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1. Introduction

Let (M, F) be a closed foliated manifoldim M = n,dim F = p,p+q =

n, equipped with a Riemannian metgig;. We assume that the foliatiohis
Riemannian, and the metrg, is bundle-like. Let" = T F be the integrable
distribution of tangenp-planes toF, and H = F be the orthogonal
complement tof'. The decomposition df’'M into a direct sum;I’M =

F & H, induces a decomposition of the metyig;: gr = gr + gr. For
anyh > 0, let A,,h > 0, be the Laplace operator on differential forms
defined by a metrig;, on M, given by the formulay, = gr + h~2gg. The
operator4,, is an elliptic differential operator with the positive definite,
scalar principal symbol, which is self-adjoint and has discrete spectrum in
the Hilbert space.?(M, AT*M, g;). The main result of the paper is an
asymptotical formula for the eigenvalue distribution functigp(\) of the
operatorAy,:

Nu(A) = #{A(h) € specd, : Ai(h) < A}.

Theorem 1. Let(M, F) be acompact Riemannian foliated manifold, equip-
ped with a bundle-like Riemannian metrig;. Then the asymptotical for-
mula for N, () has the following form:

)~a/2 A
Np(\) = h_qF((é]/)Q) D /_Oo()\ —7)2d. N£(1) + o(h™9), h — 0,
(1)
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whereN () is the spectrum distribution function of the tangential Laplace
operator A (see (7) and (21) for the definitions).

We refer the reader to Sect. 5 for a detailed formulation of this Theorem.
We state also the asymptotical formula for the trace of the opefétty, )
for any functionf € C.(R) (see Theorems 2 and 3 below).

The study of the asymptotical behaviour of geometric objects (like as
harmonic forms, eta-invariants etc.) associated with a family of Riemannian
metrics on fibrations as the metrics become singular was stimulated by
Witten’s work on adiabatic limits [28]. For further developments see, for
instance, [23,9,11,12] and references there.

In the spectral theory of differential operators, problems in question are
related with the Born-Oppenheimer approximation which consists in that
the Schédinger operator for a polyatomic molecule is considered in the
semiclassical limit where the mass ratio of electronic to nuclear mass tends
to zero (see, for instance, [16] and references there). In particular, the result
on semiclassical asymptotics for the spectrum distribution function in the
fibration case is, essentially, due to [3].

The investigation of semiclassical spectral asymptotics for foliations was
started by the author in [17,18, 20]. There we considered the problem in the
operator setting, that is, we studied spectral asymptotics for a self-adjoint
hypoelliptic operator;, of the formA; = A+ h™ B, whereA is a tangen-
tially elliptic operator of ordey, > 0 with the positive tangential principal
symbol, andB is a differential operator of orden on M with the positive,
holonomy invariant transversal principal symbol, and obtained an asymp-
totical formula for the spectrum distribution function of this operator when
h tends to zero.

The goal of this work is to adapt our results on semiclassical spectral
asymptotics to the geometric setting of adiabatic limits on foliations.

An interesting observation related with the asymptotical formula (1) is
that its right-hand side depends only on leafwise spectral data of the tangen-
tial Laplace operatad . So, in the case when the leafwise spectrum pf
doesn’t coincide with its spectrum ¥ space on the ambient manifald
(it might be a case if the foliatioft is nonamenable, [19]), there is\a> 0
such thatVy, (\) # 0 but

lim h9Np () = 0. 2

h—0
The asymptotic behaviour df;, () allows us to introduce spectral charac-
teristicsri(A) of the leafwise Laplacian related with adiabatic limits. We
might expect that some invariants of the functigif\) nearA = 0 are
independent of the choice of metric anh, and, moreover, be topological or
homotopic invariants of foliated manifolds (just as in the case of Novikov-
Shubin invariants [13]). We discuss these questions and their relationships
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with the spectral theory of leafwise Laplacian in Sect. 7 and with noncom-
mutative spectral geometry of foliations in [21].

The organization of the paper is as follows.

In Sect. 2, we recall necessary facts, concerning to differential operators
on foliated manifolds.

In the Sects. 3 and 4, we formulate and prove the asymptotical formula
for tr f(A;,) whenh tends to zero for any functiofi € Cy(R).

In Sect. 5, we rewrite the asymptotical formula of Sect. 3 in terms of
spectral characteristics of the operatbg. In particular, this enables us to
complete a proof of Theorem 1 on the asymptotic behaviour of the eigenvalue
distribution function.

Finally, in Sect. 6 we discuss some results and examples related with the
asymptotical behaviour of individual eigenvalues of the operadipwhen
h tends to zero.

2. Differential operators on foliated manifolds

Let (M, F) be a compact foliated manifold; be the tangential distribution
to 7. The embedding®” C TM induces an embedding of algebras of
differential operatord*(F) C DH(M), and differential operators o/
obtained in such a way are called tangential differential operators.

More generally, leff be an Hermitian vector bundle dd. We say that a
linear differential operatad of orderu acting onC*° (M, E) is a tangential
operator, if, in any foliated chart : I? x 17 — M (I = (0,1) is the open
interval) and any trivialization of the bundlg over it, A is of the form

A=Y aale,)DS, (v,y) € 17 X I,

o] <p

with a,,, being matrix valued functions aif x I7. Let D*(F, E) denote the
set of all tangential differential operators of orgeacting inC> (M, E).

We say thatd € D™ (M, F,E) if Ais of the formA =  B.C.,
whereB, € D™(M, E), C, € D*(F, E). From symbolic calculus, it can
be easily seen that:

(1) if Ay € DM (M, F,E), Ay € D™ (M, F, E), thend; o Ay €
D tm2, 2 (M, ]:7 E);

(2)if Ae D™*(M,F, E), then the adjoin* € D™H(M,F, E).

Remark 1.1t should be noted that classgg™* (M, F, E) can be extended

to classes of pseudodifferential operatérs* (M, F, E'), which contain,

for instance, parametrices for elliptic operators from the claggeég (M,
F,E). We don’t use them here and refer the interested reader to [19] (see
also [20]) for details.
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Next, recall the definition of the scale of Sobolev type spaces
H*F(M,F,E), s € R,k € R, corresponding to classdy™* (M, F, E)
[19,20].

The spacd?**(R", RP, C") consists of alC"-valued tempered distribu-
tionsu € S’'(R™, C") such thati € LfOC(R”, C") (u the Fourier transform)
and

Jul2, = / / [, M2+ €2 4 [n2) (L + [€)Fdedn < 0. (3)

The identity (3) serves as a definition of a ndfrfs . in H*(R", RP,C").

The spacei®*(M, F, F) consists of alu € D'(M, E) such that, for
any foliated coordinate chakt : [P x I9 — U = x(IP x I?) C M, any
trivialization of the bundleZ over it, and for anyp € C2°(U), the function
r*(¢u) belongs to the spacH**(R",RP,C") (r = rank E). Fix some
finite covering{U; : i = 1,...,d} of M by foliated coordinate patches
with foliated coordinate charts; : I? x I7 — U; = k;(IP x I?) and
trivializations of the bundleZ over them, and a partition of unitjp; €
C>*(M) :i=1,...,d} subordinate to this covering. A scalar product in
Hk(M, F, E) is defined by the formula

d

(0, 0)sp = Y (K (i), 5" (¢iv)) s, u, v € HYF (M, F, E).
i=1

Operators of classe®™* (M, F, E) acts in the spaceH**(M, F, E) in
the following way (see [19, 20] for a proof in the scalar case):

Proposition 1. An operatorA € D™ (M, F, E) defines a linear bounded
operator fromH** (M, F, E) to H*~™*=1(M, F, E) foranys € R, k €
R.

Now let us turn to properties of geometric operators on the foliated
manifold (M, F). Let H be the orthogonal complement 4 so

F@H = TM. (4)

The decomposition (4) induces a bigradingAifi* M by the formula

k
AFT*M = P AT M, (5)
=0
whereAT*M = AAF*@Q AV H* i=1,...,p,j=1,...,q.
The de Rham differential inherits the bigrading (5) in the form

d=dr +dg+90.
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Here the tangential de Rham differentig} and the transversal de Rham
differential d are first order differential operators, afids zeroth order.
Moreover, the operatair doesn’t depend on a choice of the bundle-like
metric gy, (see, for instance, [26]).

Recall thatA,, h > 0, is the Laplace operator on differential forms
defined by the metrig;, = gr + h~2gy. We transfer the familyd,, to
the fixed Hilbert spacd.?(M, AT*M, g). For this goal, we introduce an
isometry©®), : L?>(M, AT*M, g,) — L*(M, AT*M, g), defined, foru €
L?(M, A%T*M, g3), asOu = h/u. The operator),, in the Hilbert space
L?(M, AT* M, g;,) corresponds under the isome®y, to the operatof.;, =
0,4,0; ! in the Hilbert spacd.?(M, AT*M) = L*(M, AT*M, g).

Lemmal ([11]).We have
Ly = dpop + opdp,

whered;, = dr + hdy + h?0, andd;, = 6r + hdy + h26* is the adjoint
to dy, with d, 5y and§*, being the adjoints tdr, dy andd respectively.
Here we consider the adjoints taken in the Hilbert spaéeM, AT*M).

By Lemma 1, the operatdt,, is of the following form:
Ly =Ap +h?*Ag +h*A_1 5+ hK) + WKy + B3 K3, (6)
where

— The operator
Ap = dpdp + 6pdp € DY (M, F, AT* M) (7)

is the tangential Laplacian in the space® (M, AT*M).
— The operator

Ag =dgdyg +0gdy € D2’0(M,f, AT*M)

is the transversal Laplacian in the sp&a¢® (M, AT*M).
— A_19=00* +6*0 € D"°(M, F, AT*M)).
— Ky =dpdy +0gdp + dpdyg + dydp € DI’O(]W7 F,AT*M).
— Ko =dpb* + 0%dp + 6p0 + 06F € DO’O(M, F, AT*M)
— K3 =dyb0* +0*dyg + 60 + 06 € DI’O(M, F, AT*M)

From now on, we will assume th@t/, F) is a Riemannian foliation with
the metricg,,, being bundle-like (see, for instance, [26]). The crucial point,
concerning to geometrical operators on a Riemannian foliated manifold, is
that, in this case, the operat@lsdy + dgdr anddpdy + ddr belong to
DY%Y(M, F, AT*M). In particular, this implies

Ky € DY (M, F, AT* M).
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Foranyh > 0, the operatof.;, is a formally self-adjoint, elliptic operator
in L2(M, AT* M) with the positive principal symbol. The following Propo-
sition is a refinement of the classicaff@ling inequality for the operator
Ly,

Proposition 2. Under current hypotheses, there exist constarits> 0,
Cy > 0 andC5 > 0 such that for any» > 0 small enough and for any
u € C®°(M,AT*M) we have

(Lyu,u) > (1 - Crh2)(Apu,u) + Coh®[lul? g — Cllull®. (8)
Proof. Letu € C*°(M, AT*M). By (6), we have

(Lphuw) = (Apu,u) + h*(Agu, u) + h* (A1 qu, u)
+h(Kyu,u) + h?(Kou, u) + h3(Kzu, u).

It clear that(A_; ou, u) > 0. By Proposition 1, we have

(Kou,u) > —Callull?, (Ksu,u) > —Cs||ul|F . )
So we obtain
(Lpuu) > (Apu,u) + hQ(AHu, u) + h(Kju,u) — C’4h2||u||2
—Csh?[|ul[ 0. (10)

The operatordr + Ay is a second order elliptic operator with the positive
principal symbol, so, by the standarér@ing inequality, we have

((AF + Am)u,u) > Csllull? g — Crllul)?, (11)
that implies the estimate
(Lpuu) > (1—h?)(Apu, u)+C7h2HuHiO+h(K1u,u)—Cg||uH2. (12)
Finally, we make use of the inequality

|(K1u,u)| < Crllufloulull < Cs(hllullgy +A7 " lul?)  (13)

and the tangential &ding inequality (see [20])
ull§1 < Col(Aru,u) + [|ull®),
that completes immediately the proof.
Remark 2.In some cases, it is sufficient to use more rough estimate

6,1+ Cali?||ullf g — Csllull*, u € C(M, AT* M),

(14)
which follows from (8), if we apply the standard Sobolev norm estimate to
the term(Apu, u).

(Lpu,u) > Cillu
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Let Hy,(t) = exp(—tLy), t > 0, be the parabolic semigroup of bounded
operators inL?(M, AT* M), generated by.,,. For anyt > 0, the operator
Hy,(t) is an operator with a smooth kernel. Proposition 2 implies the follow-
ing norm estimates for operators of this semigrouglin® (M, F, AT* M)
(see also [20]).

Proposition 3. We have the following estimates:
()l < Craet @ 721 ully,u € C (M, AT* M),
ifr>s,he(0,1,0<t<1,and
| Hp(t)ul|s s < Copt ™2 ||ulls,u € C=(M, AT*M).

if r =s,h €10,1],0 < t < 1, where the constants don’t dependoand
h.

3. Asymptotical formula for functions of the Laplace operator

From now on, we will assume thdt\/, F) is a Riemannian foliation,
equipped with a bundle-like Riemannian metgig. In this Section, we
state the asymptotical formula for f(A;) whenh tends to zero for any
function f € Cy(R).

We will denote byG  the holonomy groupoid afM, F). Let us briefly
recall its definition. Let-;, be an equivalence relation on the set of leafwise
pathsy : [0,1] — M, settingy; ~j 72 if 41 and~2 have the same initial
and final points and the same holonomy maps. The holonomy grotfeid
is the set ok, equivalence classes of leafwise patfis: is equipped with
the source and the range maps : G — M defined bys(vy) = ~(0)
andr(y) = ~(1). We will identify a pointz € M with an element of7 +
given by the corresponding constant patftt) = z,t € [0, 1]. Recall also
that, for anyz € M, the setG%: = {y € Gr : r(y) = x} is the covering
of the leaf through the point, associated with the holonomy group of the
leaf. We will denote by\;, the Riemannian volume form on each |dabf
F and by\” its lift to a measure on the holonomy coveriGg-, z € M.

For any vector bundl& on A/, we denote by’2° (G £, E) the space of
all smooth, compactly supported Sects. of the vector burdiE) s* E*
over Gz. In other words, for anys € C°(Gr, E), its value at a point
v € Grisalinearmag(y) : By, — E, (). We willuse acorrespondence
between tangential kernelse C°(Gx, ) and tangential operators :
C>®(M,E) — C*(M, E) via the formula

Kula) = [ k)u(s(2)aN (). u € C*(LE),

F
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Now we introduce a notion of the principatsymbol of the operator
Ay Itis well-known (see, for instance, [24,26]) that the conormal bundle
H* to the foliationF has a partial (Bott) connection, which is flat along
leaves ofF. So we can lift the foliatiorf to a foliationFy in the conormal
bundle H*. The leafL, of the foliation 7z through a poiny € H* is
diffeomorphic to the holonomy covering% of the leafL,,z = = (v), of
the foliationF through the point: (herer : H* — M is the bundle map)
and has trivial holonomy.

Denote by

Ay, : C®°(H*, 7" AT*M) — C®(H*,7* AT* M)

the lift of the leafwise Laplaciam\r to a tangentially elliptic operator on
H* with respect taFy.

Definition 1. The principalh-symbol of the operatay);, is a tangentially
elliptic operator onH * with respect to the foliatiorfy;, given by the formula

on(An) = Ary + gu,
wheregy is the multiplication operator by the function; (v), v € H*.

The holonomy groupoidr £,, of the lifted foliation 75 consists of all
triples (v,v) € Gz x H* such thatr(y) = n(v), ands(y) = dh}(v),
wheredh, is the codifferential of the holonomy map with the source map
s+ Gg, — H* s(y,v) = dhi(v), and the range map : Gr, —
H*,r(v,v) = v. We have the map¢ : G, — Gr, given byrg(y,v) =
~. Denote bytr ,, the trace on the von Neumann algebra (G z,,, m* AT™*

M) of all tangential operators ol * with respect to the foliatiotF 7, given
by the holonomy invariant measute dv on H* [6]. For any tangential oper-
atorK on(H*, Fp), given by atangentialkerngle C2°(G g, , m* AT* M),

k = k(vy,v), we have

trr, (K) = / Tra« a7+ ar k(x, v)dzdy.

Theorem 2. Forany functionf € Cy(R), we have the asymptotical formula
tr f(An) = (20)"h e, f(on(AR) +o(h79),h—0.  (15)

We will prove this theorem in the next section, and now we conclude this
section by a remark.

Remark 3.Let us compare the formula (15) with what we have in the case of
a Schodinger operator. Lell;, = —h2A+V (z),z € M, be a Schidinger
operator on a compact manifold with an operator-valued potentiél €
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L(H) (H is a Hilbert space) such thét(z)* = V(x) (the fibration case).
Then the corresponding asymptotical formula has the following form:

tr f(Ap) = (27r)_"h,_"/*MTr flon(Hp)(z,§))dxdé + o(h™™),

h — 0+, (16)

whereoy, (Hp,)(z, €) is the operator-valued principalsymboloy, (Hp)(x, §)

= |¢* + V(z), (x,&) € T*M. So we see that the formula (15) has the
same form as (16) with the difference that h¢e,(H})) is an element

of the foliationC*-algebraC* (G £, , 7* AT* M), which is a noncommuta-
tive analoque of the algebra of continuous functionsisty Fy, and the
integration overT™* M and the fibrewise trace in (16) are replaced by the
integration in a sense of the noncommutative integration theory [6].

4. Proof of Theorem 2

This section is devoted to a proof of Theorem 2. Without loss of generality,
we will consider the asymptotical behaviour ©of f(L;). The proof of
Theorem 2 relies on the comparison of the operaipwith some operator
L, of the almost product structure as in [20] with a subsequent use of results
of [20] (see also [17,18]) on semiclassical spectral asymptotics for elliptic
operators on foliated manifolds.

So let an operatok;,, € D?9(M, F, AT*M) be given by the formula

Ly = Ap + h*Ag.

The operatorL;, satisfies the conditions of [17,18,20], that is, it is of the
form L, = A+ h?B, whereA = Ay is a second order tangentially elliptic
operator with the scalar, positive tangential principal symbol, &né-

Ap be a second order differential operator hwith the scalar, positive,
holonomy invariant transversal principal symbol. Indeed, it is easy to see
that the transversal principal symbol of operafqy, which is the restriction

of its principal symbol fromi™ M to the conormal bundléf*, is given by

the formulac(v) = gu+(v)I,v € H*, and its holonomy invariance is
equivalent to the assumption on the metrig to be bundle-like.

Remark 4.The only fact which we need from the holonomy invariance
condititon is that the commutat¢A, B], which, by general symbolic cal-
culus, belongs to the clag3®! (M, F, AT* M), is an operator of the class
DY2(M, F, AT* M), that can be checked by a straightforward calculation.

The operatoL;, generates the parabolic semigratip(t) = e—tih,t >
0, in the spacd.?(M, AT*M). Itis clear that these operators are smoothing
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operators wher > 0. By [20], the operators of the parabolic semigroup
Hy,(t) satisfy the same estimates as in Proposition 3:

| Hp(t)ul|r g < CrsptE 20577 u)| s, u € C°(M, AT* M), (17)
if r>s,he(0,1,0<t<1,and
| Hp(t)ul|s < Capt ™2 ||ulls, u € CF(M, AT*M). (18)

if r=s,h €[0,1],0 <t < 1, where the constants don’t dependtcand
h.
First, we state the norm estimates for the differefigét) — Hy, ().

Proposition 4. We have the estimate

[(Hp(t) = Hy(8)ttll e < Cors ot 720577 i
u € C™(M, AT*M),

if r>s,he(0,1],0 <t <1, andthe estimate
[(Hp(t) — Hy(8))ullsp < Cont ™2 ||ulls, u € C=(M, AT*M).

if r =s,h €10,1],0 < t < 1, where the constants don't dependoand
h.

Proof. For the proof, we make use of the Duhamel formula
t

Hy(t) — Hyp(t) = / Hy(7)(Lyp — Lyp)Hy(t — 7) dr.
0

We know norm estimates for operatdifs (¢) and 4}, (t) (see Proposition 3
and (17)-(18)) and the explicit formula for the differencg — Ly:

Ly — Eh = h4A71,2 + hKy + h2K2 + thg.
from where Proposition 4 is proved in a usual way.

Next, we pass from the Sobolev estimates for the opefatét) — H, (t)
to pointwise and trace estimates.

Proposition 5. Under current hypotheses, we have the estimate
tr(Hy, (t) — Hp(t))] < Ch.

Proof. For the proof, we make use the following proposition (see [20] for a
scalar case):
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Proposition 6. Let (M, F) be a compact foliated manifold; be an Her-
mitian vector bundle onV/. For anys > p/2 andk > ¢/2, there is a
continuous embedding

H*(M,F,E) Cc C(M,E).

Moreover, for any > p/2 andk > ¢/2, there is a constant’; ;, > 0 such
that, for each\ > 1,
sup lu(z)] < Co A2 (A% ulls g + llullosrs),u € HS¥ (M, F, E).
xe
_ Let Hy(t,z,y) (Hy(t,z,y)) be the integral kernels of operatas, (t)
(Hp(t)) respectively. Then, by Propositions 4 and 6 (with= 1), we
obtain:

sup |Hy(t,z, ) — Hy(t, x, )| < Ch' 7,
xeM

that immediately completes the proof.

Denote byhr(t,v) € C>*(Gx, AT*M) the tangential kernel of the
smoothing tangential operatetp(—tAg).

Proposition 7. Foranyt > 0, we have the asymptotical formula (as— 0)

tr e thn = (27r)qhq/ (/ etgH(V)dI/> Trar-m hr(t, x)de

+O(h'79). (19)
Proof. By Propositions 3 and 6, we have the estimate
tre tfn < Ch™9,h — 0.

Moreover, by Proposition 5, asymptotics of traces of the operaip(s)
andHy,(t) whenh tends to zero have the same leading terms (of drdéy,

and we can apply the asymptotical formula of [17,18,20] to complete the
proof.

Remark 5.Since
et (W) gy = 7a/24=a/2
H*

T

the formula (19) can be rewritten in a simpler form:

tr et = (47rt)_q/2h_q/ Trarnr hr(t, @)dz + O(h'=7),h — 0.

" (20)
From (20), we can also obtain an asymptotical formula for the spectrum
distribution function, but it is more convenient for us to use the formula in
the form (19).
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Remark 6.For anyz € M, the restrictiomhz(t,~v) € C*(G%, AT*M) of

hr onG% isthe kernel of the operatexp(—t A, ), whereA,, the restriction

of Ar onG% (see also Sect. 5). This fact cannot be extended to more general
functionsf(Ar) (see [19]), that is closely related with so-called spectrum
coincidence theorems and with the nonstandard asymptotical formula (2).

Proof of Theorem ZThe tangential kerndl z,, (t) € C*°(Gx,,, 7 AT*M)
of the operatoexp(—tAx,, ) is related with the tangential kernk)(t) €
C*(Gx, AT*M) of the operatoexp(—tAr) by the formula

hry (t,v,v) = he(t, ).

The crucial point is that, sincg& is a Riemannian foliation, the operators
Agr,, andgy commutes as operators éfi‘. In particular, we have

e~ton(An) — o~tan (W) e—tAry 45

So the formula (19) can be rewritten in terms of the notation of this section
as follows:

tr e7thn = ptr g, e tor(A0) L O(R1T9), h — 0.

from where, using standard approximation arguments, the theorem follows
immediately.

Remark 7.The passage from the operafoy to the operatoL;, resembles
the passage from the Riemannian connectiodbmo the almost product
connection as in [1, 26].

5. Formulation in terms of leafwise spectral characteristics

Here we rewrite the asymptotical formula (15) in terms of spectral charac-
teristics of the operataf\ . In particular, it allows us to complete the proof
of Theorem 1 on the asymptotic behaviour of the eigenvalue distribution
function.

Recall thatA  denotes the tangential Laplacian in the space
C®(M,AT*M) (see (7)). Let us restrict the operatds- to the leaves of
the foliation 7 and lift the restrictions to holonomy covering&;: via the
maps. We obtain the family

Ay - C(GL, s* AT* M) — C(G%, s* AT* M)

of Laplacians on holonomy coverings of leaves. Since the foliafiois
Riemannian, it can be checked that the operatgis formally self-adjoint

in L*(G%, s* AT* M), that, in turn, implies its essential self-adjointness in
this Hilbert space (with initial domai@'s° (G%, s* AT*M)) foranyz € M.
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Foreach\ € R, the kernek(~, \),y € G of the spectral projections of the
operatorsA,, corresponding to the semiaxis-oo, A, defines an element
of the von Neumann algebid@™ (G, AT*M). The sectiore(v, A) is a
leafwise smooth section of the bundie AT* M )* Q) r* AT*M overGr.

We introduce the spectrum distribution functidf:-(\) of the operator
Ap by the formula

N]:()\) = / Tr Ao+ 01 6(.1’, )\)d.ﬁlf, AeR. (21)
M

By [19], for any A € R, the functionTr -y, e(z, A) is a bounded
measurable function o/, therefore, the spectrum distribution function
N£()) is well-defined and takes finite values.

Theorem 3. For any functionf € C§°(R), we have the following asymp-
totic formula (ash — 0):

—q/2

r = 7‘1% - Ooaq/Qfl T+0o)do T)+o(h™4
e (L) = T [ [ v o) do dNr()-+oln )

Proof. Let E,,, (7) andE A (o) denote the spectral projections of the opera-
torsgy andAg,, in L2(H*, 7* AT* M) respectively. Since these operators
commute, we have

Flon(an) = (e +gi) = [ +°° / " b4 0) By, (1) dEA(o)

is a tangential operator aif* with respect taFz with the tangential kernel

“+00 “+o0
bowamO) = [ [ 0 +0) dBy (W) dBa(.0).
So we obtain

terf(Uh(Ah)) = /M/ TI'AT*M kf(O'h(Ah))(xa V)dl'dl/

:/M /:o /;Oo fr+0) (/H; dE,, (v)(v) dv)

do(Trar-ar Ea(z,0)) dr de,
from where, taking into account thdi,,, (7)(v) = X{on (w)<r} Ins AT M
and
/ Ey, (1)(v) dv = volume{v € H} : guy(v) < 7} = quQ/2’

/2

wherew, = (IO is the volume of the unit ball ifiR?, we immediately
obtain the desired formula.
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In a particular case whefi is the characteristic function of the semi-
axis(—oo, A), Theorem 3 implies the following theorem on the asymptotic
behaviour of the spectrum distribution functid¥), (), which is exactly
Theorem 1 formulated in terms of the operafgr.

Theorem 4. Under current hypothesis, we have

\—a/2 A
Nu() = h—qp((é/)z)ll) /_ =T ANE(r) + o). h = 0

forany\ € R.

6. Eigenvalue limits

Here we discuss the asymptotical behaviour of individual eigenvalues of the
operatorAd, whenh tends to zero. As usual, we will, equivalently, consider
the operatol;, instead ofA,. Moreover, we will consider eigenvalues of
this operator on differentidl-forms with a fixedk. Therefore, we will write
L¥ for the restriction of the operatdn, onC>° (M, A*T*M)k = 1,...,n,
omitting k£ where it is not essential.

For anyh > 0, Ly, is an analytic family of type (B) of self-adjoint oper-
ators in sense of [15]. Therefore, fbr> 0, the eigenvalues af;, depends
analytically onh. Thus there are (countably many) analytic functians:)
such that

specL, = {\i(h):i=1,2,...},h > 0.

Proposition 8. Under current hypotheses, for anythere exists a limit

hli%gr Ai(h) = Mim,i- (22)

Moreover, ifvy, is a normalized eigenform associated with the eigenvalue
Xi(h), Lyvp, = Xi(h)vg, ||vn]] = 1, then we have the estimates

|lvnllor < C1,y hllvnlio < Co, (23)
with the constant§’; andC independent ok € (0, 1].
Proof. By [15], the functions\;(h) satisfy the following equality

/\;(h) = ((dLh/dh)vh,’Uh)
= ((2hAg +4h3A_1 5 + Ky + 2h Ko + 3h2K3)up, vp),

from where, using the positivity of operataflg; andA_; 5 in L(M, AT*
M), and the estimates (9) and (13) (with= 1), we obtain

Ai(h) = —=Chllonllgy — C2h?|lvnllF 0 — Cs. (24)
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The estimate (14) implies
Cillvallgy + Coh®lvnll o < CsAi(h) + Cash € (0,1). (25)
By (24) and (25), we conclude that
Ai(h) > =CsXi(h) — Ce.
This estimate can be rewritten in the following way:

d Gy

2 (Oulh) + 5D 0

)

that means that the functidi\;(h) + g—g)ea’)h is not decreasing ih for h
small enough. By the positivity of the operaty in L?(M, AT* M), each
eigenvalue\;(h) is positive, so the functiot\;(h) + %g)eCsh semibounded
from below near zero. Therefore, this function has a limit wheands to
zero, that, clearly, implies the existence of the limit for the functign

The second assertion of this proposition is an immediate consequence
of the first one and the estimate (25).

Proposition 8 allows us to introduce the limiting spectrum of the operator
Al as the set of all limiting valuesf ., given by (22):

im,z?

Oim(AF) = {\E . :i=0,1,...}.

lim,s

By analogy with semiclassical asymptotics for a Sclinger operator,
we may assume that the structure of the limiting spectnﬁm(Aﬁ) is
defined in a big extent by a limiting value of the bottoms of spectra of
operatorsA¥. So let

Ak
A’g(h) = min 7( huéu) ,
ueCo (M AFT*M)  ||ul|
and
Alim,0 = im AG (h).
There are two other quantities: the botte\(;qo of the spectrum of the oper-
ator A%, in L2(M, AT+ M):
Ak
Mo = min Ak, v) Fu;u)’
© o wece (M AT M) |ul|

and the bottom\% , of the leafwise spectrum of the operattf;:

Ao =inf{\} o : L € V/F},
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where i
A
)\lz’o = min 7( Lu;u)
weCe (LART* M) |ull

9

the operatorA% is the restriction of the operatak?. on the leafL.
Proposition 9. Under current hypotheses, we have the following relations:
Moo € Mimo < Mg, E=1,...,n. (26)

Proof. Let v, be the normalized eigenform associated with the bottom
eigenvalue\i(h): Livy, = AG(h)vp, |lupl| = 1. By the definition ofA,
we have the estimate

(Ao, o) > Ao

By (12), we obtain
Ao(h) = (1= h*)Xig + C1b?|lonllf o + h(Eyop, o) — Cah®, (27)
whereC and(, are positive constants. By (23), we have

li K =
hlii%h( 1’Uh,?./h) 07

that, by (27), immediately completes the proof of the firstinequality in (26).
By Theorem 1N (A) > 0 for any A > A’jr’o andh small enough, from
where the second inequality in (26) follows immediately.

We conclude this section with some remarks and examples, concerning
the quantities\¥ ,, Ak andAk. .

lim,

Remark 8.When the foliationF is a fibration or, more general, is amenable
in a sense of [19], the relations (26) turns out to be identities [19].
Remark 9.We don't know if the equalitp\},, = Af,, , is always true. It
is, clearly, true fork = 0: Xy, = A}, , = 0. More general, if the Betti
numberby (M) is not zero, them&(h) = 0 for all h, that also implies
Mo = Mo = 0.

Remark 10.Here we give an example of the foliation such that the bottom
A% = 0 of the operatorA}, in L*(M) is a point of discrete spectrum.

Let I" be a discrete, finitely generated group such that

(@) I" has propertyT") of Kazhdan;

(b) I' is embedded in a compact Lie groGpas a dense subgroup.
For definitions and examples of such groups, see, for instance, [14,22].

Let us take a compact manifold such thatr; (X) = I'. Let X be the
universal covering ofX equipped with a left action of" by deck trans-
formations. We will assume thdt acts onG by left translations. Let us
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consider the suspension foliatidhon a compact manifold/ = X x G
(see, for instance, [5]). A choice of a left invariant metric@rmprovides a
bundle-like metric on\/, soF is a Riemannian foliation. We may assume
that leafwise metric is chosen in such a way that any leaf of the folidion
is isometric toX..

There is defined a natural action 6fon M and the operator\}. is
invariantunder this action. Léf(0, ), A > 0, denote the spectral projection
of the operatorAY, in L?(M), corresponding to the intervad, A), and
E(0,\)L%(M) be the corresponding-invariant spectral subspace.

Claim. In this example)\OR0 = (0 is a nondegenerate point of discrete spec-
trum of A%, that is, an isolated eigenvalue of multitplicity 1.

From the contrary, let us assume that zero lies in the essential spectrum
of the operatorA?. in L2(M). Then, for any= > 0 andX > 0, there is a
functionu. € C*°(M) such thatu. belongs to the spacB(0, \)L?(M),
||us|| = 1 and
(Apue, us) = [|[Vrue|| <e, (28)

whereV i denotes the leafwise gradient. From (28), we can easily derive that
the representation of the grodpin £(0, \)L?(M) has an almost invariant
vector, that, by the property{’), implies the existence of an invariant vector
vo € E(0,\)L*(M).

Sincel is dense inz, I'-invariance ofyy implies itsG-invariance, that,
in turn, implies thaty is a lift of some non-zero elemente C*°(X) via
the natural projectiod/ — X. Itcan be easily checked thabelongs to the
corresponding spectral spak¢0, \) L?(X ) of the Laplace operatafi y in
L?(X). From other hand, the operatdry has a discrete spectrum, so zero
is an isolated point in the spectrum dfy, and the spac& (0, \) L?(X) is
trivial if A > 0 is small enough. So we get a contradiction, which implies
that zero lies in the discrete spectrum of the operaiprin L*(M).

Remark 11.If F is given by a fibration, zero is also an isolated point in the
spectrum of the operatat. in L?(M), but, in that case, it is an eigenvalue
of infinite multitplicity, and, therefore, lies in the essential spectrum\pf

in L2(M).

Remark 12.Unlike the scalar case, it is not always the case that all of the
semiaxig \jim o, +00) is contained invy;,,, (Ay,). Indeed, let, as in the exam-

ple of Remark 104\%70 = 0 is a nondegenerate point of discrete spectrum of
AY.. Then, by means of the perturbation theory of the discrete spectrum (see,
for instance, [15]), we can state that, for> 0 small enough)’(h) = 0

is the only eigenvalue aﬂ?L near zero. So we conclude that,, o = 0 but

there exists &; > 0 such thaty;,,, (Ax) ([0, A\1] = {0}.



780 Y.A. Kordyukov

7. Concluding remarks

Inthis section, we discuss some aspects of the main asymptotical formula (1),
and, especially, of the nonstandard formula (2). We will make use of the
notation of previous sections.

The whole picture which we observe in the foliation case is the following.
Generally, forany: = 0,1, ..., n, we have only thai’};,O < )\ﬁm,o < A’jf’o,
and these relations turn into identities, if the foliati#nis a fibration or,
more general, is amenable (see Remark 8).

By (1), the functionN,{f(A) behaves in a usual way whenis greater

than the bottom of the leafwise spectrumaf.:
Ni(A) ~ Ch™1 A > Nz,

but, if A}, < A%, there might be limiting values for eigenvalug¥(h) of
the operatorA}, lying in the interval(\}, o, A% ). So the functionVf ())
is nontrivial on the intervaq/\ﬁmﬁo, )\’jr,o), but, since the right-hand side of

(1) depends only on leafwise spectral data of the operAfarwe have

lim RINF(A) =0, A < Xig. 29
hi}& K (A) y A< AFQ (29)
It means that the set of eigenvalues4f in the interval(/\ﬁmo, )\’%0) is

"thin” in the whole set of eigenvalues al;,. By analogy with [27], (29)
in the casek = 0 may be called as a weak foliated version of "Riemann
hypothesis”.

This is quite different from what we have in the case of a 8dimger
operator or in the fibration case. For instancéjifis a Schodinger operator
onacompact manifold/ (we may consided/, being equipped with atrivial
foliation F which leaves are pointsfd, = —h?A + V(z),z € M, we
haveAry = Aiimo = Aro = inf V_, whereV_(z) = min(V'(z),0),z €
M, and the following asymptotical formula for the spectrum distribution
function N;,(\) in the semiclassical limit:

Np(\) = (27r)_”h_”/ dxdé +o(h™"),h — 0+.
{(@.6):624+V(2)<A}

So we have only two possibilitiesVy(A) ~ CA™™, if A > inf V_ (n =
dim M), andNy(\) = 0, if A <inf V_.

We can point out facts in spectral theory of coverings, which are very
similar to ones in spectral theory of foliations mentioned above. For sim-
plicity, consider only the Laplace-Beltrami operator on functions.

Let M — M be a normal covering with a covering grodp Recall
that a tower of coverings is a sgt/; }7°, of finite-fold subcoverings of this
covering with the corresponding covering groupssuch that:
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(1) for eachi, I; is a normal subgroup of finite index if;

(2) for eachi, I';4; is contained in5;

@), I = {e}.

Leto(Ajps,) be the set of eigenvalues of the Laplacidg,, on M;. For
any i, we have an embedding(Ay;,) C o(Au,,,), and wheni tends
to infinity the spectrunmy(A,y,) of the finite covering)/; approaches to
the limit oy;,,,(A) = |, 0(Aag). Then, the bottorm\y, o of the limiting
spectrumoy;y, (A) and the bottom\y, o of the spectrumy(A,,) of the
manifold M are, clearly, equal to 0. In general, the bottan , of the

spectrumy (A ;) of the covering manifold/ is is not less than s, = 0,
and, by [4], the identit)AMO = Ao holds if and only if the groug™ is
amenable.

Moreover, by [10], for any functiorf € C2°(R), we have

lim (vol Mi)_ltr f(An,) =trr f(Ag),

wheretr - is the von Neumann trace on the algebrd'ehvariant operators
on M [2]. In particular, if N;(\) is the eigenvalue distribution function of
the Laplace-Beltrami operatak,,,, then

lim (vol M) 'N;(\) = Nr(\), A € R,
1—00

lim (vol M;) "' Ni(A) = 0,A < Ay
1—00 ’

where Nr () is the spectrum distribution function of the operatf;
constructed by means of tietracetrp, Ay o = inf o (A ).

A little bit more general possibility to arrange a finite-dimensional ap-
proximation of the spectrum of a covering, making use of sequences of
finite-dimensional representations of the covering gréygonverging to
the left regular representationsBf is considered in [27]. Analogues of (1)
and (29) can be also found in [27].

Actually, both of these two problems — the spectral problem for the
Laplacian on a covering and the spectral problem for the leafwise Laplacian
on a foliated manifold — can be considered as type Il spectral problems in
a sense of theory of operator algebras, and asymptotical spectral problems
mentioned above can be treated as finite-dimensional (of type 1) approxima-
tions to these spectral problems. This gives some explanation to analogies,
which we observed above. In above considerations, we also meet notions
connected with such approximations: amenability and Kazhdan'’s property
(T).

Let us introduce quantitative spectral characteristics of the tangential
LaplacianAX, related with adiabatic limits. For any; letr,()\) be given as

rE(A) = —lir}?sgp In NF(\)/Inh.
—
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Otherwise speakingy () equals the least bound of alsuch thaW,’f(/\) <
Ch™",h — 0. 1f X < AE , We putry(A) = —oo.

One can easily state the following properties-pf)):
0 <rp(A) <gforanyA > Xf |

r,(A) is not decreasing in;

r(A) =qif A > /\’}70.

if the foliationF is amenable, then:

PwON PR

re(A) = @, A > N5 g, m(A) = —00, A < A .

5. r(A) = 0 iff the interval [0, \] lies in the discrete spectrum of the
operatorAk. in L2(M, A*T* M) (the propertyT') case; see Remark 10).

We might expect that some invariants of the functip) introduced above
near) = 0 are independent of the choice of metrich(otherwise speak-

ing, are coarse invariants), and, moreover, are topological or homotopic

invariants of foliated manifolds.
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