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1 Introduction

A differential operator A on a compact foliated manifold (M,F) is called tangentially elliptic, if
A can be restricted to the leaves of the foliation with the restrictions, being elliptic operators on
the leaves. The study of tangentially elliptic operators was initiated by A.Connes [3] in the context
of the noncommutative integration theory and developed extensively up to now (see, for instance,
[16, 4, 5] and references there).

In this paper we are, mainly, interested in the spectral theory of tangentially elliptic operators
in the global representation, which deals with spectral properties of tangentially elliptic operators
considered as differential operators on the ambient foliated manifold M and studies relations of
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various spectral characteristics of such operators with their leafwise counterparts and with geometric
and dynamic invariants of the foliation F .

One of well-known problems of such kind, originated in the spectral theory of differential op-
erators with almost-periodic and random coefficients, is a spectrum coincidence problem, which
asks for relationships between the global spectrum and the leafwise spectrum of tangentially elliptic
operators. A slightly more general problem is the problem on tangentiality of operators f(A) for for-
mally self-adjoint tangentially elliptic operator A, that is, the problem about relations between the
operator f(A) and the corresponding leafwise operators f(AL). Spectral problems for tangentially
elliptic operators in the global representation also arise in a study of the smooth leafwise cohomology
H∗(M,F).

One of the main results of this paper is a construction of classes Ψ̃m,l(M,F) of pseudodifferen-
tial operators on the compact foliated manifold (M,F), having different orders in tangential and
transversal directions, and of the corresponding scale of anisotropic Sobolev spaces Hs,k(M,F), and
development of a pseudodifferential functional calculus for tangentially elliptic operators in the global
representation. Namely, we give a construction of operators f(A) for a tangentially elliptic operator
A, study continuity of the operators f(A) in the spaces Hs,k(M,F) and provide a description of
these operators as pseudodifferential operators of classes Ψ̃m,l(M,F).

We consider other properties of operators f(A): C∗-algebraic functional calculus, relationships
with the corresponding leafwise operators f(AL), global continuity and measurability of their leafwise
kernels. We also obtain a result on the spectrum coincidence problem for amenable foliations and
state existence and some simple properties of the spectrum distribution function for any tangentially
elliptic operator.

Note that some results of this work are extensions of results obtained earlier (see, for instance,
[17, 5, 8, 1, 12] and references there). For example, our methods don’t use the finite propagation
speed arguments and, therefore, can be applied to a tangentially elliptic operator of an arbitrary
order.

The results and technique developed here have been used by the author in a study of the following
problems, which can be viewed as a type I spectrum regularization of a (type II) leafwise spectrum
problem for tangentially elliptic operators.

Let A be a self-adjoint tangentially elliptic operator of order m with the positive tangential
principal symbol. Consider a self-adjoint elliptic differential operator Ah of order m, depending on
h > 0, of the form

Ah = A + hmB,

where B is an elliptic operator of order m with the positive principal symbol. Then the operator
Ah is a semibounded from below operator in L2(M), having the discrete spectrum. The problem
in question is to derive the asymptotical formula for the eigenvalue distribution function Nh(λ) of
Ah when h tends to 0, or, more generally, to study the asymptotical behaviour of tr f(Ah) for any
function f ∈ S(R). Such an asymptotic formula for Nh(λ) was obtained in [14].

It is clear that the spectrum of the operator A in the global representation is a limit of the spectra
of operators Ah, when h tends to zero, therefore, the investigation of these problems necessarily
involves some results, concerning to the spectral theory of tangentially elliptic operators in the
global representation.

Now we say some words about the organization of this paper. Section 2 contains necessary
facts, concerning pseudodifferential operators on foliated manifolds. In particular, we introduce
the classes of pseudodifferential operators and the scale of anisotropic Sobolev spaces mentioned
above. Section 3 is devoted to the pseudodifferential functional calculus for tangentially elliptic
operators. Section 4 contains various results, concerning to relations of operators f(A) with their
leafwise analogues and global behaviour of tangential kernels of these operators. In Subsection 4.1,
we describe an approach to the functional calculus for tangentially elliptic operator, based on the
theory of C∗-algebras. In Subsection 4.2, using C∗-algebraic calculus, we obtain some results on
the spectrum coincidence problem. In Subsection 4.3, we discuss the problem of tangentiality of
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operators f(A). Subsection 4.4 contains results on mesurability and continuity of tangential kernels
of the operators f(A), and, finally, Subsection 4.5 is devoted to the existence and some properties
of the spectrum distribution function of tangentially elliptic operators.

2 Pseudodifferential calculus on foliated manifolds

2.1 Preliminaries

Here we collect together necessary facts and notations, concerning operators on foliated manifolds.
This is based on the presentations in [3, 4, 16].

In the sequel, (M,F) is a (connected) compact foliated manifold, n = dim M , p = dimF . We
denote by G the holonomy groupoid of the foliation F and will assume that G is Hausdorff. As
usual, we use notation s : G → M and r : G → M for the source and range mappings respectively,
Gx = {γ ∈ G : r(γ) = x}.

We fix a Riemannian metric g on M with the corresponding distance function ρ and the volume
form dx. Let νx be a fixed smooth density on Gx for any x ∈ M , which is the Riemannian volume
of the leafwise Riemannian metric induced by g.

Let I be the open interval (−1, 1), p2 : In → Iq the projection onto the second factor in the
product In = Ip × Iq.

A foliation chart for F is a coordinate chart φ : U → In with U ⊂ M open such that the level
sets p(y) = (p2 ◦φ)−1(y), y ∈ Iq, are the connected components of the restrictions of the leaves of F
to U .

A covering of M by foliation charts {(Uj , φj)} is said to be good if the covering is locally finite
and any non-empty intersection of coordinates patches is a contractible space.

A foliation chart φ : U → In is regular if φ has an extension φ̃ : Ũ → (−1 − ε, 1 + ε)n, ε > 0,
where U ⊂ Ũ , φ̃|U = φ, and the level sets p̃(y) are connected subsets of leaves of F . Without loss of
generality, we will only consider regular foliation charts φ : U → In such that the r0-neighborhood
of U is contained in a foliation coordinate patch Ũ with some (fixed) r0 > 0.

A cover {Uj} of M has a Lebesque number c1 > 0 if, for any set X ⊂ M of diameter less than
c1, there is j, for which X ⊂ Uj .

We say that a covering {(Uj , φj} of M by foliated charts is c1-regular if the covering is good,
each chart φj is regular, and there is a Lebesque number c1 > 0 for this covering.

Usually we will denote the local coordinates in Rn = Rp × Rq by (x, y), x ∈ Rp, y ∈ Rq, and the
dual coordinates by (ξ, η), ξ ∈ Rp, η ∈ Rq. We will also write multi-indices α = (α1, α2, . . . , αn) as
α = (α′, α′′), where α′ = (α1, α2, . . . , αp), α′′ = (αp+1, . . . , αn).

A differential operator A acting on C∞(M) is called a tangential operator, if, in any foliation
chart, it takes the form

A =
∑

|α|≤m

aα(x, y)Dα
x .

Given a tangential differential operator A, define the tangential (complete) symbol of A by

σ(x, y, ξ) =
∑

|α|≤m

aα(x, y)ξα.

where aα ∈ C∞(In), and define the tangential principal symbol of A by

σm(x, y, ξ) =
∑

|α|=m

aα(x, y)ξα.

If σm is invertible for ξ 6= 0, then A is said to be tangentially elliptic.
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Recall the definition of classes Ψm(F) of tangential pseudodifferential operators (cf. for details,
[3, 16]). An element A ∈ Ψm(F) is determined by its restrictions to the leaves of F . For each leaf L,
the restriction of P on L is a pseudodifferential operator PL on L of order m with the distributional
kernel supported in the δ-neighborhood of the diagonal ∆L ⊂ L× L for some δ > 0 independent of
L. Moreover, the restrictions of P to foliated coordinate patches are given by the formula

Pu(x, y) = (2π)−p

∫
ei(x−x1)ξp(x, y, ξ)u(x1, y) dx1 dξ,

where u ∈ C∞c (In), x ∈ Ip, y ∈ Iq, and the tangential symbol p is given by a smooth family of
leafwise symbols {p(x, y, ξ) ∈ Sm(Ip × Rp) : y ∈ Iq}.

We will write Ψm(F , δ) for the set of all operators A ∈ Ψm(F) with fixed δ.

2.2 Classes of pseudodifferential operators

In this section, we construct classes Ψ̃m,k(M,F), which contain both usual pseudodifferential oper-
ators from Hormander’s classes Ψm(M) and tangential pseudodifferential operators and are closed
under the composition of operators. Due to these properties, they are convenient for investigation of
the action of tangential pseudodifferential operators in the Sobolev spaces on the ambient manifold
M . Classes Ψm,k(M,F , δ), which we introduce now, provide a description of kernels of operators
from Ψ̃m,k(M,F) near the diagonal in M ×M . A global description of the kernels is given in terms
of an action of operators in the corresponding Sobolev spaces scale, therefore, we, at first, introduce
this scale and then complete the construction of classes Ψ̃m,k(M,F) (see the next Subsection).

We say that a function a ∈ C∞(In × Rn) belongs to the class Sm,k(In × Rn,Rp), if, for any
multiindices α and β, there exists a constant Cα,β > 0 such that

|∂α
(ξ,η)∂

β
(x,y)a(x, y, ξ, η)| ≤ Cα,β(1 + |ξ|+ |η|)m−|α′′|(1 + |ξ|)k−|α′|, (x, y) ∈ In, (ξ, η) ∈ Rn.

The class Ψm,k(M,F , δ), δ < r0, consists of operators A, acting in C∞(M), such that:

a) its distributional kernel KA(x, y) vanishes outside of the δ-neighborhood of the diagonal in
M ×M ;

b) in any regular foliation chart, A is given by a symbol a ∈ Sm,k(In × Rn,Rp) via the usual
formula

Au(x, y) = (2π)−n

∫
ei((x−x1)ξ+(y−y1)η)a(x, y, ξ, η)u(x1, y1) dx1 dy1 dξ dη,

where u ∈ C∞c (In), x ∈ Ip, y ∈ Iq.

It is clear that Ψm(F , δ) is contained in Ψ0,m(M,F , δ). The classes Sm,k(In × Rn,Rp) can be
obtained as particular cases of Hormander’s classes S(m, g) [9] (cf. also [10]), if we take

m(x, y, ξ, η) = (1 + |ξ|2 + |η|2)s/2(1 + |ξ|2)k/2,

g(x,y,ξ,η)(x1, y1, ξ1, η1) = |x1|2 + |y1|2 + (1 + |ξ|2)−1|ξ1|2 + (1 + |ξ|2 + |η|2)−1|η1|2,
therefore, their basic properties, concerning symbolic calculus and L2-estimates, can be easily derived
from results of [9, 10]. In particular, we have the following assertions:

Proposition 2.1. If A ∈ Ψm1,k1(M,F , δ1) and B ∈ Ψm2,k2(M,F , δ2)(δ1+δ2 < r0), then C = AB ∈
Ψm1+m2,k1+k2(M,F , δ1 + δ2). Moreover, if a ∈ Sm1,k1(In × Rn,Rp) and b ∈ Sm2,k2(In × Rn,Rp)
are the complete symbols of the operators A and B in a foliated chart, then the complete symbol c
of the composition C = AB belongs to Sm1+m2,k1+k2(In × Rn,Rp), and, for any natural N ,

c(x, y.ξ, η)−
∑

|α|<N

1
α!

∂α
(ξ,η)a(x, y, ξ, η)Dα

(x,y)b(x, y, ξ, η) ∈ Sm1+m2,k1+k2−N (In × Rn,Rp).
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Proposition 2.2. An operator P ∈ Ψm,k(M,F , δ), m ≤ 0, k ≤ 0, defines a bounded operator from
L2(M) to L2(M).

For any operator P ∈ Ψm,k(M,F , δ), given by the complete symbol p ∈ Sm,k(In × Rn,Rp) in
some foliation chart, its principal symbol is the class in the quotient

Sm,k(In × Rn,Rp)/Sm,k−1(In × Rn,Rp)

defined by p. It can be easily seen that the principal symbol is invariant under foliated coordinate
changes, and the principal symbol of the composition of operators A and B is equal to the product of
the principal symbols of the operators A and B. Taking this into account, we will give the definition
of ellipticity as follows.

A symbol a ∈ Sm,k(In × Rn,Rp) is said to be elliptic if there exists r ∈ Sm,k−1(In × Rn,Rp)
such that a symbol b = a + r satisfies the estimate

|b(x, y, ξ, η)| ≥ C(1 + |ξ|+ |η|)m(1 + |ξ|)k, (2.1)

for any (x, y) ∈ In, (ξ, η) ∈ Rn\{0} with some constants C > 0, R > 0.
An operator A ∈ Ψm,k(M,F , δ) is said to be elliptic, if, in any foliation chart, its complete

symbol is elliptic. It is easy to see that any tangentially elliptic differential operator of order k is an
elliptic operator of class Ψ0,k(M,F , δ) for any δ > 0.

Proposition 2.3. For any elliptic operator A ∈ Ψm,k(M,F , δ), there exists a parametrix, that is,
an operator P ∈ Ψ−m,−k(M,F , δ) such that

AP = I −R1, PA = I −R2, R1, R2 ∈ Ψ0,−∞(M,F , 2δ).

2.3 Sobolev spaces and self-adjointness

Using the classes Ψm,k(M,F , δ), we can introduce the corresponding scale of Sobolev type spaces
Hs,k(M,F), s ∈ R, k ∈ R, and state their basic properties in the usual manner (cf., for instance,
[20]).

For any s ∈ R, k ∈ R, fix an elliptic operator Λs,k ∈ Ψs,k(M,F , δ). Without loss of generality,
we may assume that the operator Λs,k is formally self-adjoint and Λ−s,−k is a parametrix for Λs,k.
The space Hs,−∞(M,F), s ∈ R, consists of all u ∈ D′(M), which can be represented in the form
u =

∑
α Aαφα with some Aα ∈ Ψ0,+∞(M,F , δ), φα ∈ Hs(M). Finally, the space Hs,k(M,F)

consists of all u ∈ Hs,−∞(M,F) such that Λs,ku ∈ L2(M). The spaces Hs,k(M,F) can be easily
turned into Hilbert spaces. For instance, if s ≥ 0, k ≥ 0, an inner product in Hs,k(M,F) can be
defined by the formula

(u, v)s,k = (Λs,ku, Λs,ku) + (u, v), u, v ∈ Hs,k(M,F).

Now we will give an equivalent definition of the spaces Hs,k(M,F) in terms of local coordinates.
The space Hs,k(Rn,Rp) consists of all u ∈ S′(Rn) such that ũ ∈ L2

loc(Rn) (ũ the Fourier transform)
and

‖u‖2s,k =
∫∫

|ũ(ξ, η)|2(1 + |ξ|2 + |η|2)s(1 + |ξ|2)kdξdη < ∞.

The last identity may serve as a definition of a Hilbert norm ‖u‖s,k in the space Hs,k(Rn,Rp).
Now the space Hs,k(M,F) can be defined as the set of all u ∈ D′(M) such that, for any foliated

coordinate chart κ : Ip × Iq → U = κ(Ip × Iq) ⊂ M and for any φ ∈ C∞c (U), the function κ∗(φu)
belongs to the space Hs,k(Rn,Rp). Fix some regular covering {Ui : i = 1, . . . , d} of M by foliated
coordinate patches with the foliated coordinate charts κi : Ip × Iq → Ui = κi(Ip × Iq), and a
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partition of unity {φi ∈ C∞(M) : i = 1, ..., d} subordinate to this covering. An inner product in
Hs,k(M,F) is defined by the formula

(u, v)s,k =
d∑

i=1

(κ∗(φiu), κ∗(φiv))s,k, u, v ∈ Hs,k(M,F).

Proofs of the following two Propositions can easily be given by a slight modification of proofs of
the corresponding facts from the standard theory of pseudodifferential operators (cf., for instance,
[20]).

Proposition 2.4. (1)(continuity in Sobolev spaces) An operator P ∈ Ψm,l(M,F) defines a linear
bounded operator from Hs,k(M,F) to Hs−m,k−l(M,F) for any s ∈ R, k ∈ R.

(2)(elliptic regularity) If P ∈ Ψm,l(M,F) is elliptic and u ∈ Hs,−∞(M,F), Pu ∈ Hs−m,k(M,F),
then u ∈ Hs,k+l(M,F) and

‖u‖s,k+l ≤ C(‖Pu‖s−m,k + ‖u‖s,−∞)

with the constant C > 0, not depending on u.

Proposition 2.5. A formally self-adjoint elliptic operator P ∈ Ψ̃0,k(M,F), k > 0, defines a self-
adjoint operator in L2(M) with a domain H0,k(M,F).

Now we complete classes Ψm,k(M,F , δ) so that we obtain algebras of pseudodifferential operators.
The class Ψ̃m,−∞(M,F) consists of all operators K : D′(M) → D′(M), which define a continuous

map
K : Hs,k(M,F) → Hs−m,+∞(M,F)

for any s and k.
It is easy to check the following property (pseudolocality):

if the distributional kernel of an operator A ∈ Ψm,k(M,F , δ) vanishes in some neighborhood of
the diagonal in M ×M , then A belongs to Ψ̃m,−∞(M,F).

Finally, the class Ψ̃m,k(M,F) consists of all operators A : D′(M) → D′(M), which can be
represented as

A = A1 + K, (2.2)

where A1 ∈ Ψm,k(M,F , δ) and K ∈ Ψ̃m,−∞(M,F).
The pseudolocality property mentioned above implies that, if A ∈ Ψ̃m,k(M,F), then, for any

δ > 0, there exists a representation of the form (2.2) with A1 ∈ Ψm,k(M,F , δ). We also denote by
Ψ̃k(F) the set of all operators A ∈ Ψ̃0,k(M,F), which can be represented in the form (2.2) with
A1 ∈ Ψk(F).

Throughout in this paper, we will consider only classical pseudodifferential operators, which can
be defined as follows.

Let m ∈ C. Recall that a function a ∈ SRe m(In ×Rn) is called a classical (or polyhomogeneous)
symbol, if a can be represented as an asymptotic sum a ∼ ∑∞

j=0 aj , where aj ∈ C∞(In × Rn) is a
homogeneous function of degree m− j in ξ for |ξ| > 1. An operator A ∈ Ψm(M) is called a classical
operator, if, in any coordinate system, it is given by a classical symbol modulo smoothing operators.

Let m ∈ C, k ∈ C. A function a ∈ SRe m,Re k(In × Rn,Rp) is called a classical (or polyhomoge-
neous) symbol, if a can be represented as an asymptotic sum (in the scale SRe m,s(In×Rn,Rp), s ∈ R)

a ∼
∞∑

j=0

aj , (2.3)
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where aj is of the form
aj = bjcj , (2.4)

bj is a classical symbol from SRe m(In × Rn) and cj = cj(x, y, ξ) ∈ C∞(In × Rp) is a homogeneous
function of degree k − j in ξ for |ξ| > 1.

An operator A ∈ Ψ̃m,k(M) is called a classical operator, if, in any foliation chart, it is given by
a classical symbol modulo smoothing operators.

3 Pseudodifferential functional calculus

Let D be a formally self-adjoint tangentially elliptic operator of order m > 0 on a closed foliated
manifold (M,F). By Proposition 2.5, D is essentially self-adjoint, and we have via the spectral
theorem a bounded linear operator f(D) in the Hilbert space L2(M) for any bounded Borel function
f on R.

When D is not self-adjoint, we can try to define operators f(D) as a bounded linear operator
in some Hilbert space (like as L2(M) or Sobolev spaces) for functions, holomorphic in some neigh-
borhood of the spectrum of D, using the holomorphic functional calculus via the Cauchy integral
formula

f(D) =
i

2π

∫

Γ

f(λ)(D − λ)−1 dλ, (3.1)

where Γ is a contour in the complex plane, containing the spectrum of D. Well-known examples of
such functional calculus can be found, for instance, in [19, 7], where the constructions of the complex
powers and of the heat semigroup for elliptic operators with the positive principal symbol are given.

Finally, it is possible to give a description of the operator f(D) as a pseudodifferential operator
on M for functions f from symbol classes. There are many approaches to the pseudodifferential
functional calculus (see, for instance, [19, 18, 22] and the bibliography there).

In this Section, we construct functions f(A) of tangentially elliptic operator A with the pos-
itive tangential principal symbol, study the continuity of operators f(A) in the Sobolev spaces
Hm,k(M,F) and give a description of these operators in terms of the classes Ψ̃m,k(M,F).

We will use an approach to the functional calculus due to M. Taylor (cf., for instance, [22]),
based on the Fourier inversion formula. The construction of the operators f(A) consists of several
steps. At first, we develop the machinery of complex powers by the standard scheme of Seeley (cf.
[19, 20]) and reduce our considerations to functions of the first order operator P = A1/m. Then we
prove existence of the wave semigroup eitP and study its properties, using energy estimates for t
large and geometric optics constructions for all t around zero. Finally, for a general function f , we
use the following formula

f(P ) =
1
2π

∫ +∞

−∞
f̃(t)eitP dt. (3.2)

Remark that all our considerations, except for geometrical optics constructions, are valid under
more general assumptions than mentioned above. Namely, at the beginning of this Section, we
assume that A is an elliptic classical pseudodifferential operator of class Ψ̃0,m(M,F) with the positive
principal symbol.

3.1 Complex powers

Throughout in this Subsection, we assume that A is an elliptic classical pseudodifferential operator
of class Ψ̃0,m(M,F) with the positive principal symbol. We start a construction of complex powers
Az with construction of a parametrix P (λ) for the operator A− λ as an operator with a parameter,
that is, of a parametrix, which has a right behaviour when λ tends to infinity.
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Denote by Λε the angle in the complex plane:

Λε = {λ ∈ C : | arg λ| > ε}.

Let a ∼ ∑∞
j=0 aj be an asymptotic expansion of the complete symbol of the operator A in some

foliation chart (as in (2.3)). For any ε > 0, define the functions p−m−l(λ), λ ∈ Λε, l = 0, 1, . . . , by
the following system

(am − λ)p−m = 1, (3.3)

(am − λ)p−m−l +
1
α!

∑

j<l,j+k+|α|=l

∂α
ξ b−m−jD

α
x am−k = 0, l > 0. (3.4)

The functions p−m−l(λ) are not of the form (2.4), but it can be easily checked that they satisfy
the following estimate

|Dβ
(x,y)D

α
(ξ,η)p−m−l(x, y, ξ, η, λ)| ≤ Cαβ(1 + |ξ|+ |λ|1/m)−m(1 + |ξ|)−l−|α′|(1 + |ξ|+ |η|)−|α′′|,

(x, y) ∈ In, (ξ, η) ∈ Rn, λ ∈ Λε,

where α and β are any multi-indices. For any natural N , put p(N) = p−m +p−m−1 + . . .+p−m−N+1.
Then p(N) satisfies the estimates

|Dβ
(x,y)D

α
(ξ,η)p(N)(x, y, ξ, η, λ)| ≤ Cαβ(1 + |ξ|+ |λ|1/m)−m(1 + |ξ|)−|α′|(1 + |ξ|+ |η|)−|α′′|,

(x, y) ∈ In, (ξ, η) ∈ Rn, λ ∈ Λε. (3.5)

Now we take a covering of M by foliation charts, construct an operator with the complete symbol
p(N)(λ) in any foliation patch of this covering, and glue these local operators together in the global
operator P(N)(λ) ∈ Ψ0,−m(M,F , δ), λ ∈ Λε, with some δ < r0. Decompose the operator A in the
sum A = A1 + K, where A1 ∈ Ψ0,m(M,F , δ) and K ∈ Ψ̃0,−∞(M,F) (see (2.2)). By (3.3), it can be
easily seen that

P(N)(λ)(A1 − λ) = I −R(N)(λ), λ ∈ Λε,

where R(N)(λ) ∈ Ψ0,−N (M,F , 2δ) has the complete symbol r(N)(λ), satisfying the following esti-
mates:

|Dβ
(x,y)D

α
(ξ,η)r(N)(x, y, ξ, η, λ)| ≤ Cαβ(1 + |ξ|+ |λ|1/m)−m(1 + |ξ|)m−N−|α′|(1 + |ξ|+ |η|)−|α′′|,

(x, y) ∈ In, (ξ, η) ∈ Rn, λ ∈ Λε. (3.6)

From (3.5) and (3.6), we can easily obtain the norm estimates:

‖P(N)(λ) : Hs,k(M,F) → Hs,k+q(M,F)‖ ≤ Cs,k(1 + |λ|1/m)q−m, λ ∈ Λε, (3.7)

‖R(N)(λ) : Hs,k(M,F) → Hs,k+q+N−m(M,F)‖ ≤ Cs,k,N (1 + |λ|1/m)q−m, λ ∈ Λε, (3.8)

for any real s and k and for any q, 0 ≤ q ≤ m.
Is it clear that

P(N)(λ)(A− λ) = I −R′(N)(λ), λ ∈ Λε,

where R′(N)(λ) ∈ Ψ̃0,−N (M,F) is given by the formula R′(N)(λ) = R(N)(λ) − P(N)(λ)K. By (3.7)
and (3.8), the operator R′(N)(λ) satisfies the estimate

‖R′(N)(λ) : Hs,k(M,F) → Hs,k+q+N−m(M,F)‖ ≤ Cs,k,N (1 + |λ|1/m)q−m, λ ∈ Λε,
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for any real s and k and for any q, 0 ≤ q ≤ m. Therefore, for all λ ∈ Λε large enough, the operator
A−λ is invertible as an unbounded operator in Hs,k(M) and the inverse operator can be represented
as

(A− λ)−1 = P(N)(λ) + R′(N)(λ)(A− λ)−1.

From this, we immediately obtain the following proposition:

Proposition 3.1. Let A ∈ Ψ̃0,m(M,F) be as above. Then, for any ε > 0, there exists a constant
R > 0 such that, for any λ ∈ Λε, |λ| > R, the operator A− λ is invertible as an unbounded operator
in L2(M), the inverse operator (A − λ)−1 belongs to Ψ̃0,−m(M,F), and for any s ∈ R and k ∈ R,
satisfies the following norm estimates:

‖(A− λ)−1 : Hs,k(M,F) → Hs,k(M,F)‖ ≤ Cs,k(1 + |λ|)−1, λ ∈ Λε, |λ| > R,

‖(A− λ)−1 : Hs,k(M,F) → Hs,k+m(M,F)‖ ≤ Cs,k, λ ∈ Λε, |λ| > R.

When A is a tangentially elliptic differential operator of order m with the positive principal
symbol, then, using a leafwise parametrix for A − λ as an operator with parameter (see also Sub-
section 4.1), we can prove that (A− λ)−1 ∈ Ψ̃−m(F). Since we can only state Hs-estimates for the
operator (A− λ)−1R′(λ), the operator (A−λ)−1 is not, in general, a tangential operator, that is, it
is not given by a family of leafwise operators (see Subsection 4.3 for a detailed discussion).

Let us note the following corollary of Proposition 3.1, which is used in [14] and is an immediate
consequence of the previous results and semigroup theory (see, for instance, [7]).

Proposition 3.2. Let A ∈ Ψ̃0,m(M,F) be an elliptic operator with the positive principal symbol.
(1)(G̊arding inequality) For any s ∈ R, k ∈ R, there exist constants C1 > 0 and C2 such that

Re (Au, u)s,k ≥ C1‖u‖2s,k+m/2 − C2‖u‖2s,−∞, u ∈ C∞(M).

(2)(Heat semigroup) The operator A generates a strongly continuous semigroup e−tA of bounded
linear operators in Hs,k(M,F), satisfying the estimate

‖e−tA‖s,k ≤ Ct−(k−l)/m‖u‖s,l, u ∈ C∞(M), 0 < t < T,

for any s ∈ R, k > l, T > 0, with the constant C > 0, not depending on t.

Now we turn to the construction of the complex powers Az for an elliptic operator A ∈ Ψ̃0,m(M,F),
satisfying the above conditions. First of all, replacing A by A + cI, we may assume that the spec-
trum σ(A) of the operator A does not contain the semi-axis (−∞, 0]. This implies the existence of
a constant ρ > 0 such that the disk of the radius ρ, centered at the origin, is not contained in σ(A).

Let Γ be a contour in the complex plane of the form Γ = Γ1

⋃
Γ2

⋃
Γ3, where λ = reiα,+∞ >

r > ρ, on Γ1, λ = ρeiφ, α > φ > −α, on Γ2, λ = re−iα, ρ < r < +∞, on Γ3, (α ∈ (0, π) is arbitrary).
The bounded operator Az, Re z < 0, in L2(M) is defined by the formula

Az =
i

2π

∫

Γ

λz(A− λ)−1dλ,

where a branch of the analytic function λz is chosen so that λz = ez ln λ for λ > 0.
This definition is extended to all z, putting Az = Az−kAk for any z, Re z < k, where k is natural

and Ak is the usual power of the operator A. Proposition 3.1 implies that the operator Az is an
operator of class Ψ0,m Re z(M,F) with the principal symbol, being equal to az.
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3.2 Action in Sobolev spaces

Now we prove existence of the wave group eitP generated by an elliptic operator P ∈ Ψ̃0,1(M,F)
with the real principal symbol and state norm estimates for the operators of this group.

Lemma 3.3. Let P ∈ Ψ̃0,1(M,F) be an elliptic operator with the real principal symbol. Then, for
any s ∈ R and k ∈ R, there exist constants α and C > 0 such that

‖eitP : Hs,k(M) → Hs,k(M)‖ ≤ C eα|t|, t ∈ R,

Proof. Proposition 3.2 implies existence of a holomorphic semigroup e−zP , Re z > 0, of linear
bounded operators in L2(M), generated by the operator P , and boundedness of the operators of
this semigroup in Hs,k(M,F) for all s and k. Denote by D a subspace of C∞(M), consisting of all
u ∈ C∞(M) of the form u = e−τP v with some v ∈ C∞(M) and τ > 0. It is clear that D is dense in
the space Hs(M) for any s ∈ R and eitA(D) ⊆ C∞(M) for any t ∈ R. In our further calculations,
we will assume that u ∈ D.

We have
d

dt
‖Λs,keitP ‖2 = −2Im(Λs,kPeitP u, Λs,keitP u)

≤ 2|([Λs,k, P ]eitP u, Λs,keitP u)|+ 2|Im(PΛs,keitP u, Λs,keitP u)| (3.9)

By Proposition 2.1, the operator [Λs,k, iP ] is an operator of class Ψs,k(M,F), that, by Proposi-
tion 2.4, implies the estimate

‖[Λs,k, iP ]eitP u‖ ≤ C‖eitP u‖s,k. (3.10)

The operator P has the real principal symbol, therefore, P − P ∗ ∈ Ψ̃0,0(M,F), and we obtain the
estimate

|Im(PΛs,keitP u,Λs,keitP u)| ≤ C‖Λs,keitP u‖2. (3.11)

So, from (3.9), (3.10) and (3.11), we obtain the estimate

d

dt
‖eitP u‖2s,k ≤ C‖eitP u‖2s,k.

The Gronwall lemma implies the estimate

‖eitP u‖s,k ≤ C eα|t|‖u‖s,k, t ∈ R, u ∈ D,

that immediately completes the proof.

Finally, we will obtain Hs,k-estimates for operators f(P ) under the current hypotheses on P . We
say that a function f ∈ S(R) belongs to the space S(R, α), if it extends to a holomorphic function
f(z), defined in the strip {z ∈ C : |Im z| < α}, such that, for any η ∈ R, |η| < α, the function
f(·+ iη) belongs to S(R) with the seminorms, uniformly bounded on η, |η| < β, for any β < α. We
put also

S(R,+∞) =
⋂

α≥0

S(R, α)

Proposition 3.4. Let P ∈ Ψ̃0,1(M,F) be an elliptic operator with the real principal symbol. Then,
for any s ∈ R, there exists a constant α > 0 such that, for any function f ∈ S(R, α), the operator
f(P ) defines a continuous mapping from Hs(M) to Hs,+∞(M,F) with the following estimate for
its norm

‖f(P ) : Hs(M) → Hs,k(M,F)‖ ≤ C

∫
|F ((1 + |λ|2)k/2f)(t)|eα|t|dt

Proof. Proposition 3.4 is an immediate consequence of the formula (3.2), Lemma 3.3 and the Paley-
Wiener theorem.
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3.3 f(A) as pseudodifferential operators

Here we consider the case when A is a tangentially elliptic operator of order m with the positive
tangential principal symbol. Following the lines of [22] (see also [14]) and using the norm estimates
obtained above and geometrical optics construction, we will give a description of the operators f(A)
as pseudodifferential operators on M and, as a corollary, results on continuity of these operators in
the Sobolev spaces Hs,k(M,F) for functions f from symbol classes.

As mentioned in Subsection 3.1, under the current hypotheses on A, the operator Az belongs
to the class Ψ̃m Re z(F) and, therefore, we can only consider the case of operators f(P ), where
P = A1/m is an elliptic operator of class Ψ̃1(F) with the positive principal symbol.

We recall that a function f on R belongs to the class Sq(R), q ∈ R, if, for any natural j, there
exists a constant Cj > 0 such that

|f (j)(t)| ≤ Cj(1 + |t|)q−j , t ∈ R.

Further, we say that a function f on R belongs to the class Sq(R,W ), q ∈ R, W > 0, if f extends
to a holomorphic function in the strip {z ∈ C : |Im z| < W} such that, for any η ∈ R with |η| < W ,
the function f(·+ iη) belongs to Sq(R) with all the seminorms, bounded on compacts in the interval
|η| < W .

Proposition 3.5. Let P be an elliptic operator of class Ψ̃1(F) with the real principal symbol. If
f ∈ Sq(R,∞), then f(P ) ∈ Ψ̃q(F).

Proof. Using a partition of unity, we decompose the function f into a sum f = f1 + f2, where f̃1 is
supported in an appropriate neighborhood of zero, and f̃2 vanishes in some neighborhood of zero.

The desired assertion for the function f2 follows from the following lemma.

Lemma 3.6. Let P be an elliptic operator of class Ψ̃1(F) with positive principal symbol. If f ∈
Sq(R,∞), and f̃ vanishes in some neighborhood of zero, then f(P ) ∈ Ψ̃0,−∞(F).

Proof. The lemma is a simple sequence of Lemma 3.3 and the fact that, for any function f ∈ Sq(R),
the function f̃(t) and all its derivatives are rapidly decreasing on R\(−ε, ε) for any ε > 0 (see
[22]).

To prove Proposition for the function f1, we replace the operator eitP for small t by its leafwise
geometrical optics approximation W (t).

At first, decompose P into a sum P = P1 + P2, where P1 ∈ BΨ1(F , δ) with δ small enough,
P2 ∈ BΨ̃

−∞
(F). Let p(x, y, ξ) be the complete symbol of P1 in some fixed foliation chart. Then we

can assume the parametrix W (t) for eitP1 is of the following form

(W (t)u)(x, y) =
∫∫

a(t, x, y, ξ)ei(φ(t,x,y,ξ)−x1ξ)u(x1, y) dx1 dξ.

Here φ is the solution of the Cauchy problem of the eikonal equation

∂φ

∂t
= p(x, y,∇xφ), φ(0, x, y, ξ) = xξ

for |t| ≤ r, x ∈ B; a(t, x, y, ξ) is determined by the usual transport equations of geometrical optics
(see, for instance, [22, Chapter VIII]) with a(0, x, ξ) = 1.

Further, using a regular covering of M by foliated coordinate patches and a partition of unity
subordinate to this covering, we can glue these local parametrices together into a global one and
obtain a Fourier integral operator W (t) : C∞(M) → C∞(M) such that

(Dt − P1)W (t) = K(t), |t| < T, W (0) = I + K0,
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where K0 ∈ BΨ−∞(F , δ), {K(t), |t| < T} is a smooth family of operators from BΨ−∞(F , δ) (δ < r0,
T depends on δ). To estimate the difference between the operator eitP and its geometrical optics
approximation, we make use of the following well-known formula

W (t)− eitP = eitP K0 + i

∫ t

0

ei(t−τ)P (K(τ)− P2W (τ))dτ.

This formula and Lemma 3.3 immediately imply that W (t)− eitP belongs to Ψ̃0,−∞(M,F) with the
following estimate for its norm

‖W (t)− eitP : Hs(M) → Hs,k(M,F)‖ ≤ Cs,keα|t|, |t| < r,

for any real s and k with the constant Cs,k > 0, not depending on t. After that, repeating word
by word the arguments of [22], we can prove existence of a constant r > 0 such that, for any
function f ∈ Sq(R) with the Fourier transform supported in the interval (−r, r), the operator f(P )
is an operator of class Ψ̃q(F) with the principal symbol, being equal to f(p), that completes the
proof.

Now, combining the results, obtained in this Section, we can formulate the final result on the
pseudodifferential functional calculus.

Theorem 3.7. Let A be a tangentially elliptic differential operator on M of order m with the positive
tangential principal symbol. Then, for any s ∈ R, there exist constants W > 0 and c > 0 such that,
for any function f on the real line such that the function g(t) = f(tm − c), t ∈ R, belongs to the
space Sq(R,W ), the operator f(A) defines a continuous mapping

f(A) : Hs,k(M,F) → Hs,k−q(M,F)

for any k ∈ R.
In particular, there exists a constant c > 0 such that, for any function f on the real line such

that the function g(t) = f(tm− c), t ∈ R, belongs to the space Sq(R, +∞), the operator f(A) belongs
to the class Ψ̃q(F).

3.4 The case of Finsler foliations

All the facts on functional calculus for tangentially elliptic operators stated above can be essentially
improved in the case of Riemannian foliations or in a slightly more general case of Finsler foliations.

Recall that the transversal principal symbol σP of an operator P ∈ Ψm(M) is the restriction
of the principal symbol of P to N∗F\0, where N∗F denotes the conormal bundle to F . For any
smooth leafwise path γ from x ∈ M to y ∈ M , it is defined the map (dhγ)∗ : N∗

yF → N∗
xF , being

the codifferential of the holonomy map, corresponding to γ (cf., for instance, [16]). We say that the
transversal principal symbol of the operator P is holonomy invariant, if, for any smooth leafwise
path γ from x to y, the following equality holds:

σP ((dhγ)∗ξ) = σP (ξ), ξ ∈ N∗
yF .

If pm ∈ Sm(In×Rn) is the principal symbol of the operator P ∈ Ψm(M) in some foliated chart, then
its transversal principal symbol σP is given by the formula σp(x, y, η) = pm(x, y, 0, η), (x, y) ∈ In,
η ∈ Rn, and the holonomy invariance of σp means its independence of x.

We say that the foliation F is Finsler, if there exists a positive homogeneous (of degree 1)
holonomy invariant function on N∗F\0.

It is clear that this condition is equivalent to the existence of an operator Λ1 ∈ Ψ1(M) with the
positive holonomy invariant transversal principal symbol. Any Riemannian foliation is Finsler, since
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in this case an operator with the positive holonomy invariant transversal principal symbol is given
by the operator (I + ∆)1/2, where ∆ is the Laplacian of a bundle-like metric on M .

The main fact, concerning to pseudodifferential operators on Finsler foliations, is contained in
the following lemma.

Lemma 3.8. If the foliation F is Finsler, and P ∈ Ψ̃0,1(M,F) is a self-adjoint elliptic operator,
then, for any s ∈ R and k ∈ R, we have the estimate

‖eitP : Hs,k(M,F) → Hs,k(M,F)‖ ≤ Cs,k(1 + |t|)|s|, t ∈ R,

with the constant Cs,k > 0, not depending on t.

Proof. We make use of the following well-known identity

Λse
itP = eitP Λs +

∫ t

0

ei(t−τ)P [Λs, iP ]eiτP dτ. (3.12)

We may assume that the operator Λs ∈ Ψs(M), defining the Sobolev norm, has the positive holonomy
invariant transversal principal symbol. Then, using symbolic calculus, it can be easily checked (see
also [14]) that [Λs, P ] ∈ Ψs−1,1(M,F), that, by Proposition 2.4, implies the estimate

‖[Λs, P ]u‖0,k ≤ C‖u‖s−1,k+1, u ∈ C∞(M).

Since the norm in the space H0,k(M,F) can be equivalently defined by means of the operators P k,
and eitP is a unitary group of bounded operators in L2(M), the operators eitP are bounded in
H0,k(M,F) uniformly on t ∈ R . From (3.12), we obtain that

‖eitP u‖s,k ≤ ‖u‖s,k + C

∫ t

0

‖eiτP u‖s−1,k+1dτ, u ∈ C∞(M). (3.13)

The lemma can be immediately derived from (3.13) by induction arguments.

Now, repeating the arguments of previous Subsections, we obtain the following results on the
functional calculus for tangentially elliptic operators on Finsler foliations: the first one is an analogue
of Proposition 3.4 and the second one is an analogue of Proposition 3.7.

Proposition 3.9. Let the foliation F be Finsler and P ∈ Ψ̃0,1(M,F) a formally self-adjoint elliptic
operator. Then, for any s ∈ R and for any function f ∈ S(R), the operator f(P ) defines a continuous
mapping from Hs(M) to Hs,+∞(M,F) with the following estimate for its norm

‖f(P ) : Hs(M) → Hs,k(M,F)‖ ≤ C

∫
|F ((1 + |λ|2)k/2f)(t)|(1 + |t|)|s|dt

Theorem 3.10. Let the foliation F be Finsler and A a formally self-adjoint tangentially elliptic
differential operator on M of order m with the positive tangential principal symbol. Then, for any
s ∈ R, there exists a constant c > 0 such that, for any function f on the real line such that the
function g(t) = f(tm − c), t ∈ R, belongs to the space Sq(R), the operator f(A) belongs to the class
Ψ̃q(F) and, in particular, defines a continuous mapping

f(A) : Hs,k(M,F) → Hs,k−q(M,F)

for any s ∈ R and k ∈ R.
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4 Global aspects of the functional calculus

4.1 C∗-algebraic functional calculus

Here we review an approach to the global functional calculus for tangentially elliptic operators
from the point of the theory of C∗-algebras. Throughout in this Section, we will assume that the
measure dx is holonomy invariant. At first, recall the definitions of operator algebras, associated
with foliated manifolds (see, for instance, [16]). One defines a multiplication and an involution on
the space C∞c (G) by the formulas

(k1 ∗ k2)(γ) =
∫

k1(γ′)k2(γ′
−1

γ)dνx(γ′), γ ∈ G,

k∗(γ) = k(γ−1), γ ∈ G,

converting C∞c (G) into an associative algebra with involution. For any x ∈ M , there is a natural
homomorphism Rx of C∞c (G) in the algebra L(L2(Gx, νx)) of linear bounded operators in L2(Gx, νx),
defined by the formula

(Rx(k)u)(γ) =
∫

k(γ−1γ′)u(γ′)dνx(γ′), γ ∈ G.

The reduced C∗-algebra C∗r (G) of the groupoid G is the completion of C∞c (G) with respect to the
norm

‖k‖C∗r (G) = sup
x∈M

‖Rx(k)‖.

and the von Neumann algebra W ∗(M,F) of the foliation F can be defined as the closure of the
image of the representation R = {Rx;x ∈ M} of the algebra C∞c (G) on the measurable field of the
Hilbert spaces H = {L2(Gx, νx)} in the weak topology on L(H).

Define a norm on C∞c (G) by the formula

‖k‖1 = max
(

sup
x∈M

∫
|k(γ)|dνx(γ), sup

x∈M

∫
|k(γ−1)|dνx(γ)

)
.

Then C∞c (G) becomes a normed ∗-algebra. The Banach algebra L1(G) is the completion of C∞c (G)
with respect to the norm ‖k‖1.

The formula
RM (k)u(x) =

∫
k(γ)u(s(γ))dνx(γ)

defines a bounded representation of C∞c (G) in the space L2(M). One can define the C∗-algebra
C∗M (G) as the uniform closure of RM (C∞c (G)) in L(L2(M)). By Theorem 2.1 of [6], we have the
estimate

‖k‖C∗r (G) ≤ ‖RM (k)‖, k ∈ C∞c (G), (4.1)

therefore, the reduced C∗-algebra C∗r (G) is a quotient of C∗M (G), so we have the natural projection

π : C∗M (G) → C∗r (G).

Let A be a formally self-adjoint tangentially elliptic operator with the positive tangential principal
symbol. Denote by {Ax : x ∈ M} be the corresponding family of uniformly elliptic differential
operators along leaves. Then (cf., for instance, [3]), Ax is essentially self-adjoint in L2(Gx, νx), and,
for any bounded Borel function f on R, we have an essentially bounded, measurable, holonomy
invariant field {f(Ax) : x ∈ M} of bounded operators in H = {L2(Gx, νx)}. Denote by kf(A) ∈
D′(G) the distributional kernel of this field.
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Proposition 4.1. Let A be a formally self-adjoint tangentially elliptic differential operator with the
positive tangential principal symbol. For any function f ∈ S(R, +∞), the tangential kernel kf(A)

belongs to L1(G), and the operator f(A) has the form f(A) = RM (kf(A)). In particular, f(A)
belongs to the C∗-algebra C∗M (G).

Proof. For a proof, we make use of the leafwise construction parametrix with parameter. Namely,
in any foliation chart, the operator A is given by a family {Ay : y ∈ Iq} of elliptic operators on
Iq ⊂ Rq with the positive principal symbol, and we obtain a (local) leafwise parametrix P (λ) for
A− λ, gathering together usual parametrices with parameter for the operators Ay − λ.

So, for any ε > 0 and δ > 0, we can construct an operator P (λ) ∈ Ψ−m(F , δ), λ ∈ Λε, such that

(A− λ)P (λ) = I −R(λ), R(λ) ∈ Ψ−∞(F , 2δ).

Moreover, from standard estimates for parametrices with parameter ([19, 16, 20], see also Subsec-
tion 3.1), it can be easily seen that the tangential kernels p(λ) and r(λ) of the operators P (λ) and
R(λ) respectively belong to the space C∞c (G) with the following estimate for their L1-norms:

‖p(λ)‖1 ≤ C1(1 + |λ|1/m)−m, ‖r(λ)‖1 ≤ C2(1 + |λ|1/m)−m, λ ∈ Λε, (4.2)

with the constants C1 > 0 and C2 > 0, not depending on λ. By (4.2), there exists a constant
R > 0 such that 1−r(λ) is invertible as an element of the Banach algebra L1(G) for λ ∈ Λε, |λ| > R.
Therefore, for such a λ, the operator A−λ is invertible in the space L2(M), and the inverse operator
(A− λ)−1 is of the form (A− λ)−1 = RM (k(λ)), where k(λ) = p(λ) ∗ (1− r(λ))−1 is an element of
the algebra L1(G) with the following estimate for its norm:

‖k(λ)‖1 ≤ C(1 + |λ|)−1, λ ∈ Λε, |λ| > R, (4.3)

where C > 0 and R > 0 do not depend on λ .
Using the Cauchy integral formula (see (3.1)) and (4.3), we immediately complete the proof of

Proposition 4.1.

Since the space S(R, +∞) is dense in the space C(R) in the uniform norm, Proposition 4.1
immediately implies the following assertion.

Corollary 4.2. Let A be a formally self-adjoint tangentially elliptic operator of order m > 0 with
the positive tangential symbol. Then the operator f(A) belongs to C∗M (G) for any function f ∈ C(R),
and, for any x ∈ M , we have

Rx(π(f(A))) = f(Ax).

4.2 Spectral coincidence for amenable foliations

Here we will show how the C∗-algebraic calculus implies a result on the spectrum coincidence
problem. The approach to the spectrum coincidence problem, based on the theory of C∗-algebras,
was used in [2] for C∗-dynamical systems with the group Rn. We refer the reader to [11] and the
bibliography there for other approaches to the spectrum coincidence problem.

We say that the foliation F is amenable, if the natural projection π : C∗M (G) → C∗r (G) is injective
(and, hence, is an isomorphism). Some sufficient conditions for the amenability of the foliation F
can be found in [6].

Proposition 4.3. Let A be a tangentially elliptic operator of order m > 0.
(1) The spectrum σM (A) of A in the L2 space on the ambient manifold M contains its leafwise

spectrum

σF (A) =
⋃
{σ(Ax) : x ∈ M},

where σ(Ax) is the spectrum of the operator Ax in L2(Gx, νx).
(2) If the foliated manifold (M,F) is amenable, then σM (A) coincides with σF (A).
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Proof. It can be esily seen that the operator A is invertible iff the operators A∗A and AA∗ are
invertible, therefore, we may assume that A is a formally self-adjoint tangentially elliptic operator
with the positive tangential principal symbol.

By Corollary 4.2 (see also (4.1)), we have

sup
x∈M

‖f(Ax)‖ ≤ ‖f(A)‖, (4.4)

therefore, the identity f(A) = 0 for some function f ∈ C(R) implies the identity f(Ax) = 0 for all
x, that completes the proof of the first assertion of Proposition.

If the foliation is amenable, then we have the equality in (4.4), from where the second assertion
of Proposition is immediate.

4.3 Tangentiality of the operator f(A)

Let A be a formally self-adjoint tangentially elliptic operator of order m with the positive tangential
symbol. Here we will consider conditions on a function f ∈ C(R), under which the operator f(A) is
a tangential operator. At first, let us recall the precise definition of a tangential operator (cf. [16]).

An operator P : C∞(M) → C∞(M) is a tangential operator, if there is a holonomy invariant
family of operators {Px : C∞b (Gx) → C∞b (Gx)}, such that the following diagram commutes:

C∞(M) P−−−−→ C∞(M)

s∗x

y s∗x

y
C∞b (Gx) Px−−−−→ C∞b (Gx),

where the map s∗x : C∞(M) → C∞b (Gx) is induced by the source map s : Gx → M (C∞b (Gx) denotes
the Frechet space of C∞-bounded smooth functions on Gx as a manifold of bounded geometry [13]),
or, equivalently,

Pxs∗xu = s∗xPu, u ∈ C∞(M).

Remark that, for any k ∈ C∞c (G), the operator K = RM (k) is a tangential operator, given by
the tangential kernel k, and its restrictions to the leaves are equal to Rx(k).

Theorem 4.4. Let A be a tangentially elliptic differential operator on M of order m with the positive
tangential principal symbol. Then there exist constants W > 0 and c > 0 such that, for any function
f on the real line such that the function g(t) = f(tm − c), t ∈ R, belongs to the space Sq(R,W ), the
operator f(A) is a tangential operator on M with restrictions to the leaves, being equal to f(Ax).

Proof. For a proof, we apply Theorem 3.7 and the following theorem, concerning to operators on
manifolds of bounded geometry:

Theorem 4.5. ([15]) Let A ∈ BDm(V ) be a uniformly elliptic differential operator with the positive
principal symbol on a manifold of bounded geometry V . Then, there exist constants W > 0 and c > 0
such that, for any function f on the real line such that the function g(t) = f(tm − c), t ∈ R, belongs
to the space Sq(R,W ), the operator f(A) defines a continuous mapping

f(A) : C∞b (V ) → C∞b (V ).

From the proofs of these Theorems, it can be seen that, for any real s, k, there exist constants
W and c such that, for any function f , satisfying the hypotheses of Theorem 4.4 with these W
and c, there exists a sequence fn ∈ S(R,+∞) such that fn(A) converges to f(A) in the uniform
topology of L(Hs,k(M,F),Hs,k−q(M,F)) and fn(Ax) converges to f(Ax) in the uniform topology
of L(H l(Gx), H l−q(Gx)). By Lemma 4.1, we have

fn(Ax)s∗xu = s∗xfn(A)u, u ∈ C∞(M) (4.5)
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for any n and x ∈ M . Choosing W and c in an appropriate way, we can provide the convergence of
both sides of the identity (4.5) in the uniform norm of C(M), that completes the proof of Theorem.

4.4 Global regularity of tangential kernels

Let A be a formally self-adjoint tangentially elliptic operator with the positive tangential principal
symbol, and {Ax : x ∈ M} the corresponding family of uniformly elliptic differential operators along
the leaves. Here we state sufficient conditions on a function f ∈ B(R), under which the tangential
kernel kf(A) of the operator field {f(Ax) : x ∈ M} is a continuous (or measurable) function on G.

Theorem 4.6. Let f be a bounded Borel function on R, satisfying the estimate

|f(λ)| ≤ Cs(1 + |λ|)−s/m, λ ∈ R,

for some s > p/2 with the constant Cs > 0, not depending on λ. Then the tangential kernel kf(A) is
a bounded, leafwise smooth, measurable function on G, satisfying the estimate

sup
γ∈G

|kf(A)(γ)| ≤ C sup
λ∈R

|(1 + |λ|)s/mf(λ)|,

where C > 0 does not depend on f .

Proof. The tangential kernel k of a tangential operator K can be obtained as k(γ) = Kx[δγ ], γ ∈
Gx, x ∈ M, where δγ ∈ D′(Gx) is the delta function at the point γ ∈ Gx. Moreover, δγ ∈ H−s(Gx)
for any s > p/2 with the H−s-norm, uniformly bounded on x. The leafwise Sobolev embedding
theorem implies that the tangential kernel k of a tangential operator K, which can be extended to
an uniformly bounded field of bounded operators Kx : H−s(Gx) → Hs(Gx), is a bounded, leafwise
smooth function on G, satisfying the estimate

sup
γ∈Gx

|k(γ)| ≤ Cs‖Kx(δγ)‖s (4.6)

for any s > p/2, x ∈ M, with the constant Cs > 0, not depending on x. Since the right-hand
side of (4.6) can be written as ‖(I + A2

x)s/2mKx(I + A2
x)s/2mux‖ with some uniformly bounded

family ux ∈ L2(Gx, νx), any tangential operator K such that, for some s > p/2, the family {(I +
A2

x)s/2mKx(I +A2
x)s/2m} defines an element of the von Neumann algebra W ∗(M,F) of the foliation

F (that is, it can be represented as a weak limit of a sequence of tangential operators with tangential
kernels from C∞c (G)) has the tangential kernel which is a measurable function on G. Finally, if we
rewrite the inequality (4.6) in the form

sup
γ∈Gx

|k(γ)| ≤ Cs‖Kx : H−s(Gx) → Hs(Gx)‖

≤ Cs‖(I + A2
x)s/2mKx(I + A2

x)s/2m : L2(Gx, νx) → L2(Gx, νx)‖, (4.7)

we will see that a tangential operator K such that the family {(I +A2
x)s/2mKx(I +A2

x)s/2m} defines
an element of the reduced foliation C∗-algebra C∗(G) for some s > p/2, has the tangential kernel,
being a continuous, leafwise smooth function on G. Using these facts in the particular case K = f(A)
under the current hypotheses on A and f , we immediately complete the proof of Theorem 4.6.

4.5 Spectrum distribution function for tangentially elliptic operators

Here, using the results of Subsection 4.4, we state the existence and some properties of the spectrum
distribution function for any formally self-adjoint tangentially elliptic operator A with the positive
tangential principal symbol.
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The holonomy invariant measure dx defines the normal semi-finite faithful trace trF on the von
Neumann algebra W ∗(M,F) of the foliation F . For any tangential operator K with the bounded
measurable kernel k, trF (K) is finite and is given by the formula

trF (K) =
∫

M

k(x)dx.

For any λ ∈ R we denote by E(λ)x the spectral projection of the operator Ax, corresponding
to the interval [−∞, λ), given by the spectral theorem. Then the family E(λ) = {E(λ)x : x ∈ M}
defines an element of the algebra W ∗(M,F), and we can define the spectrum distribution function
of the operator A (with values in [0, +∞]) by the formula

N(λ) = trF (E(λ)), λ ∈ R.

By Theorem 4.6, for any λ ∈ R, the tangential kernel e(λ, γ) , γ ∈ G, of the operator E(λ) is a
measurable bounded function on G. Therefore, the function N(λ) takes finite values for any λ ∈ R,
and we have the following formula:

N(λ) =
∫

M

e(λ, x)dx, λ ∈ R.

From general properties of the trace trF , it can be easily derived the following proposition (see,
for instance, [21]):

Proposition 4.7. The spectrum distribution function N(λ) is non-decreasing in λ. The set of points
of increase of this function (that is, the set of all λ ∈ R such that N(λ + ε)−N(λ− ε) > 0 for any
ε > 0) coincides with the leafwise spectrum

⋃{σ(Ax) : x ∈ M} of the operator A.
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[10] L. Hörmander. The analysis of linear partial differential operators III. Springer, Berlin Heidel-
berg New York, 1985.

[11] S. Hurder. Spectral theory of foliation geometric operators. Preprint, 1994.

[12] Yu. A. Kordyukov. Elliptic operators on manifolds of bounded geometry. PhD thesis, Moscow
State University, Moscow, 1988.

[13] Yu. A. Kordyukov. Lp-theory of elliptic differential operators on manifolds of bounded geometry.
Acta Appl. Math., 23:223–260, 1991.

[14] Yu. A. Kordyukov. On semiclassical asymptotics of spectrum of hypoelliptic operators on a
foliated manifold. Funkts. analiz i ego prilozh., 29(3):98–100, 1995.

[15] Yu. A. Kordyukov. Lp-estimates for functions of elliptic operators on manifolds of bounded
geometry. Russian J. Math. Phys., 7:216–229, 2000.

[16] C. C. Moore and C. Schochet. Global Analysis of Foliated Spaces, Math. Sci. Res. Inst. Pub.,
vol. 9. Springer, Berlin Heidelberg New York, 1988.

[17] J. Roe. Finite propagation speed and Connes’ foliation algebra. Math. Proc. Cambridge Philos.
Soc., 102:459–466, 1987.

[18] R. Schrader and M. E. Taylor. Semiclassical asymptotics, gauge fields and quantum chaos.
J.Funct.Anal., 83:258–316, 1989.

[19] R. T. Seeley. Complex powers of an elliptic operator. In Proc. Symp. Pure Math. 10, pages
288–307. Amer. Math. Soc., Providence, R. I., 1967.

[20] M. A. Shubin. Pseudodifferential Operators and Spectral Theory. Springer-Verlag, Berlin, 1987.

[21] M.A. Shubin. The density of states of self-adjoint elliptic operators with almost-periodic coef-
ficients. Amer. Math. Soc. Trans., 118:307 – 339, 1982.

[22] M. Taylor. Pseudodifferential Operators. Princeton Univ. Press, Princeton, 1981.

19


