DISTRIBUTIONAL BETTI NUMBERS OF TRANSITIVE
FOLIATIONS OF CODIMENSION ONE

JESUS A. ALVAREZ LOPEZ AND YURI A. KORDYUKOV

ABSTRACT. Let F be a transitive foliation of codimension one on a closed
manifold M. This means that there is an infinitesimal transformation X of
(M, F) transverse to the leaves. The flow of X induces an R-action on the
reduced leafwise cohomology H(F). By using leafwise Hodge theory, the trace

of this action on each H'(F) can be defined as a distribution Béis on R, which
is called distributional Betti number because it is kind of a finite measure of
the “size” of H'(F). So the corresponding distributional Euler characteristic,
Xdis (F), is a distribution on R too. This is relevant because H(F) may be of
infinite dimension, even when the leaves are dense, and its Euler characteristic
makes no sense in general. The singularity at 0 of xg;s(F) is expressed in
terms of the Connes’ A-Euler characteristic, where A is the holonomy invariant
transverse measure of F induced by the volume form dt on R. Moreover the
whole of xgis(F) is computed by showing a dynamical Lefschetz formula.

1. INTRODUCTION

Let M be a closed manifold and F a smooth foliation on M of codimension
one. As usual, let X(M,F) C X(M) denote the Lie subalgebra of infinitesimal
transformations of (M, F), and X(F) C X(M, F) the ideal of vector fields tangent
to the leaves. For any X € X(M, F), the corresponding flow maps leaves to leaves,
and will be denoted by X; : (M, F) —» (M, F),t e R

The foliation F is called transitive when

T,M = {X(z) | X € X(M, F)} .

Since
T.7 ={Y(z) | Y € X(F)},
we get that F is transitive if and only if there is some X € X(M, F) transverse to
the leaves; i.e.,
T,.M =RX(z) ®T,F
for all x € M. Then the orbits of Xy, t € R, are non-singular and transverse to the
leaves. Note that

(1) X(M,F)/%(F) =R

if the leaves are dense, which is the most interesting case.

The leafwise de Rham complex of F, (Q(F),dr), is the the restriction of the
de Rham complex of M to the leaves; i.e., it is given by the smooth sections of the
exterior vector bundle A TF* over M. Its cohomology is called the leafwise coho-
mology of F, and will be denoted by H(F). Moreover (Q(F),dr) is a topological
complex with the C* topology, and H(F) is a topological vector space with the
induced topology. It is well known that H(F) may not be Hausdorff [14]. So it is
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interesting to consider its quotient over the closure of the trivial subspace, which is
called the reduced leafwise cohomology of F, and is denoted by H(F) in this paper.

Consider a Riemannian metric on M such that X is of norm one and orthogonal
to the leaves. So all flow orbits are geodesics of speed one orthogonal to the leaves.
This is what is called a bundle-like metric on M. Consider the induced Riemannian
structure on the leaves, and let 67, Ax be the leafwise coderivative and leafwise
Laplacian on (F), which are the restrictions to Q(F) of the coderivative and
Laplacian on the leaves. The kernel H(F) of Az is the space of harmonic forms on
the leaves that are smooth on M. The L? inner product on M induces a Hilbert
space structure in the space L2Q(F) of square integrable leafwise differential forms
on M. Consider Az as an unbounded operator in L2Q(F) with domain Q(F),
and let Ax be its closure. It is well known that Ax is symmetric on M when the
metric is bundle-like (see, for instance, [5, 16]), so A# is a self-adjoint operator. Let
II be the orthogonal projection L2Q(F) — ker Ax. By [3], II has the restriction
IT: Q(F) - H(F), and there is an orthogonal decomposition

Q(F) =H(F) ®imdr & imdr ,

which can be called a leafwise Hodge decomposition. In particular, the inclusion
H(F) C kerdx induces an isomorphism

(2) H(F) S H(F),

whose inverse is induced by the orthogonal projection II : ker dx — H(F).
For any function f € C°(R), define an operator Ay on Q(F) by the formula

Ale'[o/X;‘-f(t)dtoH,
R

and let Asci) denote its restriction to Q¢(F). Our first main result is the following.

Theorem 1.1. For any function f € C°(R), the operator Ay is of trace class,
and the functional f — Tr (Agci)) defines a distribution B%,,(F) on R for each i.

The distributions 8%, (F) depend only on F and the class of X in X(M, F)/X(F)
(Lemma 2.3); thus, when the leaves are dense, they depend only on F up to linear
isomorphisms of R by (1).

The usual dimension of the spaces H' (F) can be infinite even when the leaves
are dense [1, 2, 3]. So the Euler characteristic of H(F) can not be defined, and
thus a leafwise Gauss-Bonnet theorem makes no sense in the usual way. This is
surely a reason of the poor role played by the reduced leafwise cohomology in
foliation theory, which should be similar to the important réle played by de Rham
cohomology of closed manifolds.

To have finite leafwise Betti numbers, they must be defined in another way, by
using the another kind of dimension (“exotic dimension”). A solution was given by
Connes for foliations with a holonomy invariant transverse measure A [8, 9]. In our
case, A is the transverse Riemannian volume element, which corresponds to dt on
R. This A is used to make kind of an average on M of the “local dimension” of
the space of square integrable harmonic forms on the leaves at each degree i, giving
the finite A-Betti numbers 8¢ (F), and thus a A-Euler characteristic xa(F). The
technical difficulties of this idea are solved by using the noncommutative integration
theory of Connes. But, if the leaves are not compact, the forms of our space H(F)
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are not square integrable on the leaves because they are smooth on M. So, a priori,
the A-Betti numbers are not directly related with the reduced leafwise cohomology.

Now we give another “exotic” solution to the above problem. Observe that,
for f € C°(R) supported around 0, the operator Ay is kind of a diffusion of the
orthogonal projection II : Q(F) — H(F). So the germ of Bi (F) at 0 can be

considered as a finite measure of the size of (), and thus of H (F) as well. For
this reason, the germs at 0 of the distributions 8% (F) could be called distributional
Betti numbers. But, for the sake of simplicity, the whole distributions 8, (F) will
be called the distributional Betti numbers of F, even though they should be better
considered as Lefschetz numbers away from 0. We also define the distributional
Euler characteristic of F by the formula

Xdis(F) = Z(_l)iﬁéis(}-) :
i
The following theorem describes the singularity of xqis(F) at 0 in terms of Connes’
A-Euler characteristic xa(F). So Connes’ A-Betti numbers are really strongly re-

lated with the reduced leafwise cohomology. The similar result was obtained in [18]
when the flow is isometric.

Theorem 1.2. In some neighborhood of 0 in R, we have

Xdis(F) = xXa(F) - do ,

where &g denotes the Dirac measure at 0.

Recall that a closed orbit ¢ of length I of the flow X; on (M, F) is called simple
when

det(id — X : T, F* > T, F*) #0
for any z € c. The following theorem proves, for this type of foliations, a conjecture

stated by Deninger in [10]. Under some additional assumptions, it was proved in
[11, 18].

Theorem 1.3. Assume that all closed orbits of the flow X; on (M,F) are simple.
Then we have

Xdis(F) = Z I(c) isign det (id = Xjio  ToF™* — Tz]:*) “Oki(c)

k=1

on Ry, where ¢ runs over all primitive closed orbits of the flow Xy, l(c) denotes the
length of ¢, and x is an arbitrary point of c.

Of course, in Theorem 1.3, a symmetric formula for xqis(F) also holds in R_.

Observe that, if dimH*(F) = B*(F) < oo, then B%, (F) is a smooth measure
whose value at 0 is 31(F) dt. On the other hand, when #(F) is of finite dimension,
its Euler characteristic can be defined :

X(F) =Y (1) BH(F) .

K3

But, by Theorems 1.2 and 1.3, the distributional Euler characteristic yqis(F) is
trivial if it is smooth, obtaining the following.

Corollary 1.4. If dim H(F) < oo, then Xais(F), xa(F) and x(F) vanish.

Theorem 1.3 also has the following consequence.
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Corollary 1.5. Assume that all closed orbits of the flow Xy on (M,F) are simple.
If dim H (F) < oo, then, for anyl € R,

1
Z—sign det(id—Xl*:Tzf* _)Tacj:*) :07
p(c)

where ¢ runs over all closed orbits of the flow X; of period I, u(c) denotes the
multiplicity of ¢, and x € c is an arbitrary point.

[

When the dimension of F is two and the leaves are dense, it is possible to relate
directly each distributional Betti number with the corresponding A-Betti number
because we obviously have

BUF)=Br(F)=0, dmH'(F)=1, dimH*(F)<1.
So Theorem 1.2 has the following consequence.

Corollary 1.6. Assume that F is of dimension two with dense leaves. Then the
singular part of B4 (F) around 0 is i (F) - 8o for each degree i.

It is possible that the statement of Corollary 1.6 holds in general. Indeed, a
proof could be given by finding appropriate heat kernel estimates on the leaves. So
we propose the following.

Question 1.7. For each degree i, is it true that the singular part of 8%, (F) around
0is B4(F)-60?

If this question has an affirmative answer, then dimH?(F) = oo whenever
Bi(F) # 0. This would mean that the existence of non-trivial square integrable
harmonic i-forms on the leaves implies the existence of non-trivial harmonic i-forms
on the leaves that are smooth on M. Similar results were shown in [1, 3], where
integrable harmonic i-forms on the leaves are used instead of square integrable ones,
which are much easier to find.

Let Ry be the curvature of the leafwise metric, and Pf(Ryr/27) € QP(F) the
leafwise Euler form, p = dim F. The product Pf(Ry/27) A A is a differential form
of top degree on M. In particular,

PH(Ry /27) A A = % K () wpg ()

if F is of dimension 2, where K is the Gauss curvature of the leaves and wyy is the
volume form on M. Then Theorem 1.2 and the foliation Gauss-Bonnet theorem
from [8], which computes xa(F), have the following consequence.

Corollary 1.8. We have
Xdis(F) = do - / Pf(Rr/2m) A A
around 0. In particular, if F is of dimer?;[ion two, then
Xais(F) =0 5 /M Kor(z) war ()

around 0.

Corollary 1.8 seems to be a powerful tool to produce examples of foliations with
dense leaves on closed Riemannian manifolds with dim H*(F) = oo; specially, if
Question 1.7 has an affirmative answer.
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There are obvious versions of these results with general coefficients, which were
not considered here for the sake of simplicity.

This type of foliations are just Lie foliations of codimension one. So this is
a particular case of our work on distributional Betti numbers for arbitrary Lie
foliations [4]. It is worth to explain this particular case here because the arguments
are much easier to understand, and moreover the codimension one case is relevant
for Deninger’s approach to Riemann Hypothesis [10, 11].

Finally, let us mention that our results are somehow related with the study of
transversely elliptic operators for Lie group actions [6, 23, 20, 9, 15, 17].

2. DISTRIBUTIONAL BETTI NUMBERS

2.1. Leafwise homotopies. A C* foliation map f : (M,F) — (M,F) induces
a homomorphism of topological complexes, f* : Q(F) — Q(F), by pulling-back
differential forms. Then it also induces homomorphisms of graded topological vector
spaces, f*: H(F) - H(F) and f*: H(F) —» H(F).

Two maps C* maps f, f': (M,F) — (M, F) are said to be leafwise homotopic
if there is a C°° homotopy between them, hs : (M,F) — (M,F), s € I = [0,1],
such that each curve s — hs(x), x € M, is contained in a leaf. Such a homotopy is
called an leafwise homotopy, and the notation f ~# f' will be used. Then the usual
construction of an homotopy of de Rham complexes produces a linear continuous
map k : Q(F) - Q(F), homogeneous of degree —1, such that

(3) f*_fl*:kodf+d}‘ok.

Moreover k depends continuously on the homotopy hs with respect to the C'*°
topology. We get

*=f"H(F) = H(F
f:ff'ﬁ"{ }c =§'* Fgfg eFEf;,
and thus
(4) forff=Tof*=To f" : H(F) > H(F)
by the isomorphism (2).
2.2. Smoothing operators. Let wys denote the Riemannian volume element of
M, and wg the Riemannian volume element of F. A smoothing operator on Q(F)

is a linear map P : Q(F) — Q(F), continuous with respect to the C* topology,
given by

0= [ Kewa@ent), e,
where k € C°°(/\ TF*K /\ TF) is called the smoothing kernel of P. So
k(z,y) € NTF; ® \TF, = Hom (/\Tf;,/\Tf;) . (my)€EMxM.

Any smoothing operator P is of trace class, and we have

(5) TrP = /M trk(z, ) wa () ,

where k is its smoothing kernel.

Let Q(F)' be the dual space of Q(F); i.e., the space of continuous linear func-
tionals Q(F) — R, equipped with the weak dual topology (or topology of pointwise
convergence). Let L(Q(F)',Q(F)) denote the space of continuous linear operators
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Q(F) — Q(F), equipped with the topology of bounded convergence. Consider also
the C* topology on C®° (ATF* X A TF). The following result is well known.

Lemma 2.1. A continuous operator in Q(F) is smoothing if and only if it extends
to a bounded linear operator Q(F)' — Q(F). Furthermore the map

LOF),F) » = (NTFRN\TF)

which assigns its kernel to each operator, is an isomorphism of topological vector
spaces.

Of course, Lemma 2.1 can be stated in terms of Sobolev spaces WFQ(F) of
leafwise differential forms; in particular, a continuous operator in Q(F) is smoothing
if and only if it extends to a bounded operator W*Q(F) — W!Q(F) for all k, 1.

A special type of smoothing operators on Q(F) can be constructed as follows.
A subspace V C X(M) is called transitive if

T,M ={Z(z) | Z € V}

for all x € M. Since M is compact, it easily follows that there exists a finite
dimensional subspace W C X(F) such that

T,F={Z(z) | ZeW}.

Then V=W @ RX C X(M,F) is a finite dimensional transitive subspace. Fix an
Euclidean metric on V so that X has norm one and is orthogonal to W. Then the
following result was shown in [22].

Lemma 2.2 (Sarkaria). For any f € C°(V), the operator

P:/VZi"-f(Z)dZ
on Q(F) is smoothing, and its smoothing kernel depends continuously on f (with
respect to the C™ topologies).
2.3. Proof of Theorem 1.1. For each Z € W and t € R, the maps
(L=8)X)¢o(Z+stX): (M, F) > (M,F), sel,
define a leafwise homotopy between X; 0 Z; = (tX); 0 Z; and (Z +tX);. So
MoZioX=Mo(Z+tX)]: QUF) > QUF)
by (4).
Now take any f € C°(R) and any g € C° (W) with [, g(Z) dZ = 1, and let
By = /VZf -h(Z2)dZ - QF) - UF),

where h € C°(V) is given by h(Z +tX) = f(t) - g(Z) for Z € W and t € R. By
Lemma 2.2, such a By is a smoothing operator whose smoothing kernel depends
continuously on h, and thus on f. We also have

Af=no/ /ZfoX;‘-f(t)-g(Z)dtdZoH:HoBfoH.
W JR

On the other hand, it was proved by the authors in [3] that IT : Q(F) — Q(F) is
continuous, and has an extension to a bounded linear operator on every Sobolev
space of leafwise differential forms, and thus to Q(F)'. So, by Lemma 2.1, the
operator Ay = Il o By oIl is smoothing. Moreover its smoothing kernel depends
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continuously on Ay, and thus on By. In turn, By depends continuously on its
smoothing kernel, and thus on f. So the smoothing kernel of A; depends contin-

uously on f. It follows that Ay is a trace class operator, as well as each ASj), and
their traces depend continuously on f by (5). Therefore each B is a distribution.

2.4. The dependence of the distributional Betti numbers.

Lemma 2.3. The distributional Betti numbers depend only on F and the class of
X in X(M,F)/X(F).

Proof. Suppose that Y € X(M, F) defines the same class as X in X(M,F)/X(F).
Then, for all ¢,

(X+s¥Y —-X)): (M, F) > (M,F), sel,

is an leafwise homotopy between X; and Y;. So
(6) HO/X:-f(s)ds:HO/Ys*-f(s)ds
R R

by (4).

Take another bundle-like metric on M so that Y is of norm one and orthogonal to
the leaves, and let II' : Q(F) — H'(F) be the corresponding orthogonal projection
onto the corresponding leafwise harmonic forms. Then

(7) I : H(F) 5 H (F)

by (2).
For any f € C°(R), let

B, = H’o/RYS* f(s)ds o T : Q(F) = Q(F) |

and let Bgf) denote its restriction to Q?(F). Then the distributional Betti numbers

7

!i . determined by F,Y and the new bundle-like metric, are given by (8L, f) =

T (BJ).
By (6), (7), and since II,II' are projections, it follows that

T (4Y) = Tr(no/Rxg-f(s)ds:m(f) —)Qi(}'))
= Tr (Ho/RYS* - f(s)ds : Q(F) —>Q"('f)>
- T (H’O/RYS*-f(s) ds : Qi (F) —>Qi(f)>

Tr (B](f)) .

Therefore %, = Bl as desired.
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3. THE DISTRIBUTIONAL EULER CHARACTERISTIC AND FUNCTIONS OF THE
LEAFWISE LAPLACIAN

3.1. A family of smoothing operators. Let UB(R) be the space of uniformly
bounded Borel functions on R. Since the operator Dr = dx + dr is essentially
self-adjoint in L2Q(F), the Spectral Theorem defines a “functional calculus map”

UB(R) — End(L*Q(F)) , ¢~ ¢(D7),

where End(L2Q(F)) denotes the bounded linear endomorphisms of L2Q(F).

Let A be the set of functions ¢ : R — C that extend to entire functions on
C so that, for each compact subset K C R, the set of functions = — ¢(z + iy),
y € K, is bounded in the Schwartz space S(R). Such an A4 is a Fréchet algebra,
and, in fact, a module over C[z]. This algebra contains all functions with com-
pactly supported Fourier transform, and functions x e~t*” with t > 0. By [21],
the above functional calculus map, given by the Spectral Theorem, restricts to a
“functional calculus map” A — End(Q(F)), which is a continuous homomorphism
of C[z]-modules and of algebras.

Let z1,...,2p,¥1,-..,Yq be foliation coordinates on a foliation patch Uj; i.e.,

(@153 Tp,Y1s---,Yq) : U = R? x RY

is a diffeomorphism so that the slices RP x {*} correspond to the plaques of F in
U. Then the differential forms

dey =dz;, A--- ANdz;,

for multiindixes I = (i1,...,4r) with 1 < iy <--- < i, < p, form a base of Q (F|v)
as C°°(U)-module. An operator B in Q(F) is local when, for any a € Q(F) and
any x € M, the value (Ba)(z) depends only on the germ of o at z, and thus B
defines an operator By in Q(F|y) for any open subset U C M. Recall that a
leafwise differential operator B in Q(F) is a local operator in Q(F) such that, for
arbitrary foliation coordinates z1,...,Zp,y1,--.,y, on any foliation patch U, with
respect to the C° (U)-base dzy of 2 (F|v), the restriction B|y is given by a matrix
whose entries are linear combinations, with coefficients in C*°(U), of the leafwise
partial derivatives
ok oF

K p
oz Ozt .. Dy

for multiindixes K = (ky,...,kp) € N°, where k = k; + --- + k,. Now, a family
{B; | t € R} of leafwise differential operators is called smooth when, for any folia-
tion patch U with foliation coordinates z1,...,%p,¥1,...,Yq, in the corresponding
expression of By|y, the above coefficients of the partial derivatives 0% /0z* depend
smoothly on ¢ (they are C* functions on U x R). The support of such a family is
the closure in R of the set of points ¢ with B; # 0.

Proposition 3.1. Let ¢ € A and let {B; | t € R} be a smooth compactly supported
family of leafwise differential operators in Q(F). Then

B= (/th*oBtdt> o ¢(Dr)

is a smoothing operator in Q(F) whose smoothing kernel depends continuously on
¢ and {B; | t € R}.
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Proposition 3.1 follows from Lemma 2.1 by showing that, for any k, I, there are
some N and C such that

®) 1B : wEQ(F) - W) < /‘I RN H(&)| I8l de .

The proof of (8) is omitted here because it is rather technical. It is given in our
work [3] with more generality.

Observe that Theorem 1.1 is a direct consequence of Proposition 3.1. In fact, by
Proposition 3.1, for f € CP(R) and ¢ > 0, the operator

Btf—/X* s)dsoe” tAr

on (F) is smoothing and its smoothing kernel depends continuously on f. Hence
Ay =1l o By o1l satisfies the same properties. This also shows that the operator

/Xt t)dtoTl = By s o1l

is smoothing with smoothing kernel depending continuously on f, and we have
Tr(A%) = Tr(Ay) since II is a projection.

3.2. The distributional Euler characteristic and the leafwise heat opera-
tor. Let Bt(’} denote the restriction of By ; to Q(F) for each degree i.

Lemma 3.2. For any f € CP(R), we have TrBff} — TrAgf) as t — oo.

Proof. Note that

By — A}

/X* s)dso (e7'47 —TI)
= /Xt Sf@®)dtoe A% o (e_(t_l)A” —1'[) .

On the other hand, by [3], the operator e~(*~1)A7 _ 1T has a continuous extension
QF) — QF)', and converges to zero in L(Q(F)',QF)") (equipped with the
topology of bounded convergence) as t — co. Therefore By s — A} converges to
zero in L(Q(F)', Q(F)) as t — oo, and thus its smoothing kernel converges to zero
by Lemma 2.1, and the result follows.

For the sake of simplicity, it is worthwhile to use the supertrace notation. Con-
sider Q(F) as a Zo-graded space:

QF) =t (F) e Q (F),

where O+ (F) = Q®ve*(F) and Q (F) = Q°44(F). For any Z»-homogeneous oper-
ator P on Q(F), let P* denote its restrictions to QF(F). If moreover P is of trace
class and Zo-degree zero, its supertrace is defined as

Tr*(P) = Tr(P*) — Tr(P7) .
In particular,
{xais(F), f) = Tr*(Ay)
for all f € C(R).
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Choose an even function in A, which can be written as z — ¢ (2?). Then, for
t>0and f € C*(R), let

Cuong = [ X3 1(6)dso wleAr)? - 0(F) - ().

In particular, By ; = Cyy,; when ¢(z%) = e—/2.
Lemma 3.3. Tr°Cy y ¢ is independent of t.

Proof. 1t is similar to the proof of the corresponding result in the heat equation
proof of the usual Lefschetz trace formula [7, 13]. We have

G Cus = 21 ([ X710 dso Ar 0w (1) 0v(185))
2Tr(/X* s)dsodzodfor) (tA%)o 'éb(tAJﬁ))

o (/Rxg  f(s)ds o dE 0 33 0 (tA3) o¢(m;))

LT (/Rxg F(s)ds 06y 0 db 00 (tA%) ow(m;))
—2Tr (/RX;" f(s)dsodfodzoy (tAF) o9 (tA;))
On the other hand, since the function z +— 9'(z?) is in A, we have
(/ X! f(s)dsodfodf oy’ (tAi)o¢(tAi)>
= <d¢ /X* s)ds o)’ (tAF) o1 (tAF) 0§ )
Tr (zb (tA%) oajﬁ_od;o/Rxg- )ds ot (tAE) )
7)

= Tr(/X;-f(s)dsow'(tAjg)ow(tAi ) 0 8% odF:
R

= T ([ X0 S dsodtodow (183) 0v (1a3)) |
R

where we have used the well known fact that, if A is a trace class operator and B is
bounded, then AB and BA are trace class operators with the same trace. Therefore
L THCy,y,y = 0 as desired.

The following result follows directly from Lemmas 3.2 and 3.3.
Corollary 3.4. We have
Tr*By,s = (Xais(F), f)
for anyt >0 and f € C°(R).
Like in [21, p. 463], choose a sequence of smooth even functions ¢,, € A, whi/cll

we write as @ (z) = ¥m(2?), with ¢,,(0) = 1, and whose Fourier transforms ¢,

are compactly supported and tend to the function ¢(z) = e /2 as m = oo (in
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the topology of the Schwartz space S(R)). Without loss of generality, we can also
assume that, for each N and C,

Q [ ]aa-8% (3mi6) - )| el d 0

as m — oo. Consider the operator

Cums = Coms = [ X5 1(6)dg 06 087)°
on Q(F).
Lemma 3.5. For anyt > 0 and f € C°(R), we have
Tr*Ciym,p = Tr*By,p = (xais(F), f)
as m — 0o.
Proof. Combining (9) and (8), we get that
Ctm,f — Bi,g = 0

in L(Q(F)',Q(F)) ast — oo. By Lemma 2.1, it follows that the smoothing kernel of
Ct,m,s converges uniformly to the smoothing kernel of By ;, and the result follows.

3.3. Description of the smoothing kernels. According to the structure of Lie
foliations [12, 19], the foliation F can be described as follows. There is a finitely
generated subgroup I' C R that acts on the right in some manifold L such that:

e M is diffeomorphic to the orbit space L xpr R of the right T'-action on
M = L x R given by
(SL',S)"Y:(ZU")/,S-F’)/), (.’L‘,S)ELX]R, 7€F3
say M = L xr R. Thus the canonical projection 7 : M- Misa covering
map. _ N
e The leaves of the lifting F of F to M are the fibers L x {t}, t € R, of the

second factor projection D:M— > R N
e The flow of the lifting X of X to M is given by X;(z,s) = (z,t+s),t € R.

Let G, G denote the holonomy groupoids of F, F respectively. Since the leaves
of F,F have trivial holonomy groups, we have

G ={(z,y) € M | z,y lie in the same leaf of F} ,
G= {(:E,gj) eM ‘ &, 7 lie in the same leaf of F (fiber of D)} .

Thus g,~g~ are C™ submanifolds of M x M and M x M , respectively. Moreover
m X m:G — G is a covering map whose group of deck transformations is

Aut (g~-> g) = Aut(n) =T,

where o0 € Aut(n) corresponds to o X o € Aut ('g”—> g). Let s,r : G — M the

source and the range projections, which are the restrictions of the factor projections
MxM— M.
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Recall the definition of the global action of the convolution algebra
c (¢, NTF* @ 5* \TF)
in Q(F). For any
ke 0 (g,r* N\TF* ®s*/\Tf) . acQF),

the element k- o € Q(F) is given by

- / k) o) wrly), ze€M,

where L, is the leaf of F through z € M.

Consider the lifting of the fixed bundle-like metric on M to M and its restriction
to the leaves of F. Let wg; denote the Riemannian volume element of M , and wx
the Riemannian volume element of F. We also have a global action of any

keC> (g,r*/\T}N'* ®s*/\Tﬁ) ,

supported in an R-neighborhood of the diagonal M = A C G for some R > 0,
on the space UQ(F) of uniformly bounded differential forms in Q(F): For any
o € UQ(F), the element k - a € UQ(F) is given by

= [ k@pet)wse) . #edl.

By [21], if h is a bounded Borel function on R such that its Fourier transform
h € C*(R), then the operator h(Ds) on Q(F) is represented by some element of

ok (g,r*/\Tf* ®s*/\T.7-') .

Moreover, it follows from the proof of Assertion 1 in [21, p.461] that, for any function
h in the Schwartz space S(R) with supph C [ R, R], the operator k(D) on Q(F) is
represented by a leafwise smoothing kernel on G supported in the R-neighborhood
of the diagonal M = A C G.

The map 7w X 7 g — G restricts to a diffeomorphism 7 x 7 : L x L = L x L
for any leaf L of F (L = w(L)). Hence, the lift of the leafwise smoothing kernel of
h(Dg) to G is supported in the R-neighborhood of the diagonal M=AcCGg,and

thus defines an operator h ( j;_) on UQN (.7—' ) It is clear that the diagram

v (7) 222 va (7)
(rxm” | [ mxay

ar) D )

commutes.
Since ¢, is compactly supported, the operator 1,,(tAF)? is represented by a
leafwise smoothing kernel

s € C° (G, NTF 05" NTF) .
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The action of ky,+ on Q(F) defines the operator 1, (tAx)? in Q(F): For any
a € Q(F), we have

(6m(tA5)20) (&) = (ks - @) (& /kmxy W) wrly), z€M.

This operator is equal to the operator 1, (tAx)? in Q(F) defined by the Spectral
Theorem. B
Let ky, + be the lift of k,, ; to G, which is also supported in the R-neighborhood

of the diagonal M = A c G for some R > 0. For BeUQ (ﬁ), we have

(m (t85)° / Fmt(5,5) @) w5(3), €.
For any f € C*(R), consider the operator
ctmf_/x* 5)ds 0 P (tA 5)? :UQ(?)—)UQ(]T').
Obviously, Cym.; o 7 = 7* 0 Cy ., on Q(F).

Lemma 3.6. For any f € C(R), t > 0 and m, the operator @,m,f is a smoothing
operator whose smoothing kernel & m, ¢ is supported in an R-neighborhood of the

diagonal in M x M for some R > 0, and
(10) Em, 1 (2, 1), (4,0)) = Xg_y © ki ((2,0), (y,0)) - (v — )
for (z,u),(y,v) e LxR = M.

Proof. For a € US) (}N'), we have
<C~'t,m fa) (z,u)
= (/X* s)ds oY, (1A ) )(:z:,u)
[ Xz (9 (685)° a) @u ) 15 ds
R

- / bl ( / I CORAR wft(y,’v)> o —u)dv

/ Okmt ( ,v),(y,v))a(y,v) 'f(U—'LL) (UM(y,'U) s

by using the change of variable s = v—u. Hence 5’t,m, ¢ is defined by the smoothing
kernel given in (10), and the result follows.

For each (z,u) € M, let [z, u] = 7(x,v). It is easy to see that the kernels & . s
and c¢,m, s are related by the formula

(11) ctam, g ([, ul, [y,0]) = Y Gm,p(2,0), (y - 7,0+ 7))

where we use the identity

ATewF © ATy = NTewF © A\ TiyrvinF
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via the map 7. The sum in (11) is finite because &, s is supported in an R-
neighborhood of the diagonal in M x M for some R > 0.

4. DISTRIBUTIONAL EULER CHARACTERISTIC AND CONNES’ EULER
CHARACTERISTIC

The goal of this section is to prove Theorem 1.2.
Lemma 4.1. Given R > 0, there is some neighborhood U of 0 in R so that
m:{(,v) | (4,u) € Bz((z,u),R), v-u €U} > M

is injective for any (z,u) € M, where Bx((z,u), R) denotes the ball of radius R
and centered at (x,u) in the leaf L x {u}.

Proof. Since M is compact, there exists a compact subset K C M with m(K)= M.
Note that, if the statement holds for (z,u) € K, then it holds for all (z,u) € M.

Assume the result is false. Then there exist sequences (x;,u;), (yi,v;) € M , and
a sequence vy; € I' with (z;,u;) € K, 7v; # 0, and such that (y;,v;) and (y; -4, vi +7;)
approach Bz((zi,u;), R) in the sense that the distance between the terms of this
sequences to this set converges to zero.

Since K is compact, we can assume that there exists lim;(z;, u;); = (z,u) € M.
Hence, (yi,v;) and (y; -7, v;+:) approach the relatively compact set Bz((z,u), R).
It follows that, for infinitely many 4, the points (y;,v;) and (y; - vi, v; + ;) lie in
some compact neighborhood @ of Bz((x,u), R); thus @ - v;(Q # 0 for infinitely
many 4. This implies that there exists some vy € I" such that v; = v for infinitely
many 4. In particular, v # 0.

On the other hand, since (y;,v;) and (y; - vi,v; + Vi) approach Bz((z,u), R),
which is relatively compact, we can assume that there exist

lim(y;,vi) ,  Um(ys -3, 0i + )
in Bz((z,u), R). Therefore, if lim;(y;,v;) = (y,v), then
(4,v) € Lx {u}, (y-v,v+7)=lmy; - v, vi +7) € L x {u},

yielding v = u = v 4+, and thus v = 0. The result follows from this contradiction.

Lemma 4.2. For each m, there is a neighborhood U of 0 in R such that the map ©
is injective on the support of ¢ m.5((x,u),-) for all (x,u) € M if t is small enough
and the support of f is contained in U.

Proof. For any fixed R > 0, choose some neighborhood U of 0 in R satisfying the
statement of Lemma, 4.1. For any m, we have

supp (F (:1: = Ym (t;c2))) = \/E-supp (F (:1: = Ym (w2))) ,

where F denotes the Fourier transform. So, since supp (F (z — ¢, (2?))) is com-
pact, it follows that

_E
2

|

)

supp (F (z — ¢m (tz®))) C [
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if ¢ is small enough, for each m. Thus the leafwise smoothing kernel of ¢, (tA 7) is
supported in the %—neighborhood of the diagonal A C G, and the leafwise smooth-

ing kernel of ¢y, (tA5) ? is supported in the R-neighborhood of the diagonal A C G.
(From Lemma 3.6, we get

Supp(ét,m,f((x7u)7 )) c {(y7v) | (yau) € B]"_:((.Z‘,u),R) , V—u€ U}
for any (z,u) € M if ¢ is small enough, and the result follows by Lemma 4.1.

By noncommutative integration theory [8], the holonomy invariant transverse
measure A defines a trace on the von Neumann algebra of F, which can be shortly
described as follows. The twisted convolution algebra

c (6, NTF* @5 \TF)
is contained in the (twisted) von Neumann algebra W* (F, A TF*), and, for any
ke Ce(G,r NTF os* NTF),
the trace Tr (k) is finite and given by the formula

(12) Tra(k) = /M trk([z, u], [z, u]) wpm ([z, u]) -

Now fix U as in Lemma 4.2, and let f € C°(R) with suppf C U.
Proposition 4.3. For all t > 0, we have
(13) Tr°Cim,; = £(0) - Trli o (tAF)? .

Proof. Recall that Tr°Cy ¢ is independent of ¢ by Lemma 3.3, and Tr} ¢, (tA x)?
is also independent of ¢ by [21]. So we need only prove this statement for a single ¢.
If ¢ is small enough, we have

T Comyy = /Mtr%ct,m,f([m,u],[x,u])qux,uD

[ @ty (), o) gy )
M

£(0) - /Mtrw%m,t((x,u), (2,1))) wiz(z, u)
= (0)- /Mtr%km,t([w,u],[x,u]))wm[m,u])

= f(0) Tri¢m (tAF)
by (11), Lemma 4.2, Lemma 3.6 and (12) since

ke € C2 (0,5 NTF @1 NTF) .

Now we recall some facts on Connes’ Betti numbers. The family
{P;,r | Lisaleaf of F},

where each P; 1 is the orthogonal projection onto the space of square integrable
harmonic i-forms on L, defines a projection P; in the twisted foliation von Neumann
algebra W* (F, ATF*). As in [8], one can define A-Betti numbers 3 (F) as

,3}\(}-) =TrpP; .
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Then the A-Euler characteristic of F is
Xa(F) =D _(D'BAF) -
i
Using the corresponding supertrace notion, this formula can be rewritten as
Xa(F) =T P,

where P = ). P;. By [21], we have that Tr} (zpm (tA}')Z) is independent of ¢, and

(14) Teh, (¥m (tA7)°) = Xa(F)
as m — oo for all ¢ > 0 (independently of m!).

Proof of Theorem 1.2. Fix a neighborhood U of 0 in R as in Lemma 4.2. Let
f € C*(R) with suppf € U. Combining Proposition 4.3, Lemma 3.3 and (14), we
have

(15) T Coom,g = £(0)- Tk (¥m (#A5)?) = F(0) - X (F)

as m — oo for any t > 0.
Fix any € > 0. From Lemmas 3.5 and 3.3, it follows that

ITr*Com,p — T By <e
for any ¢ > 0 if m is large enough. But

T*By,5 = (xais(F), f)
for any t > 0 by Corollary 3.4. So

(16) ITe*Cm, g — (xais(F), ) <€

for any t > 0 if m is large enough.
(From (15) and (16), it follows that

|(Xais (F), £) = F(0) - xa(F)| <e

for any € > 0, yielding xdis(F) = xa(F) - do on U since € > 0 and f € C>°(U) are
arbitrary.

5. LOCALIZATION THEOREM

Theorem 5.1. The distribution xais(F) is supported in the set of all s € R such
that X has a fixed point in M.

Proof. Let V be an open subset in R such that X, has no fixed points for all
s € V. We have to prove that xqis(F) = 0 on V. Note that the fact that X, has
no fixed points for all s € V is equivalent to

Xs(.'IJ,U) # (IL' '75”"'7)
for any s € V, v € I and (z,u) € M.

One can prove an analogue of Lemma 4.2, asserting that there exists a neigh-
borhood U of 0 in R such that, for any s € R and for each m, if f € C°(U + so),
then 7 is injective on the support of &, ¢((2,u),-) for (z,u) € M if ¢ is small
enough. ;From this, it follows that, for each m, if ¢ is small enough, then, for any
[z,u] € M, either

Ct,m,f([xau]a [SU, u]) =0
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or
ctm. ¢ ([, 4], [2,u]) = Em, s (2, u), (2 -7, u+7))

for some v € I'N (U + s¢). In the latter case, such a + is uniquely determined by

(z,u).

Take sp € V' and some neighborhood U of 0 as above, satisfying also U+so C V.
Since sg is an arbitrary point of V, it is enough to show that {xdis, f) = 0 for any
f € C®(U + s¢). Then, by Lemma 3.5 and Corollary 3.4, it is enough to show that
Tr*Cy,m,; = 0 for each m and ¢ small enough (depending on m).

We have

W0y = [ 0% (um (ol o ud) oo, u)
= [ sl -+ ) i)
M

= [ (R ohmallosut ), @ orut ) - Sl
M
for the appropriate choice of v € I'; where we use the identity
/\T(yw)f* = /\T(y-%v-i-'r)f*

given by the diagonal action of v on M.

Since suppf C U + sg, we can consider only those [z,u] € M with v € U + s
for some choice of v € T with (z - y,u + 7) in the support of ¢ m, r. Thus vy € V,
yielding

(-vu+7) # (@u+7)
by assumption. It follows that

];"m,t((wau + 7)7 ('Z' Y, u+ ’7)) -0

as t — 0 uniformly on (z,u) € M. Since Tt*C} s is independent of ¢, we get
Tr*Cy m,r = 0 for each m, as desired.

6. THE LEFSCHETZ TRACE FORMULA

The goal of this section is to prove Theorem 1.3.
By Theorem 5.1, in order to evaluate

T Chm s = /M b0 g ([, ], [, u]) wr ()

asymptotically as ¢ — 0, it is enough to integrate over small neighborhoods of
closed orbits.

As in the proof of Theorem 5.1, take a neighborhood U of 0 in R such that, for
any so € R and for each m, if f € C°(U + s¢), then = is injective in the support
of é¢,m,r((x,u),-) for all (z,u) € M if ¢ is small enough.

Let sg be the period of some closed orbit of X. There exist finitely many closed
orbits with the period in U + so. Hence, the neighborhood U can be chosen so that
so is the only period that belongs to so + U, and thus only this period may be in
suppf. Take a closed orbit of period sg, and let ¢ be the corresponding primitive
closed orbit with length I = I(c); thus so = kl for some integer k£ > 0. We also get
that [ € T', and

(zau+l)=(z-Lu+l), (z,u+kl)=(x- kl,u+kl)
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if [z,u] is in ¢. So x is a fixed point of the action of [ on L, and there are no other
fixed points of elements of I' N (sg + U) in some open neighborhood W of z in L
because all X-orbits are simple. Note also that

m({z} x[0,1]) = ¢
and

m:{z} x (0,l) > ¢
is a C*° embedding. Moreover m(W x [0,!]) is an open neighborhood of ¢ where
there are no other orbits of period in sg + U, and

m: W x(0,l) > M
is a C*° embedding.

Denote by
k, e C™ (g~,r* /\T.7-'* ® s* /\T]T')

the leafwise smoothing kernel of the leafwise heat operator e™*=#. Then, since

Epmt(z,-) converges to k¢(z,-) as m — 0o, by Lemma 3.6, it is enough to compute
the asymptotics as t | 0 of

[t ok (v + k), o Ko+ D)) - £ wgr o)
Wx[0,1]

tA

I
= g0 [ [ (Zioh Qo+ M) M+ 1)) o) do.
o Jw
where wyy,, is the restriction of wz to W x {v} = W, and we use the identity

ATwn 7" = N\ Tystorin F*

given by the diagonal action of &l on M. But, by [7, 13], the integral

[ (Riwo k(@ + k), 0 oo+ 1)) wwa0)
w
converges as t | 0 to

signdet (id — Xpiu : T,y (W x {v}) = T,y (W x {0}))

which is independent of v, and the proof is finished.
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