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1. Introduction

Let (M, F) be a closed foliated manifold,dimM = n, dimF = p, p+q =
n, equipped with a Riemannian metricgM . We assume that the foliationF is
Riemannian, and the metricgM is bundle-like. LetF = TF be the integrable
distribution of tangentp-planes toF , and H = F⊥ be the orthogonal
complement toF . The decomposition ofTM into a direct sum,TM =
F
⊕

H, induces a decomposition of the metricgM : gM = gF + gH . For
any h > 0, let ∆h, h > 0, be the Laplace operator on differential forms
defined by a metricgh onM , given by the formulagh = gF + h−2gH . The
operator∆h is an elliptic differential operator with the positive definite,
scalar principal symbol, which is self-adjoint and has discrete spectrum in
the Hilbert spaceL2(M, ΛT ∗M, gh). The main result of the paper is an
asymptotical formula for the eigenvalue distribution functionNh(λ) of the
operator∆h:

Nh(λ) = ]{λi(h) ∈ spec∆h : λi(h) ≤ λ}.

Theorem 1. Let(M,F)be a compact Riemannian foliated manifold, equip-
ped with a bundle-like Riemannian metricgM . Then the asymptotical for-
mula forNh(λ) has the following form:

Nh(λ) = h−q (4π)−q/2

Γ ((q/2) + 1)

∫ λ

−∞
(λ − τ)q/2dτNF (τ) + o(h−q), h → 0,

(1)
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whereNF (λ) is the spectrum distribution function of the tangential Laplace
operator∆F (see (7) and (21) for the definitions).

We refer the reader to Sect. 5 for a detailed formulation of this Theorem.
We state also the asymptotical formula for the trace of the operatorf(∆h)
for any functionf ∈ Cc(R) (see Theorems 2 and 3 below).

The study of the asymptotical behaviour of geometric objects (like as
harmonic forms, eta-invariants etc.) associated with a family of Riemannian
metrics on fibrations as the metrics become singular was stimulated by
Witten’s work on adiabatic limits [28]. For further developments see, for
instance, [23,9,11,12] and references there.

In the spectral theory of differential operators, problems in question are
related with the Born-Oppenheimer approximation which consists in that
the Schr̈odinger operator for a polyatomic molecule is considered in the
semiclassical limit where the mass ratio of electronic to nuclear mass tends
to zero (see, for instance, [16] and references there). In particular, the result
on semiclassical asymptotics for the spectrum distribution function in the
fibration case is, essentially, due to [3].

The investigation of semiclassical spectral asymptotics for foliations was
started by the author in [17,18,20]. There we considered the problem in the
operator setting, that is, we studied spectral asymptotics for a self-adjoint
hypoelliptic operatorAh of the formAh = A+hmB, whereA is a tangen-
tially elliptic operator of orderµ > 0 with the positive tangential principal
symbol, andB is a differential operator of orderm onM with the positive,
holonomy invariant transversal principal symbol, and obtained an asymp-
totical formula for the spectrum distribution function of this operator when
h tends to zero.

The goal of this work is to adapt our results on semiclassical spectral
asymptotics to the geometric setting of adiabatic limits on foliations.

An interesting observation related with the asymptotical formula (1) is
that its right-hand side depends only on leafwise spectral data of the tangen-
tial Laplace operator∆F . So, in the case when the leafwise spectrum of∆F

doesn’t coincide with its spectrum inL2 space on the ambient manifoldM
(it might be a case if the foliationF is nonamenable, [19]), there is aλ > 0
such thatNh(λ) 6= 0 but

lim
h→0

hqNh(λ) = 0. (2)

The asymptotic behaviour ofNh(λ) allows us to introduce spectral charac-
teristicsrk(λ) of the leafwise Laplacian related with adiabatic limits. We
might expect that some invariants of the functionrk(λ) nearλ = 0 are
independent of the choice of metric onM , and, moreover, be topological or
homotopic invariants of foliated manifolds (just as in the case of Novikov-
Shubin invariants [13]). We discuss these questions and their relationships
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with the spectral theory of leafwise Laplacian in Sect. 7 and with noncom-
mutative spectral geometry of foliations in [21].

The organization of the paper is as follows.
In Sect. 2, we recall necessary facts, concerning to differential operators

on foliated manifolds.
In the Sects. 3 and 4, we formulate and prove the asymptotical formula

for tr f(∆h) whenh tends to zero for any functionf ∈ C0(R).
In Sect. 5, we rewrite the asymptotical formula of Sect. 3 in terms of

spectral characteristics of the operator∆F . In particular, this enables us to
complete a proof of Theorem 1 on the asymptotic behaviour of the eigenvalue
distribution function.

Finally, in Sect. 6 we discuss some results and examples related with the
asymptotical behaviour of individual eigenvalues of the operator∆h when
h tends to zero.

2. Differential operators on foliated manifolds

Let (M,F) be a compact foliated manifold,F be the tangential distribution
to F . The embeddingF ⊂ TM induces an embedding of algebras of
differential operatorsDµ(F) ⊂ Dµ(M), and differential operators onM
obtained in such a way are called tangential differential operators.

More generally, letE be an Hermitian vector bundle onM . We say that a
linear differential operatorA of orderµ acting onC∞(M, E) is a tangential
operator, if, in any foliated chartκ : Ip × Iq → M (I = (0, 1) is the open
interval) and any trivialization of the bundleE over it,A is of the form

A =
∑

|α|≤µ

aα(x, y)Dα
x , (x, y) ∈ Ip × Iq,

with aα, being matrix valued functions onIp×Iq. LetDµ(F , E) denote the
set of all tangential differential operators of orderµ acting inC∞(M, E).

We say thatA ∈ Dm,µ(M, F , E) if A is of the formA =
∑

α BαCα,
whereBα ∈ Dm(M, E), Cα ∈ Dµ(F , E). From symbolic calculus, it can
be easily seen that:

(1) if A1 ∈ Dm1,µ1(M, F , E), A2 ∈ Dm2,µ2(M, F , E), thenA1 ◦A2 ∈
Dm1+m2,µ1+µ2(M, F , E);

(2) if A ∈ Dm,µ(M,F , E), then the adjointA∗ ∈ Dm,µ(M, F , E).

Remark 1.It should be noted that classesDm,µ(M, F , E) can be extended
to classes of pseudodifferential operatorsΨm,µ(M,F , E), which contain,
for instance, parametrices for elliptic operators from the classesDm,µ(M,
F , E). We don’t use them here and refer the interested reader to [19] (see
also [20]) for details.
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Next, recall the definition of the scale of Sobolev type spaces
Hs,k(M, F , E), s ∈ R, k ∈ R, corresponding to classesDm,µ(M,F , E)
[19,20].

The spaceHs,k(Rn, Rp, Cr) consists of allCr-valued tempered distribu-
tionsu ∈ S′(Rn, Cr) such that̃u ∈ L2

loc(Rn, Cr) (ũ the Fourier transform)
and

‖u‖2
s,k =

∫ ∫
|ũ(ξ, η)|2(1 + |ξ|2 + |η|2)s(1 + |ξ|2)kdξdη < ∞. (3)

The identity (3) serves as a definition of a norm‖ ‖s,k in Hs,k(Rn, Rp, Cr).
The spaceHs,k(M,F , E) consists of allu ∈ D′(M, E) such that, for

any foliated coordinate chartκ : Ip × Iq → U = κ(Ip × Iq) ⊂ M , any
trivialization of the bundleE over it, and for anyφ ∈ C∞

c (U), the function
κ∗(φu) belongs to the spaceHs,k(Rn, Rp, Cr) (r = rank E). Fix some
finite covering{Ui : i = 1, . . . , d} of M by foliated coordinate patches
with foliated coordinate chartsκi : Ip × Iq → Ui = κi(Ip × Iq) and
trivializations of the bundleE over them, and a partition of unity{φi ∈
C∞(M) : i = 1, . . . , d} subordinate to this covering. A scalar product in
Hs,k(M, F , E) is defined by the formula

(u, v)s,k =
d∑

i=1

(κ∗(φiu), κ∗(φiv))s,k, u, v ∈ Hs,k(M, F , E).

Operators of classesDm,µ(M, F , E) acts in the spacesHs,k(M,F , E) in
the following way (see [19,20] for a proof in the scalar case):

Proposition 1. An operatorA ∈ Dm,µ(M, F , E) defines a linear bounded
operator fromHs,k(M,F , E) to Hs−m,k−µ(M, F , E) for anys ∈ R, k ∈
R.

Now let us turn to properties of geometric operators on the foliated
manifold(M, F). Let H be the orthogonal complement toF , so

F
⊕

H = TM. (4)

The decomposition (4) induces a bigrading onΛT ∗M by the formula

ΛkT ∗M =
k⊕

i=0

Λi,k−iT ∗M, (5)

whereΛi,jT ∗M = ΛiF ∗⊗ΛjH∗, i = 1, . . . , p, j = 1, . . . , q.
The de Rham differentiald inherits the bigrading (5) in the form

d = dF + dH + θ.
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Here the tangential de Rham differentialdF and the transversal de Rham
differential dH are first order differential operators, andθ is zeroth order.
Moreover, the operatordF doesn’t depend on a choice of the bundle-like
metricgM (see, for instance, [26]).

Recall that∆h, h > 0, is the Laplace operator on differential forms
defined by the metricgh = gF + h−2gH . We transfer the family∆h to
the fixed Hilbert spaceL2(M, ΛT ∗M, g). For this goal, we introduce an
isometryΘh : L2(M, ΛT ∗M, gh) → L2(M, ΛT ∗M, g), defined, foru ∈
L2(M, Λi,jT ∗M, gh), asΘhu = hju. The operator∆h in the Hilbert space
L2(M, ΛT ∗M, gh) corresponds under the isometryΘh to the operatorLh =
Θh∆hΘ−1

h in the Hilbert spaceL2(M, ΛT ∗M) = L2(M, ΛT ∗M, g).

Lemma 1 ([11]).We have

Lh = dhδh + δhdh,

wheredh = dF + hdH + h2θ, andδh = δF + hδH + h2θ∗ is the adjoint
to dh with δF , δH andθ∗, being the adjoints todF , dH andθ respectively.
Here we consider the adjoints taken in the Hilbert spaceL2(M, ΛT ∗M).

By Lemma 1, the operatorLh is of the following form:

Lh = ∆F + h2∆H + h4∆−1,2 + hK1 + h2K2 + h3K3, (6)

where

– The operator

∆F = dF δF + δF dF ∈ D0,2(M, F , ΛT ∗M) (7)

is the tangential Laplacian in the spaceC∞(M, ΛT ∗M).
– The operator

∆H = dHδH + δHdH ∈ D2,0(M, F , ΛT ∗M)

is the transversal Laplacian in the spaceC∞(M, ΛT ∗M).
– ∆−1,2 = θθ∗ + θ∗θ ∈ D0,0(M,F , ΛT ∗M)).
– K1 = dF δH + δHdF + δF dH + dHδF ∈ D1,0(M,F , ΛT ∗M).
– K2 = dF θ∗ + θ∗dF + δF θ + θδF ∈ D0,0(M,F , ΛT ∗M).
– K3 = dHθ∗ + θ∗dH + δHθ + θδH ∈ D1,0(M, F , ΛT ∗M).

From now on, we will assume that(M, F) is a Riemannian foliation with
the metricgM , being bundle-like (see, for instance, [26]). The crucial point,
concerning to geometrical operators on a Riemannian foliated manifold, is
that, in this case, the operatorsdF δH + δHdF andδF dH + dHδF belong to
D0,1(M,F , ΛT ∗M). In particular, this implies

K1 ∈ D0,1(M, F , ΛT ∗M).
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For anyh > 0, the operatorLh is a formally self-adjoint, elliptic operator
in L2(M, ΛT ∗M) with the positive principal symbol. The following Propo-
sition is a refinement of the classical Gårding inequality for the operator
Lh.

Proposition 2. Under current hypotheses, there exist constantsC1 > 0,
C2 > 0 and C3 > 0 such that for anyh > 0 small enough and for any
u ∈ C∞(M, ΛT ∗M) we have

(Lhu, u) ≥ (1 − C1h
2)(∆F u, u) + C2h

2‖u‖2
1,0 − C3‖u‖2. (8)

Proof. Let u ∈ C∞(M, ΛT ∗M). By (6), we have

(Lhu.u) = (∆F u, u) + h2(∆Hu, u) + h4(∆−1,2u, u)
+h(K1u, u) + h2(K2u, u) + h3(K3u, u).

It clear that(∆−1,2u, u) ≥ 0. By Proposition 1, we have

(K2u, u) ≥ −C4‖u‖2, (K3u, u) ≥ −C5‖u‖2
1,0. (9)

So we obtain

(Lhu.u) ≥ (∆F u, u) + h2(∆Hu, u) + h(K1u, u) − C4h
2‖u‖2

−C5h
3‖u‖2

1,0. (10)

The operator∆F + ∆H is a second order elliptic operator with the positive
principal symbol, so, by the standard Gårding inequality, we have

((∆F + ∆H)u, u) ≥ C6‖u‖2
1,0 − C7‖u‖2, (11)

that implies the estimate

(Lhu.u) ≥ (1−h2)(∆F u, u)+C7h
2‖u‖2

1,0 +h(K1u, u)−C8‖u‖2. (12)

Finally, we make use of the inequality

|(K1u, u)| ≤ C7‖u‖0,1‖u‖ ≤ C8(h‖u‖2
0,1 + h−1‖u‖2) (13)

and the tangential G̊arding inequality (see [20])

‖u‖2
0,1 ≤ C9((∆F u, u) + ‖u‖2),

that completes immediately the proof.

Remark 2.In some cases, it is sufficient to use more rough estimate

(Lhu, u) ≥ C1‖u‖2
0,1 + C2h

2‖u‖2
1,0 − C3‖u‖2, u ∈ C∞(M, ΛT ∗M),

(14)
which follows from (8), if we apply the standard Sobolev norm estimate to
the term(∆F u, u).
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Let Hh(t) = exp(−tLh), t ≥ 0, be the parabolic semigroup of bounded
operators inL2(M, ΛT ∗M), generated byLh. For anyt > 0, the operator
Hh(t) is an operator with a smooth kernel. Proposition 2 implies the follow-
ing norm estimates for operators of this semigroup inHs,k(M, F , ΛT ∗M)
(see also [20]).

Proposition 3. We have the following estimates:

‖Hh(t)u‖r,k ≤ Crskt
(s−k−r)/2hs−r‖u‖s, u ∈ C∞(M, ΛT ∗M),

if r > s, h ∈ (0, 1], 0 < t ≤ 1, and

‖Hh(t)u‖s,k ≤ Cskt
−k/2‖u‖s, u ∈ C∞(M, ΛT ∗M).

if r = s, h ∈ [0, 1], 0 < t ≤ 1, where the constants don’t depend ont and
h.

3. Asymptotical formula for functions of the Laplace operator

From now on, we will assume that(M, F) is a Riemannian foliation,
equipped with a bundle-like Riemannian metricgM . In this Section, we
state the asymptotical formula fortr f(∆h) whenh tends to zero for any
functionf ∈ C0(R).

We will denote byGF the holonomy groupoid of(M,F). Let us briefly
recall its definition. Let∼h be an equivalence relation on the set of leafwise
pathsγ : [0, 1] → M , settingγ1 ∼h γ2 if γ1 andγ2 have the same initial
and final points and the same holonomy maps. The holonomy groupoidGF
is the set of∼h equivalence classes of leafwise paths.GF is equipped with
the source and the range mapss, r : GF → M defined bys(γ) = γ(0)
andr(γ) = γ(1). We will identify a pointx ∈ M with an element ofGF
given by the corresponding constant path:γ(t) = x, t ∈ [0, 1]. Recall also
that, for anyx ∈ M , the setGx

F = {γ ∈ GF : r(γ) = x} is the covering
of the leaf through the pointx, associated with the holonomy group of the
leaf. We will denote byλL the Riemannian volume form on each leafL of
F and byλx its lift to a measure on the holonomy coveringGx

F , x ∈ M .
For any vector bundleE onM , we denote byC∞

c (GF , E) the space of
all smooth, compactly supported Sects. of the vector bundler∗E

⊗
s∗E∗

over GF . In other words, for anyk ∈ C∞
c (GF , E), its value at a point

γ ∈ GF is a linear mapk(γ) : Es(γ) → Er(γ). We will use a correspondence
between tangential kernelsk ∈ C∞

c (GF , E) and tangential operatorsK :
C∞(M, E) → C∞(M, E) via the formula

Ku(x) =
∫

Gx
F

k(γ)u(s(γ))dλx(γ), u ∈ C∞(M, E).



770 Y.A. Kordyukov

Now we introduce a notion of the principalh-symbol of the operator
∆h. It is well-known (see, for instance, [24,26]) that the conormal bundle
H∗ to the foliationF has a partial (Bott) connection, which is flat along
leaves ofF . So we can lift the foliationF to a foliationFH in the conormal
bundleH∗. The leafL̃ν of the foliationFH through a pointν ∈ H∗ is
diffeomorphic to the holonomy coveringGx

F of the leafLx, x = π(ν), of
the foliationF through the pointx (hereπ : H∗ → M is the bundle map)
and has trivial holonomy.

Denote by

∆FH
: C∞(H∗, π∗ΛT ∗M) → C∞(H∗, π∗ΛT ∗M)

the lift of the leafwise Laplacian∆F to a tangentially elliptic operator on
H∗ with respect toFH .

Definition 1. The principalh-symbol of the operator∆h is a tangentially
elliptic operator onH∗ with respect to the foliationFH , given by the formula

σh(∆h) = ∆FH
+ gH ,

wheregH is the multiplication operator by the functiongH(ν), ν ∈ H∗.

The holonomy groupoidGFH
of the lifted foliationFH consists of all

triples (γ, ν) ∈ GF × H∗ such thatr(γ) = π(ν), ands(γ) = dh∗
γ(ν),

wheredh∗
γ is the codifferential of the holonomy map with the source map

s : GFH
→ H∗, s(γ, ν) = dh∗

γ(ν), and the range mapr : GFH
→

H∗, r(γ, ν) = ν. We have the mapπG : GFH
→ GF , given byπG(γ, ν) =

γ. Denote bytrFH
the trace on the von Neumann algebraW ∗(GFH

, π∗ΛT ∗
M) of all tangential operators onH∗ with respect to the foliationFH , given
by the holonomy invariant measuredxdν onH∗ [6]. For any tangential oper-
atorK on(H∗,FH), given by a tangential kernelk ∈ C∞

c (GFH
, π∗ΛT ∗M),

k = k(γ, ν), we have

trFH
(K) =

∫
H∗

Trπ∗ΛT ∗M k(x, ν)dxdν.

Theorem 2. For any functionf ∈ C0(R), we have the asymptotical formula

tr f(∆h) = (2π)−qh−qtrFH
f(σh(∆h)) + o(h−q), h → 0. (15)

We will prove this theorem in the next section, and now we conclude this
section by a remark.

Remark 3.Let us compare the formula (15) with what we have in the case of
a Schr̈odinger operator. LetHh = −h2∆+V (x), x ∈ M, be a Schr̈odinger
operator on a compact manifoldM with an operator-valued potentialV ∈
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L(H) (H is a Hilbert space) such thatV (x)∗ = V (x) (the fibration case).
Then the corresponding asymptotical formula has the following form:

tr f(∆h) = (2π)−nh−n

∫
T ∗M

Tr f(σh(Hh)(x, ξ))dxdξ + o(h−n),

h → 0+, (16)

whereσh(Hh)(x, ξ) is the operator-valued principalh-symbol,σh(Hh)(x, ξ)
= |ξ|2 + V (x), (x, ξ) ∈ T ∗M. So we see that the formula (15) has the
same form as (16) with the difference that heref(σh(Hh)) is an element
of the foliationC∗-algebraC∗(GFH

, π∗ΛT ∗M), which is a noncommuta-
tive analoque of the algebra of continuous functions onH∗/FH , and the
integration overT ∗M and the fibrewise trace in (16) are replaced by the
integration in a sense of the noncommutative integration theory [6].

4. Proof of Theorem 2

This section is devoted to a proof of Theorem 2. Without loss of generality,
we will consider the asymptotical behaviour oftr f(Lh). The proof of
Theorem 2 relies on the comparison of the operatorLh with some operator
L̄h of the almost product structure as in [20] with a subsequent use of results
of [20] (see also [17,18]) on semiclassical spectral asymptotics for elliptic
operators on foliated manifolds.

So let an operator̄Lh ∈ D2,0(M, F , ΛT ∗M) be given by the formula

L̄h = ∆F + h2∆H .

The operator̄Lh satisfies the conditions of [17,18,20], that is, it is of the
form L̄h = A+h2B, whereA = ∆F is a second order tangentially elliptic
operator with the scalar, positive tangential principal symbol, andB =
∆H be a second order differential operator onM with the scalar, positive,
holonomy invariant transversal principal symbol. Indeed, it is easy to see
that the transversal principal symbol of operator∆H , which is the restriction
of its principal symbol fromT ∗M to the conormal bundleH∗, is given by
the formulaσ(ν) = gH∗(ν)I, ν ∈ H∗, and its holonomy invariance is
equivalent to the assumption on the metricgM to be bundle-like.

Remark 4.The only fact which we need from the holonomy invariance
condititon is that the commutator[A, B], which, by general symbolic cal-
culus, belongs to the classD2,1(M, F , ΛT ∗M), is an operator of the class
D1,2(M,F , ΛT ∗M), that can be checked by a straightforward calculation.

The operator̄Lh generates the parabolic semigroupH̄h(t) = e−tL̄h , t ≥
0, in the spaceL2(M, ΛT ∗M). It is clear that these operators are smoothing



772 Y.A. Kordyukov

operators whent > 0. By [20], the operators of the parabolic semigroup
H̄h(t) satisfy the same estimates as in Proposition 3:

‖H̄h(t)u‖r,k ≤ Cr,s,kt
(s−k−r)/2hs−r‖u‖s, u ∈ C∞(M, ΛT ∗M), (17)

if r > s, h ∈ (0, 1], 0 < t ≤ 1, and

‖H̄h(t)u‖s,k ≤ Cskt
−k/2‖u‖s, u ∈ C∞(M, ΛT ∗M). (18)

if r = s, h ∈ [0, 1], 0 < t ≤ 1, where the constants don’t depend ont and
h.

First, we state the norm estimates for the differenceHh(t) − H̄h(t).

Proposition 4. We have the estimate

‖(Hh(t) − H̄h(t))u‖r,k ≤ Cr,s,kt
(s−k−r)/2hs−r+1‖u‖s,

u ∈ C∞(M, ΛT ∗M),

if r > s, h ∈ (0, 1], 0 < t ≤ 1, and the estimate

‖(Hh(t) − H̄h(t))u‖s,k ≤ Cskt
−k/2‖u‖s, u ∈ C∞(M, ΛT ∗M).

if r = s, h ∈ [0, 1], 0 < t ≤ 1, where the constants don’t depend ont and
h.

Proof. For the proof, we make use of the Duhamel formula

Hh(t) − H̄h(t) =
∫ t

0
Hh(τ)(L̄h − Lh)H̄h(t − τ) dτ.

We know norm estimates for operatorsHh(t) andH̄h(t) (see Proposition 3
and (17)-(18)) and the explicit formula for the differenceL̄h − Lh:

Lh − L̄h = h4∆−1,2 + hK1 + h2K2 + h3K3.

from where Proposition 4 is proved in a usual way.

Next, we pass from the Sobolev estimates for the operatorHh(t)−H̄h(t)
to pointwise and trace estimates.

Proposition 5. Under current hypotheses, we have the estimate

|tr(Hh(t) − H̄h(t))| ≤ Ch1−q.

Proof. For the proof, we make use the following proposition (see [20] for a
scalar case):
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Proposition 6. Let (M,F) be a compact foliated manifold,E be an Her-
mitian vector bundle onM . For any s > p/2 and k > q/2, there is a
continuous embedding

Hs,k(M, F , E) ⊂ C(M, E).

Moreover, for anys > p/2 andk > q/2, there is a constantCs,k > 0 such
that, for eachλ ≥ 1,

sup
x∈M

|u(x)| ≤ Cs,lλ
q/2(λ−s‖u‖s,k + ‖u‖0,k+s), u ∈ Hs,k(M,F , E).

Let Hh(t, x, y) (H̄h(t, x, y)) be the integral kernels of operatorsHh(t)
(H̄h(t)) respectively. Then, by Propositions 4 and 6 (withλ = h−1), we
obtain:

sup
x∈M

|Hh(t, x, x) − H̄h(t, x, x)| ≤ Ch1−q,

that immediately completes the proof.

Denote byhF (t, γ) ∈ C∞(GF , ΛT ∗M) the tangential kernel of the
smoothing tangential operatorexp(−t∆F ).

Proposition 7. For anyt > 0, we have the asymptotical formula (ash → 0)

tr e−tLh = (2π)−qh−q

∫
M

(∫
H∗

x

e−tgH(ν)dν

)
TrΛT ∗M hF (t, x)dx

+O(h1−q). (19)

Proof. By Propositions 3 and 6, we have the estimate

tr e−tLh ≤ Ch−q, h → 0.

Moreover, by Proposition 5, asymptotics of traces of the operatorsHh(t)
andH̄h(t) whenh tends to zero have the same leading terms (of orderh−q),
and we can apply the asymptotical formula of [17,18,20] to complete the
proof.

Remark 5.Since ∫
H∗

x

e−tgH(ν)dν = πq/2t−q/2,

the formula (19) can be rewritten in a simpler form:

tr e−tLh = (4πt)−q/2h−q

∫
M

TrΛT ∗M hF (t, x)dx + O(h1−q), h → 0.

(20)
From (20), we can also obtain an asymptotical formula for the spectrum
distribution function, but it is more convenient for us to use the formula in
the form (19).
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Remark 6.For anyx ∈ M , the restrictionhF (t, γ) ∈ C∞(Gx
F , ΛT ∗M) of

hF onGx
F is the kernel of the operatorexp(−t∆x), where∆x the restriction

of ∆F onGx
F (see also Sect. 5). This fact cannot be extended to more general

functionsf(∆F ) (see [19]), that is closely related with so-called spectrum
coincidence theorems and with the nonstandard asymptotical formula (2).

Proof of Theorem 2.The tangential kernelhFH
(t) ∈ C∞(GFH

, π∗ΛT ∗M)
of the operatorexp(−t∆FH

) is related with the tangential kernelhF (t) ∈
C∞(GF , ΛT ∗M) of the operatorexp(−t∆F ) by the formula

hFH
(t, γ, ν) = hF (t, γ).

The crucial point is that, sinceF is a Riemannian foliation, the operators
∆FH

andgH commutes as operators onH∗. In particular, we have

e−tσh(∆h) = e−tgH(ν)e−t∆FH , t > 0.

So the formula (19) can be rewritten in terms of the notation of this section
as follows:

tr e−tLh = h−qtrFH
e−tσh(∆h) + O(h1−q), h → 0.

from where, using standard approximation arguments, the theorem follows
immediately.

Remark 7.The passage from the operatorLh to the operator̄Lh resembles
the passage from the Riemannian connection onM to the almost product
connection as in [1,26].

5. Formulation in terms of leafwise spectral characteristics

Here we rewrite the asymptotical formula (15) in terms of spectral charac-
teristics of the operator∆F . In particular, it allows us to complete the proof
of Theorem 1 on the asymptotic behaviour of the eigenvalue distribution
function.

Recall that∆F denotes the tangential Laplacian in the space
C∞(M, ΛT ∗M) (see (7)). Let us restrict the operator∆F to the leaves of
the foliationF and lift the restrictions to holonomy coveringsGx

F via the
maps. We obtain the family

∆x : C∞
c (Gx

F , s∗ΛT ∗M) → C∞
c (Gx

F , s∗ΛT ∗M)

of Laplacians on holonomy coverings of leaves. Since the foliationF is
Riemannian, it can be checked that the operator∆x is formally self-adjoint
in L2(Gx

F , s∗ΛT ∗M), that, in turn, implies its essential self-adjointness in
this Hilbert space (with initial domainC∞

c (Gx
F , s∗ΛT ∗M)) for anyx ∈ M .
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For eachλ ∈ R, the kernele(γ, λ), γ ∈ GF of the spectral projections of the
operators∆x, corresponding to the semiaxis(−∞, λ], defines an element
of the von Neumann algebraW ∗(GF , ΛT ∗M). The sectione(γ, λ) is a
leafwise smooth section of the bundle(s∗ΛT ∗M)∗⊗ r∗ΛT ∗M overGF .

We introduce the spectrum distribution functionNF (λ) of the operator
∆F by the formula

NF (λ) =
∫

M
TrΛT ∗M e(x, λ)dx, λ ∈ R. (21)

By [19], for any λ ∈ R, the functionTrΛT ∗M e(x, λ) is a bounded
measurable function onM , therefore, the spectrum distribution function
NF (λ) is well-defined and takes finite values.

Theorem 3. For any functionf ∈ C∞
0 (R), we have the following asymp-

totic formula (ash → 0):

tr f(Lh) = h−q (4π)−q/2

Γ (q/2)

∫ ∞

−∞

∫ ∞

−∞
σq/2−1f(τ +σ) dσ dNF (τ)+o(h−q).

Proof. Let EgH (τ) andE∆(σ) denote the spectral projections of the opera-
torsgH and∆FH

in L2(H∗, π∗ΛT ∗M) respectively. Since these operators
commute, we have

f(σh(∆h)) = f(∆F + gH) =
∫ +∞

−∞

∫ +∞

−∞
f(τ + σ) dEgH (τ) dE∆(σ)

is a tangential operator onH∗ with respect toFH with the tangential kernel

kf(σh(∆h))(γ, ν) =
∫ +∞

−∞

∫ +∞

−∞
f(τ + σ) dEgH (τ)(ν) dE∆(γ, σ).

So we obtain

trFH
f(σh(∆h)) =

∫
M

∫
H∗

x

TrΛT ∗M kf(σh(∆h))(x, ν)dxdν

=
∫

M

∫ +∞

−∞

∫ +∞

−∞
f(τ + σ) (

∫
H∗

x

dEgH (τ)(ν) dν)

dσ(TrΛT ∗M E∆(x, σ)) dτ dx,

from where, taking into account thatEgH (τ)(ν) = χ{gH(ν)≤τ}Iπ∗ΛT ∗M

and ∫
H∗

x

EgH (τ)(ν) dν = volume{ν ∈ H∗
x : gH(ν) ≤ τ} = ωqτ

q/2,

whereωq = πq/2

Γ ((q/2)+1) is the volume of the unit ball inRq, we immediately
obtain the desired formula.
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In a particular case whenf is the characteristic function of the semi-
axis(−∞, λ), Theorem 3 implies the following theorem on the asymptotic
behaviour of the spectrum distribution functionNh(λ), which is exactly
Theorem 1 formulated in terms of the operatorLh.

Theorem 4. Under current hypothesis, we have

Nh(λ) = h−q (4π)−q/2

Γ ((q/2) + 1)

∫ λ

−∞
(λ − τ)q/2 dNF (τ) + o(h−q), h → 0

for anyλ ∈ R.

6. Eigenvalue limits

Here we discuss the asymptotical behaviour of individual eigenvalues of the
operator∆h whenh tends to zero. As usual, we will, equivalently, consider
the operatorLh instead of∆h. Moreover, we will consider eigenvalues of
this operator on differentialk-forms with a fixedk. Therefore, we will write
Lk

h for the restriction of the operatorLh onC∞(M, ΛkT ∗M) k = 1, . . . , n,
omittingk where it is not essential.

For anyh > 0, Lh is an analytic family of type (B) of self-adjoint oper-
ators in sense of [15]. Therefore, forh > 0, the eigenvalues ofLh depends
analytically onh. Thus there are (countably many) analytic functionsλi(h)
such that

specLh = {λi(h) : i = 1, 2, . . .}, h > 0.

Proposition 8. Under current hypotheses, for anyi, there exists a limit

lim
h→0+

λi(h) = λlim,i. (22)

Moreover, ifvh is a normalized eigenform associated with the eigenvalue
λi(h), Lhvh = λi(h)vh, ‖vh‖ = 1, then we have the estimates

‖vh‖0,1 < C1, h‖vh‖1,0 < C2, (23)

with the constantsC1 andC2 independent ofh ∈ (0, 1].

Proof. By [15], the functionsλi(h) satisfy the following equality

λ′
i(h) = ((dLh/dh)vh, vh)

= ((2h∆H + 4h3∆−1,2 + K1 + 2hK2 + 3h2K3)vh, vh),

from where, using the positivity of operators∆H and∆−1,2 in L2(M, ΛT ∗
M), and the estimates (9) and (13) (withh = 1), we obtain

λ′
i(h) ≥ −C1‖vh‖2

0,1 − C2h
2‖vh‖2

1,0 − C3. (24)
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The estimate (14) implies

C1‖vh‖2
0,1 + C2h

2‖vh‖2
1,0 ≤ C3λi(h) + C4, h ∈ (0, 1]. (25)

By (24) and (25), we conclude that

λ′
i(h) ≥ −C5λi(h) − C6.

This estimate can be rewritten in the following way:

d

dh
((λi(h) +

C6

C5
)eC5h) ≥ 0,

that means that the function(λi(h) + C6
C5

)eC5h is not decreasing inh for h

small enough. By the positivity of the operatorLh in L2(M, ΛT ∗M), each
eigenvalueλi(h) is positive, so the function(λi(h)+ C6

C5
)eC5h semibounded

from below near zero. Therefore, this function has a limit whenh tends to
zero, that, clearly, implies the existence of the limit for the functionλi.

The second assertion of this proposition is an immediate consequence
of the first one and the estimate (25).

Proposition 8 allows us to introduce the limiting spectrum of the operator
∆k

h as the set of all limiting valuesλk
lim,i, given by (22):

σlim(∆k
h) = {λk

lim,i : i = 0, 1, . . .}.

By analogy with semiclassical asymptotics for a Schrödinger operator,
we may assume that the structure of the limiting spectrumσlim(∆k

h) is
defined in a big extent by a limiting value of the bottoms of spectra of
operators∆k

h. So let

λk
0(h) = min

u∈C∞(M,ΛkT ∗M)

(∆k
hu, u)

‖u‖2 ,

and
λk

lim,0 = lim
h→0

λk
0(h).

There are two other quantities: the bottomλk
F,0 of the spectrum of the oper-

ator∆k
F in L2(M, ΛkT ∗M):

λk
F,0 = min

u∈C∞(M,ΛkT ∗M)

(∆k
F u, u)
‖u‖2 ,

and the bottomλk
F ,0 of the leafwise spectrum of the operator∆k

F :

λk
F ,0 = inf{λk

L,0 : L ∈ V/F},



778 Y.A. Kordyukov

where

λk
L,0 = min

u∈C∞
c (L,ΛkT ∗M)

(∆k
Lu, u)

‖u‖2 ,

the operator∆k
L is the restriction of the operator∆k

F on the leafL.

Proposition 9. Under current hypotheses, we have the following relations:

λk
F,0 ≤ λk

lim,0 ≤ λk
F ,0, k = 1, . . . , n. (26)

Proof. Let vh be the normalized eigenform associated with the bottom
eigenvalueλk

0(h): Lk
hvh = λk

0(h)vh, ‖vh‖ = 1. By the definition ofλk
F,0,

we have the estimate
(∆k

F vh, vh) ≥ λk
F,0.

By (12), we obtain

λk
0(h) ≥ (1 − h2)λk

F,0 + C1h
2‖vh‖2

1,0 + h(K1vh, vh) − C2h
2, (27)

whereC1 andC2 are positive constants. By (23), we have

lim
h→0

h(K1vh, vh) = 0,

that, by (27), immediately completes the proof of the first inequality in (26).
By Theorem 1,Nk

h (λ) > 0 for anyλ > λk
F ,0 andh small enough, from

where the second inequality in (26) follows immediately.

We conclude this section with some remarks and examples, concerning
the quantitiesλk

F,0, λk
lim,0 andλk

F ,0.

Remark 8.When the foliationF is a fibration or, more general, is amenable
in a sense of [19], the relations (26) turns out to be identities [19].

Remark 9.We don’t know if the equalityλk
F,0 = λk

lim,0 is always true. It
is, clearly, true fork = 0: λ0

F,0 = λ0
lim,0 = 0. More general, if the Betti

numberbk(M) is not zero, thenλk
0(h) = 0 for all h, that also implies

λk
F,0 = λk

lim,0 = 0.

Remark 10.Here we give an example of the foliation such that the bottom
λ0

F,0 = 0 of the operator∆0
F in L2(M) is a point of discrete spectrum.

Let Γ be a discrete, finitely generated group such that
(a)Γ has property(T ) of Kazhdan;
(b) Γ is embedded in a compact Lie groupG as a dense subgroup.

For definitions and examples of such groups, see, for instance, [14,22].
Let us take a compact manifoldX such thatπ1(X) = Γ . Let X̃ be the

universal covering ofX equipped with a left action ofΓ by deck trans-
formations. We will assume thatΓ acts onG by left translations. Let us
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consider the suspension foliationF on a compact manifoldM = X̃ ×Γ G
(see, for instance, [5]). A choice of a left invariant metric onG provides a
bundle-like metric onM , soF is a Riemannian foliation. We may assume
that leafwise metric is chosen in such a way that any leaf of the foliationF
is isometric toX̃.

There is defined a natural action ofΓ on M and the operator∆0
F is

invariant under this action. LetE(0, λ), λ > 0, denote the spectral projection
of the operator∆0

F in L2(M), corresponding to the interval(0, Λ), and
E(0, λ)L2(M) be the correspondingΓ -invariant spectral subspace.

Claim. In this example,λ0
F,0 = 0 is a nondegenerate point of discrete spec-

trum of∆0
F , that is, an isolated eigenvalue of multitplicity 1.

From the contrary, let us assume that zero lies in the essential spectrum
of the operator∆0

F in L2(M). Then, for anyε > 0 andλ > 0, there is a
functionuε ∈ C∞(M) such thatuε belongs to the spaceE(0, λ)L2(M),
‖uε‖ = 1 and

(∆F uε, uε) = ‖∇F uε‖ ≤ ε, (28)

where∇F denotes the leafwise gradient. From (28), we can easily derive that
the representation of the groupΓ in E(0, λ)L2(M) has an almost invariant
vector, that, by the property(T ), implies the existence of an invariant vector
v0 ∈ E(0, λ)L2(M).

SinceΓ is dense inG, Γ -invariance ofv0 implies itsG-invariance, that,
in turn, implies thatv0 is a lift of some non-zero elementv ∈ C∞(X) via
the natural projectionM → X. It can be easily checked thatv belongs to the
corresponding spectral spaceE(0, λ)L2(X) of the Laplace operator∆X in
L2(X). From other hand, the operator∆X has a discrete spectrum, so zero
is an isolated point in the spectrum of∆X , and the spaceE(0, λ)L2(X) is
trivial if λ > 0 is small enough. So we get a contradiction, which implies
that zero lies in the discrete spectrum of the operator∆0

F in L2(M).

Remark 11.If F is given by a fibration, zero is also an isolated point in the
spectrum of the operator∆0

F in L2(M), but, in that case, it is an eigenvalue
of infinite multitplicity, and, therefore, lies in the essential spectrum of∆0

F
in L2(M).

Remark 12.Unlike the scalar case, it is not always the case that all of the
semiaxis[λlim,0,+∞) is contained inσlim(∆h). Indeed, let, as in the exam-
ple of Remark 10,λ0

F,0 = 0 is a nondegenerate point of discrete spectrum of
∆0

F . Then, by means of the perturbation theory of the discrete spectrum (see,
for instance, [15]), we can state that, forh > 0 small enough,λ0(h) = 0
is the only eigenvalue of∆0

h near zero. So we conclude thatλlim,0 = 0 but
there exists aλ1 > 0 such thatσlim(∆h)

⋂
[0, λ1] = {0}.
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7. Concluding remarks

In this section, we discuss some aspects of the main asymptotical formula (1),
and, especially, of the nonstandard formula (2). We will make use of the
notation of previous sections.

The whole picture which we observe in the foliation case is the following.
Generally, for anyk = 0, 1, . . . , n, we have only thatλk

F,0 ≤ λk
lim,0 ≤ λk

F ,0,
and these relations turn into identities, if the foliationF is a fibration or,
more general, is amenable (see Remark 8).

By (1), the functionNk
h (λ) behaves in a usual way whenλ is greater

than the bottom of the leafwise spectrum of∆k
F :

Nk
h (λ) ∼ Ch−q, λ ≥ λk

F ,0,

but, if λk
F,0 < λk

F ,0, there might be limiting values for eigenvaluesλk
i (h) of

the operator∆k
h, lying in the interval(λk

F,0, λ
k
F ,0). So the functionNk

h (λ)
is nontrivial on the interval(λk

lim,0, λ
k
F ,0), but, since the right-hand side of

(1) depends only on leafwise spectral data of the operator∆k
F , we have

lim
h→0+

hqNk
h (λ) = 0, λ < λk

F ,0. (29)

It means that the set of eigenvalues of∆k
h in the interval(λk

lim,0, λ
k
F ,0) is

”thin” in the whole set of eigenvalues of∆h. By analogy with [27], (29)
in the casek = 0 may be called as a weak foliated version of ”Riemann
hypothesis”.

This is quite different from what we have in the case of a Schrödinger
operator or in the fibration case. For instance, ifHh is a Schr̈odinger operator
on a compact manifoldM (we may considerM , being equipped with a trivial
foliation F which leaves are points):Hh = −h2∆ + V (x), x ∈ M , we
haveλF,0 = λlim,0 = λF ,0 = inf V−, whereV−(x) = min(V (x), 0), x ∈
M , and the following asymptotical formula for the spectrum distribution
functionNh(λ) in the semiclassical limit:

Nh(λ) = (2π)−nh−n

∫
{(x,ξ):ξ2+V (x)≤λ}

dxdξ + o(h−n), h → 0 + .

So we have only two possibilities:Nh(λ) ∼ Ch−n, if λ > inf V− (n =
dimM ), andNh(λ) = 0, if λ ≤ inf V−.

We can point out facts in spectral theory of coverings, which are very
similar to ones in spectral theory of foliations mentioned above. For sim-
plicity, consider only the Laplace-Beltrami operator on functions.

Let M̃ → M be a normal covering with a covering groupΓ . Recall
that a tower of coverings is a set{Mi}∞

i=1 of finite-fold subcoverings of this
covering with the corresponding covering groupsΓi such that:
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(1) for eachi, Γi is a normal subgroup of finite index inΓ ;
(2) for eachi, Γi+1 is contained inΓi;
(3)
⋂

i Γi = {e}.
Let σ(∆Mi) be the set of eigenvalues of the Laplacian∆Mi onMi. For

any i, we have an embeddingσ(∆Mi) ⊂ σ(∆Mi+1), and wheni tends
to infinity the spectrumσ(∆Mi) of the finite coveringMi approaches to
the limit σlim(∆) =

⋃
i σ(∆Mi). Then, the bottomλlim,0 of the limiting

spectrumσlim(∆) and the bottomλM,0 of the spectrumσ(∆M ) of the
manifold M are, clearly, equal to 0. In general, the bottomλM̃,0 of the

spectrumσ(∆M̃ ) of the covering manifoldM̃ is is not less thanλM,0 = 0,
and, by [4], the identityλM̃,0 = λM,0 holds if and only if the groupΓ is
amenable.

Moreover, by [10], for any functionf ∈ C∞
c (R), we have

lim
i→∞

(vol Mi)−1tr f(∆Mi) = trΓ f(∆M̃ ),

wheretrΓ is the von Neumann trace on the algebra ofΓ -invariant operators
on M̃ [2]. In particular, ifNi(λ) is the eigenvalue distribution function of
the Laplace-Beltrami operator∆Mi , then

lim
i→∞

(vol Mi)−1Ni(λ) = NΓ (λ), λ ∈ R,

lim
i→∞

(vol Mi)−1Ni(λ) = 0, λ < λM̃,0,

whereNΓ (λ) is the spectrum distribution function of the operator∆M̃
constructed by means of theΓ -tracetrΓ , λM̃,0 = inf σ(∆M̃ ).

A little bit more general possibility to arrange a finite-dimensional ap-
proximation of the spectrum of a covering, making use of sequences of
finite-dimensional representations of the covering groupΓ , converging to
the left regular representations ofΓ , is considered in [27]. Analogues of (1)
and (29) can be also found in [27].

Actually, both of these two problems – the spectral problem for the
Laplacian on a covering and the spectral problem for the leafwise Laplacian
on a foliated manifold – can be considered as type II spectral problems in
a sense of theory of operator algebras, and asymptotical spectral problems
mentioned above can be treated as finite-dimensional (of type I) approxima-
tions to these spectral problems. This gives some explanation to analogies,
which we observed above. In above considerations, we also meet notions
connected with such approximations: amenability and Kazhdan’s property
(T).

Let us introduce quantitative spectral characteristics of the tangential
Laplacian∆k

F related with adiabatic limits. For anyλ, let rk(λ) be given as

rk(λ) = − lim sup
h→0

lnNk
h (λ)/ lnh.
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Otherwise speaking,rk(λ) equals the least bound of allr such thatNk
h (λ) ≤

Ch−r, h → 0. If λ < λk
lim,0, we putrk(λ) = −∞.

One can easily state the following properties ofrk(λ):

1. 0 ≤ rk(λ) ≤ q for anyλ ≥ λk
lim,0;

2. rk(λ) is not decreasing inλ;
3. rk(λ) = q if λ > λk

F ,0.
4. if the foliationF is amenable, then:

rk(λ) = q, λ > λk
F ,0, rk(λ) = −∞, λ ≤ λk

F ,0.

5. rk(λ) = 0 iff the interval [0, λ] lies in the discrete spectrum of the
operator∆k

F in L2(M, ΛkT ∗M) (the property(T ) case; see Remark 10).

We might expect that some invariants of the functionrk(λ) introduced above
nearλ = 0 are independent of the choice of metric onM (otherwise speak-
ing, are coarse invariants), and, moreover, are topological or homotopic
invariants of foliated manifolds.
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