (1.8) and (1.14), Forman’s arguments prove the
following.

Theorem E. Let F be a Riemannian foliation on a closed manifold M.
If 01 = 0, then $x(g) = Hi(g) for every k > 1 and any bundle-like metric
gon M.

Theorem D(ii) is a partial reciprocal of Theorem E, and we could con-
jecture that its statement holds for any bidegree, but we do not pursue such
aresult in this paper. A similar question can be raised about Theorem D(i).

The following are the main ideas of the proofs in this paper. The proof
of “<” in (1.2) (Theorem A) has three main ingredients. The first one is
a variational formula for the spectral distribution function of the Lapla-
cian, which is a consequence of the Hodge decomposition, and was used
by Gromov and Shubin in another setting [GrS]. The second ingredient is
a direct sum decomposition that holds for general spectral sequences — it
is a kind of (only linear) Hodge decomposition. The relation between this
decomposition and the formula of Gromov—Shubin can be easily seen, and
leads to the proof. But this cannot be directly applied to the differentiable
spectral sequence (E}, di) because of some technical difficulty (Remark 3).
For this reason, we introduce the third ingredient: The L? spectral sequence
(Eg, dg), which is another spectral sequence defined in the very same way
as (Eg,dy) but using square integrable differential forms. This change of
spectral sequence can be made because we show that E; = Ej for Rieman-
nian foliations and k£ > 2. The proof of this isomorphism heavily depends
on the Hodge theoretic approach of the terms E; and Es that follows from
our work [AK] on leafwise heat flow.

The rest of Theorem A is an easy consequence of Theorem B, which
in turn is proved by characterizing the terms Hj; in the appropriate way
to apply certain estimation of A — this estimation is similar to what was
done by Forman in [F].

Theorem D follows easily from the above theorems and other well-known
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results about Riemannian foliations.

As a possible application of this theory, it could be possible to relate
the spectral sequence (E},dy) of a Riemannian foliation F with the cur-
vature of a bundle-like metric g on the ambient manifold M. The simpler
relationship we have in mind is a kind of Bochner type theorem for the
terms Fj. This would be a generalization of the Bochner type theorem for
the basic cohomology (recall that the basic cohomology is equal to Eé’o)
proved in [MiRT], and the proof could be as follows. In the Weitzenbock
formula for each metric gy of the family (1.1), it seems that the curvature
term can be written as a polynomial on h whose coefficients are given by
bihomogeneous components of the same curvature term for g (with respect
to the bigrading (1.4)). Thus, by Theorem A and arguing as in the proof of
Bochner theorem, if some of these components are positive, then vanishing
and collapsing statements would follow for the spectral sequence.

Another more involved relation between (Ej, di) and the curvature of g
could be obtained as follows. On the one hand, our main results establish
relations between (E}, di) and the spectral asymptotics of the metrics g, as
h | 0. On the other hand, a well-known procedure yields spectral invariant
expressions of the curvature of g;. Such expressions are the coefficients in
the asymptotic expansion of the heat kernel of g, along the diagonal of
M x M when time goes to zero — we are considering the heat equation on
differential forms. As above, it seems that such spectral invariants of g, can
be written as polynomials on h whose coefficients are defined by bihomoge-
neous components of the same invariants for the original metric g. To sum
up, we would have connections between (Fy,dy), the spectral asymptotics
of gy, the curvature of g, and components of the curvature of g. So, by
keeping track of the powers of h through these connections, some formu-
lae hopefully could be proved relating the spectral sequence of Riemannian
foliations with components of the curvature of bundle-like metrics.

We also hope that the methods developed in this paper will be useful to
analyze the contribution of the spectral sequence of F to adiabatic limits
of eta-invariants and analytic torsion, generalizing results that have been
proved for fiber bundles [D1,2], [LST], [DM].

Finally, let us mention that a closely related study is done in [K], where
the second author proves an asymptotic formula for the eigenvalue distri-
bution function of A,4, in adiabatic limits for Riemannian foliations. That
work establishes relationships with the spectral theory of leafwise Laplacian
and with the noncommutative spectral geometry of foliations.
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2 Differentiable Spectral Sequence

In this section, we mainly recall known properties of the differentiable spec-
tral sequence (Ey,dy) of foliations, with special emphasis on its topology.

The definition and basic properties of (E}, d,) are recalled in section 2.1,
and section 2.2 is devoted to the particular case of Riemannian foliations.
Specially, in section 2.2, we recall from [AK] the Hodge theoretic approach
of the terms El,Eg. This approach will play an important role in this
paper: It is the key to studying the L? spectral sequence of Riemannian
foliations, some of its simple consequences will be used later too, and it is
a first step in the construction of our Hodge theoretic nested sequence.

2.1 General properties. Let (A, d) be a complex with a finite decreas-
ing filtration

A=ADA1 DDA DA4+1 =0
by differential subspaces; i.e., d(Aj) C Ay, for all k. Recall that the induced
spectral sequence (Ey,dy) is defined in the following standard way [Mc|:

Zt = A nd (AT 2 = AT Nkerd,

u+k
BYY = AAd(AITY) B = AT Aimd,
u,v w,v
E;:jv | v%llc w ) gc’)v = utl UZ—OIO u,v "
Z 5+ B Zoo T+ B
In particular Zy"* = Z% = AT, We assume B"] = 0, so E)"" =
Angv/Azfl’. Also, we have By = By and Z:;’_UUH = 7Z%" since the filtra-

tion of A is of length ¢ + 1. Each homomorphism dj, : E;"" — Ez+k’v_k+1

is canonically induced by d.

Now let F be a C'°° foliation of codimension ¢ on a closed manifold M,
and (€2, d) the de Rham complex of M. The differentiable spectral sequence
(Ek,dy) of F is defined by the decreasing filtration by differential subspaces

Q:QoDﬂlD"'DQqDQq_H:O,

where the space of r-forms of filtration degree > k is given by

ixw=0 forall X=X A AXy_k11,

Qp =qwe Q" | wherethe X; are vector fields tangent

to the leaves
Moreover, the C* topology of £ canonically induces a topology on each
EZ’U, which becomes a topological vector space. Then each dy, is continuous
on E = EBu,v E;;’U with the product topology. Thus, for each k, we have
two new bigraded complexes: the closure of the trivial subspace 0 C Ej
and the quotient Ej = Ej, /0.
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Assume M is endowed with a Riemannian metric, and let m,, :  —
Q%Y denote the induced projection defined by the bigrading of 2. Define
the topological vector spaces
A =2, = m (B, = s e = e

u,v
Observe that
o = P o, (2.1)
u>k
yielding
Z;:’U Nkermy, = Z:jll’vfl .

. . . . . . . w2 ouw
Thus the projection , , induces a continuous linear isomorphism E,>" —e,"".

The operator on e that corresponds to di on Ej by the above linear iso-
morphisms will be denoted by dj as well. We also consider the closure of
the trivial subspace, 05 C ey, and the quotient é; = ey, /or. We are going to
show that dj is continuous on e for £ = 0,1, and thus o and é; become
bigraded complexes in a canonical way. But, for £k > 2, we do not know
whether dj, is continuous on e;, and whether d; induces differentials on o3
and é. This holds at least for Riemannian foliations as easily follows from
Theorem 2.2(vii) in section 2.2.
By comparing bihomogeneous components in the equality d> = 0 we get
(see e.g. [Al]):
d%,l = d%,—l = d071d1,0 + d1,0d071 =0, (2 2)
diodz, 1+ do,1d1o = dF g+ doda, 1 + dy,—1dp1 = 0. '

The term dp 1 is of order zero, and vanishes if and only if T Ft is com-
pletely integrable. Moreover from (2.1) we get

Zy' = Uty (2.3)
Bg,v = dO,l (Quﬂ]il) (&) 92111) , .
Z3 = (%Y Nkerdo) & ety (2.5)

as topological vector spaces. So
Zg’v = QWY bg,v = do’l(Qu’U_l) , Z?’v = Q%" Nker d071 s (26)

and the continuous linear isomorphisms E,"* = ey, induced by m,, are
homeomorphisms too for k¥ = 0,1. Thus 0; = 61 and El = ¢; as topo-
logical vector spaces, and 01 and é; become bigraded complexes with the
differential induced by dj. For this reason, using the spaces ej,01,€1 is

rather redundant; we have introduced these spaces to be compared with
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the corresponding ones for the L? spectral sequence (section 3), where this
does not obviously hold. Furthermore (2.3)—(2.5) yield

(€0, do) = (Q,do,1) (2.7)
and a canonical isomorphism
(el,dl) = (H(Q,d(),l),dl,o*) (28)

of topological complexes. Nevertheless, we cannot go further keeping full
control of the topology. In fact, with this generality, we do not know

. . . . woy = uw .
whether the continuous linear isomorphism E," — e,", induced by 7y,
is a homeomorphism, nor whether the canonical continuous linear isomor-

phisms Ey = H(FE,dy) and ey = H(ey,d;) are homeomorphisms.

2.2 Hodge theory of the terms E; and E> for Riemannian foli-
ations. Here, F is assumed to be a Riemannian foliation and the metric
bundle-like.

The de Rham coderivative 6 decomposes as the sum of bihomogeneous
components 6; j = d*_ij_j, and the operators

Do =do1+60,-1, Ao=D§=dyi60-1+ 60 -1doa

are essentially self-adjoint in € [Ch]. But Dy and Ag are not elliptic on M
— avoiding the trivial case where ¢ = 0. The closures of d, é, do 1, d0,—1, Do
and Ag in € will be denoted by d, 8, dg 1, 60,—1, Do and A, respectively.
Then we have the orthogonal decomposition

Q =kerAgD Clo(im dO,l) D Clo(im 607,1) , (29)
where cly denotes closure in 2. Moreover
ker Ag = ker Dy = ker dO,l N ker 607,1 , (210)

Clo(im Ao) = Clo(im Do) = Clo(im d071) D Clo(im 607,1) .
Thus let II, P and @Q denote the orthogonal projections of €2 onto ker Ay,
clp(imdp ;) and clp(im ép,—1), respectively, and set II = id —1I, P=id-P
and Cj = id —Q. We shall also use the notation W*Q for the kth Sobolev
space completion of 2, and let cl; denote closure in W*Q. Thus Q = WOQ.
Theorem 2.1 (Alvarez-Kordyukov [AK]). For each k € Z, decomposition
(2.9) restricts to WkQ; i.e.,

WrQ = ker(Ag in W*Q) @ cly,(imdo 1) @ cly(im 6o,_1)
as topological vector space. Thus (2.9) also restricts to C* differential
forms; i.e.,

Q =ker Ag ®im d071 @ im 507,1
with respect to the C'*° topology, where the bar denotes C*° closure in ).
In particular 11, P and @ preserve ().
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From (2.7), (2.8) and Theorem 2.1, we get a canonical isomorphism
ker Ag = é; of topological vector spaces, induced by the inclusion

Q“?Y Nker Ag — Q%Y Nker d071 = Z%’U
So ker Ag = E; as topological vector spaces. As in [AK], let
Hy = ker Ag = ker Dy = ker d071 N ker (507_1 ,

Hi =imAg =im Dy = im dO,l ¢ im 607_1 ,

and let L*H; = clo(H1) and L2H; = clo(H;1). From (2.10) and Theorem 2.1
we get
ker Ag = ker Dy = L?H,; . (2.11)

Since A is bihomogeneous of bidegree (0, 0), the bigrading of € restricts to
a bigrading of H;. Moreover, by (2.7), (2.8) and Theorem 2.1, the operator
dy on é1 corresponds to the map Ild; o on H;, which will be also denoted
by di. Hence H"(H;",dy) = H"(&;") = H“(E}"). Since 6; = II6_, is
adjoint of d; in Hy, the operators D1 = d; 4+ 61 and A = D% = d161 + 61dq
on H; are symmetric. Now, let Ho = ker A1, which inherits the bigrading
from €2 because A; is bihomogeneous of bidegree (0, 0).

We also define maps d1 and (51 on H; as follows. First we define the
following bigrading on H;:

ﬁqf’” = do1 (1) @ 691 (QFLY) .
Let ﬁ be the projection of {2 onto 77('1’1), and set d; = ﬁ.ﬂ,d and &; = ﬁ.,vé
on Hl , which are adjoint of each other. Consider also the symmetric
operators D1 =d, + 6, and Al = Dl on ’H1
The closures of dy, 61, Dy and A; in L?>H,, and of dl, (51, D1 and A1 in

L? Hl, will be respectively denoted by di, 61, D1, Aq, d1, 61, D1 and Al
The following theorem collects the main results of [AK, Section 7].

Theorem 2.2 (Alvarez-Kordyukov [AK]). We have:
(i) The operators Dy and Ay are essentially self-adjoint in L*H,, and

the operators Dy and A are essentially self-adjoint in L2H,.
(ii) The spectrums of D1, A1, Dy and A; are discrete subsets of R given
by eigenvalues of finite multiplicity.

(iii) We have the Hodge type decompositions
L*H; =ker A; @imd; ®imé,,
L27t[1 = imal @G im 51 ,
as Hilbert spaces with the L? norm, and moreover
ker A1 = ker D1 = kerd; Nker 81,
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imA; =imD; =imd; ®iméq,
ker&l = ker]~)1 =0, imA;=imD; = L27T[1 .

Furthermore the operators A; and A satisfy Garding type inequal-
ities [AK, Corollary 7.3]. Thus ker A1 = Ha, and the above decom-
positions restrict to C*° differential forms; i.e.,

Hi=ker Ay ®imd; §iméby,

’;{1 = 1mJ1 D imgl ,
as topological vector spaces with the C*° topology, as well as with
the restriction of the L? norm topology.

(iv) The space Ha is of finite dimension, and the inclusion Ha — H;

induces isomorphisms

MR S HU(Hdy) = HYEY) = HY(EY).
(v) We have d3 = 0 and H(Hy,d;) = 0.
(vi) Each map H;, — H,' = 07" =2 07", defined by the canonical projec-

tion

do1 (Q0=1) @ 80,1 (2 7) — do1 (00 =1) /do1 (2071,
induces an isomorphism
0=H"(H;",d) = H"(6;") = H"(0}").

(vii) AlIl the following bigraded topological vector spaces are Hausdorff
of finite dimension and isomorphic to each other by maps that are
either canonical or induced by the projections 7, ,: H(é1), H(e1), ez,
H(E)), H(E,) and E;.

In Theorem 2.2, the triviality of H(01) in property (vi) was originally
shown by Masa [M], as well as property (vii), which is a consequence.
LEMMA 2.3. The following properties are satisfied:

(i) We have
dioP = PdyoP, dl,Oé = Qd10Q, Qd10 = Qd1pQ,
Pdy g = Pdy P, 6-1,0Q = Q610 §_10P = Pé_19P,

Pé_19=Po_10P, @5—1,0 = @5—1,0@-
(ii) We have
PdyoP = Qdy0Q = Q6-10Q = Po_1o0P =0.
Proof. The equalities involving d; ¢ in property (i) follow from (2.2) since
P(Q) =do1(Q), Q) =kerdy,;.
The other equalities in property (i) are obtained by taking adjoints, and
property (ii) is a direct consequence of property (i). O
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LEMMA 2.4. The following properties are satisfied:

(i) The following operators on §) define bounded operators on 2:
Mdypll,  Mdioll,  T6_1pIl,  I&_y,ll,

Qdi1oQ,  PdigP,  PS_19P,  Q6_10Q.
(ii) The following operators on Q define bounded operators on € too:

Mdll,  TdIl,  TL,dIl,,  IL, ydIL,,
611,  ISTL,  T0,41800,,  IL, 16IL,.
(iii) We have
domd; = L*H; Ndomd,  domé; = L*H; Ndomé,
domd; = L27T£1 Ndomd, dom &, = LQﬂl Ndomé.

Proof. Set D = dio + 6-1,0. Then, by Remark 3.7 and the proof of
Lemma 7.2 in [AK], the operators

(D, 10, M, DI, (d-TL,)D,IL,
on ) define bounded operators on 2. This easily yields property (i). Now
properties (ii) and (iii) follows from property (i) since dp, 1 and 6_g; are
of order zero, and dp; and 6y —; vanish on H; and preserve each 7~{1v ]

3 L? Spectral Sequence

The L? spectral sequence (Ey,dy) is introduced in this section. Its defi-
nition and basic properties are stated for arbitrary foliations (section 3.1),
but a deeper study is only achieved for Riemannian foliations (section 3.2).
In this case, we prove that (Ex,dy) is “almost” isomorphic to the differ-
entiable spectral sequence (Ej,dy). This will allow to use (Ex,dy) as an
intermediate step to establish a first relationship of (Ff, d;) with the spec-
tral asymptotics in the adiabatic limit.

The rather atypical notation for the L? spectral sequence and related
objects was chosen with the aim of simplifying complicated expressions.

3.1 General properties. For a C* foliation F on a closed manifold M,
what we call the L? spectral sequence of F is also a spectral sequence
(Eg,dy) converging to the de Rham cohomology of M; in fact, it converges
to the L? cohomology of M, but both cohomologies are canonically isomor-
phic since M is closed. Recall that € denotes the Hilbert space of square
integrable differential forms on M, and d denotes the closure of d in 2.
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Also, let € be the closure of 2 in €, and consider the decreasing filtra-
tion of the complex (domd,d) by the differential subspaces € N domd.
We define (Eg,dy) to be the corresponding spectral sequence. Since the
inclusion 2 — domd obviously is a homomorphism of filtered complexes,
it induces a canonical homomorphism (Ej,dy) — (Eg,dy) of spectral se-
quences. We point out that, by the compactness of M, the filtered complex
(domd,d) is well defined independently of any metric, and thus so is the
L? spectral sequence (Ey, dy).

Each E}" is a topological vector space with the topology induced by
the L? norm of €, and consider the product topology on E; = D..E"

The notation Z,?’U and BZ”U of section 2.1 will be used for the spaces
involved in the definition of the differentiable spectral sequence of F, and
the corresponding spaces for the L? spectral sequence will be denoted by
Z;" and B}?’. We have

Zit - QT ndT (UGY) . 2R = 0 kerd,

B =" nd (277 ' ndomd) , B =Q!"Nimd.

As in the case of the differentiable spectral sequence, let m, , : 2 — Q"
be the canonical projection defined by the bigrading of €2; i.e., my, : 2 —
Q%" is the continuous extension of m,, : @ — Q%Y. Consider also the
topological vector spaces

ZZ,U = Tuw (Zz,v) , bz,v = T (Bz,v) ’ ez,v _ Zz,v/bzﬁil ey = ez,v
u,v
for k = 0,1,...,00, with the topology induced by the L? norm of . We
clearly have ZZ’Uﬂker Ty = Zzﬂ ’U_l, and thus each projection , , induces

a continuous linear isomorphism E,"" — €,"". Via these isomorphisms, the

differential di on Ej induces a differential on e that will be denoted by dj
as well. We also have canonical continuous homomorphisms e, — e;"".

In general, the L? spectral sequence is more difficult to deal with than
the differentiable spectral sequence. For example, we do not know whether
the continuous linear isomorphism E}"* = e}"’, induced by 7,4, is a homeo-
morphism with this generality. Also, the useful expressions (2.3)—(2.8) do
not hold for the L? spectral sequence; indeed, for r = u+v, instead of (2.3)-
(2.5) we have

Zy" = Q) Ndomd, (3.1)
By =d(Q ' ndomd), (3.2)
Z" = (2" Nkerdo;) + Q). ) Ndomd. (3.3)
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For this reason, it will be useful to introduce the spaces
D"" = m,,(Q, Ndomd) C Q“", r=u+v,
which satisfy

(V+8;, ) Ndomd = ((V N D“’v)—}—QZH) Ndomd, r=u+4+wv. (3.4)
for any subspace V C Q%".

Observe that the canonical homomorphism Ey* — Eg" is injective
with dense image because it is just the inclusion Z;"" — Z7", whose image
is dense by (2.3) and (3.1). With this generality, at least injectivity holds
for £1 — E; too, as asserted by the following result.

LEMMA 3.1. The canonical homomorphism FE, — E; is injective.

Proof. For r = u 4+ v we have
Zut T L BYY = (7, Ndomd) + d(Q2) ! Ndomd)

= (), +d(22, ' ndomd)) Ndomd

= (do 1 D" + Q1) Ndomd (3.5)
by (3.2), (3.1), and since imd C domd. Then

Zi;,v N (Zg—l-l,v—l + Bg,v) _ Zg,—i—l,v—l + Bgﬂ)

by (2.4), (2.3) and (2.5), and the result follows. O
LEMMA 3.2. We have D" C domd .

Proof. Take any o € D". For r = u + v, there exists some 3 € £2;,,; such
that o+ € domd. So 7, ,d(a+ ) is defined in Q*". But m, ,d(a+5) =
dp,1c because o + 3 € £2;,. ]
LEMmMA 3.3. We have

Tuw(Zy) = D"’ Nkerdy1, muo(ByY) =do1 D"V,

and thus
uy D*" Nkerdp 1

S )T
Proof. For r = u + v, we have

Tuw(Z7") = mue (Y Nkerdo,1) + Q1) Ndomd), by (3.3),
= wu,v(((D“’” Nkerdp) + ;1) Ndom d) , by (3.4),
=D""Nkerdy,

Tuw(By") = Tuw (d(Q2, ' Ndomd)), by (3.2),
= Tuw ((do1 D"~ + Q1) Ndomd), by (3.4),
=dg D"V L. 0
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As for the differentiable spectral sequence, let 0; C E; and 0; C e;
be the closures of the corresponding trivial subspaces, which are bigraded
subspaces with bigraded quotients E; = E;/0; and &; = e1/6;. Lemma 3.3
has the following direct consequence.

COROLLARY 3.4. We have
_up D®' N Clo(do’lDu’vil) B D®v N Clo(do’lgu’vil)
0 = doleu,v—l - dOJDu,v—l ’
aU D% N ker d071 B D%V N ker dO,l
L7 puwvn Clo(d()’lDu’v*l) - Duwvn Clo(d()’lQu’v*l) ’

The map di, either on E; or on e;, may not be continuous. So 01,

E1, 01 and é; may not have canonical structures of bigraded complexes in

general. However we shall show that this holds for Riemannian foliations
in section 3.2.

3.2 L? spectral sequence of Riemannian foliations.

Theorem 3.5. Let F be a Riemannian foliation on a closed manifold M .
Then the canonical map E — Ey is injective with dense image for k = 0,1,
and is an isomorphism of topological vector spaces for k > 2. In particular
E;. is Hausdorff of finite dimension for k > 2.

The goal of this subsection is to prove Theorem 3.5. Thus, from now
on, assume F is a Riemannian foliation. Since its statement is independent
of any metric on M, we can take a bundle-like metric on M to prove it.

In Theorem 3.5, the case k = 0 is obvious, and the case k = 1 follows
directly from Lemma 3.1 and the following lemma.

LEMMA 3.6. The space Z;"" is dense in Z]"".

Proof. Since the orthogonal projection
Q: Q" — Q" Nkerdy,
preserves smoothness on M, the result follows by (2.5) and (3.3). O

The proof of Theorem 3.5 for k£ > 2 requires much more work than
Lemma 3.6. To establish this, we shall use the Hodge theoretic approach
to e; and e from section 2.2, and a similar approach to e; and e;. To
begin with, we show that d; preserves 0;.

LEMMA 3.7. We have d;(0;) C 0;.

Proof. Take any o € D%? N cly(dp,192%V 1), and fix some 3 € QI ; with
a+ ( € domd, where r = u + v. We know that m,41,d(a + 3) € DUV
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by Lemma 3.3. On the other hand, if 51071 and 51170 denote the extensions
of do1 and dj o to continuous maps £ — W~1Q, we have

Tut1ed(a+ B) = diga +do14 € diga +do Q4T
where 31 = my410-108 € Qutbe=l and

aL()Oé S al’o(clo(d()’lﬂu’vil)) C Cl_l(d0719u+1’1}71) .

Hence
Turied(a+ B) € DT nel_y(do 1 QT = DT nelg(dg QU1
by Theorem 2.1. Therefore the result follows by Lemma 3.3 and Corol-
lary 3.4. O

Now 07 and é; canonically are bigraded complexes by Lemma 3.7, and

we have the short exact sequence
0— o0, —e — €& —0,

which induces long exact sequences

- — H"(6}") — H"(e}") — H"“(&}") — H""(6;") — ---. (3.6)
LEMMA 3.8. We have

D" Nkerdg = (D" N L*H1) & (D" Ncly(do1Q“"~ 1))
as topological vector spaces, and moreover
D% N L*H; = L*H}Y Nndomd, .

Proof. The inclusion “D” of the first equality is obvious, and the inclusion
“>” of the second equality follows from Lemma 2.4(iii).

To prove the inclusion “C” of the first equality, by (2.9) it is enough to
prove that Ila € D"V for all & € D*" Nkerdg ;. This obviously holds if
we prove Ila € domd; for every such an « since the inclusion “D” of the
second equality is already proved. This also proves the inclusion “C” of
the second equality by taking o € L*H;.

Thus take any oo € D"Y Nkerdg;. Then there is some 8 € 2;,,; such
that a+ 3 € domd, where r = u+v. Write 8 = 31 + 32 with 5, € QuFtv=1
and (2 € £, 5. Thus, since o € kerdp,;, we get

QU 5 gy pd(e + B) = I(d g + do181) = dy par .
Here we consider IT and 7,1, as bounded operators on W~1Q. But
Hal,oa = Halnga + HaL()Pa
because Qo = 0, and
I1d; g Po = IIPd; g Por € Q
by Lemma 2.4(i). Therefore IId; oIla € €2, yielding Il € domd; as de-
sired. O
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COROLLARY 3.9. The inclusions L*H}"’Ndom d; — D%?Nkerdy induce
an isomorphism of (domdy, d;) onto the quotient complex €, which is also
an isomorphism of topological vector spaces.

Proof. This follows from Corollary 3.4 and Lemma 3.8. O

COROLLARY 3.10.  Each inclusion Hy" < D“V Nkerdp; induces an
isomorphism H"(&;") = Hy" of topological vector spaces. In particular
H (&) is Hausdorff of finite dimension.

Proof. This follows from Corollary 3.9 and Theorem 2.2(iii),(iv). O

The canonical homomorphism e; — e is obviously continuous. Hence
it induces homomorphisms of complexes 61 — 01 and é; — €1, and homo-
morphisms H(01) — H(01) and H(é1) — H(€é;) in cohomology.

COROLLARY 3.11. The canonical map H(é1) — H (&) is an isomorphism
of topological vector spaces.
Proof. This follows from Theorem 2.2(iv) and Corollary 3.10. 0

We also need a Hodge theoretic study of certain complex whose coho-
mology is isomorphic to H(6;). To simplify notation let

z, =Pz, B,=P (z; " +ByY),

which are subcomplexes of (domd,d). (This notation is used in [AK] for
the C*° versions of these complexes.) Then

0" = clo(By) /By . (3.7)
Observe that Z,_1 C B,.

LEMMA 3.12. The quotient complex B,/Z,_1 is acyclic. Thus the quo-
tient map cly(By)/Zy-1 — clo(By)/By = 07" induces an isomorphism in
cohomology.

Proof. The result follows from (3.3) and (3.5) with easy arguments (see
Lemma 2.5 in [Se] and Lemma 7.4 in [AK]). O
Set
ﬁuﬂ) — QU + Qu—I—L’U—l
Fuw = Tup + Tustom1 1 Q@ — Q7
D" = 7, (. Ndomd), r=u+uv.

We have
clo(By) Nker myy C Zy—1 NKer .



996 J.A. ALVAREZ LOPEZ AND Y.A. KORDYUKOV GAFA

Hence, for each topological vector space
é'it,v _ ﬁ?,v(dO(Bv))
Wu,v(zv—l) ’
the projection 7, , induces a continuous linear isomorphism

o(BL)/25_, — &, r=u+wv. (3.8)

Let d; be the operator on e; = @uﬂ) &7’ that corresponds to the differential
operator on the quotient complex cly(B,)/Z,-1 by the above isomorphisms.
Observe that d; is given as follows: if a € cly(B,), and [Fu.a] € &
denotes the class defined by 7, ,c, then d; [Tupe] = [Tys1,pdal.

The spaces D“ v and D"Y have similar properties. For instance, for any
subspace V C 2"’ we have

(V+9Q ) Ndomd = (VN DY) + Q,p) Ndomd, r =u+tv. (3.9)
LEMMA 3.13. Forr = u+ v, we have
Fuu(clo(B,)) = D N clo(B,),
Tuw(Zoo1) = D02, = DY nkerdy

and thus -
s _ D™V N cly(By)

L' Dutlo-lnkerdy;
Proof. This easily follows from (3.4) and (3.9). O
The following result and Lemma 3.8 are similar, as well as their proofs.
LEMMA 3.14. We have
D" nelg(B,) = (D™’ N L*H;) & (D"~ Nkerdy,)
as topological vector spaces, and moreover
D"* N L*H; = L*H," Ndomd, .

Proof. The inclusion “2” of the first equality is obvious, and the inclusion
“D>” of the second equality follows from Lemma 2.4(iii).

To prove the inclusion “C” of the first equality, by (2.9) it is enough to
prove that Ila € D" for all & € D*¥ N cly(B,). This obviously holds if
we prove Ila € domd, for every such an « since the inclusion “D” of the
second equality is already proved. This also proves the inclusion “C” of
the second equality by taking a € L2H,.

Thus take any o € D"V N clo(B,). Then there is some 3 € Q w2 such
that o + 8 € domd, where r = v + v. Write o = a7 + a9 with a; € Q%"
and ap € Q¥ and let d : @ — W1Q denote the continous extension
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of d. Since a € clg(B,) and df € ker ﬁ.,v, where ﬁ.,v is considered as a

projection in W~1Q, we get
Q" 5 Td(a+ ) =11 da.
But ~  _ ~ -~ ~ o~
IL ,da =1L ,dIL o + 1L ,, dIlcvg + I, dIL ,_1 o
because o € D*¥ M cly(B,), and
ﬁ.,vaﬂag + ﬁ.maﬁ.m_lag e N
by Lemma 2.4(ii). Therefore ﬁ.,vc_lﬁ.vya € Q, yielding ﬁ.ﬂ,a € domd; as
desired. O
Consider the projection
D" N clg(By) — D™’ N L*Hy = L*H," Ndomd,
defined by Lemma 3.14, which is obviously an orthogonal projection.
COROLLARY 3.15.  The inclusions L?H," N domd; — D™* N cly(By)

~

induce an isomorphism (dom di, &1) = (&, &1) of bigraded complexes and
topological vector spaces.

Proof. This follows from Lemmas 3.13 and 3.14. |
COROLLARY 3.16. We have H (6;) = 0.

Proof. This follows from (3.7), (3.8), Lemma 3.12, Corollary 3.15 and
Theorem 2.2(v). O

COROLLARY 3.17. The canonical map H(e;) — H(é1) is an isomorphism
of topological vector spaces. In particular H(e;) is Hausdorff of finite di-
mension.

Proof. The canonical map H(e;) — H(é1) is a linear isomorphism by
Corollary 3.16 and the exactness of (3.6). Moreover it is obviously con-
tinuous. Then it is also an homeomorphism because H(€;) is a Hausdorff
topological vector space of finite dimension. O

COROLLARY 3.18. The canonical map H(e;) — H(e;) is an isomorphism
of topological vector spaces.

Proof. By the commutativity of the diagram
H(e1) —— H(el)

| |

H(é1) —— H(e),
where all maps are canonical, the result follows directly from Theorem 2.2
(vii), Corollaries 3.11 and 3.17. O
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COROLLARY 3.19.  The canonical map Ey — Es is an isomorphism of
topological vector spaces.

Proof. Consider the compositions
Ey — H(E\) — H(e1), E;— H(E1) — H(e1),

where the first map of each composition is canonical, and the second one
is canonically induced by the projections m,,. The first composition is
an isomorphism of topological vector spaces by Theorem 2.2(vii), and we
know that the second composition is a continuous linear isomorphism (sec-
tion 3.1). Then the second composition is also an homeomorphism because
H(ey) is Hausdorff of finite dimension by Corollary 3.17. So the result
follows from Corollary 3.18 and the commutativity of the diagram
E2 — H (61)

| !

EQ E— H(el) s
where the horizontal arrows denote the above compositions, and the vertical
arrows denote canonical maps. O

Now Theorem 3.5 for k& > 2 follows from Corollary 3.19 because the
canonical map (FEx,d;) — (Eg,dg) is a homomorphism of spectral se-
quences.

4 L? Spectral Sequence and Small Eigenvalues

The relationship of the L? spectral sequence with small eigenvalues is the
main result of this section, stated in section 4.1. It is proved for arbitrary
foliations when some very technical condition is satisfied. Such a condition
holds for Riemannian foliations, but it could hold with greater generality;
this suggests that the L? spectral sequence could be the right object to
consider for a possible generalization of this paper to arbitrary foliations.
The proof of the main result, given in section 4.4, consists of analyz-
ing the connection between other two independent results: A variational
formula for the spectral distribution function that was used by Gromov—
Shubin in [GrS], which is recalled in section 4.2, and a direct sum decompo-
sition of general spectral sequences, which is described in section 4.3. This
connection is rather natural and easy to understand because both of these
results are somehow related with the Hodge decomposition of differential
forms. Nevertheless, there is a technical difficulty in this proof, which is
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the reason we were not able to relate the differentiable spectral sequence
directly with small eigenvalues (without using the L? spectral sequence).

4.1 Main results. Let F be a C'° foliation on a closed manifold M
with a Riemannian metric g, and consider the family of metrics gp, h > 0,
which were defined in (1.1) and give rise to the adiabatic limit. As in
section 1, let Ay, denote the Laplacian on 2 defined by g, and
0 < Ag(h) < AT(R) < A(h) < -

its spectrum on Q" taking multiplicity into account. The following result
suggests that, with this generality, the number of small eigenvalues of Ay,
may be more related with the L? spectral sequence than with the differ-
entiable one. Nevertheless, so far we do not know about the relevance its
hypothesis for non-Riemannian foliations.

Theorem 4.1. Let F be a C*° foliation on a closed Riemannian manifold.
If ZZJ:}’”_I + 73 is closed in ZZ’” for all u,v, with r = u + v, then

dimE}, < ¢{i | \[(h) € O(h**) as L]0}
for all r.

The following more understandable result is a direct consequence of
Theorem 4.1 because Zuv
4

u+1l,v—1 u,v
Z,", + 7

is a quotient of E,".
COROLLARY 4.2. Let F be a C° foliation on a closed Riemannian
manifold. If Ey is Hausdorff of finite dimension, then

dimEj < #{i | \j(h) € O(h*) as L |0}, €>k.

REMARK 1. Observe that, by Theorem 3.5, Corollary 4.2 holds for Rie-
mannian foliations and k = 2, and inequality “<” of (1.2) in Theorem A
follows.

The proof of Theorem 4.1 is given in section 4.4, and its two main ingre-
dients are described in sections section 4.2 and section 4.3: the variational
formula of the spectral distribution function used by Gromov—Shubin, and
the direct sum decomposition for general spectral sequences.

4.2 Spectral distribution function. For a closed Riemannian man-
ifold (M,g), let N"(\) denote the spectral distribution function of the
Laplacian A on Q"; i.e. N"(\) is the number of eigenvalues of A on "
which are < A, taking multiplicity into account. Recall that €2 denotes the
Hilbert space of square integrable differential forms with the inner product
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induced by g, and d the closure of the de Rham derivative d in Q. Let
d : domd/kerd — € denote the map induced by d, and consider the
quotient Hilbert norm on €2/ kerd. The following variational expression of
NT () is a consequence of the Hodge decomposition of 2.

PROPOSITION 4.3 (Gromov—Shubin [GrS]). We have
N"(\) = F" Y\ + 6"+ F"(\),
where 3" is the rth Betti number of M, and
F"(\) = S%p dim L,

with L ranging over the closed subspaces of domd/ ker d satisfying
|d¢|| < VA ¢ forall ¢elL.

Now take again a C'*° foliation F on M. Then, for each metric gy of the
family (1.1) that gives rise to the adiabatic limit, the spectral distribution
function of Ay, will be denoted by N} (\), and decomposes as

Ni(A) = Fy7H ) + 6"+ F (V)
according to Proposition 4.3.

Suppose F is of codimension ¢, and let || ||, be the norm induced by gy,
on (2. The following equality will be also used to prove Theorem 4.1:

lwll,, = h9/2p |lw|| if weQ"?. (4.1)
This follows from two observations. First, if the metrics induced by g and
gn on A\ TM* are also denoted by g and gy, then g, = h*“g on forms with
transverse degree u. And second, assuming M is oriented, the volume forms
w and pp, induced by g and gy, satisfy up = h™9u since volume forms are
of transverse degree g.

By using Proposition 4.3 in the same spirit of [GrS], we could prove that
the asymptotics of the A!(h), as h | 0, are C*° homotopy invariants of F
(with respect to the appropriate definition of homotopy between foliations).
However, for our purposes in this paper, it will be enough to prove that
the asymptotics of the Al (h) are independent of the choice of the given
metric g on M. This will not be used to prove Theorem 4.1 but will play
an important role to finish the proof of Theorem A in section 5.2. Such
independence of g is proved in the following way. Let ¢’ be another metric
on M with corresponding 1-parameter family of metrics g, and let || || and
|| |l}, denote the corresponding norms on 2. Compactness of M implies the
existence of some C' > 0 such that

CHwll < Jlwl" < Cflw]
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for all w € Q, yielding
CH wlly, < llwlly, < Cllwlly (4.2)

for all w € @ and h > 0 by (4.1). Let N,"(\) be the spectral distribution
function of AgL on ", and let

Ny (A) = FHA) + 67+ F (M)
be its decomposition according to Proposition 4.3. Then

i (C=0) < F{(\) < B (C'Y)
for all A\ >0 h > 0 by (4.2) and the definition of F} and F}". Thus

NP (C™IN) < Fr(\) < Np(C'), (4.3)
yielding the metric independence of the asymptotics of the A](h).
4.3 Direct sum decomposition of spectral sequences. In this sub-
section we consider the general setting where (Ej,dy) is the spectral se-
quence induced by an arbitrary complex (A,d) with a finite decreasing

filtration
A=A DA D DA DA =0

by differential subspaces.
LEMMA 4.4. The following properties are satisfied:

(i) There is a (non-canonical) isomorphism

ET
T~ pr E'Nimd 4
A ”@@« ¢ im Z)@Egﬂkerd)

_ u,v u,v : E;’v
= &P (Eoo = @ <(EL, Nimd,) & T nkerds ﬁkerdg> > :

u+v=r

(ii) The isomorphism in (i) can be chosen so that Aj, corresponds to
EWY
U, UV~ J4
@ <E°O @®<(E€ mlmdz)@Eg’vﬂkerdg>) °
u>k, utv=r l
(iii) The isomorphism in (i) can be chosen so that the only possibly non-
trivial components of the operator corresponding to d by (i) are the
isomorphisms

E’U,,’U ‘ ¢
R — ) LR A Y
C B Nkerd ¢ ‘

canonically defined by dy.

Before proving Lemma 4.4, we state three corollaries that will be needed
in the proof of Proposition 4.3.
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COROLLARY 4.5. There is a (non-canonical) isomorphism
E’I"
E. = E’ (Ey Nimdy) ® ———— ) .
69@ ( ¢ Nimdy) © Ej ﬂkerdg>
>k
Proof. This is a direct consequence of Lemma 4.4. O
Let
E’f‘
P =di —ft
M i @ Ej Nkerd,
1>k

COROLLARY 4.6. We have
dim Ej, = m} "+ H"(A,d) +mj,.
Proof. This follows from Corollary 4.5 since each d; induces isomorphisms
ET’

E; N lier dy
COROLLARY 4.7. Forr = u+uv, there is a subspace L,"" C A" /(A" Nker d)
such that:

(i) We have
Zy" + (A" Nkerd) _ [ Z T+ (AT Nkerd)
A" Nkerd k A" Nkerd
as vector spaces. In particular d(L,"") C ATt

u+k”
(ii) The direct sum Lj, = @, ,_, L;’" makes sense in A" /(A" Nkerd),
and we have dim Lj, = mj.

~ g7 Nimd, . O

Proof. From Lemma 4.4 we get a (non- canonical) isomorphism

—N 4.4
A" Nkerd 69E’"ﬂkerdg (44)

Then let L;"" be the subspace of A" /(A" Nkerd) that corresponds to
E/"

( | ) u,0

>k EE Nkerd,

by (4.4). Then property (i) easily follows from Lemma 4.4, and property (ii)
is obvious; in fact, L}, corresponds to

et E; N ker dy
by (4.4). ]
REMARK 2. By Corollary 4.7(i), the canonical isomorphism
z" ~  Z;" + (A" Nkerd)

—
/S ZM T (AT N ker d)
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yields

Z’:‘JL’,U ~ TUV
+lu—1 v Yk
T
When applying Corollary 4.7 to the L? spectral sequence of a C* foli-
ation, the subspaces L), C domd/kerd of Corollary 4.7 will be the spaces
L needed to apply Proposition 4.3.

The rest of this section will be devoted to prove Lemma 4.4. To begin
with, we have [Mc]

u,v u+1,0—1
B+ 2,
u+1,v—1 u,v
ZyZy + By
1v—-1
Zu,v + Zuj— R
E}Y Nkerdy =~ 1

u+1,v—1 u,v
Zy B

Eg’v n dg(Eg) =

So
B 0 dy(By) B~ (4.6)
\Le) — — ) .
‘ Béff’” s B
Eu,v Zu,v
¢ ~ ¢ (4.7)

U,V = u+1,v—1 U,V
E,;”" Nkerdy z," + 2,
canonically. Here, isomorphism (4.7) is obvious, and (4.6) follows since
U,v u,v u,v u+lo—1 _ putlu—1
By By, BNz =B
Consider the following chain of inclusions for 0 <u < g and r = u + v:

A CA + By C A+ By C
e CALL B CALL 2 C (4.8)

 CALLHZY CALL 2 C AL
The inclusions in (4.8) have the following quotients:
A + B B

o~ 4.9)
I u,v u+1l,v—1 u,v (
A Bl BYTT + B
T u,v U,V
App+ 2 2 = B (4.10)
u,v lo—1 - oo .
A1 + B Zih vl By
r u,v U,V
At % (4.11)
A" + ZU»U _ Zu+1,v71 Zu,v ) :
u+1 +1 -1 4
where these isomorphisms are canonical because
u,v u,v U,v r _ putlu—1
B,”, C B, B, ﬂAu+1 = Bé+1 ,
u,v U,U u,v _ rutlou—1
B C Zx s Z% mAZ—i—l = Z )
U,V U, uU,v r _ putlou—1
Z£+1 cZ,, Zy, NAL L =2, .
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The direct sum decomposition in property (i) will depend on the choice

of linear complements for the inclusions in (4.8):

Ay + B =U"" @ (A + B,

A1 + 23" =V @ (Ay + BL),

A1 + 2,7 =W e (Al + Z,5) -
On the one hand, since the chains in (4.8) form a filtration of A" when
varying u, we have

A= B (V“’” e DU @ W;’”)) (4.12)

u+v=r V4

as vector space. On the other hand, according to the canonical isomor-
phisms (4.9), (4.10) and (4.11), the spaces U,"", V*¥ and W,"" can be
chosen so that

Ut cB), vertczyy, WU cZz,, (4.13)

yielding direct sum decompositions
By = U o (BT By (414
ZoY =V g (Zuhemt 4 BuY) (4.15)
Zp =Wt e (2,0 + 20 (4.16)

Hence
U/ = B Nimdy, (4.17)
Vv o g (4.18)
Eu,v
¢

W’LL,’U g
¢ E,"" Nkerd,

by (4.6), (4.7) and (4.14)—(4.16). Therefore property (i) follows from (4.12)
and (4.17)~(4.19).
Property (ii) follows from (4.12) because
U/, ver s W C A
Now property (iii) is obviously equivalent to the existence of U, é‘ N VA
and W,"" as above satisfying

d(UPY) =d (V) =0, d(Wr") =uprttrit, (4.20)
The first equality of (4.20) holds by (4.13). We shall also check that, once

the W,"" is given satisfying (4.16), the U,"" defined by (4.20) satisfies (4.14).

This follows because d canonically induces a map
Uv ut-L,v—~0+1
dy - Zy B,
Cutlu—1 U, u+£+1,0—~L u+Lv—~0+1 "’
2y + 24 B, + B,

(4.19)
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which corresponds to the isomorphism d; via (4.7) and (4.6). So dy is an
isomorphism as well, and thus the above U,"" satisfies (4.14) as desired.
This finishes the proof of Lemma 4.4.

4.4 Proof of Theorem 4.1. Assume Z}iﬂ’v_l + 23 is closed in Z;"
for all u,v. We shall need the following abstract result.

LEMMA 4.8. Let L be a real complete metrizable topological vector space,

and V,W C L linear subspaces. If V. "W =0, V is closed in L, and W is
closed in V+ W, then V+W =V & W as topological vector spaces.

Proof. We have (V +W)NW = W since W is closed in V + W, yielding
VAW = 0because VAW =0. SoV+W =V W as topological
vector spaces because all spaces involved are closed subspaces of L (see for
instance [S, Corollary 3 of Theorem 2.1, Chapter III, page 78]). Now the
result follows easily. O

LEMMA 4.9. For v+ v = r, the space (2" Nkerd) + €, is a closed
subspace of Z,"" + (" Nkerd) + Q7 ;.

Proof. The space " Nkerd is closed in 2 since d is a closed operator,
and thus so is its subspace Zoy = €, N (2" Nkerd). Hence Q" Nkerd =
V @ 73 as Hilbert spaces, where V is the orthogonal complement of Zg’
in Q" Nkerd; in particular V is closed in €2 too. Obviously,

Q" Nkerd) + 7 =V + 237+ Q4
2+ (Q Nkerd) + Q) =V +Z"+ Q.
On the other hand we clearly have
28+ Q1 =9, 0 ((Q Nkerd) + Q) ,
2y + Q=0 (2 + (Q Nkerd) + Q) ,
and thus Zgo" 4+ Q4 and Z"" + Q7| are respectively closed in (" N
kerd) + Q7 and Z;"" + (Q" Nkerd) + €], ;. Therefore Lemma 4.8 yields
(@ Nkerd) + Q4 =V & (28 + Q1)
2"+ (Q Nnkerd) + Q) =V @ (Z)" + Q1) ,
as topological vector spaces, and the result follows. O
REMARK 3. In the proof of Lemma 4.9, the existence of V' so that
Q" Nkerd =V @ Zys' as Hilbert spaces is the technical difficulty we were
not able to solve without using square integrable differential forms; that is,
we do not know if Q" Nkerd = V & Zx" as topological vector spaces for

some subspace V. This is the whole reason of introducing the L? spectral
sequence in this paper.
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Also, observe that the formula of Gromov—Shubin uses square integrable
differential forms. Thus it can be more easily related to the L? spectral
sequence than to the differentiable one. Though this is a minor problem
that could be easily solved in the setting of C'*° differential forms.

We shall use the notation
Xz = @Qa,r—a’ pz = Z’]Taﬁ._a N QT E— X,Z .
a<u a<u
With respect to the inner product in € induced by g or any g, the space
X, is the orthogonal complement of €2 ,; in ", and p;, is an orthogonal
projection.
COROLLARY 4.10. For u+ v = r, the space p,,(Q2" Nkerd) is closed in
PL(Z" + (92" Nkerd)).
Proof. This follows from Lemma 4.9 since we clearly have
(Q" Nkerd) + 2, = p,(Q" Nkerd) ® 2y, ,
Z;" + (Q Nkerd) + Q= p, (2,7 + (2" Nkerd)) ® Q. ,
as topological vector spaces. O

Recall that d : domd/ kerd — im d denotes the map induced by d, and
let ;" and L}, be the spaces introduced in Corollary 4.7 in section 4.3 for
the particular case of the L? spectral sequence of F.

LEMMA 4.11. We have
ldc]],, < n= 2 H* |
for all ( € L" and 0 < h < 1.

Proof. This follows directly from Corollary 4.7 and (4.1). 0

Let || -|| and || -||,, also stand for the quotient Hilbert norms on €2/ kerd
induced by the norms |- || and |- ||, on €2, respectively. In particular we
have the restrictions of ||| and ||- ||, to each subspace L;"" C €/kerd.

LEMMA 4.12.  For each subspace K C L, of finite dimension there is
some C > 0, depending on K, such that

R IC) < Cx I,
forall( € K and 0 < h < 1.

Proof. Let u+wv = r. The restriction pl, : Z;*" + (Q" Nkerd) — X/, induces
a homomorphism
g BT (@ nkerd) Xr
s Q" Nkerd pr (2 Nkerd)
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We clearly have

Q1+ (2" Nkerd)
Q" Nkerd

So p;, induces a continuous linear isomorphism

Z," + (22 Nkerd) ~ oy (2" + (2" Nkerd))

ker p), = (4.21)

— imp, =
Z T Q@ Nkerd) (2 Nkerd)
Observe that im p}, is a Hausdorff topological vector space by Corollary 4.10,
and thus [|-|| and ||-||; induce norms on im pj, that will be also denoted by
||I-|| and ||-]|,,, respectively. By (4.21) and Corollary 4.7, the homomorphism
P, restricts to an injection pl, : L;"" — imp),. Since pj, is an orthogonal
projection for any metric g, we easily get

17uClln < ISl forall ¢ e L. (4.22)
Here, we use the norm on im p], in the left hand side of (4.22), and the

norm on €2/ kerd in its right hand side. Observe that, by (4.1),
h=92hY ||w|| < |wll, forall we X! and 0<h<1,

yielding

h=2pv ||g|| < ||€]],, forall € e€impl and 0 <h <1. (4.23)
Moreover, since K is of finite dimension, im p], is Hausdorff, and the restric-
tion pf, : L,"" — im pl, is injective, we get the existence of some C; > 0 so
that

1Kl < Ck llpgll - forall ¢ € K. (4.24)
So
WP (IS < Ch™ 2R | gogll by (4.24),
< C}{ HCHh ’ by (422)7
for all ( € K and 0 < h <1 as desired. O

COROLLARY 4.13. For each subspace K C Lj of finite dimension there is
some C'x > 0, depending on K, such that
d¢]l,, < Crh* II¢,
forall( € K and 0 < h < 1.
Proof. Since K is of finite dimension, there is some constant C’-, depending
on K, so that
|d¢|| < Ckll¢ll forall CeK. (4.25)

Because Lj, = @, ,—, L, any finite dimensional subspa;:i K CLjis
contained in the sum of finite dimensional subspaces K“* C L,>", u+v = r.
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Therefore we can assume K is contained in some LZ’” with u+v = r. Then,
for ( € K and 0 < h <1, we have

Jac], < ho/2he g

, by Lemma 4.11,

< CRh™ PR ¢, by (4.25),
< CRCERR ¢, by Lemma 4.12,
and the result follows with Cx = C'.C.. O

Now the proof of Theorem 4.1 can be finished as follows. If mj) < oo,
then Corollary 4.13 holds for K = L, and thus
EJ(Cyh?) > mi.
Therefore, in this case, Theorem 4.1 follows from Corollary 4.6 and Propo-
sition 4.3.

If mj, = oo, choose any sequence of finite dimensional subspaces K; C L},
so that dim K; T co. Then Corollary 4.13 gives a sequence C; > 0 such that
FT(C;h**) > dim K;
for 0 < h < 1. Hence Theorem 4.1 also follows in this case by Corollary 4.6

and Proposition 4.3.

5 Asymptotics of Eigenforms

The goal of this section is to finish the proofs of Theorems A and B. At this
stage, an inequality in Theorem A easily follows from connections estab-
lished between the differentiable spectral sequence, the L? spectral sequence
and small eigenvalues. The reverse inequality, and the rest of Theorem A,
will follow from Theorem B, which is proved first.

To begin with the proof of Theorem B, our Hodge theoretic nested
sequence Hj; is studied in section 5.1. Its definition is simply a continuation
of our previous Hodge theoretic approach of the terms F;, Fs; this is only
a simple application of linear algebra because Hsy is Hausdorff of finite
dimension. But we need a description of the sequence Hj, (Theorem 5.1)
whose proof is long and difficult; it is so because we have to keep track of
the contributions of 0 in all terms Hj up to the limit.

The proof of Theorem B, and thus of Theorem A, is finished in sec-
tion 5.2 by using the above description of Hj and certain estimates of the
rescaled Laplacian Ay; these estimates are rather similar to some estimates
of Forman in [F].

In the whole of this section, F is assumed to be a Riemannian foliation
and the metric bundle-like.
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5.1 The Hodge theoretic nested sequence. So far we have con-
structed bigraded subspaces Hi, Ho C €2, which are respectively isomor-
phic to é;1,e2 as bigraded topological vector spaces by Theorem 2.1 and
Theorem 2.2(iv). We continue constructing subspaces Hy C €2 and isomor-
phisms ej, = Hj by induction on & as follows. Suppose we have constructed
‘Hj;, and an explicit isomorphism ej = Hj for some k > 2. Then the ho-
momorphism dj corresponds to some homomorphism on Hj that will be
denoted by dj as well. Thus Hi becomes a finite dimensional complex.
Let 6x be the adjoint of dj on the finite dimensional Hilbert space Hj, and
set A = dpop + 6xdy, and Hyiq1 = ker Ap = kerdy, N ker 6. We have the
orthogonal decomposition
Hi = Hpr1 @ imdy @ im 6y,
yielding
er+1 = Hlep, dy) = H(Hi, di) = Hyg
which completes the induction step. So (Hy, dy) is, by definition, some kind
of a Hodge theoretic version of the sequence (é1,d;), (e2,d2), (e3,ds), ...,
and thus of the sequence (El,dl), (E2,ds), (E3,ds),... as well by Theo-
rem 2.1 and Theorem 2.2(vii). Furthermore each Ay is bihomogeneous of
bidegree (0,0), and thus Hj inherits the bigrading from €2, which clearly
corresponds to the bigrading of Fj and ex. Observe that the nested se-
quence
QODHIDHaDH3DHy D -

stabilizes at most at the (¢+ 1)th step since so does Ej. Then its final term
Hy+1 = Hgy2 = --- will be denoted by Hoo, and we have Fog = €56 = Hoo-

We shall need a better understanding of the new terms Hj for £ > 2.
Precisely, we shall use the following result.

Theorem 5.1. Let k> 3 and w € Hy". Then w € H,"" if and only if
there are sequences a; =y, oo and §; = Y-, B¢, where af € QuTav=a
and B¢ € QU= guch that

7Tu+a,v—a+1d(w + ai) E— 07 7Tu—a,v+a—16(w + ﬂz) —0
strongly in  for 0 < a < k.

The rest of this section will be devoted to prove Theorem 5.1. To
begin with, the nested sequence Hj is most properly a Hodge theoretic
version of another sequence of bigraded topological complexes (€1, dy),
which are defined as follows by induction on £ > 1. First, let €17 = é;
and é12 = H(é;) with the induced topology in cohomology. We have

an explicit isomorphism e = é;2 of bigraded topological vector spaces
given by Theorem 2.2(vii). Now suppose that, for some fixed k£ > 2, we
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have defined é; ;, with an explicit isomorphism ej, = é; ;. of bigraded topo-
logical vector spaces. Then é;; becomes a topological complex via this
isomorphism, and define é; 41 = H(é; ). Furthermore the composition
er+1 = H(ey) = €141 is an explicit isomorphism of bigraded topological
vector spaces.

LEMMA 5.2. For k > 1, we have a canonical isomorphism

N -
€1k = pusv puv ( : )
k-1 T %
of topological vector spaces. Moreover, for k > 2, the above isomorphism

UV~ AU
ey = ey corresponds to the canonical map

Zk: u,v zk u,v + bgvv
pwv pUsv pv
k—1 k—1 + 0

(5.2)

when applying (5.1).

Proof. The result is proved by induction on k. First, the case k = 1 is
trivial.
Second, the kernel and the image of d; in €]’ respectlvely are 25" /by

and b]"" /by, whose canonical projections in é}"" = 2" /by"
v u,0 wu,w | U0
+ by by + bo
U,U ) U,v
by by

yielding the canonical isomorphism (5.1) for & = 2. Since the isomorphism

: (5.3)

ey’ =617 5 18 canonically defined, it corresponds to the canonical map (5.2)
for k = 2.

Now assume the result holds for k = E > 2 and we prove it for k =
¢+1. The kernel and the image of d; in e, respectively are z,; 1 “ /by and
b, /by"}, whose images by the canonical isomorphism (5.2) for k = ¢ are

by b by

bl 4+ byt b b
These spaces respectively correspond to the kernel and the image of d, in
€1’y by (5.1), yielding the canonical isomorphism (5.1) for k = £+ 1. Again,

(5.4)

because the isomorphism e}’ = ¢, is canonically defined, it is given by
the canonical map (5.2) for k = ¢+ 1. 0
We shall consider each isomorphism (5.1) as an equality from now on.

For k > 1, let 11 denote the orthogonal projections €2 — Hjy; in partic-
ular, II; = II with this notation. Let also Py = P, Qo = @ and, for k > 1,
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let Py and @y be the orthogonal projections of €2 onto dy(Hy) and 6y (Hy).
Finally let P, = Zogégk P, and Qj, = Zogégk Qy for k > 0.

LEMMA 5.3. For k > 1, Il induces an isomorphism élf’;; - HZ’U, whose

composition with the canonical isomorphism e;’* — €’} is the above iso-
b
morphism ;" = H,"".

Proof. Observe that the first part of the statement means that we have an
orthogonal decomposition

U byt =M e (b +bg7). (5.5)
Again the result follows by induction on k. We have an orthogonal
decomposition

V= HY @by (5.6)

by Theorem 2.1. Thus the isomorphism é; 1 = é}"" = H{"" is induced by the
orthogonal projection II; onto H;. On the other hand, the kernel and image
of di in H}"" respectively correspond by this isomorphism to the kernel and
image of d; on é}"Y, which are respectively given by (5.3). So the kernel

and image of d; in H;"" are the orthogonal projections IT; (25" + by') and
I (b7 + 1737), respectlvely Hence, by definition, Hy"" is the orthogonal
complement of II;(b]"" + by") in I (25" + b ), which is equal to the
orthogonal complement of bu’v + by’ in zg — bg’v by (5 6) since
by C YU bpT C ooy byt C 2t
Thus the result follows for k = 2.
Now suppose the statement holds for k& = £ > 2. Then, via the iso-

morphism é}"; 5 H,”" induced by IIy, the kernel and image of dy in H,""
respectively correspond to the kernel and image of dg in €1, which are given
n (5.4). So the kernel and image of d; in H,”" are the orthogonal projec-
tions Iy(2,)) +by™") and TIy(b," +by™*), respectively. Hence, by definition,
Hy', is the orthogonal complement of TIy(by™" + by™”) in l_Ig(zZJrl + 057,

which is equal to the orthogonal complement of bz’v +by" in Zz +1 + by by
(5.5) for k = ¢ since

bt + by C byt by C 2l by C a4 by
Thus the result follows for k = £ + 1. O
REMARK 4. The inverse of the isomorphism é el = H in Lemma 5.3 is

obviously induced by the inclusion Hk, Y zk +b0 . So we can summarize
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Lemmas 5.2 and 5.3 by saying that, for k¥ > 2, the isomorphism e,"" = H,""
is given by the diagram
u,v u,v u,v
A o~ AR by’ o~
eZﬂ) _ 1];:1) =~ k 0_ szv (57)
b, ) u,v U,V
k—1 bk:—l + bo

where both isomorphisms are canonically induced by inclusions.

REMARK 5. In general, we have z;"" # H;"" @ b,"", because H,"" ¢ 2",
but the orthogonal decomposition (5.5) always holds. This is the reason the
nested sequence Hy, is a Hodge theoretic version of the sequence (€, dk)
better than of the sequence (é1,dy), (e2,d2), (e3,d3), .. ..

The following proposition is the key result to prove Theorem 5.1.

PROPOSITION 5.4. Let w € HZ’” and v € HZJrk’”_kH for k > 2. If there
is a sequence «; € Qxff such that

Tutav—at1d(w+ ;) — 0, 0<a<k,
Qr—2Tuskw—k1dw + ;) — 0, Ipmyipo—pprd(w + ) — v
strongly in €2, then dpw = . Moreover, in this case the sequence «; can

be chosen so that

7ru+a,v—a+1d(w + Oéi) —0, O0<a<k,
Tutko—k+1d(w + o) —
with respect to the C*° topology in §2.

The following slightly weaker result will be used as an intermediate step
in the proof of Proposition 5.4.
LEMMA 5.5. Let vy € H}?Lk’”_kﬂ for k > 2. If there is some sequence
o; € QZf{, such that

Tutap—at1da; — 0, 0<a <k,
Qr—2Tutkp—kr1do; — 0, Ipmyipo—pr1dog —

strongly in €2, then v = 0.

Both Proposition 5.4 and Lemma 5.5 will be proved simultaneously by
induction on k > 2. For the case k = 2 we need the following.

~u—1,v

LEMMA 5.6. We have H27ru+gyv,1dcilﬂ =0 for any § € H,
Proof. Write 3 = 3 + 3" with 8’ € P(Q*~1%) and 8" € Q(Q%*~!). Then
oy s2,0—2ddi 3 =y (do,—1(dr,oB + do1 ") + d1,0Q(d2,—13 + d1,08"))

= Iy ((da,—1d1,0 + d1,0d2,—1) 3 + (d2,—1do,1 + d%,o)ﬁ”)
— Mady oT1(da,—13'+d1,08")—Tad1 o P(d,~15'+d106")
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= —Iad 1 1(dg,—13'+d1,08") 112 Pdy g P(d2,—1 8 +d1,03")
=0
by (2.2), Lemma 2.3 and because Iadp 1 = Ilpd; = IIa P = 0. O

LEMMA 5.7. Let o; be a sequence in 77111“] such that djoy; — 0 strongly

in . Then
[Iomyy2 p—1dot; — 0

strongly in €.

Proof. Since the image of d; is closed and equal to its kernel, the hypothesis
~u—1, -~
implies the existence of a sequence (3; € qu " such that a; +diB; — 0
strongly in 2. On the other hand we have
omyq20—1d = Hada 17y + ady oTus1,0-1

= ada, _ 17y + Holldy 0Qmyq1,0-1

on ﬂ?’v, and thus the operator Ilymy 2 ,—1d : 77(11w — H;‘*z’“l is bounded

because dy 1 and Ild; o) are bounded operators in 2 by Lemma 2.4.
Therefore B

Momyt2.v—1d(a; +di ;) — 0
strongly in 2. Then the result follows directly from Lemma 5.6. O

Proof of Lemma 5.5 for the case k = 2. In this case we have v € H§+2’U_1

and o; € Q=1 which satisfy
dopo; — 0,  Qdypo; — 0, Tladipo; — 7y
strongly in €. Since
Ild; oTa; = dy ey L HY 2071
we get HgdLoﬁm — v strongly in Q. But Iladi gPo; = 113 PdygPa; = 0
by Lemma 2.3, and thus we get
omyq20—1dQay = Hady ¢Qo; — 7y (5.8)
strongly in €. Now observe that Qo; € ﬂzf’v, and
d1Qa; = 11 ,dQa; = do1Qay; + Qdy pQa; = do 10 + Qdy1 o0y — 0
because dp 1@ = dp, and by Lemma 2.3. Then the result follows by (5.8)
and Lemma 5.7. O
Now let £ > 2 and assume that Lemma 5.5 holds for 2 < k < /. If £ > 2,
assume also that Proposition 5.4 holds for 2 < k < {.

Proof of Proposition 5.4 for k = £. First, we check that the assignment

w — =, under the conditions in the statement, defines a map H,”" —

H?H’%”l — observe that, if such a map is well defined, it is obviously
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linear. Suppose there is another 7/ € H"ZH’U_EH and another sequence
o € QU7 such that

7Tu+a,'u—a+1da; — 0, O0<a< e,

2 / / /
Qr—2myttw—t1dog; — 0, Ilpmyqpp_gy1do; — 7

u+v
u+1

7Tu+a,'ufa+1d(ai - 04;) —0, O<a</,

strongly in Q. Then the sequence o; — o € €2 satisfies

Qr—omurtw—t+1d(c; — ) — 0, Ipmyypp—or1d(a; — ) — v —+
strongly in Q. Therefore v = 7' by Lemma 5.5 for the case k = /.

Second, we prove that the above map H?’v — H?Hﬂ}*”l is dy; i.e. for
each w € H,"", we prove the existence of a sequence «; € QZH such that

Tutapv—at1dw+ o)) — 0, 0<a</t, (5.9)

Q[_Qﬂu+g’v_g+1d(w +a;) — 0, (5.10)

Hﬂru+g’v,g+1d(w + Oéi) — dyw € H?+é’v_£+1 (5.11)

strongly in €. According to (5.7), for each w € H,"" there is a sequence
w; € z?’” converging to w with respect to the C'* topology and such that
w and all the w; define the same class ¢ € éy’/; thus all the w; define
the same class ¢ € e,”". By definition of z,”, there is another sequence
o; € QT such that w; +a; € Z;”". So all the w; + o; define the same class

¢ € E/Y, and the class d¢§ € E;M’U_ZH is defined by any of the forms
d(wi +a;) € Z;M’U_ZH. Thus
Tutav—at1dwi +a;) =0, 0<a </,

and any of the forms

u+L,v—~0+1
Tuttp—t+1d(wi + ;) € 2,
define the class de¢ € es " as well as the class d¢l € évio" "+

yielding
7Tu+a,v—a+1d(wi + ai) =0, 0<a<x/,

Qr—2Tuttv—e41d(w; + ;) =0,

u+Lv—~€—1
Hgﬁu+g7v_g+1d(wi + ;) = dpw € H,

independently of . Then (5.9)—(5.11) follow by the C'* convergence w;—w,
as desired.

Finally we prove the last part of the statement. Observe that, in fact,
the above arguments yield C*° convergence in (5.9)—(5.11), and also the

C*™ convergence B
Qr-1Tyrt—t41d(w + ;) — 0.
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For each i, take o} € Q1(QuFt=1v=f+1) satisfying

Myd100] = Pimrusep—rird(w + i), (5.12)
and take o) € Qo(Q4T4v~) such that
do’ld'zo + PodLoO'il - P07Tu+g7v_g+1d(w + Oéi) —0 (5.13)

with respect to the C* topology. If £ > 2, foreachiand m=2,...,/—1
take some 07" € Q,, (QUH—mv=+m) quch that
dmo'zm = m7ru+€,v—€+1d(w + 052') .

By Proposition 5.4 for k < £ there are sequences 7;"; € Qu +2’ m41 Such that
7ru+€—m+a,v—€+m—a+1d(azm + 7{3) —0, 0<a<m,
7Tu+€7v—€+1d(o';‘m + 7—@‘73) — mﬂ'u—i—&v—g—i—ld(w + ai)
with respect to the C*° topology in ). Then, for each ¢, m we can clearly

choose j depending on ¢, m so that 7" = 7,7 satisfies

7Tu+g,m+a71],g+mfa+1d(0';n + Tzn) e 0, 0 <a<< m, (514)
Tutto—t41d(07" +7") = PnTutop—e1d(w + ;) — 0 (5.15)

with respect to the C*° topology. Let
{—1

/Bi:ai—ag—ag—Z(azm+Ti ) e Y,

m=2

where the last term does not show up if £ = 2. From (5.12)—(5.15) we get
Tutap—a+r1d(wi +0;)) — 0, 0<a </,
Tutto—tr1d(wi + Bi) — dow
with respect to the C* topology in €2, and the proof is finished. O

We already know that both Proposition 5.4 and Lemma 5.5 hold for
k < ¢, and we have to prove Lemma 5.5 for k = ¢ + 1. The arguments
will be similar to the case k£ = 2, and thus we need an approprlate version
of Lemma 5.7. In particular, the generalization of ’Hl that fits our needs
turns out to be the following:

,}_“(Zw _ P()(Qu’v) @ @ Qu—i-a,v—a D Q£71(9u+€,v—€> )
0<a</
~ U ~ Uu,v . . =~ 7 /W
Let also H, =&, H, . We have orthogonal projections Iy, , : @ — H,
and Iy, , : Q — HZU given by
Hf;u,v = POﬂ'u,v + Z Tu+aw—a + Qé—lﬂ-u-l—ﬂ,v—Za H€;~,v = z Hé;u,v >
O<a</{ u
and let dy = ﬁg;.ﬂ,d : ’ﬁjv — ﬂ'jv.
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LEMMA 5.8. We have d}% =0.

Proof. Consider the following subspaces of Q4?:
APt = 2+ Byt + QI = (5 b7 @ QU
B = By + Qi = bg" & QT

First, observe that each ﬁ?’v is the orthogonal complement of Az’jf 0=t in
Bw?, and thus 7?; is the orthogonal complement of .A'Z’ﬁzg =P, .AZ’U% in
B = @,B%. So the inclusion H,” < B> induces an isomorphism of
topological vector spaces

H' = B A (5.16)
whose inverse is induced by the orthogonal projection ﬁ.ﬂ, : BV — ﬁ;v.
Second, observe that both B%v and AZEIE are subcomplexes of (€, d).

Moreover dy in 7~{Z’U clearly corresponds to the differential map in the quo-
tient complex B/ A'K’E;Z via (5.16), and the result follows. O

Since H (771’”, Jl) = 0, the following two lemmas generalize Lemma 5.6.
LEMMA 5.9. For any
ﬂ e @ Qu—l—i—a,v—a + Qe_l(Qu—l—&—Z,v—Z)

a<t

we have N
H€+17Tu+€+1,v—€dﬂf;~,vd/3 =0.

Proof. By the expression
@ QuflJra,vfa + Qeil(9u71+€,v7€)

a<l

_ _ ~ u+€—2,0—0+1 L
— @Qu 1+a,v a+H1 + (Ql 4. +Q€_1)(Qu+é 1,v Z)
a<t
it is enough to consider the following three cases. First, assume § €
D, Qurttav=a and let ' = myir—2.0—r+108. We clearly have

(d =g wd)B = (id —Qp-1)d2, 18" = (Q¢ + M1 + Pr)dp, 13,
yielding
Ty 1Tt er1,0— 0l dB = —Tp 1Tt es100d(Qr + Tpyy + Pr)da, 13
= —Ilpy1d10(Qr + Upgy + Pp)do, 1 5
= I 1di(Qe+ Ty + Pr+ -+ Pp)day 1
—y1dipPoda, 15
=0
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by Lemma 2.3, and because Ily;1d; = 0 and 1l Py = 0.
Second, suppose 3 € 7?;%72’”7”1 and write 3 = 3’ + 3" with
ﬁ/ c PO(Qquéfz,v—éJrl)7 ﬂ” e Q()(QquZfl,v—Z).
We clearly have
(Mg 0d — d1)B = (dg — d1)B = (Q1 + -+ + Q1) (do—1 8’ + d1,08")
yielding
Hz+17ru+e+1,v—edﬁe;~,udﬁ = Tl 1 Mures1.0—eddi B
+ Ty 1d1o(Qr + -+ + Quo1)(d2, 15" + di08")
= W1 oy o41,0—edd1 B
+ pp1di(Q1 + -+ + Qu—1)(do, 18 + d1p8")
=0
by Lemma 5.6.
Third, assume 8 € (Q1 + - + Qu_1)(QH 1= which is contained
in H?M_l’v_z. Then the result follows because ﬁg;.ﬂ,d = ﬁg;.ﬂ)dl on H'l’v_z,

and ; o
dH" P (YT LH, O

LEMMA 5.10. For a € ﬂ?’v, if dyov = 0, then 1 Tyte41,0—eda = 0.
Proof. Write o = o + o' + o' with o/ € Py(Q%?), o’ € QuFlv—1 and
o e @ Qu-i-a,v—a D Qé_l(Qu—f—é,v—Z) )
2<a<t

Observe that o/ + Qpa’ € ’;llv Since dyav = 0 and d; = ﬁl;.,vdg on
27 't . ny _1) .
H,", we have di(¢/ + Qoa') = 0. Thus there is some 8 € H,  with
di3 = o + Qua” because H(H'l’v, d1) =0. Then a — dyf8 € H;w satisfies

7ru,v<a - CZZB) = Q()Tru—l—l,v—l(a - Jéﬂ) = 07
and moreover
g1 Tt 1,0—ede = Mpg 1 Ty o1,0—ed(a — doB)

by Lemma 5.9. Therefore we can assume o/ + Qpa” = 0, and thus o/ =
Qoa” = 0. With this assumption, it follows that o’ = (II; + Fy)a” and

" " " 7
dillio" = IIidy oIl = I1dy po” = Il myp2 p—1doe = Ty g0 —1dpce = 0

by Lemma 2.3, yielding Q1a” = 0.
Take a sequence

~u—1,v

i € Qo(QH ) C N,
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such that dy1¢; is C* convergent to Pyo". Then the sequence a — dggbl
H," satisfies
g1 T4 1,0—edo = Moy 1Ty oi1,0—ed (@ — dechy)
— My 1Tyt o—ed(io” + ™)
by Lemma 5.9. So
o1 Tues1o—edo = o1y yos1o—ed(Ilia” +a™),

and thus we can also assume Pya/” = 0.

For each k = 1,...,¢ — 1 there is some 0% € Q(QU~F+1Lv+k=2) with

dpo® = Pya/’. As above, from the existence of such a o! we can assume

P = 0 by Lemma 5.9 since di = 7y p— I dy on ’Huv Lrte > 2, by

Proposition 5.4 for k = 2,...,¢ — 1 there is a sequence 7¥ € Q“*""L, such

that
Wu_k+a+1’v+k_a_1d(ak + Tf) —0, O<a<k,
Tut1p-1d(0* +7F) — Ppa”
with respect to the C* topology in 2. We can thus suppose P’ = 0 for
such a k because
HZ_H7ru+g+17v_gdﬁg;.7vd(0k + Tl-k) =0
by Lemma 5.9. Therefore

-1
= Hu-‘rl ,wo—1 @ @Qk(Qqul,vfl) ’ (5.17)

where the last term does not show up if £ = 2.
Now the condition dya = 0 can be written as
Tut1+av—ad(@”+a")=Qp_ 17y 041 v—0d("+a"")=0, 0 <a < L. (5.18)
Observe that (5.18) summarizes the conditions of the first part of Propo-

sition 5.4 for k = 2,...,¢, with w = o, the constant sequence a; = o',

and y=0if 2 < k < /. Since o € Hu+17v_1 by (5.17), we get inductively

onk=2,...,4—1that o/ € HuJrl oot and dra” =0 by (5.17), (5.18) and

Proposition 5.4. Hence o € H?H’U_l by (5.17), and thus
omytor1,0—edo = Tpmy o1 p—ed(@” + o) = da” L Hegq

by (5.18) and Proposition 5.4 for k = ¢, and the result follows. ]

We also need the following Hodge theory for the complex (Hg .dy). Let
6@ Hg U(S on Hé , and set Dg = dg—f—(Sg and Ag = Z = (5gdg+dg5g Such a
by is adjoint of dy in Hz with respect to the L? inner product, and thus Dg
and Eg are symmetric unbounded operators in the L? completion LQ’F{ZU.
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LEMMA 5.11. The operator Dy is essentially self-adjoint in L27TQ’U.

Proof. By Theorem 2.2 in [Ch], D = d + 6 is essentially self-adjoint in €2.
Then, by using e.g. Lemma XII.1.6(c) in [DuS], so is Il.. ,, DII,.. , because
ﬁg;.’v is a bounded self-adjoint operator on 2. But ﬁ@;.,vDﬁg;.,v is equal
to 54 in LQ'IT[;) and vanishes in its orthogonal complement. Hence Eg is
essentially self-adjoint. O

LEMMA 5.12. Dﬁg;.’v — ﬁg;.’vDﬁg;.,v defines a bounded operator on .

Proof. We have
DHZ;-,'L} - HZ;-,'L)DHZ;-,'U = PO(é—l,O + 6—2,17r~,v—1) + (5_2717['.71)
+ (g + Pp—1)(d1 o7 p—g + d2, 17 p—p41)

+do 1T g
But
f’0571,07T-,u = 130571,013071,1; , Podyom. g = P0d1,0]3077~,v—€
on H,". Then the result follows by Lemma 2.4(i). 0
For each positive integer r, define the norm | - ||, on H, by setting

Il = [|Gd+De)"o||,
and let Wk'IN{éU be the corresponding completion of 7~{év. Then the following
result follows directly from Lemma 5.12.

COROLLARY 5.13. The restriction of each rth Sobolev norm || - ||, to ﬂé’v
is equivalent to the norm ||-||.. Thus W*H," is the closure of H;" in W*Q.

COROLLARY 5.14. The Hilbert space L27T[ZU has a complete orthonormal
system {¢; :1=1,2,...} C ﬂzv, consisting of eigenvectors of Eg, so that
the corresponding eigenvalues satisfy 0 < A1 < Ao < --- with A\; T oo if
dim 77[';} = oo; thus all of these eigenvalues have finite multiplicity. We also
have the orthogonal decomposition

ﬂf = (ker dy N ker 55) @®imdy @ iméby,
with
ker Ag = ker dy Nker & ,
imﬁg = ichg ® im&,
ker dy = (ker dy N ker Sg) @ imdy,
ker 6y = (ker dy N ker Sg) ®iméy.
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Proof. Corollary 5.13 implies that each inclusion WT“?A:[ZU — WWN{ZU is
a compact operator, and (), WrH,” = H,". Then the result follows by
Proposition 2.44 in [AT] and Lemma 5.11. O

Contrary to the case of (77[17”’ Jl), it may easily happen that the complex
('}tl.f, dy) has non-trivial cohomology. But we still can finish the proof of
Lemma 5.5.

Proof of Lemma 5.5 for the case k = ¢ + 1.  Observe that the strong
convergence
7Tu+a7v—a+1dai —0, 0<a</,
Qe-1Tute+1,0—edo; — 0

in € just means the strong convergence dgngvaz — 0. Write ngvozZ =
¢i + 1; with ¢; € ker dy and P € im be, according to Corollary 5.14. Then
dp; — 0 strongly in ©Q by Lemma 5.8, yielding 1; — 0 strongly in Q by
Corollary 5.14. Moreover

Tt Tt t,0—ede = oy Ty oi1,pedllpy w0 = He+17ru+e+1 v—tdth — 0
by Lemma 5.10 and because any linear map Hg — HZ +1 is continuous
with respect to the L? norms since Hy,; is of finite dimension. Therefore
= 0 as desired. O
This finishes the proof of Proposition 5.4, which has the following con-
sequence.
COROLLARY 5.15. Let w € H;" and v € Hsz’wrk*l for k > 2. If there
is a sequence (3; € P, Qu—avTa guch that
7Tu—a,U+a—16(W + ﬂz) —0, O<a<k,
Pyomu—kwth—16w =+ 3i) — 0, Ipmy_pprk—16(w + B;) —
strongly in €2, then 6w = . Moreover, in this case the sequence [3; can be
chosen so that
7"'ufa,erafl5((") + ﬁz) —0, O0<a<k,
Tu—kotk—10(w + Bi) —
with respect to the C* topology in ().

Proof. We can assume that M is oriented by using the two fold covering
of orientations with standard arguments. Then it is easy to check that the
Hodge star operator, % : Q — €, satisfies ¥H}, = Hy, and *dj, = (—1)" 1%
on Hj, for each integer r. Then the result follows from Proposition 5.4. O

Now Theorem 5.1 follows directly from Proposition 5.4 and Corol-
lary 5.15 by induction on k.
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5.2 Estimates of the rescaled Laplacian. The rescaled Laplacian
Ay, is the square of the “rescaled Dirac operator” Dy, = dj, + 65, which will
be used here too. The sum of (1.6) and (1.7) gives

Dy, = Do+ hD, + h?F, (5.19)
where
Do =dpy1 + 60,1, Dy =dig+06_10, F=do_1+621,
Let also A | = Di.
LEMMA 5.16 (Alvarez—Kordyukov [AK, Remark 3.5]).  There is a zero
order differential operator B on §) such that
D, Dy+ DyD, = BDy+ DyB*.
Recall that, for self-adjoint operators A, B in a Hilbert space H, the

inequality A < B is defined in the sense of quadratic forms: (Au,u) <
(Bu,u) for all u € H.

PROPOSITION 5.17. There is some C > 0 such that
Ap > 200+ $hPA | — CR?
for h small enough.
Proof. Consider the operators B, F' given by Lemma 5.16 and (5.19). Since

B, F are of order zero, there is some C’ > 0 such that B*B, F? < (C'.
Because Dy is symmetric, we get

h‘((BDo + DOB*)w,w>| < 2h‘<Dgw, Buw)|
< 2h||Dow| | Bw||
< ;1 1Dow|? + 4n* || Bw|?
=2 <(%A0 + 4h2B*B) w,w>
for all w € €, yielding
h|BDgy + DyB*| < Ag + h®B*B < Ag + C'h2.
Similarly we get
|FDo + DoF| < Ao+ F? < Ag+ ',
|[FD, + D, F| <AL+ F2<Ag+C".
Therefore, from (5.19) and Lemma 5.16 we get
Ap = Ao+ h2A| + h1F? 4 h(BDy + DyB*)
+ h*(DoF + FDg) + h*(D,F + FD))
> Ao+ h*A L +h'C = 1A) — C'R?
— WA (Ao +C) —R3 (AL +C)
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> Ao+ $h*A — CR?
for some C' > 0 and all h small enough. O

Proof of Theorem B. In the case k =1, (1.9) just means (Ap,w;,w;) — 0.
Therefore
(300 + $hIA| — Ch?) wi,wi) — 0
by Proposition 5.17. Hence
<A0wi,wi> —0 (5.20)

and (A wj,w;) is uniformly bounded since both Ay and A are positive
operators. It follows that w; is uniformly bounded in W'Q. Therefore some
subsequence of w; is weakly convergent in W' (and thus strongly conver-
gent in £2) to some w € W From (5.20) we also get that || Dow;|| — 0.
So Dgw; — 0 strongly in €, yielding w € ker Dy because Dy is a closed
operator in £2. But ker Dy = L?H; by (2.11). Thus the result follows for
k=1.

For k = 2, it follows from (1.9) that

ldn,will € o(hi),  [|6n,wil| € o(h),
yielding that
(h%.do,l + dio + hida,—1)w; — 0, (%50,71 +6-1,0 + hib_2,1)w; — 0,
strongly in © by (1.6) and (1.7). Hence
11 (dl,() + hid2,—1) wi — 0, 1II (57170 + h¢572,1) w; — 0
strongly in € as well, and thus so does the sequence 11D | w;. Then
DiTlw; = 11D, Mw; = 11D, w; — [1D, Tw; — 0

strongly in € by Lemma 2.4(i). It follows that w € ker Dy because Dj is
a closed operator in L?H;. But ker D; = Ho by Theorem 2.2(iii), and the
result follows for k = 2.

For the case k > 2, we can assume w; € Q" and w € Hy" for some
integers u 4+ v = r. Let w{ = m,,_qw; for each integer a, and set

w; = Z hi%wite, Wl = Z h; “wi™".
a>0 a>0
Now, by Theorem 5.1, the result follows from the following claim.
CrLam 1. For 0 < a < k, we have
7Tu+a,v—a+1dw£ B 07 7I'u—a,v—i—a—l6‘4‘)2/ — 07

strongly in €.

Clearly
(l + dwl - d wu (0l — 6(&1” - 6 — wu
u,v 1 7 0,1 7 9 u,v 1 7 0, 1 7

Thus both of these components converge strongly to zero because w € L?>H;.
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To prove Claim 1 for other bihomogeneous components observe that,
again from (1.9), both ||dy,w;|| and ||6,w;| are in o(h¥~!). Then
||h22d27_1w§’_2 + hz‘dLow?_l + d071w§)|| S O(hi?_l) s (5.21)
1h26_91w T2 + hi6_1 0wl ! + 8o, 1P| € o(RF), (5.22)
for every integer b, by considering bihomogeneous components of dj,w; and
Op,w;i. Now
/I u —1 u+1
Tut1,0dw; = dyow;’ + hi “dow;™

7ru_17v(5w§’ = 5_17000? + h;1§07_1w?_1
Both of these components strongly converge to zero in €2 too by (5.21) and
(5.22), since so does hidg,_lw;‘_l and hi6_271w1”+1 because da 1 and 6_2 1
are of order zero and ||w;|| = 1.

The other bihomogeneous components of dw, and éw are the following

ones, where a > 2,

7Tu+a,v—a+1dwzl' _ h;a+2d2,,1w?+a72 + h;a+1d170w1y+a71 + h;ado’lwgﬂra ’
Wufa,v+a716¢%/‘, — h;a+257271w1y7a+2 + h;a+1571,0w?7a+1 + h;a(so,ilwlyfa’
which strongly converge to zero in Q for a < k by (5.21) and (5.22). This
finishes the proof of Claim 1. O

Proof of Theorem A. First, we can assume the metric is bundle-like by
(4.3). So we can apply the results of this section.

If we had a strict inequality “<” in (1.2) for some k > 2, by the isomor-
phism Hj, = Ej} there are sequences w; € 2" and h; | 0 such that |w;| =1,
w; 1 Hg, and

(Ahiwi,wi) € O(h?k) .
But then we get a contradiction by Theorem B. So inequality “>" holds
n (1.2) for all £ > 2.

The proof of “>” in (1.2) follows with the same arguments since E{ &
H?, which is of finite dimension if and only if so is L*H7.

For k > 2, inequality “<” of (1.2) in Theorem A follows directly from
Corollary 4.2 and Theorem 3.5, as was pointed out in Remark 1.

Now observe that, for each h > 0 and each w € H’, we have

Dpw =hD w+ h*Fw,
according to (5.19). Therefore the inequality “<” in (1.2) follows from
the isomorphism H| = E{ by using the well-known variational formula
N} (X) = supy dim V, where V' runs over the subspaces of Q" satisfying

(Apw,w) < A|w|?
forall we V. O
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6 Forman’s Nested Sequence

This section is devoted to the proof of Theorem D. Thus let F be a Rie-
mannian foliation of dimension p on a closed manifold M. We need the
following characterization of $)5, which is weaker than (1.11) for k = 2.

CLAIM 2. A differential form w € () is in $)9 if and only if it has extensions
@1(h),02(h) € Q[h] satisfying
dpin (h) € h2Q[h],  Snan(h) € h*Q[h]. (6.1)

According to (1.11), it is enough to prove the “if” part of Claim 2. We

can assume
(:}1(h) :w—i-hwl, (:}Q(h) :w—l-hwg

for some wy,wy € Q because dj,(h2Q[h]) and 6, (h2Q[h]) are contained in
h2Q[h]. On the other hand, since $)2 is a bigraded subspace of Q, we can
suppose w € Q%Y for some u,v. Then it easily follows from (6.1) that
wp € QL= and wy € QU1+l Furthermore we can assume 00, —1w1 =
dp,1jw2 = 0 by Theorem 2.1. Hence the extension

w(h) =w+ h(w + w2)
of w is easily seen to satisfy (1.11) for k£ = 2, and thus w € 9, finishing
the proof of Claim 2

The statement of Claim 2 seems to hold also for $; with & > 2, but the
proof cannot be so easy.

By Theorem A and (1.14), we have ﬁg’p = Hg’p = 0 if Eg’p = 0.
Therefore we can assume Eg P £ 0 to prove Theorem D. According to [M]
and [A2], this assumption implies that F is orientable and E5? =2 R. So
HyP = R by Theorem A, and thus either $57(g) = 0 or H37(g) = HY"(g)
by (1.14).

Recall from [Rum] that the characteristic form, determined by F and
a metric g on M, is the unique differential form y € Q% whose restriction
to the leaves is the leafwise volume form. If g is a bundle-like metric, then
00,—1 corresponds to the leafwise coderivative by restriction to the leaves
[A2], [AK], yielding 6y, _1x = 0, and thus x € $°7(g).

To prove Theorem D(i) just choose the bundle-like metric g so that
dy ox = 0, which can be done by using Sullivan’s purification [Su] (see also
[M] and [A2]). Hence x € $57(g) by Claim 2, yielding H5* (g) # 0.

To prove Theorem D(ii), let us begin with a bundle-like metric g satisfy-
ing Theorem D(i), and the corresponding bigrading of {2 and decomposition
of d and ¢ as sum of bihomogeneous components. The hypothesis ﬁg’p #0
means that doJQQP_1 is not closed in Q%P, and thus we can take some
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a € dp1Q0P~1\ dp Q%P7 Take also some e > 0 small enough so that
X +€a = fx for some positive function f. Therefore x’ = f is the charac-
teristic form of some bundle-like metric ¢’ on M. Such a ¢’ can be chosen
to define the same bigrading on €2 as g, yielding the same decomposition of
d as sum of bihomogeneous components. We have x' € $7(¢') = HY?(¢).
Moreover, since a defines a non-trivial class

[a] € d07190,p—1/d0719071’3*1 = 5(1)’1) = Gg’p
and since H%(6;") = H°(0;”) = 0 by Theorem 2.2(vi), we get
0# dila] = [di0a] € 5,7 =2 077

So
dioX = dio(x + ea) = edypa € do1Q10\ do 1 QM0

yielding x' € Hg’p \ ﬁg’p(g/). Therefore ﬁg’p(g’) # Hg’p(g’), and thus
93"(g') = 0.
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