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ABSTRACT. This paper introduces a notion of fundamental group appropriate for lamina-
tions.

INTRODUCTION

Let L be a lamination, that is, a space modeled on a “deck of cards” � n ��, where � is
a topological space (usually 2nd countable and metrizable), and overlap homeomorphisms
take cards to cards continuously in the deck direction �. One thinks of L as a family of
manifolds (the leaves, formed from maximal continuations of overlapping cards) bound
by a transversal topology prescribed locally by �. Using this picture, many structures and
constructions familiar to the theory of manifolds can be extended to laminations via the
ansatz:

Replace manifold object A by a family of manifold objects �AL� existing on the
leaves of L and respecting the transverse topology.

For example, one defines a smooth structure to be a family of smooth structures on
the leaves in which the card gluing homeomorphisms occurring in a pair of overlapping
decks vary transversally in the smooth topology. Continuing in this way, many familiar
constructions over �, such as tensors, de Rham cohomology groups, etc. may be defined.

Identifying those constructions classically defined over � is not as straightforward, es-
pecially if we wish to follow tradition and define them geometrically. To see why this is
true, let us consider the case of an exceptionally well-behaved lamination: that occurring
as an inverse limit �M � lim��Mα

of manifolds by covering maps. Such a system induces a direct limit of de Rham coho-
mology groups, and there is a canonical map from this limit into H �� �M; �� with dense
image. In fact, here we can use the system to define – by completion of limits – the
homology groups H�� �M; �� as well. If we want to use this point of view to define the
groups π1, H��� ��, H��� ��, we immediately run into difficulty since the systems they
induce have trivial limits. The purpose of this paper is to introduce for certain classes of
weakly-minimal1 laminations L a construction ��π��1�L �x� called the fundamental germ, a
generalization of π1 which intends to address this omission in the theory of laminations.

The intuition which guides our construction is that of the lamination as irrational man-
ifold. Recall that for a pointed manifold �M�x�, the deck group of the universal cover
� �M� x̃�� �M�x� may be identified with π1�M�x�. In particular, π1�M�x� tells us how to
make identifications within � �M� x̃� so as to recover �M�x� by quotient. We complicate this

Date: 21 April 2002.
1A lamination is weakly-minimal if it has a dense leaf.
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picture by imagining that we have disturbed the process of identifying π 1 orbits, so that in-
stead, points in an orbit merely approximate one another through some auxiliary transver-
sal space T. The result is that � �M� x̃� does not produce a manifold but rather a coiled-up
version of itself: which forms a dense leaf �L�x� of a weakly-minimal lamination L . The
germ of the transversal T about x may be interpreted as the failed attempt of �L�x� to form
an identification topology at x. The fundamental germ ��π�� 1�L �x� is then a device which
records algebraically the dynamics of �L�x� as it approaches x through the topology of �.
We have indicated the idea in Figure 1.

Naively, one might define an element of ��π��1�L �x� as a tail equivalence class of a se-
quence of approaches �xα�, where L � xα � x through �. In this paper, the laminations
under consideration have the property that there is a group G acting on L in such a way
that every approach is of the form �gαx�, for gα � G. We shall then take ��π��1�L �x� to
consist of tail equivalence classes of sequences of the form2 �gαh�1

α �, where gαx� hαx� x
in T. The group structure of G is used to define a groupoid structure on ��π�� 1�L �x� through
component-wise multiplication of sequences: with respect to this structure, π 1�L�x� is con-
tained in ��π��1�L �x� as a subgroup. In practice, ��π��1�L �x� is only a groupoid; but for many
well-behaved laminations such as inverse limit solenoids, Sullivan solenoids and linear
foliations of torii, it is a group.

When L �M is a manifold (a lamination with one leaf), ��π��1�M�x� is equal to �π1�M�x�,
the non-standard version of π1�M�x�: the group of tail equivalence classes of all sequences
in π1�M�x�. When L is a weakly-minimal lamination contained in a manifold M, there
is a map ��π��1�L �x�� �π1�M�x� whose image consists of those classes of sequences in
π1�M�x� that correspond to the holonomy of L . Thus, in expanding π 1 to its non-standard
counterpart, it is possible to detect algebraically sublaminations invisible to π 1.

One can profitably think of ��π��1�L �x� as consisting of equivalence classes of sequences
of “G-diophantine approximations”. In the case of an irrational foliation F r of the torus
�2 by lines of slope r � � ��, this is literally true: the elements of ��π��1�Fr�x� are pre-
cisely equivalence classes of convergent sequences of diophantine approximations of r.
More generally, in ��π��1 we find an algebraic-topological tool which enables us to system-
atically translate the geometry of laminations into the analysis of non-linear diophantine
approximation.

There is also an analogue of covering space theory for ��π�� 1. In particular, there is a
lamination ��L �� which plays the role of a universal cover, on which ��π�� 1�L �x� acts with
quotient L . Identifying classes of well-behaved subgroupoids C of ��π�� 1�L �x�, we ob-
tain intermediate quotient laminations LC which are laminated coverings of L . When
��π��1�L �x� is a group and C is a normal subgroup, the quotient ��π�� 1�L �x��C may be iden-
tified with the deck group of LC� L . These considerations give rise to a Galois theory of
laminations.

For a lamination L which is not necessarily weakly-minimal but has a non-trivial mini-
mal set M (such as a compact foliation, in particular, a foliation of S 3), there is a counter-
part of the fundamental germ which describes how a given leaf �L�x� accumulates at a fixed

point x̂ �M (rather than how �L�x� accumulates upon itself). The groupoid ��
∞
π��1�L ; x� x̂�

constructed from the associated sequence classes is called the fundamental germ at infinity.
We expect that, together with the topological invariants of the leaves, the germs ��π�� 1 and

��
∞
π��1 will play an important role in the classification of laminations.

2Taking sequences of this form has the advantage of guaranteeing a groupoid structure. This would not be
true if we used sequences of the form �gα�.
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FIGURE 1. The Lamination as Irrational Manifold

We have broken up our study into two parts, each of which will be carried out in a sepa-
rate paper. In this first installment, The Algebraic Theory of the Fundamental Germ, the fo-
cus is on laminations which arise through group actions: suspensions, quasi-suspensions 3,
double coset foliations and locally-free Lie group actions. In the second installment, The

3A quasi-suspension is a quotient of a suspension.
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Geometric Theory of the Fundamental Germ (to appear later) this construction is studied
in the presence of Riemannian geometry along the leaves. There, the fundamental germ is
represented using isometries of a fixed dense leaf. In the case of an hyperbolic Riemann
surface lamination L , this amounts to an algebraic uniformization theorem [Ge1]: a sub-
groupoid ��Γ��� PSL�2� ��� of non-standard PSL�2��� acting by isometries on a laminated
space ��� �� with quotient L . In general, the geometric construction will also allow us to ex-
tend the definition of ��π��1 to laminations which do not arise algebraically but have nice
leaf-wise geometry.

The following contains a summary of the contents of the present paper.

	1: The Germs of a Group 	1.1 discusses ultraproducts of sequences of sets, and intro-
duces a more general construction called the ultrascope which will give us greater flexibil-
ity later on. In 	1.2, the ultrapower �� of � is considered. Also known as non-standard
�, �� is the ground field of the germ perspective. 	1.3 extends a few of the results found
in 	1.2 to arbitrary non-standard topological groups. In 	1.4, given a nested sequence of
subsets G � �Gi� about 1 in a group G, four germs are defined. They are obtained by
applying the ultraproduct and the ultrascope construction to each of G and G �G �1. The
ultrascope of the nested set G �G�1 will occupy most of our attention: it is denoted ��G��,
and is called simply the germ of G.

	2: Examples of Germs I 	2.1, 	2.2 and 	2.3 describe germs arising from, respectively,
nested sequences of subgroups, neighborhood bases in a topological group and actions of
a group on a space.

	3: Examples of Germs II 	3.1 and 	3.2 describe germs arising from, respectively, dou-
ble coset topologies and locally free actions of Lie groups. The examples in this section
differ from those in 	2 in that the group � is a topological group, and the nested set G is
contained in a lower dimensional “transversal” subspace T � �. Here, we must broaden
our understanding of multiplication in ����� in order to include products which are asymp-
totically contained in T .

	4: The Fundamental Germ of an Algebraic Lamination 	4.1 reviews the definition
of a lamination and all of the attendant terminology. 	4.2 contains the definition of the
fundamental germ of a suspension. In 	4.3, 	4.4 and 	4.5, we calculate, respectively, the
fundamental germs of the following suspensions: inverse limit solenoids, linear foliations
of torii and the Anosov foliation of the unit tangent bundle of a hyperbolic surface. In
	4.6, the fundamental germ of a quasi-suspension is defined, and the fundamental germ
of a Sullivan solenoid is calculated. In 	4.7, given a triple �G �H �Γ� consisting of a Lie
group, a closed Lie subgroup and a discrete subgroup, the fundamental germ is defined for
the foliation of Γ�� by the images of cosets g�. We consider in this section the case of
the geodesic and horocyclic flows on the unit tangent bundle of a hyperbolic surface. In
	4.8, the definition is given of the the fundamental germ of a lamination arising through a
locally-free action of a Lie group on a space. The example of a geodesic lamination in a
hyperbolic surface is briefly discussed.

	5: Non-standard Completions I In certain cases, it is possible to translate by elements
of G the nested set G to obtain a topology on G which has a well-defined completion �G.
The non-standard completion ��G �� is a space on which ��G�� acts with quotient �G. In 	5.1,
this construction is motivated by the case of G � �. In 	5.2 and 	5.3, ��G �� is defined
when G comes from, respectively, a nested sequence of subgroups and a neighborhood
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basis about 1 in a topological group. In these cases, the germ ��G�� is a group which acts by
homeomorphisms on ��G��.

	6: Non-standard Completions II This section is a continuation of 	5, where in 	6.1,
	6.2 and 	6.3 the cases of G coming from, respectively, an action topology, a double coset
topology and a locally free Lie group action are treated. The translates of G need not
yield a completable topology: when they do, G is called topologically tame. For topologi-
cally tame G , there is a non-standard completion ��G �� on which ��G�� acts as a groupoid of
homeomorphisms, with quotient a completion �G of G (or a completion �T of the relevant
transversal subspace).

	7: The Complete Groupoid Structure In this section it is assumed that ��G�� arises from
a topologically tame nested set. The goal here is to expand the groupoid structure of ��G�� to
include its action on ��G��. In 	7.1 this groupoid structure is defined and in 	7.2, it is shown
to be invariant with respect to the operation of replacing G by a cofinal sub nested set.

	8: The Fundamental Germ at Infinity In this section the fundamental germ at infinity of
a compact but not necessarily weakly-minimal lamination is defined. In 	8.1 the notion of

minimal set is recalled. In 	8.2, 	8.3 and 	8.4, we define ��
∞
π��1�L ; x� x̂� for a L a suspension,

a quasi-suspension and a double coset lamination. For L an inverse limit solenoid or a

Sullivan solenoid, it is shown that ��
∞
π��1�L ; x� x̂� 
� ��π��1�L �x�. In 	8.5, ��

∞
π��1 is calculated

for the Reeb foliation of S3 (a foliation which is not weakly-minimal).

	9: The Higher Order Fundamental Germ The higher order fundamental germ is ob-
tained by replacing equivalence classes of sequences �gα� by equivalences classes of cer-
tain sequences of sets �Aα�. In 	9.1, given G a nested set about 1 in G, the germ of the
power set group 2G is studied. In 	9.2, the higher order fundamental germ ��π�� 1�L �x� is
defined as the subset of the appropriate power set germ consisting of elements represented
by full sequences �Aα� i.e. Aα translates x to a dense subset of an open set in the model
transversal T. ��π��1 has the advantage of being natural with respect to change of base leaf
(this is not a property shared by ��π��1).

	10: Dependence on Data To define the fundamental germ ��π�� 1�L �x�, three types of data
are fixed: a point x, a nested set G (which comes from a neighborhood basis T about a
transversal T through x), and an ultrafilter �. In 	10.1, it is shown that ��π�� 1�L �x� depends,
up to isomorphism, only on the germ of T . In 	10.2, it is shown that a change of base
point within a fixed leaf L induces an isomorphism of germs. In 	10.3, a change of base
point and a change of leaf are considered. Here, it is not in general possible to define
a transformation map of fundamental germs. However, passing to the higher order germ
��π��1, it is possible to assert the existence of such a map. Finally, in 	10.4, assuming the
continuum hypothesis, it is shown that ��π��1 is independent of �.

	11: Functoriality In 	11.1, the definition of the map ��F �� induced by a lamination map
F : L � L � is given. It is not known at this point if ��F�� is a groupoid homomorphism. In
	11.2, we discuss the class of trained lamination maps, which have the property that the
induced map ��F �� is homomorphic.

	12: Germ Covering Space Theory In 	12.1 the germ universal cover ��L �� of a weakly
minimal lamination L is defined, using the non-standard completion ��G ��. An action of
��π��1�L �x� on ��L �� is defined, and it is shown that the quotient ��π��1�L �x����L �� may be
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identified with L . In 	12.2 the class of regular subgroupoids C of ��π�� 1�L �x� is defined,
and it is shown how they may be used to construct laminated coverings spaces L C over L .
In 	12.3, we show that when ��π��1�L �x� is a group and C is a normal subgroup, then the
quotient ��π��1�L �x��C may be identified with the group of deck homeomorphisms of the
covering LC� L .
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1. THE GERMS OF A GROUP

Consider a weakly-minimal lamination L which has the following property: for ev-
ery pointed dense leaf �L�x� � L , there is a transversal T through x and a group G �
�������L� such that

��L � G � x�
In this case, the building blocks which we use to define elements of ��π�� 1�L �x� consist of
equivalence classes of sequences �gα�, where gαx � � and gαx� x in the topology of T.

In this section we will consider such classes of sequences in the setting of an abstract
group G. Specifically, we will study various sets of classes of sequences which converge
to 1 � G with respect to some nested sequence of subsets �G i� about 1. These sets are
collectively called germs: after giving the definitions of four types of germs, we examine
carefully a number of examples which appear later as fundamental germs.

1.1. Ultraproducts and Ultrascopes. The study of tail equivalence classes of sequences
in families of structures first appeared in model theory [Hew], [Sk], and later played an
important role in the invention of non-standard analysis [Ro]. The task of identifying se-
quences so as to conserve algebraic structure is accomplished through the use of ultrafilters.

Let � � �0�1�2� � � �� denote the natural numbers. An ultrafilter on � is a subset �� 2�

satisfying the four conditions:
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(1) /0 �� �.
(2) If X � � and Y  X then Y � �.
(3) If X �Y � � then X

�
Y � �.

(4) For any X � 2�, either X � � or X � � � �X � �.

Note 1. The dual �� � �X � X � � �� of an ultrafilter defines a maximal ideal in the Boolean
algebra 2�, and conversely, the dual of every maximal ideal of 2� defines an ultrafilter.
Zorn’s lemma is thus required to assert the existence of ultrafilters. The dual � � of an
ultrafilter is principal if and only if � contains a finite set.

Property (3) implies that an ultrafilter is a directed set with respect to set inclusion, and
principal ultrafilters do not yield interesting directed sets, so

Assumption: All ultrafilters considered in this paper are non-principal.

Let S � �S i� be a sequence of sets, � an ultrafilter on �. For each X � �, write

SX � ∏
j�X

S j�

Since � is directed, the �SX� form a direct system with respect to the cartesian projections:

SX2 � SX1 if X1 � X2�

The ultraproduct of the S i with respect to � is the limit

∏
�

S i :� lim�� SX �

Elements of the ultraproduct are denoted �x i� or �x� if the indexing is understood. If S i � S
for all i, the ultraproduct is called the ultrapower of S , denoted �S� or �S if no confusion
arises; its elements are denoted �x.

If S consists of nested sets, ∏� S i may be regarded as the set of tails of sequences �x i�
which converge with respect to S in a lock-step fashion: that is x i � S i for all i. This
suggests a more general construction which takes into account all convergent sequences.
Thus, denote by �S the set of sequences which converge with respect to S : sequences �x α�
whose elements are eventually contained in any fixed S j. For each X � �, define a map
PX : �S � �S by restriction of indices:

PX��xα�� � �xα��α�X �

The ultrascope is the direct limit
�

�

S i :� lim
��

PX

�S �

Elements of the ultrascope are denoted ��xα�� or ��x��.

Note 2. There is a canonical inclusion

∏
�

S i ��
�

�

S i�

When S i � S for all i, the ultrascope coincides with the ultrapower.

Proposition 1. For any nested set S ,
�

�

S i �
� ��S i�� � �

��
S i

�
�
�

The inclusion� is an equality if and only if for i large, S i is equal to a fixed set Si0 .
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Proof. Every sequence �xα� � �S is by definition eventually in any S i hence defines an
element of ��S i��. Conversely, any element of

���S i�� may be represented by an element
of �xα� � �S , hence defines an element of

�
� S i. If S i does not stabilize, then a sequence

of the form �xα�, xα � S i �S j, i � j and i� ∞, does not define an element of � �
�

S i��. If
Si � Si0 eventually, then

�
� S i = ��Si0�� = � �

�
S i��. �

Note 3. Given S a nested set, let N � �n0�n1� � � �� � � be infinite, and let S � � �S �i� be the
nested set S �i � Sni . Then the natural inclusion �S � �� �S yields a bijection

�

�

S �i ��
�

�

Si�

Note 4. If S is a (nested) sequence of subgroups or subrings, the induced component-wise
operations on the S X descend to similar operations making the ultraproduct (the ultrascope)
a group or ring.

Proposition 2. If S i consists of a (nested) sequence of subfields, the ultraproduct (ultra-
scope) is a field.

Proof. That the ultraproduct (ultrascope) is a division ring is clear. All that needs to
be shown is that there are no zero-divisors. Suppose that for �x i�� �yi� � ∏� S i, we have
�xi��yi� � �0�. Represent �xi�� �yi� by sequences �xi���yi� such that xiyi � 0 for all i. Let

X � �i � � � xi � 0� and Y � �i � � � yi � 0��
Note that X � � Y . If X � �, then �xi� � �0�. Otherwise, by property (4) in the definition of
ultrafilters, X � � �, hence so is Y by property (2). In this case �yi� � �0�. The proof for the
ultrascope is identical. �

Theorem 1. Let G and G � �Gi� be respectively, a group (or ring or field) and a sequence
of groups (or rings or fields), each of cardinality at most the continuum. Let �, � � be two
ultrafilters on �. Then assuming the continuum hypothesis,

(1) �G� 
� �G�� and ∏
�

Gi

� ∏

��

Gi�

If G is nested, then in addition �

�

Gi

�
�

��

Gi�

Proof. (1) follows immediately from Corollary 6.1.2 of [Ch-Ke]. If G is nested, then the
isomorphism ��G0�� � ��G0��� may be chosen so that for every G i, ��Gi�� �� ��Gi��� .
Indeed, this may be accomplished by adding to the language the names of the sets G i.
Then by Proposition 1, the second statement follows. �

1.2. Non-standard �. The field �� is called non-standard �. There is a canonical em-
bedding � �� �� given by the constant sequences, and we will not distinguish between �
and its image in ��.

For �x��y � ��, we say that �x � �y if there exists X � � and representative sequences
�xi�, �yi� such that xi � yi for all i � X . The non-negative nonstandard reals are defined

��� � ��x � �� � �x� 0��
The Euclidean norm � � � on � extends to a ��� -valued norm on ��.

An element �x of �� is called infinite if for all r � �, ��x�� r.

Proposition 3. �� is a totally-ordered, non-Archimedian field.
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Proof. The quality of being totally-ordered follows from an argument similar to that used
to rule out zero divisors in Proposition 2. If �x is infinite, then for any r � � we have
�nr�� ��x� for all n � �: hence �� is non-Archimedian. �

There are two obvious topologies that we may give ��:

� The enlargement topology �τ, generated by sets of the form �A, where A � � is
open. This topology is convenient when regarding � as a quotient of a subring of
�� (see Proposition 7 below).
� The internal topology �τ�, generated by sets of the form

�Ai� � ∏
�

Ai�

where Ai � � is open for all i. This topology is most natural when regarding ��
as a space in its own right.

We have �τ� �τ�, the inclusion being strict.

Note 5. Given �x � �y, let

��x��y� � ��z � �x � �z � �y��
Then if �xi�� �yi� represent �x, �y, we have

��x��y� � ∏
�

�xi�yi��

It follows that �τ� is the order topology.

Proposition 4. The enlargement topology �τ is 2nd-countable but non Hausdorff. The
internal topology �τ� is Hausdorff but not 2nd-countable.

Proof. �τ is not Hausdorff since it is impossible to separate points �x and �y represented
by asymptotic sequences. It is 2nd-countable since it is generated by �A, where the A run
over a countable basis of �.

Given �x, �y � �� represented by sequences �xi�, �yi�, let Ai�Bi � � be disjoint opens
containing xi, yi respectively. Then �Ai�� �Bi� are disjoint �τ�-opens containing �x and �y
respectively. Thus �τ� is Hausdorff.

Note that there exists an uncountable set A � �� such that given �x� �y�A , the distance
�xi� yi� between elements of representative sequences� ∞. We may then find �τ�-opens
about every �x � A which are pair-wise disjoint. Thus �τ� is not 2nd-countable. �

Proposition 5. ���� �τ�� is a real, infinite dimensional topological vector space.

Proof. It is clear that scalar multiplication by � is a continuous operation with respect to
�τ�. Given �x � �� represented by �xi�, we have �x��Ai� � �xi �Ai� � �τ� for all �Ai� � �τ�.
It follows that addition is �τ�-continuous. Since �τ� is not second countable, �� must be
infinite dimensional. �

Note 6. �� is not a topological group with respect to �τ. Every open set �A contains
bounded points (i.e. elements represented by bounded sequences). If �x � 0 is unbounded
and �A � 0, then �x� �A contains only unbounded elements.

Let
��fin � ��x � �� � �M � � such that ��x �� M��

Proposition 6. ��fin is a topological subring of �� with respect to both the �τ and �τ�
topologies.
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Proof. That ��fin is a �τ�-topological subring of �� is clear. Given �x � ��fin , let

M�x � inf
�x�M

M�

Then for every enlargement open �A we have
�x� �A � ��M�x �A� and �x � �A � ��M�x �A��

�

The additive subgroup of infinitesimals of �� is defined
��ε � ��ε � ��ε �� M for all M � ����

For �x � ��, the coset
µ��x� � �x� ��ε

is called the galaxy of �x. If �y � µ��x�, we write
�x � �y

and say that �x is infinitesimal to �y.

Proposition 7. ��fin is a local ring with maximal ideal ��ε . The quotient ��fin�
��ε is

isomorphic to �, homeomorphic with respect to the quotient �τ-topology.

Proof. Given �x � ��fin and �ε � ��ε , ��x � �ε� � M for any positive real M, so ��ε is an
ideal. If ��ε is contained in an ideal �, then there exists r � �, with 0 �� r � �. Then
� �� and since ��ε ��, �� ��fin . Thus ��ε is maximal.

On the other hand, let � � ��fin be a non zero ideal not contained in ��ε , and let �r �
�� ��� ��ε �. Then for any �ε � ��ε , the equation

�x � �r � �ε

has a solution in ��fin . Thus ��ε � � and by maximality of��ε , ��ε � �. It follows that
��fin is local.

Given �x � ��fin , let M�x be as in the proof of Proposition 6. The map �x �� M�x de-
scends to an isomorphism ��fin�

��ε � � which takes every quotient class of �τ-open �A
to its counterpart A� �. �

Note 7. ��ε is clopen in the �τ�-topology; the �τ�-quotient topology on ��fin�
��ε is discrete.

Note 8. ��ε is not an ideal in ��. The abelian group �� :� �����ε (with the quotient �τ-
topology) is called the extended reals. By Proposition 7, �� contains a subfield isomorphic
to �.

1.3. Non-standard Topological Groups. Let � be a complete topological group. Some
of the properties satisfied by �� also hold for ��: in this section, we briefly discuss those
that shall need later.

If τ denotes the topology of �, then the topologies �τ and �τ� are defined exactly as in
	1.2. �� is a topological group in the �τ� topology, but not in the �τ topology.

Denote by ��ε the classes of sequences converging to the unit element 1.

Note 9. ��ε is a group since a product of sequences converging to 1 in a topological group
is again a sequence converging to 1.

Let ��fin be the subset of �� all of whose elements are represented by sequences which
converge to an element of �. We have the following analogue of Proposition 7, whose
proof we leave to the reader.
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Proposition 8. ��ε is a normal subgroup of ��fin and ��fin�
��ε is isomorphic to �,

homeomorphic with respect to the quotient �τ-topology.

We call the left coset space �� :� �����ε (with the quotient �τ-topology) the extended
�. It contains � as a topological subgroup.

Note 10. If � is compact or abelian, then �� is a group.

1.4. The Germs of a Group. Given G an arbitrary group, let G � �G i� be a nested
sequence of subsets about 1. The ultraproduct

�G����G :� ∏
�

Gi

is called the lock-step pregerm of G with respect to G ; the ultrascope

��G�����G :�
�

�

Gi

is called the pregerm.
The collection G �G�1 � �G i �G�1

i � is also a nested set about 1. The ultraproduct

�G�G :� �G����G �G�1

is called the lock-step germ of G with respect to G ; the ultrascope

��G��G :� ��G�����G �G�1

is called the germ.
We will often omit the G-subscript in the interest of clear notation, though it is obvious

that these constructions depend heavily on our choice of nested set.

Note 11. The pregerms enjoy no special algebraic structure. The point of using the as-
sociated nested set G �G�1 is that both of �G� and ��G�� are groupoids, since by definition
all of their elements are invertible. Moreover, the associated nested set pays additional
dividends: sometimes producing nested groups from nested sets which are not groups (c.f.
Example 3 below).

The relationship between the four constructions is given by the commutative diagram:

�G���� � �G�

� �

��G����� � ��G��

�

where the horizontal inclusions are induced by G i � G i �1�G i �G�1
i .

2. EXAMPLES OF GERMS I

2.1. Nested Subgroups. The following family of examples have the property that either
the G i or the G iG�1

i are groups.

Germ Example 1. G i � G for all i.

Here �G���� � �G� � ��G����� � ��G�� � �G, which is a group.

Germ Example 2. G i � Hi is a normal subgroup of G for all i.

Proposition 9. �G���� � �G� and ��G����� � ��G�� are groups.
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Proof. This follows immediately from the fact that HiH
�1
i � Hi. �

If G is a sequence of finite-index normal subgroups cofinal in the family of all finite-
index normal subgroups (of all pn-index subgroups, p a prime, n � �) , we obtain the
pro-finite germs, denoted �G� ε̂ and ��G��ε̂ (�G�ε̂�p and ��G��ε̂�p).

Note 12. Consider G ��. Since every subgroup of � is an ideal, the germs ��� ε̂� �����ε̂�
�� are ideals, being respectively an ultraproduct and an ultrascope of ideals. However,
they are not principal ideals (principal ideals are countable). Thus, unlike �, �� is not a
principal ideal domain.

Germ Example 3. For d � �, let

G�� � G���d� � � f �x : f x f�1 � xd�
be the Baumslag-Solitar group, and take

G i �
�

f mxrdi � m�r � �
�
�

Theorem 2. �G���
��� and ��G����

��� are not groupoids. �G��� and ��G���� are groups.

Proof. We first observe by induction that in G��,

(2) x�di
f � f x�di�1

for all i � 0. Now consider the sequence

�gi�� � f�mixdi��
where mi � i � 0. Note that �gi� defines an element in both �G���

��� and ��G����
���. Using

(2), we may write the inverse sequence

�g�1
i �� �x�di

f mi�� � f ix�1 f mi�i��
Since mi � i, we cannot use the defining relation of G�� to move the remaining f mi�i to
the left of the x-term. It follows that �g�1

i � defines neither an element of �G���
��� nor of

��G����
���. In particular, neither �G���

��� nor ��G����
��� have the structure of a groupoid.

To see that �G��� and ��G���� are groups, it suffices to see that G i �G�1
i is a group for all

i. Write a generic element g � G i �G�1
i in the form

g � f lxrdi
f m

for l�m�r ��. Then an element gh�1, g�h � G i �G�1
i may be written

gh�1 � f lxrdi
f mxsdi

f n �

��
�

f lx�r�sdm�di
f m�n if m � 0

f l�mx�rd
m�s�di

f n if m� 0
�

where l�m�n�r�s ��. It follows that gh�1 � G i �G�1
i . �

2.2. (Representations in) Topological Groups. In the next family of examples, the G i

arise from a neighborhood basis about 1 of a topological group. In this case we may not
assume that G i or G i �G�1

i are groups.

Germ Example 4. G �� a topological group, G i �Ui is a neighborhood basis about 1.

Note 13. By replacing G i by G i
�

G�1
i we get a basis of groupoids: in this case we can

then assert at least that ������ and ��� are groupoids.
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Proposition 10. �������� = ����� � ��ε is a group. If G i is a group for all i, then ������ =
��� are groups. If G i �G�1

i is a group for all i, then ��� is a group.

Proof. If �gi�, �hi� are sequences converging to 1, then so is �gih
�1
i �. Passing to direct

limits gives the first statement. The second and third statements are obvious. �

Germ Example 5. Let ρ : G�� be a representation into a topological group � with U i a
neighborhood basis about 1. G is defined:

G i � �g � ρ�g� �Ui��
The discussion here is the pull-back of that of Germ Example 4. In particular, we have

the analogue of Proposition 10:

Proposition 11. Let G be defined as in Germ Example 5. Then ��G�� ��� � ��G�� is a group.

An important instance of Germ Example 5 comes when G � � p and � � the q-torus
�q � �q��q.

Germ Example 6. Fix r1� � � � �rp ��q a set of �-independent column vectors. Let R be the
q� p matrix whose kth column is rk. Define ρ : �p� �q by ρ�n� � Rn, where m means
the image of m in �q. Then G is defined

G i �
	

n ��p � d�ρ�n�� 0�� 1�i


�

where d is the Euclidean distance function on �q.

Denote by ��p
R the corresponding germ: by Proposition 11, it is a subgroup of ��p.

When p � q � 1, then R � r � � and we write ��r.

Theorem 3. ��p
R is an ideal if and only if R �Mq�p���.

Proof. Suppose that R �Mq�p��� and let ak = the l.c.d. of the entries of rk. Write

�� �a1���� �� �ap�

where �ak� is the ideal generated by ak. Note that ��� ��p
R. On the other hand, rationality

of the entries of the rk implies that a sequence �ni� ��p defines an element of ��p
R if and

only if there exists X � � such that ρ�ni� � 0 for all i � X . This is equivalent to ni � � for
all i � X . Thus ��p

R � �� which is an ideal in ��p.
Suppose now that r � rk �� �q for some k, 1 � k � p. Let �ni� represent an element

of ��R, and denote by �ni� the sequence of k-th coordinates of the n i . Note that nir �� 0
for all i since r is not rational. In fact, for any j0 we may find a sequence of integers �mi�
such that minir is not within 1� j0 of 0. Let mi � �p be the vector whose kth coordinate is
mi and whose other coordinates are 0. Then the sequence �m i �ni� does not converge with
respect to G . It follows that ��p

R is not an ideal in ��p. �

Note 14. Theorem 3 draws another sharp distinction between � and ��: every subgroup
of the former is an ideal, while this is false for the latter.

The group ��p
R has the following alternate description:

(3) ��p
R �

�
�n � ��p

��� � �n� � ��q such that R��n�� �n� � ��q
ε

�
�

Given �n � ��p
R, the corresponding element �n� � ��q is called the dual of �n; it is

uniquely determined. From (3), it is clear that the set

���p
R�
� �

�
�n�

��� �n� is the dual of �n � ��p
R

�
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is a subgroup of ��q, called the dual of ��p
R.

Note 15. When R �Mq�p���� � has a left-inverse S, we have ���p
R�
� � ��q

S.

Similarly, the set

��q
R �ε �

�
�ε � ��q

ε

��� ��n � ��p
R such that R��n�� �n� � �ε

�
is a subgroup of ��q

ε , called the group of rates of R.
The following proposition is an immediate consequence of (3).

Proposition 12. The maps �n �� �n� and �n �� �ε define isomorphisms
��p

R

� ���p

R�
� and ��p

R

� ��q

R �ε�

Note 16 (A.Verjovsky). Using formulation (3) of ��p
R, it follows that every triple

��n� �n�� �ε�

represents a convergent sequence of diophantine approximations of R. Thus we may regard
��p

R as the group of diophantine approximations of R.
For example, when m � n � 1 and r � � ��, �n and �n� are equivalence classes of

sequences �xi� and �yi� � �, and �ε an equivalence class of sequence �εi� � �, εi � 0,
such that ����r� yi

xi

���� �

����εi

xi

������ 0�

Conversely, every convergent sequence of diophantine approximations of r defines uniquely
a triple ��n� �n���ε�.

Recall that two irrational numbers r�s���� are equivalent if there exists A�

�
a b
c d


�

SL�2��� such that s � �ar�b���cr�d�.

Proposition 13. If r and s are equivalent irrational numbers, then ��r

� ��s.

Proof. Given �n � ��r,

�cr�d��n � �c�n��d�n � ���

Write �m ��c�n��d�n. Then �m � ��s, since

s�m � �ar�b��n � �a�n��b�n � ���

The association �n �� �m defines an injective homomorphism

ψ : ��r� ��s�

with inverse defined
ψ�1��m� � ��cs�a��m�

�

Note 17. Two irrational numbers r�s are called virtually equivalent if there exists A �
SL�2��� (or equivalently, A � GL�2���) such that A�r� � s. In this case, there exists a pair
of injective homomorphisms

ψ1 : ��r �� ��s and ψ2 : ��s �� ��r�

defined as in Proposition 13. These maps are mutually inverse to each other if and only if
A � SL�2���. In other words, ��r and ��s are virtually isomorphic.
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We are led to make the following conjecture.

Conjecture 1. If ��r

� ��s for irrational numbers r, s, then r and s are equivalent.

2.3. Action Topologies. In the next example, the nested set G comes to us through an
action of G on a topological space.

Let G be a group, F a (2nd countable metrizable) topological space. Let ρ : G �
������F� be a representation. We say that t � F is minimal if the orbit ρ�G��t� is dense
in F .

Germ Example 7. Fix a minimal t � F and a neighborhood basis �Ui� about t. G is defined

G i � �g � G � ρg�t� �Ui��
We denote the corresponding pregerm and germ by ��G�� ���t and ��G��t , respectively. In

this example, we are using the topology not of the topological group ������F� but of its
local action on F at t. Since this is generally a finer topology, we cannot expect to reap the
strong algebraic qualities of Germ Examples 5 and 6.

Note 18. One can replace F by a a smooth manifold M, a Riemannian manifold �M�γ�, an
algebraic variety V , a topological group �, a vector space V , etc., and consider represen-
tations in ����M�, �	���M�γ�, 
���V �, �	����, GL�V � and so forth.

Note 19. We observe that Germ Examples 2 and 6 may be put in this form. In Germ
Example 2, the canonical map ι : G � �G yields the right-multiplication representation
ρ : G� Homeo� �G�,

ρg�ĝ� � ĝ � ι�g��1�

The germs so induced agree with those constructed in Germ Example 2 since the nested
set G induced by the action topology is the same as that induced by ι. The same is true of
Germ Example 6, where ρ has image in the subgroup �q � �������q�.

Notation 1. From here on, we write

g�t� � ρg�t��

The following sub-case of Germ Example 7 corresponds to a foliation defined on the
unit tangent bundle of a hyperbolic surface.

Germ Example 8. Let G � Γ be a Fuchsian group, ρ : Γ� Homeo�S 1� the representation
defined by extending the action of Γ on � to the boundary.

Let us consider the modular group Γ � PSL�2���. Let t � 0; its orbit is dense in S 1.
Notice then that for every element in PSL�2��� represented by

A �

�
a b
c d


� SL�2����

we have A�0� � b�d.

Lemma 1. If �A �

� �a �b
�c �d


� ��PSL�2��������0 , then

(1) �b��d � ��ε .
(2) �c� �d � ����.

Proof. By definition of G , we have �A�0� � �b��d � ��ε for any �A � ��PSL�2��������0 .
Since ��b� � 1, (1) implies that �d � ����. On the other hand, since �a�d� �b�c � 1,

it follows that �c � ����as well. �
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Proposition 14. ��PSL�2��������0 is neither a groupoid nor a monoid.

Proof. Consider the sequence �Ai� where

(4) Ai �

�
1 1
i i�1


�

Clearly �Ai� defines an element of ��PSL�2��������0 but the inverse sequence does not, since
A�1

i �0� ��1 for all i. Thus, ��PSL�2��������0 is not a groupoid.
Consider now the sequence �Ai� given by

Ai �

�
i �1

1� i2 i


�

defining an element of ��PSL�2��������0 . Since the orbit of 0 by PSL�2��� is dense in S1, we

may find a sequence �Bi�, Bn �

�
ai bi

ci di


� SL�2���� so that the ratio Ri � di�bi��∞

and satisfies
1� i2 � iRi � i�1�

to whatever degree of accuracy we desire. (An error term on the order of o�i �1� will do.)
Such a sequence defines an element of ��PSL�2��������0 . We find that

AiBi�0� � Ai�R
�1
i � �

i�Ri

1� i2� iRi
� i�1�1� i�1�

i�1 �� 1�

It follows that the product �AiBi� does not define an element of ��PSL�2��������0 , so the latter
is not a monoid. �

Note 20. Note that the isotropy subgroup I0 of PSL�2��� at 0 consists of elements repre-
sented by matrices of the form �

1 0
n 1


�

where n � �. In particular, I0 
��.

Recall that we may regard PSL�2���� �PSL�2��� via the constant sequences.

Lemma 2. PSL�2���
�
��PSL�2�����0 = I0.

Proof. Clearly I0 � PSL�2���
�

��PSL�2�����0. If �C � AiB
�1
i � represents an element of

PSL�2���
�
��PSL�2�����0 then �CBi� represents an element of ��PSL�2�����pre

0 . But this is
only the case if C�0� � 0, i.e. C � I0. �

Theorem 4. ��PSL�2�����0 is not a group.

Proof. Consider the sequences �Xi�, �Yi� defined

Xi �

�
i 1

i2 � i�1 i�1


and

Yi �

�
2i�3 �i�2

�2i2�3i�2 i2 �2i�1


�

Each defines an element of ��PSL�2��������0 � ��PSL�2�����0. But

XiYi �

�
2 �1
�1 1
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for all i. By Lemma 2, it follows that the product does not define an element of ��PSL�2����� 0.
�

By Lemma 2, �I0
� �� is a subgroup of ��PSL�2�����0. At present, we know of no others
that are not contained in �I0.

Note 21. In analogy with Note 16 in Germ Example 6, the elements of ��PSL�2����� 0 may
be interpreted as equivalence classes of convergent sequences of PSL�2���-diophantine
approximations (see [Be-Do] for a brief survey). Here, one selects a point t � ���∞� �
∂� in which It �� 1. Then given ξ � ���∞� in the limit set of PSL�2���, a diophantine
approximation of ξ based at t is a sequence Ai � PSL�2��� such that �ξ�Ai�t�� � 0. In
the example considered above, t � ξ � 0.

3. EXAMPLES OF GERMS II

The examples in this section differ from those of 	2 in that G is a topological group,
and the nested set G is contained in a lower dimensional subspace. Here we broaden
our understanding of multiplication in ��G�� in order to accommodate products which are
infinitesimal to elements of ��G�� (rather than contained in ��G��).

3.1. Double Coset Topologies. Let � be a Lie group, �� � a closed Lie subgroup and
Γ �� a discrete subgroup. Denote by p : ��� � the universal cover of �.

An element g � � is called minimal (with respect to ��Γ) if the coset g� projects to a
dense subset of Γ��. A subset T g �� is called a local section (at g) of the quotient map
����� if T g maps homeomorphically onto an open subset containing ḡ� g�. A nested
set T g � �T g

i � is called a basis of local sections (about g) if each T g
i is a local section, and

the image of T g in ��� is a basis about ḡ.

Note 22. If T � �Ti� is a basis of local sections about 1, then for any g � �, there exists
M � 0 such that

(1) g �T �g�1 � �g �Ti �g�1�i�M is a basis of local sections about 1.
(2) T �g � �Ti �g�i�M is a basis of local sections about g.

For g ��, denote by σg�h� � ghg�1 the conjugation map.

Germ Example 9. Let G �� and T � �Ti� be a basis of local sections about 1 which maps
homeomorphically onto its image in Γ��. For g �� minimal, G is defined:

G i �
�

h̃ � �� �� σg�p�h̃�� � Γ �Ti

�
�

We shall denote this germ �����Γ�g.

Note 23. Since p�1�e�
� π1�, we have �π1�� �����Γ�g.

Note 24. We may put Germ Example 6 into this form: by taking � � � p�q , � � R��p�
and Γ ��p�q.

Note 25. If we use another basis T � of local sections about 1, the germ obtained is different.
However, �����Γ�g � ��� maps injectively into ��� (see 	1.3); its image, denoted

�� Γ�g�

is independent of the choice of T .
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Denote
��T �� :�

�

�

Ti � ��ε�

An alternate definition of �����Γ�g is

(5) �����Γ�g �
�
�h̃ � ��� �� � �γ � �Γ such that �� � �γ �σg�p��h̃�� � ��T ��

�
�

The set
������Γ�g � ��γ�

of �γ occurring in (5) is called the dual of �����Γ�g. The set

��Γ�g
ε � ����

of �� occurring in (5) is called the set of rates.
Since� is not discrete, we will define multiplication in �����Γ�g up to �� Γ�g. Specifically,

the product
��h̃����h̃��� � ��h̃����

is defined if the images of ��h̃h̃��� and ��h̃���� in ��� are equal. By Note 25, the algebra of
�����Γ�g is independent of our choice of T .

Proposition 15. If ��� is a group, then the product in �����Γ�g is associative.

Proof. We assume that π1� � 1: the proof in the non simply connected case is identical.
Let ��h��� ��h��� and ��h���� be such that

� ��h����h��� and ��h�����h���� are defined.
� ��h�����h�����h����� is defined.

The first item means that there exists ��h1��, ��h2�� � �����Γ�g and �ε1, �ε2 � ��ε such that

(6) ��h����h��� � ��h1��
�ε1 and ��h�����h���� � ��h2��

�ε2�

In particular, if we let ��γ� ���, ��γ�� ����, ��γ��� ����, ��γ1�
��1� and ��γ2� �

��2� be the duals
and rates of the aforementioned, then equation (6) implies that

(7) ��γ�1 � ������γ���1 � ���� � ���γ1�
�1 � ��1�σg�

�ε1�

and

(8) ���γ���1 � �������γ����1 � ����� � ���γ2�
�1 � ��2�σg�

�ε2��

Now the second item above implies that there exists �� ȟ��, �ε̌, �γ̌ and ��̌ so that

��h����h2�� � ��ȟ���ε̌
or using (8)

��γ�1 � ������γ���1 � �������γ����1 � �����σg�
�ε�1

2 � � ���γ̌��1 � ��̌�σg�
�ε̌��

By (7), we may write this equation as

���γ1�
�1 � ��2�σg�

�ε1���
�γ����1 � �����σg�

�ε�1
2 � � ���γ̌��1 � ��̌�σg�

�ε̌�
or

σg
�
��h1��

�ε1��h
�����ε�1

2

�
� σg

�
��ȟ���ε̌

�
�

Since �� is a group, ��ε is a normal subgroup of ��. This implies that

��h1h���� � ��ȟ�� � ��ε�

that is, the product is associative. �

Corollary 1. If ��� is a group, then �����Γ�g is a groupoid.
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Let us consider the case �� SL�2���, Γ � SL�2��� and � = the 1-parameter subgroup
H� � �A�

r � , (H� � �A�r �)where

A�
r �

�
1 r
0 1

 �
A�r �

�
1 0
r 1


for r � �.

Note 26. The Lie algebra of SL�2��� is generated by

X �

�
0 1
0 0


� Y �

�
0 0
1 0


and Z �

�
1�2 0

0 �1�2


and the vector field generated by X (by Y ) integrates to H � (H�). The calculations we shall
carry out for � � H� are identical to those for � � H�. Accordingly, we shall consider
only H�; for the remainder of this section, we write H � H �.

Note 27. In this case, it is possible to choose local sections Ti to be open neighborhoods
about 1 in the Lie subgroup � whose Lie algebra is generated by Y and Z. It follows that
the ultrascope ��T �� is the group ��ε.

Note 28. Germ Example 8 also arises from a double coset topology, by taking ��� and
Γ � SL�2���.

The germ ��H��SL�2����g appears to be quite complicated: in fact, we offer no theorems and
only some conjectures which we state shortly. To get a feel for the subtlety of ��H�� SL�2����g,
we walk through a sample calculation using the relatively simple choice

g �

� �
2 1

1
�

2


�

The coset of g is

gH �

� �
2
�

2r�1
1 r�

�
2


;

it is dense in SL�2����SL�2��� (it does not define a cycle, and by a theorem of Hedlund
[He], must be dense). Thus g is minimal. The conjugate of H by g is

σg�H� �

�
1��2r 2r
�r 1�

�
2r


�

Proposition 16. For every �γ �
� �a �b

�c �d


� ��H���SL�2����g , we have

� �a�1� �c � ��	2 and �b� �d�1 � ��	2 � ���	2�
�.

� �b � ��a�1�� and �c � ��d�1��.

Proof. Let �γ � �SL�2���, A�r � �H satisfy (5). Then there exists �ε1� � � � �
�ε4 � ��ε such

that

(9) �γ �σg�A�r� �

�
1� �ε1

�ε2
�ε3 1� �ε4


�

Carrying out the product on the left hand side gives the equations in �a� �b:
�a�
�

2�a�r� �b�r � 1� �ε1

2�a�r� �b�
�

2�b�r � �ε2
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which in turn yield

(10)
�

2�a� �b �
�

2�1� �ε1��
�ε2�

or
�a�

�b�
2
� 1���ε1 �

�ε2�
2
��

It follows that �a�1� ��	2 and �b � ��a�1�� � ��1�
	

2 � ���	2�
�. Equation (10) also

shows that �b � ��	2. The calculation is qualitatively the same for �c��d; the details are
left to the reader. �

Conjecture 2. ��H���SL�2����g is not a group.

Note 29. The evidence for this conjecture, we believe, comes from the fact that the germ
��H��SL�2��� is the fundamental germ (based at g) of the horocyclic flow on the unit tangent
bundle T1��PSL�2����� 2 � of the modular orbifold (see 	4.7). This horocyclic flow is dual
to an Anosov flow on T1

��PSL�2����� 2 �, whose fundamental germ (at x) is ��PSL�2�����x

(see Note 50, 	4.5). As such, the dual ��H���SL�2����g should be related to some ��PSL�2�����x,

x � S1, which we have seen in the case of x � 0, is not a group.

For X � ��, the galaxy of X is defined µ�X� � �µ��x� � �x � X� (see 	1.2 for the defini-
tion of µ�x�). If X �Y are two sets, X�Y � �x�y � x � X � y � Y�.
Proposition 17. If A�r � ��H��SL�2����g, then

�r � µ���	2�

µ�0�

� µ����	2�
��

µ�2�
�

Proof. We have

�r � �
�a�1� �ε1�

2�a� �b
� �

�
2��a�1� ε1�

2�a�
�

2�b
�

But (10) says that 2a�
�

2b� 2 mod ��ε . Thus

�r �
�b�
�

2�ε1

µ�2�
� µ����	2�

��
µ�2�

�

Using the equations arising from (9) that involve �c, �d one obtains the second inclusion
�r � µ���	2��µ�0�. �

Note 30. The ease with which we were able to eliminate �r in obtaining (10) is not possible
for more general g. In particular, we do not obtain a nice general description of the elements
of ��H��g and ��H���g using the groups ��r.

Let Γ be a co-finite volume Fuchsian group (i.e. Γ�� 2 is of finite volume). The horo-
cyclic flow on T1��Γ�� 2 � is dynamically well-behaved in many respects. For example, [Da-
Sm], all of the dense orbits are uniformly distributed with respect to the unique SL�2���
invariant measure. When Γ is co-compact, the horocyclic flow is uniquely ergodic [Fu].
Although the germ ��H��Γ�g contains much finer (metrical) information than that comprised
by the aforementioned ergodicity (measure theoretic) results, we nevertheless state the fol-
lowing, very optimistic conjecture.

Conjecture 3. Let Γ be a co-finite volume Fuchsian group. Then for any g � SL�2���
minimal with respect to Γ, ��H��Γ�g is a group.
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Now consider the subgroup G � �Br� of SL�2��� consisting of matrices of the form

Br �

�
er�2 0

0 e�r�2


�

r � �.
Let Γ be a co-finite volume Fuchsian group. The germ ��G��Γ�g is a groupoid by Corol-

lary 1; it is the fundamental germ of the geodesic flow on T 1��Γ�� 2 � (see 	4.7). The
geodesic flow is in contrast rather badly behaved from the point of view of ergodic theory,
so here we make the following conjecture.

Conjecture 4. Let Γ be a co-finite volume Fuchsian group. For any g � SL�2��� minimal
with respect to Γ, ��G��g is not a group.

3.2. Locally Free Lie Group Actions. Let � be a k-dimensional Lie group, X � M n a
subspace of an n-dimensional smooth manifold, n � k, and θ : �� ������X� a contin-
uous homomorphism. We say that θ is locally free if for all x � X , the isotropy subgroup
Ix �� is discrete.

A transversal to θ at x is a submanifold T of M of dimension n�k such that x � T , and
the intersection of the orbit Orb�x� � θ��� �x with T is totally-disconnected. Let T � �Ti�
be a neighborhood basis about x in T , and denote by p : ���� the universal cover.

Germ Example 10. G is defined by

Gi � �g̃ � �� � θp�g̃��x� � Ti��
We denote this germ �����X�x.

Note 31. We may put Germ Example 9 in this form by taking���, X � M n � Γ�� and
the action θ is that induced Γ�� by right-multiplication in �.

Note 32. We must define multiplication in �����X�x up to ��, as in 	3.1.

Let Mn be a Riemannian manifold. Fix a point x � M n and a tangent vector v � TxM.
Let l be the complete geodesic determined by v, X its closure (itself a union of geodesics).
Then there is a locally free action of� given by geodesic flow along X . Denote the resulting
germ ��M�v � ��. If l is a closed geodesic, then ��M�v is isomorphic to �� and is hence a
group. The following is a relative of Conjecture 4:

Conjecture 5. Let M2 � Σ be a hyperbolic surface, v � T�Σ a vector which is not tangent
to a closed geodesic. Then ��Σ�v is not a group.

4. THE FUNDAMENTAL GERM OF AN ALGEBRAIC LAMINATION

This section contains the definition of the fundamental germ for four types of lami-
nations: suspensions, quasi-suspensions, double-coset foliations and laminations arising
from the action of a Lie Group. We shall refer to these types of laminations as algebraic
laminations for the duration of this paper.

4.1. Laminations. A deck of cards is a product �n ��, where � is a topological space.
A card is a subset of the form C � O����, where O� �n is open and � � �.

A lamination of dimension n is a space L equipped with a maximal atlas A � �φ α�
consisting of charts with range in a fixed deck of cards � n ��, such that each transition
homeomorphism φαβ � φβ Æφ�1

α satisfies the following conditions:

(1) For every card C � ����φαβ�, φαβ�C� is a card.
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(2) The family of homeomorphisms �φαβ������ is continuous in �.

An open (closed) transversal in L is a subset of the form φ�1
α ��x����� where �� is

open (closed) in �. An open (closed) flow box is a subset of the form φ�1
α �O����, where

O is open and �� � � is open (closed).
A card in L is a subset of the form φ�1

α �C� for C a card in the deck �n��. A leaf L�L
is a maximal continuation of overlapping cards in L . A lamination is weakly minimal if it
has a dense leaf; it is minimal if all of its leaves are dense.

A lamination map f : L� L � is a continuous map which respects the leaf structure: for
every leaf L� L , f �L� is contained in a leaf of L �.

If the transitions φαβ are smooth and �φαβ������ is a normal family of smooth homeo-
morphisms, we say that L is a smooth lamination. A Lie group lamination is a smooth lam-
ination L which has the structure of a group, in which the group operations yield smooth
lamination homeomorphisms.

Theorem 5. �������� �τ�� has the structure of a Lie group lamination.

Proof. Let � � ����, equipped with the �τ�-quotient topology. T is a real infinite di-
mensional vector space. The quotient map �� � � gives �� the structure of a smooth
lamination with leaves the cosets �x ��. It is clear that addition and inversion define
lamination maps. �

Note 33. Note that

�fin :� ��fin�� 
� ��ε �

the isomorphism being a homeomorphism with respect to the �τ�-topology. In this case, the
projection ��fin � �fin has a canonical section Tfin� ��ε . Hence ��fin is diffeomorphic
to the deck of cards �� ��ε .

4.2. The Fundamental Germ of a Suspension. Let B be a manifold, F a 2nd countable
metrizable space and ρ : π1B� ������F� a representation. The suspension of ρ is the
space

L � �B�ρ F

defined by quotienting the product �B�F by the diagonal action of π1B :

α � �x̃� t� � �α � x̃� ρα�t���

The diagonal action is properly discontinuous and leaf preserving, hence L is a lamination.

Note 34. L is a fiber bundle over B with model fiber F . If K � ker�ρ� and �L�x� � L is a
pointed leaf, we have K�π1�L�x�. L is weakly-minimal if and only if ρ�π1B� has a dense
orbit.

Note 35. The restriction p�L of the projection p : L � B to a leaf L is a covering map.
Suppose that pL is a normal covering (we say that L is normal). The deck group D L of p�L
has the property that

DL � x � L�Fx�

where Fx is the fiber of p through x. In particular, if we give �L�Fx� � Fx the subspace
topology, we have an inclusion

DL �� ������L�Fx��
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Let L be a weakly-minimal suspension with �L�x� a normal, pointed dense leaf. In
keeping with the intuition outlined in the introduction, we want to construct the fundamen-
tal germ from tail-equivalence classes of sequences in π1B which translate x to sequences
in L
�

Fx converging in to x. If L is not simply connected, then these sequences should take
into account the topology of L i.e. we want �π1�L�x� to be a subgroup of the germ. The
following definition accomplishes these goals.

Let
ρ0 : π1B�� ������L�Fx�

be the composition

π1B�� π1B
Æ
�p�L���π1L� 
� DL �� ������L�Fx��

Definition 1. The fundamental germ of L at x is

��π��1�L �x� :� ��π1B��x�

where the germ ��π1B��x is obtained by pulling back a basis �Ui� � L�Fx about x along ρ0.

Note 36. If G � �Gi� is the induced nested set, we have

�p�L���π1L� �
�

Gi�

Hence ��π��1�L �x� contains a subgroup isomorphic to �π1�L�x�.

On the other hand, we saw in 	 2.3, Germ Example 7, that given t � F, the representation
ρ used to define L defines a germ

��π1B��t �

Theorem 6. Let �x̃� t� � �B�F be any point lying above x � L . Then

��π��1�L �x� � ��π1B��t �

Proof. We have π1L
� It = the isotropy subgroup of ρ�π1B� at t. The action of ρ�π1B��It
on the orbit of t is the same as the action of DL on Fx � L. It follows that the germs so
obtained are equal. �

The next three sections are devoted to calculating fundamental germs of some well-
known suspensions, using the results of 	2.

4.3. Inverse Limit Solenoids. A solenoid is a lamination in which F is a totally-disconnected
space.

Let C � �ρα : Mα�M� be an inverse system of pointed manifolds and normal covering
maps with initial object M; denote by�M � �MC :� lim��Mα

the limit. By definition, �M �∏Mα ; thus elements of �M are denoted �xα�, where xα �Mα.

Note 37. We may identify the universal covers �Mα with �M and choose the universal cov-
ering maps �M � Mα to be compatible with the system C . By universality, there exists a
canonical map

i : �M� �M�

Let Hα � �ρα���π1Mα�. Associated to C is the inverse limit of deck groups

π̂1M :� lim�� π1M�Hα�
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Note 38. By universality of inverse limits, the projections π1M� π1M�Hα yield a canon-
ical homomorphism

ι : π1M �� π̂1M

with dense image.

Note 39. π̂1M is a Cantor group. The closures of the images ι�Hα� are clopen, and give a
neighborhood basis about 1.

Note 40. An element ĝ � �gα� � π̂1M acts on x̂ � �xα� � �M by the rule

ĝ � x̂ � �gα � xα��

This action preserves the fiber Fx̂ through x̂. Conversely, any two elements of Fx may are
related by some ĝ � π̂1M.

Let ρ : π1M� ������π̂1M� be the right multiplication representation, defined

ρα�ĝ� � ĝ � �ι�α���1�

Proposition 18. �M is homeomorphic to the suspension

�M�ρ π̂1M�

In particular, �M is a solenoid.

Proof. Let

ϒ : �M� π̂1M �� �M
be the map defined �x̃� ĝ� �� ĝ � i�x̃�. ϒ is invariant with respect to the diagonal action of
π1M, and descends to a homeomorphism �M�ρ π̂1M� �M. �

By Note 39, it follows that we may take G � �Hαi� to be a nested sequence cofinal in
�Hα�. Then for any x � �M, ��π��1� �M�x� is equal to the germ ��π1M��G (see Germ Example
2) . If G is cofinal in the lattice of normal finite index subgroups of π 1M, we obtain the
pro-finite germ ��π1M��ε̂.

Note 41. A manifold M is an inverse limit solenoid with respect to the trivial inverse system
�id : M�M�. Here π̂1 � 1. The representation ρ is therefore trivial and induces the nested
set Gi � π1�M�x� for all i. It follows that

��π��1�M�x� � �π1�M�x��

4.4. Linear Foliations of Torii. Let V be a p-dimensional subspace of � p�q . Denote
by �FV the foliation of �p�q by cosets v�V . The image FV of �FV in the torus �p�q �
�p�q��p�q gives a foliation of the latter by Euclidean manifolds.

V may be regarded as the graph of a q� p matrix map

R : �p � �q

whose columns are �-linearly independent. Let ρ :� p��q be the representation obtained
by composing R with the quotient �q � �q (see 	2.2, Germ Example 6). Here, we view
�q � ��������q�.

Proposition 19. FV is homeomorphic to the suspension � p �ρ�q.
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Proof. Let P0 : �p�q � �p ��q be the map defined

�p ��q � �x� y� ��� �
x� y�Rx

�
�

where w is the image of w � �q in �q. Let P be the composition of P0 with the projection
ξ : �p ��q� �p �ρ�q. Then P is a covering homomorphism with kernel � p�q, hence
�p �ρ�q 
� �p�q. Since V � �x�Rx�,

P�V � � ξ��p �0� ;

thus P�V � is a leaf of the suspension. It follows that P defines a lamination map �FV �
�p �ρ�q which descends to the desired homeomorphism. �

Note 42. Let ri be the ith column vector of R. If r i � �q for all i, the leaves of FV are
homeomorphic to � p and are not dense. If at least one of the r i has an irrational coordinate,
then the leaves of FV are non-compact and dense, homeomorphic to the quotient of � p by
a lattice with as many generators as rational r i.

Let ��p
R be the germ defined in Germ Example 6. The following is an immediate con-

sequence of Proposition 19:

Corollary 2. ��π��1�FV �x� � ��p
R.

4.5. Anosov Flows. Let Σ � � 2�Γ be a finite volume hyperbolic surface and let ρ : Γ�
������S1� be defined by extending the action of Γ on � 2 to ∂� 2 � S1. The suspension

FΓ � � 2 �ρ S1

is called the Anosov flow.

Proposition 20. The underlying space of FΓ is homeomorphic to the unit tangent bundle
T1
�Σ.

Proof. Let v � T1
��

2 be based at z � � 2 . Let x � ∂� 2 � S1 be the terminus of the oriented
geodesic determined by v. The map T1�� 2 � � 2 � S1 defined v �� �z�x� descends to the
desired homeomorphism. �

If z is any point in the leaf which is the image of � 2 ��x�, x � S1. Then

��π��1�FΓ�z� � ��Γ��x�
where ��Γ��x is the germ considered in Germ Example 7 of 	2.3. For Γ � PSL�2��� and
x � 0, we have seen that ��π��1�FPSL�2����z� � ��PSL�2�����0 is not a group.

4.6. The Fundamental Germ of a Quasi-Suspension. Let L � �B�ρ F be a suspension
over a base B. We say that L is normal if the restriction pL of the projection p : L � B to
any leaf L is a normal covering.

Assumption. Throughout this section, L will be a normal, weakly minimal suspension.

We define an action of π1B on L by

x �� γ̄ � x�
where x � L and γ̄ is the image of γ � π1B in π1B��pL���π1L� 
� DL = the deck group of
pL.

A lamination homeomorphism f : L � L is weakly fiber-preserving if for every fiber
Fx,

(11) f �Fx� �
n�

i�1

Exi �
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where Ex � Fx denotes a subset of the fiber Fx. The collection �����ω����L� of weakly
fiber-preserving homeomorphisms is clearly a group.

Note 43. Since the fibers are disjoint, each Ex occurring in (11) must be open. In particular,
if F is connected, a weakly fiber-preserving homeomorphism is fiber-preserving. Thus, the
concept of a weakly fiber-preserving homeomorphism is most interesting when the fibers
are totally disconnected: that is, when L is a solenoid.

Suppose H � �����ω����L� is a subgroup acting properly discontinuously on L . The
quotient

L� � H�L
is called a quasi-suspension (over B).

Let �L�x� be a pointed dense leaf of L , F the fiber through x. Denote by �L ��x�� the
image of �L�x� in L �, and by F � the image of an open subset F � � F which is evenly
covered by the union H �F �. Let G be the group generated by the actions of π 1B and H on
L .

Note 44. A sequence �x�α� of points converging to x� in F � lifts to a set of sequences in
L indexed by H: each sequence is a translate by some h � H of a lift �x α� � F � which
converges to x. On the other hand, any sequence of the form �h αxα�, where hα � H,
projects to �x�α� as well.

Let Ui be a neighborhood basis about x � F . Define a nested set G � �G i� in G by

Gi � �hγ � h � H� γ � π1B and γ̄ � x �Ui��
Denote by ��G��x� the corresponding germ. In view of Note 44, the following definition is in
keeping with our over-riding intuition.

Definition 2. The fundamental germ of the quasi-suspension L � at x� is defined

��π��1�L��x�� � ��G��x� �

Note 45. By definition of G , both �π1�L�x� and �H are subgroups of ��π��1�L��x��. In
addition, the quotient map L � L � induces an inclusion

��π��1�L �x� �� ��π��1�L��x���

The following is an important example which comes from holomorphic dynamics.
Let U�V � � be regions conformal to the unit disc, with U � V . A proper conformal

map f : U � V is called a polynomial-like map. The conjugacy class of f is uniquely
determined by a pair

�p�∂ f ��

where p is a complex polynomial of degree d and ∂ f : S 1 � S1 is a smooth, expanding
degree d map of S1 [Do-Hu].

The limit of the inverse system

�S1 � lim���S
1 ∂ f�� S1 ∂ f�� S1 ∂ f�� � � ��

is an inverse limit solenoid which may be identified with the suspension

��ρ ��d�

where ��d is the group of d-adic integers and ρ :�� ��������d� is the representation

ρm�n̂� �� n̂�m�
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Note 46. Every leaf of �S1 is homeomorphic to �. ∂ f defines a map of the inverse system
S1� S1� S1� � � � to itself, which induces a homeomorphism ∂ f̂ : �S1� �S1.

Let �A denote the suspension

� 2 �ρ ��d

obtained by extending to � 2 � ��d the twist identification used to define ��ρ ��d e.g.

�z� n̂� 
 �γm � z� ρm�n̂��

for m ��, where

γ �

�
1 1
0 1



is the affine extension of the map x �� x�1 to � 2 . The base of the suspension � 2 �ρ ��d is
thus the singular hyperbolic annulus A � �γ��� 2 .

The map ∂ f̂ extends to a weakly fiber-preserving homeomorphism f̂ : �A� �A which acts
properly discontinuously on �A.

Note 47. There exists a hyperbolic structure on L such that f̂ is an isometry [Su].

The quotient �S f :� � f̂ ���A
is a quasi-suspension called the Sullivan solenoid [Gh], [Su].

Note 48. The action of π1A
��on �A is induced by the map �z� n̂� �� �z� n̂�m� on � 2� ��d.

Theorem 7. For any x� � �S f , ��π��1��S f �x�� is isomorphic to the Baumslag-Solitar germ
��G����.

Proof. Let γ denote the generator of π1A, regarded (see Note 48) as a homeomorphism of�A. Then

f̂ γ f̂�1 � γd �

It follows that the group G generated by γ and f̂ is isomorphic to the Baumslag-Solitar
group G�� (see Germ Example 3, 	2.1). The nested set G considered there corresponds
exactly to the nested set used to define ��π��1��S f �x��. �

Corollary 3. ��π��1��S f �x�� is a group.

4.7. The Fundamental Germ of a Double Coset Foliation. Let � be a Lie group, �
a closed Lie subgroup, Γ � � a discrete subgroup. The foliation of � by left cosets g�
descends to a foliation F��Γ of Γ��, called a double coset foliation.

Suppose that F��Γ is weakly minimal and g �� is minimal4. Denote by ḡ the image of
g in Γ��. Let T � �Ti� be a nested sequence of local sections about 1 and take G to be
the nested set defined in Germ Example 9, 	3.1.

Definition 3. The fundamental germ of the double coset foliation F��Γ at ḡ is

��π��1�F��Γ� ḡ� � �����Γ�g�

4See �3.1 for this and other definitions used in this connection.
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Note 49. Let �h̃α� be a sequence representing an element of �����Γ�g. Note that for any i,
eventually

g � p�h̃α� � Γ �Ti �g�
Let ḡα denote the image of g � p�h̃α� in Γ��. Note that there exists i such that Ti �g projects
to a transversal T through ḡ. Then eventually �ḡ α� � T and converges to ḡ. Thus, Defini-
tion 3 conforms to our guiding intuition.

Proposition 21. Suppose that for g�g � �� are minimal and ḡ � ḡ�. Then

�����Γ�g 
� �����Γ�g� �

Proof. By hypothesis, there exists γ � Γ with g � � γg. Let T be the basis of local sections
about 1 used to define �����Γ�g, G � �� the corresponding nested set. Given h̃ � Gi, by
definition

σg�p�h̃�� � Γ �Ti�

Since σg� � σγ Æσg, this implies

σg��p�h̃�� � σγ�Γ �Ti� � Γ �σγ�Ti��

By Note 22 (1), σγ�T � is a basis of local sections about 1. By Note 25 and the fact that

multiplication is defined in ���, the germs calculated at g and g � must be isomorphic. �

Let Γ be a co-finite volume Fuchsian group. Denote by Σ � Γ�� 2 and by T1�Σ the unit
tangent bundle of Σ.

Recall that every v � T1�� 2 determines three oriented, parametrized curves: a unique
geodesic γ and two horocycles ��, �� tangent to , respectively, γ�∞� and γ��∞�. By
parallel translating v along these curves, we obtain three flows on v � T 1�� 2 . The three
flows are Γ-invariant, and define flows on T1�Σ. The corresponding foliations are denoted
F γ

Γ , H �
Γ and H �

Γ .
Let � � SL�2��� and consider the following three choices for �: B and H 
, the 1-

parameter subgroups considered in Germ Example 9, 	3.1.

Proposition 22. The foliations FG�Γ and FH��Γ are homeomorphic to F γ
Γ and H 


Γ , respec-
tively.

Proof. Given v0 � T1
��

2 and A � SL�2���, the map A �� A��v0� descends to a homeomor-
phism

(12) Γ�SL�2��� �� T1
�Σ

taking FG�Γ and FH��Γ to F γ
Γ and H 


Γ , respectively. �

In particular, if v corresponds to ḡ via (12), we find that

��π��1�F
γ

Γ �v� � ��G��g and ��π��1�H 

Γ �v� � ��H
��g�

Note 50. The Anosov foliation FΓ is homeomorphic to the sum F γ
Γ �H �

Γ . In particular,
H �

Γ is complimentary to FΓ. This explains are belief that the duals ��H
���Γ�g should be

related to ��Γ��x for some x � S1 (see Conjecture 2).
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4.8. The Fundamental Germ of a Locally Free Lie Group Action. Let � be a Lie
group of dimension k, Mn an n-manifold, n � k, X � Mn. Let θ : �� ������X� be a
locally free representation5. X has the structure L� of a lamination, whose leaves are the
orbits by � [Go].

Choose a point x � X , a transversal T to θ at x and a neighborhood basis T about x in
T .

Definition 4. The fundamental germ of L� at x is

��π��1�L��x� � �����x�

5. NON-STANDARD COMPLETIONS I

Let G be a group, G a nested set about 1, ��G�� the associated germ. In this section, we
assume that G is either a nested sequence of subgroups, or obtained from a neighborhood
basis in a topological group. In this case, we may translate G by elements of G to obtain
a metrizable topology. We use this topology to associate to G two topological spaces: a
standard completion �G and a non-standard completion ��G ��.

If G is sufficiently well-behaved, both completions will be groups. In either event, ��G��

acts on the left on ��G �� by homeomorphisms, and the quotient gives a homeomorphism

��G�����G �� � �G
(the homeomorphism being an isomorphism when the completions are groups). The prin-
ciple role ��G �� will play is that of a unit space for an enhanced groupoid structure on ��G��
(see 	7). These considerations will be used in 	12 to construct laminated coverings.

We begin by motivating the non-standard completion with a simple example. Then, in
the interest of clarity, we shall define the non-standard completion following the path of
examples of 	1 and 	2. There will be some overlap with [Ro, 	4, 8] and [Gol], however we
will more or less keep our notation and terminology.

5.1. A Motivating Example. Let �� � �� be the non-standard rationals equipped with
the induced �τ-topology. Consider the subring

��fin � �� � ��fin

of bounded elements.

Note 51. ��fin is a local ring with closed maximal ideal
��ε � �� � ��ε �

(See Proposition 7.) The quotient ��fin�
��ε is then a topological field with respect to the

quotient �τ-topology.

Proposition 23. ��fin�
��ε and � are isomorphic as topological fields.

Proof. 6 Let �q� ��ε be a coset of ��fin�
��ε . Note that �q� ��ε can contain at most

one rational number. Given �q� � �q� ��ε , define D1 � �q � � � q � �q�� and D2 �
�q � � � q � �q��. The pair �D1�D2� defines a Dedekind cut, hence a real number r. The
association �q� ��ε �� r defines the desired isomorphism. �

That is: the quotient ��fin�
��ε is isomorphic to the completion of � with respect to the

Euclidean topology.

5See �3.2 for definitions.
6This argument is due to Robinson [Ro, pp. 56].
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5.2. Nested Subgroups. Suppose that G � �Hi� is a nested sequence of normal subgroups
of G. As we have seen in 	1.4, the associated germs �G� and ��G�� are groups. There is
another group which can naturally be formed from the data given by G : the pro-group �G,
defined �G � lim��G�Hi�

The relationship is:

Theorem 8. There exist groups �G �, ��G �� containing respectively �G� and ��G�� as normal
subgroups such that

�G ���G� 
� �G 
� ��G �����G���

Proof. Let G denote the group of sequences �g i� in G which satisfy

(13) gig
�1
j � Hi

for all i� j with j � i. For each X � �, define GX by restriction to the X-indices and

�G � � lim�� GX �

Note that GX � ∏i�X Hi is a normal subgroup of GX , hence �G�� �G �.
Define

QX : GX ��∏
i�X

G�Hi

by �gi� �� �giHi�. Since �gi� satisfies �13�, whenever j � i, g jHj maps onto giHi by the
projection G�H j � G�Hi. It follows that QX �GX� � �G and ���QX � � GX . The QX are
compatible with the direct limit and yield the desired isomorphism �G ���G� 
� �G.

Let �G be the set of sequences �gα� which satisfy the condition: for every i, there exists
N such that

(14) gαg�1
β � Hi

whenever α�β � N. Given �gα�, �hα� � �G and i, choose N so that both sequences satisfy
�14�. Then for α�β � N,

�gαhα��gβhβ�
�1 � gαHig

�1
β � gαg�1

β Hi � Hi�

Thus �G is a group. Define
��G �� � lim��

�G

to be the direct limit group (with respect to the index-restriction homomorphisms PX of
	1.1).

Let ι : G� �G be the canonical map. A sequence �gα� satisfying �14� is convergent with
respect to the pro-topology, hence the image �ι�g α�� converges to some element ĝ � �G.
This defines a homomorphism Q : �G� �G with ���Q� � �G . Since QÆPX � Q and

��G�� � lim��
�G �

we have ��G �����G�� 
� �G. �

The group (�G �) ��G �� is called the (lock-step) non-standard completion. In analogy with
	1.2, there are two obvious ways we may topologize this group. Let H � �g αH iα� be a
nested sequence of cosets in which iα� ∞. The ultraproduct

�H ���� :� ∏
�

�gαH iα�
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is called an infinitesimal coset. The collection of infinitesimal cosets forms a basis for a
topology on ��G �� which we call the internal topology, denoted �τ�. �G � in turn is given the
subspace topology through the inclusion �G �� ��G ��.

Note 52. ��G�� (�G �) is a topological group in the �τ�-topology, and the germ ��G�� (�G�) is
an open subgroup. For this reason, the isomorphisms appearing in Theorem 8 are not
homeomorphisms with respect to the quotient �τ�-topology.

The enlargement topology �τ on �G is generated by the non-standard cosets
��gH��

where g � G and H � Hi for some i. ��G �� and �G � are �τ-topologized as subsets.

Note 53. ��G �� (�G �) is a (non-Hausdorff) topological group in the �τ-topology, and the
germ ��G�� (�G�) is a closed subgroup. The isomorphisms appearing in Theorem 8 are home-
omorphisms in the quotient �τ-topology.

Proposition 24. If G consists of finite-index subgroups, then ��G �� � �G.

Proof. 7 In this case, �G is compact. Let �g � �G. Suppose that given a representative �gi�,
there exists no X � � such that �gi��X converges to a point of �G. For each ĝ� �G, let Oĝ � ĝ
be an open set in �G and Xĝ � � such that gi ��Oĝ for all i � Xĝ. The collection of Oĝ defines
an open cover of �G; let Oĝα be a finite subcover, α � 1� � � � �k. Then X �

�
Xĝα � � and

�gi��X � �G, which is absurd. �

Note 54. Unless G is trivial, not every element of �G is represented by a sequence �gi�
satisfying (13). Thus �G �� �G.

Note 55. If G ��, then every subgroup is finite-index, so ����� � ��.

Note 56. If the subgroups Hi are of infinite index, the pro-group �G is not compact. Then
��G�� � �G: any infinite sequence �gα� (i.e. not compactly contained) does not converge
with respect to G .

5.3. Topological Groups. Suppose� is a topological group and G � �U i� is a neighbor-
hood basis about 1. Let �r denote the natural right uniformity on �: it is generated by sets
of the form

(15) Ui � ��g�h� ���� � hg�1 �Ui��
The left uniformity �l is defined by replacing hg�1 in (15) by h�1g.

Note 57. The completion ��r (��l) of � with respect to �r (�l) is a topological space, and
the right (left) uniformity extends to ��r (��l) [Kel].

Let �G r denote the set of all �r-Cauchy sequences in �, ��� ��r the �-direct limit. Let
��� ��r�fin denote the subset consisting of elements represented by sequences converging to
elements of �. We define similarly ��� ��l�fin.

Lemma 3. ��� ��r�fin � ��� ��l�fin.

Proof. Given g ��, the left and right translates of the neighborhood basis about 1, �gU i�
and �Uig�, give bases about g which are compatible. If g i � g with respect to either the
left or right uniformity, then it converges with respect to both neighborhood bases. �

7This argument is due to [Ro, pg. 93]
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We thus drop r� l subscripts and write ��� ��fin.
The internal topology �τ� on ��� ��r is generated by ultraproducts �H ���� of nested open

sets of the form H � �Uiαgα�, iα � ∞. We use the inclusions ����� � ��� ��fin � ��� ��r to
give ����� and ��� ��fin the internal topology.

Note 58. ��� ��fin is a topological group in the �τ�-topology and the germ ����� is an open
subgroup.

The enlargement topology �τ is generated by the non-standard translates ��Ug�, where
U �Ui for some i and g ��.

Theorem 9. Let � be a topological group.

(1) ����� � ��� ��fin and
� 
� ��� ��fin�������

a topological isomorphism with respect to the quotient �τ-topology.
(2) ����� acts by left-multiplication on ��� ��r with

��r � ��������� ��r�

a homeomorphism with respect to the quotient �τ-topology.

Proof. (1) Given �gα� a sequence representing an element of ��� ��fin, let g denote the ele-
ment of � it converges to. For any �hα� representing an element of �����, we have

lim gαhαg�1
α � lim ghαg�1 � 1�

Thus ����� � ��� ��fin. The action of ����� identifies precisely those sequences having the
same limit, hence the quotient is �. The quotient �τ-topology is taken to the topology of
�.

(2) Left multiplication by elements of ����� preserves the property of being Cauchy.
Indeed, let �gα� be Cauchy and let �hα� represent an element of �����. Then

lim hβgβ g�1
α h�1

α � lim hβh�1
α � 1

as α�β� ∞: hence the sequence �hαgα� is Cauchy.
Equivalent Cauchy sequences are precisely those which differ on the left by a sequence

�hα� representing an element of �����. The quotient of the �τ-topology on ��������� ��r is
taken to that of ��r, and we obtain the desired homeomorphism. �

If �l � �r, we drop subscripts and write �� and ��� �� for the standard and non-standard
completions of �.

Theorem 10. Let � be a topological group in which � l � �r. Then �� and ��� �� are
topological groups, ����� � ��� �� and

��� �������� 
� ���

a topological isomorphism in the �τ-topology.

Proof. Since �l = �r, the family �σg�g�� of conjugation homeomorphisms, σg�x� �
gxg�1, is equicontinuous at 1. Thus, given U a neighborhood of 1, there exists V a neigh-
borhood of 1 with σg�V � � U for all g � �. If �gα�� �hα� are two Cauchy sequences,
choose N so that for α�β � N,

gαg�1
β � hαh�1

β � Ui�
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Then
�gαhα��gβhβ�

�1 � gαUig
�1
β � σgα�Ui� �gαg�1

β � Uni �Ui�

where ni�∞ as i�∞ (the last inclusion follows from uniform continuity of conjugation).
Thus ��� �� is a group. We leave the rest of the details of the proof to the reader. �

Note 59. If �� is compact or abelian, then �l =�r.

We also have the following generalization of Proposition 24 (with identical proof):

Proposition 25. If �� is compact then ��� �� = ��.

6. NON-STANDARD COMPLETIONS II

In the next set of examples, the completion construction is not automatic. In particular,
we will have to impose a condition called topological tameness on the nested set G in order
to obtain the completions �G and ��G �� of 	5.

6.1. Action Topologies. Let G be a group, ρ : G� ������F� a representation, where
F is a metric space. We fix, as in 	2.3, t � F minimal with respect to the action of ρ�G�.
Recall that the nested set G � �Gi� is obtained through a neighborhood basis �Ui� about
t: that is, Gi � �g � G � ρg�t� �Ui�. Let

Br � �Gig � g � G and i � ��
be the collection of right cosets with respect to G .

On the other hand, for every open set U � F , let

GU � �g � G � ρg�t� �U�
and τF � �GU�. τF defines a topology on G.

Definition 5. We say that G (or ��G��) is topologically tame if B r generates τF . We say that
a suspension L is topologically tame if its fundamental germ is topologically tame.

We will need the condition of topological tameness in order to construct the non-
standard completion ��G ��r and obtain an analogue of Theorem 9.

Note 60. It is not a difficult exercise to show that the set of left cosets B l generates τF .
Unfortunately, the corresponding germ completion ��G �� l cannot be used in upcoming ap-
plications e.g. especially in the construction of germ covering spaces (see 	12).

Note 61. Germ Examples 1,2,4 and 5, viewed as action topologies, are topologically tame.

The following result shows that the condition of topological tameness is non-trivial.

Proposition 26. ��PSL�2�����0 is not topologically tame.

Proof. For any i� j and B � PSL�2���, we have G iB�G j �� /0. Indeed, let

Aα �

�
0 �1
1 α


�

α � 1�2� � � � . Then �Aα� represents an element of ��PSL�2��������0 and

lim AαB�0� � 0�

Thus for α large, AαB � Gi �G jB. Assuming that Br forms a basis for a topology, we
would not be able to separate I from any other B � PSL�2���. It follows that such a
topology could not be equal to τF . �
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Note 62. There is a way to modify elements of ��PSL�2����� by replacing sequences �A i�
by sequences of the form

�AiOi��
where the Oi � SO�2���, so as to obtain a geometric germ which satisfies an analogue of
topological tameness [Ge1], [Ge2].

Assume now that ��G�� is topologically tame. Below, Bδ�x� means the open d-ball in F
of radius δ and center x. A sequence �Ui� of nested open sets in F is called regular if for
all i, Ui�1 �Ui.

Let H � �Giαgα� be a nested sequence of right cosets. Define δα by

δα � inf
	

δ � 0
�� Bδ�gα�x�� Giαgα�x�



�

We say that H is regular if

(1) �Bδα�gα�x��� is a regular nested sequence of open sets in F .
(2) lim δα � 0 and lim iα � ∞.

An ultraproduct

�H ���� � ∏
�

Giα gα

of a regular nested set of cosets is called an infinitesimal coset. We define the non-standard
completion

��G �� � ��G ��r �
�

�H �����

where the union is over all infinitesimal cosets.
The �τ-topology is generated by sets of the form

��Gig� � ��G ���

For ��g ��1, ��g ��2 � ��G ��, write

��g ��1 
 ��g ��2

if there exists an infinitesimal coset �H ���� such that ��g ��1� ��g ��2 � �H ����.
The following Proposition is immediate.

Proposition 27. If ��g ��1 
 ��g ��2, there exists an element ��h�� � ��G�� such that

��h�� � ��g ��1 � ��g ��2�

Let �F denote the metric space completion of F. We define a map

Θ : ��G ���� �F
by ��g �� �� x̂ � limgα�x�, where �gα� represents ��g ��.

Theorem 11. Θ induces a homeomorphism

Θ�� : ���G ���
��� �F �

Proof. Since ��G �� is topologically tame, it follows that Θ is surjective. On the other hand,
Θ���g ��� � Θ���g ���� � there are representatives �gα�, �g�α� such that �gα�x��, �g�α�x��
are equivalent Cauchy sequences � there exists an infinitesimal coset �H ���� containing
both of ��g ��, ��g ��� � ��g �� 
 ��g ���. Thus Θ�� is a bijection. By definition, the quotient
�τ-topology on ��G ���
 is related bi-continuously with the topology of �F . �
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6.2. Quasi-suspensions. Let L � �B�ρ F be a weakly-minimal, normal, topologically
tame suspension. We assume as in 	6.1 that F is a metric space. Let H � �����ω����L�
be a subgroup acting properly discontinuously on L , and L � � H�L the associated quasi-
suspension. See 	4.6 for the relevant notation and terminology.

Fix x� � L� and x � L covering x�. Let F� be a transversal through x� evenly covered by
the set of translates

H �F � �
�

γ�H

γ �F ��

where x � F � � F is an open subset of the fiber through x. We may give F � a metric with
respect to the identification F � � F �.

Define a topology τF� on G corresponding to that of F � as follows: if U ��F� is covered
by U � F �, then τF� consists of sets of the form

GU� � �g � G � g�x� � H �U��
Let B be the collection of right cosets in G with respect to G .

Proposition 28. B generates τF� .

Proof. Let G � denote the nested set used to define the germ of the suspension L . Since L
is topologically tame, for every open set U � F �, there exists a coset G �

i γ � G �
U for some

γ � π1B. But
Gi � H �G �

i �

hence
Giγ � H �G �

U � GU� �

�

An infinitesimal coset for the quasi-suspension is one made from H translates of infin-
itesimal cosets of the suspension L . Specifically, if �H ����� is an infinitesimal coset for L
formed from a regular nested set of cosets G �

iα γα for which G �
iα γα�x�� F �, then

�H ���� � ∏
�

�H �G �
iα γα� � �H � �H �����

is an infinitesimal coset for L �.
We define as in 	6.1

��G �� �
�

�H ����

and the equivalence relation 
 on ��G ��. Letting �F � be the metric space completion of F �,
the map Θ : ��G ��� �F � is defined as in 	5.4 as well. We then have the following analogue
of Theorem 11 (with identical proof).

Theorem 12. Θ induces a homeomorphism

Θ�� : ���G ���
��� �F ��

6.3. Double Cosets. Let �, � and Γ be as in 	3.1. Fix g �� minimal.
The nested set G � �� was defined using a basis T � �Ti� of local sections about 1. Let

T � T0 be the initial member of T , endowed with a metric inducing its topology. As in the
previous sections, we want to define ����� using a right coset topology. There are, however,
two main differences in this case:

� We will only consider cosets contained in the initial element G0 of G . Thus,
properly speaking, we will construct completions of G 0 and not of ��.
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� Since G0 is not a group, we will define cosets up to its asymptotic class: that is,
with respect to its image in ���.

Let X � �Xα� � �� be a nested sequence of subsets for which σg�p�Xα�� � Γ �T . X is
called T -regular if there is a regular sequence of opens U � �Uα� � T such that

σg�p�Xα�� �
�
Γ �Uα

� � �
and �����Uα�� 0. For X � �Xα� � ��, denote by �X the image of the ultraproduct �X ����

in ���.

Definition 6. Let X be T -regular. The ultraproduct �X ���� is called an infinitesimal coset
if there exists a sequence of cosets H � �Giαgα�, iα� ∞, for which

�H � �X �

We define

��� �� �
�

�H ����

where the union ranges over all infinitesimal cosets8. On the other hand, let

��� ��T -reg �
�

�X �����

where X ranges over all T -regular nested sets in ��.
The set of T -regular ultraproducts generates a topology �τ T � on ��� ��T -reg. Denote by

�B���� the set of infinitesimal cosets.

Definition 7. We say that G (or �����Γ�g) is topologically tame if

(1) ��� �� � ��� ��T -reg.
(2) �B���� generates the �τT �-topology.

Denote by �T the metric completion of T . Every point of t̂ � �T is determined by a regular
sequence of opens sets U � �Uα� � T in which �����Uα�� 0. For ����� topologically
tame, we define a map

Θ : ��� ���� �T
by ��h �� �� t̂ if for some U which determines t̂,

σg�p���h ���� � �Γ � �U�����

The �τT -topology on ��� �� is defined by pulling back the topology of �T along Θ. We write
��h ��
 ��h ��� if there exists an infinitesimal coset �H ���� containing both of ��h ��, ��h �� �. Then
we have the following

Theorem 13. Θ induces a homeomorphism

Θ�� : ���� ���
��� �T �

Proof. Since the set �B���� generates the �τT �-topology, it follows that Θ���h ��� � Θ���h �� ��
if and only if ��h ��
 ��h ���. By definition of �τT , it follows that Θ descends to a homeomor-
phism Θ��. �

8This is somewhat abusive, since we are only using right cosets Gig where g � G0 � ��.
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6.4. Locally Free Lie Group Actions. Let M be a manifold of dimension n, X � M a
subspace, � a Lie group of dimension k � n, θ : �� ������X� a continuous represen-
tation. Let T be a transversal of X at x, T � �Ti� a neighborhood basis in T about x. Fix a
metric on T inducing its topology. Let p : ���� be the universal cover homomorphism.
See 	3.2 for more notation and terminology.

The construction of a germ completion ��� ��X�x for �����X�x is very similar to that dis-
cussed in 	6.3. Our discussion here will be somewhat abbreviated.

Let Y � �Yα� be a nested sequence of subsets in �� for which p�Yα� � T . Then the
ultraproduct �Y ���� is called a T -regular coset if there exists a regular nested set of opens
�Uα� � T , �����Uα�� 0, so that

p�Yα� � Uα �
�
� � x��

For any nested set Y in ��, denote by �Y the image of the ultraproduct �Y ���� in � ��.
Suppose �Y ���� is T -regular. If there exists a sequence of translates H � �G iαgα�, iα� ∞
and gα � ��, such that

�Y � �H �

then �Y ���� is called an infinitesimal coset.
Denote by ��� �� the union of the infinitesimal cosets, ��� ��T�reg the union of the T -

regular cosets. Let �B���� be the set of infinitesimal cosets. The set of T -regular cosets
forms a topology �τT � on ��� ��T�reg.

We say that �����X�x is topologically tame if ��� �� � ��� ��T�reg and if �B���� generates the
topology �τT �.

Let �T be the metric completion of T . We define
 and Θ : ��� ��� �T exactly as in 	6.3.
If we topologize ��� �� by pulling back the topology of �T along Θ, then we have

Theorem 14. Θ induces a homeomorphism

Θ�� : ���� ���
��� �T �

7. THE COMPLETE GROUPOID STRUCTURE

Let ��G�� be a topologically tame germ, ��G �� its non-standard completion. In addition,
if ��G�� comes from a double coset topology or a Lie group action, we assume that �G is a
group.

Until now, we have understood the groupoid structure of ��G�� exclusively in terms of its
action on itself: that is, we say that ��g����h�� is defined if ��gh��� ��G��. In this section, we will
expand the groupoid structure to take into account the action of ��G�� on ��G ��. This will be
necessary, among other things, for the consideration of germ covering spaces.

7.1. Definition of the Complete Groupoid Structure. Denote by �G any of the spaces �G,��r, �F , �F� or �T occurring in Theorems 8, 9, 11 etc. Let 
 the equivalence relation giving
rise to the homeomorphism ���G���
� � �G.

We define a groupoid structure on ��G�� using its action on ��G��. For any ��u�� � ��G��, let

�����u�� �
�
��g �� � ��G ��

��� ��u�� � ��g �� � ��ug�� � ��G �� and is 
 to ��g ��
�


����u�� � ��u�� ������u���
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Note 63. If we write ��u�� � ��gh�1�� � ��G��, for ��g��, ��h�� � ��G�����, then

��h�� � �����u���

Thus �����u�� �� /0.

We define the composition ��g����h�� whenever ��gh�� � ��G�� and

�����g���
����h�� �� /0�

Recall that a groupoid is a category such that every morphism is invertible.

Theorem 15. ��G�� is a groupoid with respect to its action on ��G ��.

Proof. The objects consist of the sets �����u��, 
����u��, the morphisms the elements ��u�� �
��G��. The inverse ��u���1 of an element of ��G�� is in ��G�� by construction. Associativity is a
triviality except when ��G�� comes from a double coset topology or a Lie group action: but
we are assuming in this section that �G is a group, so by Proposition 15, we are done. �

The groupoid structure on ��G�� obtained from the unit space ��G �� in henceforward re-
ferred to as the complete groupoid structure.

7.2. Change of Unit Space. Given a groupoid C, the unit space is defined to be

X �

� �

γ����C

���γ
 � � �

γ����C


��γ

�

Clearly the unit space of ��G�� with respect to the complete groupoid structure is ��G ��.
Let C, C� be two groupoids. A groupoid homomorphism is a functor F : C� C �. A

groupoid isomorphism is an invertible groupoid homomorphism.
By Note 3, ��G�� is independent of shift in nested set. Thus, if �n0�n1� � � ���� is infinite,

and we let G � � �Gni�, we have a bijection ��G��G �� ��G��G �. Let ��G ��� be the subset of
��G �� consisting of elements that are represented by sequences which are eventually in G n0 .
It is natural to ask what happens to the complete groupoid structure if we replace the unit
space ��G �� by ��G ���.

Note 64. If ��G �� is a group, it is not necessarily true that ��G �� � is a group as well.

Let ��G��� be the groupoid whose morphisms are the elements of ��G�� and whose unit
space is ��G ���.

Note 65. There is an injective groupoid homomorphism � : ��G�� �� ��G�� given by the iden-
tity on morphisms, and by the correspondence ��� ���u�� ��������u��.

Lemma 4. For all ��g �� � ��G ��, there exists g � G such that ��gg�� � ��G �� �.

Proof. Let us consider the case of an action topology i.e. G acts on a space F with dense
orbit. Let x be the point with respect to which the nested set G is constructed. Since
��G�� is topologically tame, we may right-translate any neighborhood basis U about x to
U �g, a neighborhood basis about y � g�x�. This means that any infinitesimal coset in ��G ��
can be right-translated to an infinitesimal coset in ��G �� �. The cases presented by a quasi-
suspension, double coset and locally free Lie group action are similar, and are left to the
reader. �

Theorem 16. � is a groupoid isomorphism.
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Proof. We must show that whenever ��u����v�� is defined in ��G��, it is defined as well in ��G�� �.
Let ��g �� � �����uv��. If �H ���� is an infinitesimal coset containing ��g ��, then by Lemma 4
we may find an element g�G such that �H �g���� is an infinitesimal coset with respect to G �.
It follows then that the action of ��uv�� on ��gg�� is defined and
 ��gg��. Thus ��� ���uv�� �� /0,
and � is an isomorphism. �

8. THE FUNDAMENTAL GERM AT INFINITY

The fundamental germ of a weakly-minimal lamination L describes the asymptotic ac-
cumulation of a dense leaf L onto itself. On the other hand, compact laminations which are
not weakly-minimal always have sublaminations on which every leaf accumulates. In 	8.2,

we define the fundamental germ at infinity ��
∞
π��1, which records algebraically the accumu-

lation of a leaf on such a sublamination. In addition to extending the germ perspective to

non weakly-minimal laminations such as the Reeb foliation, ��
∞
π��1 also gives an indication

of the limiting behavior of ��π��1 as the base point x approaches transversally a point x̂ on a
distinct leaf.

8.1. Minimal Sets. Let L be any laminated space, not neccessarily weakly-minimal. A
set is said to be saturated if it meets every leaf of L . A minimal set M is a minimal
element in the set of subspaces of L , ordered by inclusion, which are non-empty, closed
and saturated in L [Go].

Note 66. Minimal sets, when they exist, are sublaminations. Compact laminations always
have minimal sets; trivial laminations do not.

Note 67. If Γ is a co-finite volume Fuchsian group, then the minimal sets of the horocyclic
flows H 


Γ , are the closed orbits. The Reeb foliation of S3, which is not weakly-minimal,
has minimal set a 2-torus.

Let L be a lamination with minimal set M , x�L a point contained in a leaf L, x̂�M . In
order to define the fundamental germ at infinity, we consider sequences of transformations
of x which converge to x̂. Let us do this following our train of examples.

8.2. Suspensions. Suppose L � �B�ρ F is a suspension with minimal set M . Given x̂ �
M , choose x � L so that x̂ � F � Fx = the fiber through x. Let �Ui� be a neighborhood
basis about x̂ in F . Define a nested set H by

Hi � �g � π1B � gx �Ui��
Definition 8. The fundamental germ at infinity (at �x� x̂�) is

��
∞
π��1�L ; x� x̂� :� ��H �� �

�

�

HiH �1
i �

Note 68. �H ���� �∏�Hi is a basis element of the topology defined on the germ completion
��π1B ��.

Note 69. Viewed as acting on itself on the left, ��
∞
π��1�L ; x� x̂� is a groupoid. In contrast, this

is false for both of �H ���� and ��H �����, since neither contain 1.

Given a manifold M, let �M be an inverse limit solenoid associated to a system C �
�Mi � M� of normal covers over M (see 	4.3). Let G � �Hi� � π1M be the associated
system of subgroups.

By Note 40, any element x̂ in the fiber of x is a translate γ̂ � x, where γ̂ � �π1M. Let �γα�
be a sequence in π1M converging to γ̂ in the profinite topology. We may choose �γα� and
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iα � ∞ so that H � �γαHiα� is an infinitesimal coset corresponding to a neighborhood

basis about x̂. We use this H to define ��
∞
π��1� �M; x� x̂�. Denote by ��γ̂�� the element of the

germ ��
∞
π��1� �M; x� x̂� defined by �γα�.

Theorem 17. ��
∞
π��1� �M; x� x̂� is a group, isomorphic to ��π��1� �M�x�.

Proof. Every element of ��h�� � ��H ��pre may be written in the form

��h�� � ��γ̂����u��

for ��u�� � ��π1����B�x�. It follows that

(16) ��
∞
π��1� �M; x� x̂� � ��γ̂�� � ��π��1� �M�x� � ��γ̂���1 
� ��π��1� �M�x��

�

8.3. Quasi-suspensions. Let L � �B�ρ F be a normal, weakly-minimal suspension, L � �

L�H a quasi-suspension. Choose x̂ � a point in a minimal set of L �, x� a point on a dense
leaf of L �, F � a fiber through x�. We assume that x� has been selected so that x̂ � � F �.
Let x, x̂ and F � be two points and an open subset of a fiber F in L covering x �, x̂ � and F �,
respectively. Let U � � �U �

i � be a neighborhood basis about x̂ � in F �. We may assume that
U� is evenly covered with respect to L � L �: let U � �Ui� be the lifted neighborhood
basis about x̂ in F �. This defines a nested set H � by

H �
i � �hγ � h � H� γ � π1B and γ̄ � x �Ui� �

The fundamental germ at infinity of L � (at (x�� x̂ ��) is defined

��
∞
π��1�L�; x�� x̂ �� � ��H ����

Consider in this connection the Sullivan solenoid �S f associated to a degree d polynomial-
like map f : U � V . Recall that �S f is a quasi-suspension �A�H, where H � � f̂ � and
f̂ : �A� �A. (See 	4.6 for details.)

Theorem 18. ��
∞
π��1��S f ;x�� x̂ �� = ��π��1��S f �x��.

Proof. Every element of ��h��� � ��
∞
π��1��S f ;x�� x̂ �� may be written in the form

��h��� � f̂
�m � ��h�� � f̂

�n

where ��h�� � ��
∞
π��1��A; x� x̂ � and �m, �n � ��. In fact, by (16), we may write

��h��� � f̂
�m � ��γ̂����u����γ̂���1 � f̂

�n

where ��u�� � ��π��1��A�x� and ��γ̂�� is the element used in Theorem 17. But �S f is a quotient of
a suspension over a base B homeomorphic to an annulus. Thus π 1B is abelian, and we have

��γ̂����u����γ̂���1 � ��u���

�

8.4. Double Cosets and Locally Free Lie Group Actions.
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8.4.1. Double Cosets. Let F��Γ be the double coset foliation associated to the triple �����Γ�.
Let T � �Ti� be a basis of local sections about 1. Let ĝ be such that ĝ� projects to Γ�� as
the leaf of a minimal set. Choose minimal g ��. We define a nested set H by

Hi �
�

h̃ � �� �� g � p�h� � ĝ�1 � Γ �Ti

�
�

Then the fundamental germ at infinity (at �g� ĝ� is

��
∞
π��1�F��Γ; g� ĝ� � ��H ���

8.4.2. Locally Free Lie Group Actions. Now let �, X �M n and θ : �� Homeo�X� be
as in 	3.2; denote by L� the associated lamination of X . Let T be a transversal containing
points x, x̂ � X , where x lies in a dense leaf and x̂ in a minimal set. Let T � �Ti� be a
neighborhood basis about x̂ in T . We define

Hi �
�

g̃ � �� �� θp�g̃��x� � Ti

�
�

Then the fundamental germ at infinity (at �x� x̂�) is

��
∞
π��1�L�; x� x̂� � ��H ��

8.5. The Reeb Foliation. In this section, we consider a lamination which is not weakly-
minimal: the Reeb foliation F	��� of the solid 3-torus T3.

Let �� = the non-negative reals, � � � � ��0� and write

�� ��� �� � � ��� ���0�0���
Choose λ � � and µ � �� so that

�λ�� µ � 1 and λ �� µ�

and define an equivalence relation on �� ��� �� by

�z� t� 
 �λz� µt��

The Reeb foliation of T3 may be defined

F	��� � �� ����
��
 �

Let P : �� ��� ��� F	��� denote the projection map.

Note 70. The leaves of F	��� are of two types:

(1) L�t� � P�� ��t��, t � 0. Such a leaf is isomorphic to � .
(2) L0 � P�� � ��0��. This leaf is called the boundary leaf: it may be identified with

the quotient � �� � λ �, which is in turn isomorphic to �2. L0 is the minimal set
of F	���.

Note 71. The fiber tranversals of F	��� are of two types:

(1) T�z� � P��z�����, z � 0. Such a transversal is homeomorphic to �� , and inter-
sects every leaf of F	���.

(2) T0 � P��0�� �0�∞��. Such a transversal is homeomorphic to S 1, and intersects
every leaf except L0.

There is an action of � on F	��� �L0 induced by the map

�z� t� �� �λnz� t��

For x � F	��� �L0, we write this action x �� n � x.
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Note 72. For every t � 0 and z �� 0,

n �L�t� � L�t� and n �T�z� � T�z��

F	��� is a quotient of the form �D � ����������, where D is a deck of cards and �
acts properly discontinuously in a diagonal fashion. We will therefore view F 	��� as

suspension-like, and define ��
∞
π��1�F	���; x� x̂� accordingly.

Let us consider the points x � P��1�1�� � L�1� and x̂ � P��1�0�� � L0. Note that x� x̂ �
T�1�. Let Ui be a neighborhood basis about x̂ in T�1�. Define a nested set in � by

Hi � �n � n � x �Ui��
The fundamental germ at infinity (at �x� x̂�) of the Reeb foliation is

��
∞
π��1�F	���; x� x̂� � ��H ���

Theorem 19. ��
∞
π��1�F	���; x� x̂� = ��.

Proof. A sequence �nα� converges with respect to the nested set H if and only if it is
infinite. Thus the pre-germ ��H ��pre is identifiable with ��∞ :� ��� ��fin, the infinite non-
standard integers. Then

��H �� � ��∞� ��∞ � ���
�

Note 73. Intuitively, ��
∞
π��1�F	���; x� x̂� records the approximation by the dense leaf of the

circumferential cycle c� L0 through x̂. This is borne out by the fact that �π1�c� x̂�
� �� as
well.

Note 74. The Reeb foliation F	����S3� of the 3-sphere is obtained from two copies F ,
F � of F	��� by identifying the toral boundaries L0, L�0 so that the circumference of L0 is

identified with the waist of L�0. It follows that ��
∞
π��1�F �; x�� x̂� records the approximation

by a dense leaf L� � F � of the waist cycle of the toral leaf of F	����S3�. Thus, all of the
topology of the toral leaf of F	����S3� is predicted by the two germs at infinity calculated
from within and without the toral leaf.

9. THE HIGHER ORDER FUNDAMENTAL GERM

When attempting to relate fundamental germs ��π��1�L �x� and ��π��1�L �y�, where x and y
lie on distinct leaves, one faces the problem of converting a sequence class ��u��� ��π�� 1�L �x�
to one in ��π��1�L �y�. Unfortunately, unless L admits enough leaf-shuffling symmetries,
this is not possible. In this section, we replace equivalence classes of convergent sequences
by certain classes of convergent sets to obtain the higher order fundamental germ ��π�� 1. It
has the advantage of always allowing us to transform elements calculated with respect to
one leaf to those calculated with respect to another.

9.1. Boolean Tri-algebras and Power Set Germs. Let G be a group. The power set

2G

is a Boolean algebra with respect to the operations � and �. In addition, it has a third
operation� defined

A�B � �ab � a � A and b � B��
The operation� is distributive over both � and �: thus 2G has three mutually distributive
operations. The unit elements of these operations are respectively 1� � /0, 1 � G and
1� � �1�. (We define A� /0 � /0�A � /0.)
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Definition 9. A Boolean algebra possessing a third operation which distributes over � and
� is called a Boolean tri-algebra.

Note 75. The map

G �� 2G� g �� �g�
is an isomorphic embedding of G as a subgroup with respect to the operation�.

The non-standard power set of G is defined as the ultrapower

�G :� ��2G��

Note 76. The operations �, � and � are defined on �G in the obvious way, making �G a
Boolean tri-algebra.

Note 77. There is a natural inclusion of Boolean tri-algebras

�G �� 2
�G :

if �A is represented by the sequence �A i�, we define

�A ���∏
�

Ai � 2
�G�

Note that this map is not surjective.

Given G � �Gi� a nested set about 1 in G, let �G to be the set of sequences �Aα�,
Aα � 2G, which converge with respect to G : that is, for every i, Aα � Gi for α sufficiently
large. The direct limit

��G�� :� lim��
�
�G ��G�1�

is called the power set germ.
��G�� is a subring of �G with respect to � and �, but in general the operation� is only

partially defined. In this event, we call this structure a Boolean tri-algebroid.

Note 78. There is an isomorphic inclusion

��G�� �� ��G��� ��gi�� �� ���gi����
In addition, there is a map

��G�� �� 2��G��

defined by the association

��Aα�� ���∏
�

Aα�

Theorem 20. If G � �Hi� is a nested set of subgroups of G, ��G�� is a Boolean tri-algebra.

Proof. The product A�B � Hi whenever A �B � Hi. �

Theorem 21. Let � (ρ : G� �) be a (representation into a) topological group and let
G � �Ui� (G � �ρ�1�Ui��) be (the pull-back of) a neighborhood basis about 1. Then �����
(��G��) is a Boolean tri-algebra.

Proof. If Aα, Bα� 1, the same is true of the product Aα�Bα. �

For example, if G � �p, � � �q and ρ is defined as in Germ Example 6, 	2.2, then
��R :� ����� is a Boolean tri-algebra.
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9.2. Full Subalgebroids and The Higher Order Fundamental Germ. Let be a weakly-
minimal, algebraic lamination, x � L . The fundamental germ ��π�� 1�L �x� was defined in
terms of the action of a group G on some space � : a model fiber F (in the case of a sus-
pension), a quasi-fiber F � (in the case of a quasi-suspension), a local section or transversal
T (in the case of either a double coset or a locally free Lie group action). We would like to
distinguish elements of 2G that correspond to open sets of T.

We then say that A � 2G is full if the following condition is satisfied, according to case:

� L � �B�ρ F is a suspension, G � π1B, T � F . There exists an open set U �F such
that

A � �g � π1B � g�x� �U��
� L � H�L0 is a quasi-suspension, G = the group generated by the actions of π 1B0

and H on the dense leaf L0 � L0, �� F � a section over the quasi-fiber F �. There
exists an open set U � F � such that

A � �hγ � h � H� γ � π1B0 and γ̄ � x �U��
� L � F��Γ is a double coset foliation associated to the triple �����Γ�, x covered

by minimal g ��, G � ��, �� T a local section about 1. There exists an open set
U � T such that

A � �h̃ � �� � σg�p�h̃�� � Γ �U��
� L �L� is a lamination occurring as a locally free action of a Lie group�, G� ��,
�� T a transversal through x. There exists an open set U � T such that

A � �g̃ � �� � θ�p�g̃���x� �U��
Definition 10. Let L , x, G be as above. The higher order fundamental germ of L (at x) is
the sub Boolean tri-algebroid

��π��1�L �x� � ��G��
formed from elements �Aα� � �G in which Aα is full for all α, or ��Aα��� /0.

Note 79. We have

��π��1�L �x� � ��π��1�L �x� � /0

as long as the topology of � is such that points are never open.

The higher order fundamental germ at infinity

��∞
π��1�L ; x� x̂�

may be defined in the same fasion: we leave the details to the reader.

10. DEPENDENCE ON DATA

We fixed three pieces of data in order to define the fundamental germ of an algebraic
lamination L : a point x � L , a nested set T � �Ti� of open sets in a space � and an
ultrafilter �. In this section, we discuss what happens when the choice of data �x�T ��� is
changed.

10.1. Change of T . We proceed case by case.
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10.1.1. (Quasi)-suspensions.

Proposition 29. Let �L �x� be a (quasi)-suspension. Then ��π��1�L �x� is independent of the
choice of basis T in the (quasi)-fiber. If L is topologically tame, the complete groupoid
structure is independent of T as well.

Proof. Suppose L is a suspension. If we replace the basis T about x in the fiber F by
T � we obtain compatible nested sets G and G � in π1B: in particular, �G � �G �, so the
resulting germs are equal. In case L is topologically tame, denote by ��π �� 1 and ��π ���1 the
germ completions corresponding to G and G �. Then the right coset topologies on either
are compatible. If T � T0 �� T � � T �0, then ��π ��1 �� ��π ���1. However, by an argument similar
to that employed in Theorem 16, the identity map yields a groupoid isomorphism with
respect to the unit spaces ��π ��1� ��π ���1.

The case of a quasi-suspension is similar, and is left to the reader. �

Note 80. Proposition 29 is false for the lock-step germs considered in 	2.1, Germ Example
2: if G , G � are compatible nested sets of subgroups of G,

�G�G �� �G�G � �

10.1.2. Double Cosets and Locally Free Lie Group Actions. Let F��Γ be a weakly-minimal
double coset foliation, in which ��� is a group. Consider two bases of local sections about
1, T and T �. Denote by ��π��1 and ��π���1 the corresponding fundamental germs.

Proposition 30. There is a canonical isomorphism
�ι : ��π��1�F��Γ� ḡ��� ��π���1�F��Γ� ḡ��

If F��Γ is topologically tame, �ι is an isomorphism of complete groupoid structures.

Proof. By Note 25, ��π��1�F��Γ� ḡ� and ��π���1�F��Γ� ḡ� map injectively into ��� with identical
image. This defines �ι. In case F��Γ is topologically tame, then the completions ��π ��1

and ��π ��1 also map injectively into ��� with compatible image. Again, using an argument
similar to that of Theorem 16, �ι yields a groupoid isomorphism. �

The case of locally free Lie group actions is entirely analogous to that of double cosets,
and is left to the reader.

10.2. Change of Base Point I. We consider the effect of replacing the pointed lamination
�L �x� by �L �x��. Let L, L� be the leaves containing x, x�. In this section, we limit ourselves
to the case L � L�.

As before, we proceed case by case.

10.2.1. (Quasi)-suspensions.

Theorem 22. Let L be a weakly-minimal (quasi)-suspension. If x�x � lie on the same leaf
L, then

��π��1�L �x� � ��π��1�L �x���

If L is topologically tame, the complete groupoid structures are identical as well.

Proof. Suppose L is a suspension. The nested set used to define the germ depends only on
the action of the deck group DL on L and not on x. In particular, if L is topologically tame,
the germ completions are identical, as are the attendant complete groupoid structures. The
case of a quasi-suspension is left to the reader. �
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10.2.2. Double Cosets and Locally Free Lie Group Actions. Let F��Γ be a weakly minimal
double coset foliation, in which ��� is a group.

Theorem 23. Let g�g� �� be minimal such that ḡ and ḡ � lie on the same leaf. Then there
exists an isomorphism

��ι�� : ��π��1�F��Γ� ḡ��� ��π��1�F��Γ� ḡ���
If F��Γ is topologically tame, ��ι�� gives an isomorphism with respect to the complete groupoid
structures as well.

Proof. If ḡ and ḡ� lie on the same leaf, then there exists h � � and γ � Γ such that

g � γ g�h0�

By Proposition 21, it suffices to assume that γ � 1. Then

σg�p�h̃�� � Γ �Ti

implies that
σg��σh0�p�h̃��� � Γ �Ti�

Let h̃0 � �� be such that p�h̃0� � h0. Then the association

h̃ �� σh̃0
�h̃�

defines the desired isomorphism. �

The analogue of Theorem 23 for locally free Lie group actions is very similar: the
statement and its proof are left to the reader.

10.3. Change of Base Point II. In this section, we consider a base point change x �� x �,
where L �� L�. Here, it is not even possible, in general, to assert the existence of a map of
fundamental germs. On the level of higher order germs, however, we may at least define a
set-theoretic map.

We begin with a positive case.

10.3.1. Homogeneous (Quasi)-Suspensions. Let � be a topological group. A suspension

L � �B�ρ�

is called homogeneous if ρ : π1B� �������� is the right-multiplication representation
induced by a representation θ : π1B��. More specifically,

ργ�g� � g � �θ�γ���1�

Note 81. Toral foliations and inverse limit solenoids are homogeneous suspensions.

Proposition 31. A weakly-minimal homogeneous suspension is minimal. The fundamental
germ ��π��1�L �x� is a group and is topologically tame.

Proof. ρ has a dense orbit if and only if θ�π1B� is dense. But this means all orbits are
dense. The nested set induced by ρ is the same as that induced by θ, so: 1) ��π�� 1�L �x� is a
group by Proposition 11 and 2) L is topologically tame by the results of 	5.3. �

Note 82. All of the leaves of a homogeneous suspension are homeomorphic to �B�Ker�θ�.
In particular, there is a global action of π1B on L , induced by the map of �B�� defined

�x̃� g� �� �γ � x̃� g��

A quasi-suspension L � is called homogeneous if it is formed from a homogeneous sus-
pension.
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Theorem 24. Let L be a minimal, homogeneous (quasi)-suspension, and consider x�x � �
L , possibly on different leaves. Then

��π��1�L �x� � ��π��1�L �x���

Proof. First, we assume that L is a suspension. We may assume that x, x � lie in the same
fiber F ��. Let h ��. The left-multiplication map on �B��, defined

�x̃� g� �� �x̃� hg��

descends to a homeomorphism mh of L . In particular, there exists h�� such that mh�x� �
x�. The map mh takes a basis about x to one about x �: moreover, for γ � π1B,

mh�γ � x� � γ �mh�x� � γ � x��
It follows that the germs are equal.

If L � is a homogeneous quasi-suspension, then by the previous paragraph, we obtain
the same nested set using either x or x�. �

10.3.2. The Higher Order Map.

Theorem 25. Let L be a weakly-minimal, algebraic lamination and consider x�x � � L ,
possibly on different leaves. Then there exists a bijection

(17) ��ι�� : ��∞
π��1�L ; x�x�� �� ��π��1�L �x���

Proof. Without loss of generality, we may assume that x and x � lie in a transversal T ,
with respect to which we define the relevant fundamental germs. Let �U α�� �Aα �B�1

α �
define an element ��U�� � ��∞

π��1�L ; x�x��. Since each Aα, Bα is full, there exists a corre-
sponding pair of sequences �Vα�, �Wα� of open sets in T converging to x �. These se-
quences in turn uniquely define a pair of sequences �A �

α�, �B �
α� which yield an element

��U��� � ��π��1�L �x��. The correspondence ��U�� ��U ��� yields the desired bijection. �

Theorem 26. Let L be a minimal, homogeneous (quasi)-suspension. Then the map ��ι�� is
an isomorphism.

Proof. We assume again that x, x� lie in the same fiber F � �. Identify x with 1, x � with
ĝ; for γ � π1B, we simply write γ for θ�γ� � �. Let �Aα �B�1

α � represent an element of

��∞
π��1�L ; x�x��, where �Aα�, �Bα� are full sequences of subsets of π1B converging to ĝ in
�. Denote by �Vα�, �Wα� the corresponding open sets in � that converge to ĝ. The map
��ι�� associates to �Aα �B�1

α � a class represented by a sequence �A �
α � �B �

α�
�1�, where for

example

A �
α � �h � π1B � hĝ �Uα��

But then

A �
α � �B �

α�
�1 � A �

αĝ � �B �
αĝ��1 � Vα �W�1

α �

so that �A �
α ��B �

α�
�1� also defines an element of ��∞

π��1�L ; x�x��. But this element is uniquely
determined by the sequence �Vα �W�1

α �: that is, A �
α � �B �

α�
�1 � Aα �B�1

α . We leave the ar-
gument for quasi-suspensions to the reader. �
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10.4. Change of Ultrafilter. Let G be a group of cardinality at most that of the continuum.
The following is an immediate consequence of the proof of Theorem 1:

Theorem 27. Let �, �� be nonprincipal ultrafilters on �, G a nested set about 1 in G.
Denote by ��G��� and ��G���� the corresponding germs. Then assuming the continuum hy-
pothesis, there is an isomorphism

��G��� 
� ��G���� �

If G is topologically tame, then the isomorphism is with respect to the complete groupoid
structure.

11. FUNCTORIALITY

A lamination map F : L � L � is a map such that

(1) For every leaf L� L , the image F�L� is contained in a leaf of L .
(2) For every x � L , there exist transversals T � x, T � � F�x�, such that F�T �� T �.

Note 83. Let F be a foliation, M the underlying manifold (viewed as a lamination with
one leaf). Then the canonical inclusion ı : F � M is not a lamination map (since the
transversals of M are points).

11.1. The Map of Fundamental Germs Induced by a Lamination Map. Let

F : �L �x��� �L ��x��

be a lamination map. Let T � �Ti� be the basis of transversals used to define ��π1���L �x�,
T � � �T �i � the basis of transversals used to define ��π1���L ��x��. Let �F : �L� �L� be the lift

of the restriction F �L to the universal covers. Denote by �T � �L, �T � � �L� the pre-images of
T �L, T ��L�.

In view of the results found in 	10.1, we may assume without loss of generality that�F��T �� �T �. It follows that we obtain a map

���T ���� ���T ���

which induces, in particular, a map on fundamental germs

��F �� : ��π1���L �x� �� ��π1���L ��x���

Note 84. In exactly the same way, one may define a map ��
∞
F �� on the germ at infinity. If F

is an open map along transversals, we may also define maps ��F�� and �� ∞
F�� of higher order

germs.

Proposition 32. Let L � �B�F be a suspension. Then the map ��ξ�� induced by the projec-
tion ξ : �L �x�� �B�x�� is an injective groupoid homomorphism.

Proof. The nested set of transversals T used to define ��π1���L �x� is contained in Fx �
ξ�1�x��. In particular, �T � π1B � x̃�
where x̃ � �B is the base point of �B. It follows immediately that ��ξ�� is the inclusion

��π1���L �x� � �π1�B�x
���

Since the product in ��π1���L �x� is induced by multiplication in �π1�B�x��, ��ξ�� is a groupoid
homomorphism. �
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Unfortunately, we cannot assert in general that the map ��F�� induced by a lamination
map F defines a groupoid homomorphism 9. In the next section, we discuss a class of
lamination maps which is sufficiently well-behaved so as to allow us to say more.

11.2. Trained Lamination Maps. Let F be a foliation, M the underlying space of F ,
and ı : F � M the inclusion. Although ı is not a lamination map, we may nevertheless
define a map on germs ��ı��. The impetus comes from the following

Note 85. An element
��u�� � ��gh�1�� � ��π1���F �x�

may be regarded as a class of sequences of homotopy classes of curves

�γuα� � �γgα Æ γ�1
hα
�

lying within the leaf containing x , where γgα�0� � x � γhα�0�, γuα�0� � hαx � γhα�1� and
γuα�1� � gαx � γgα�1�.

Given ��u�� � ��π��1�F �x�, let �uα� be a representative. For α large, there is an open disc
O�M about x such that

γuα�0�� γuα�1� � O�

By connecting γuα�0�, γuα�1� to x by paths contained in O, we obtain a map

��ı�� : ��π1���F �x��� �π1�M�x�

which depends neither on O nor the choice of connecting paths.
More generally, given L a lamination and ı : L� X a map into a path-connected space,

we may define a map ��ı�� : ��π1���L �x�� �π1�X �x�.

Note 86. We may also define in the same way maps ��
∞
ı ��, ��ı�� and ��∞

ı�� (the last two maps
take values in �π1�X �x�).

Definition 11. Let L be a weakly minimal lamination, X a path connected space. A map
ı : �L �x�� �X �x� is called a fidelity if ��ı�� is an injective homomorphism. We say that L is
faithful if it has a fidelity.

Note 87. By Proposition 32, the projection ξ : L � B of a suspension onto its base is a
fidelity.

Proposition 33. Let FV be the foliation of �p�q induced by the p-plane V � � p�q . Then
the inclusion ı : FV � �p�q is a fidelity.

Proof. Recall (see 	4.4) that for some q� p matrix R, ��π��1FV � ��p
R. Then for �n � ��p

R,
the map ��ı�� is

��ı����n� � ��n��n�� � ��p�q � �π1�p�q�

where �n� is the dual to �n. ��ı�� is then clearly an injective homomorphism. �

The problem of the existence of fidelities for algebraic laminations seems interesting
but difficult. We conjecture:

Conjecture 6. Every weakly-minimal algebraic lamination L has a fidelity. If L � F is a
foliation with underlying manifold M, then the inclusion ı : F �M is a fidelity.

9Essentially, the problem is that we have restricted the nested set with which we construct ��π��1 to live in a very
particular group of transformations of�L. In the presence of Riemannian geometry on�L with certain homogeneity
properties, one can define a geometric fundamental germ which in this sense is more flexible: allowing us to
assert that a much wider family of maps induce homomorphisms [Ge1], [Ge2].
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Definition 12. A lamination map F : L � L � is trained if L and L � are faithful, and there
exist fidelities ı : L � X , ı� : L �� X � and a map G : X � X � such that

(18) �GÆ ��ı�� � ��ı���Æ ��F ���

The triple �ı� ı��G� is called a training for F.

Theorem 28. Let F : �L �x�� �L ��x�� be a trained lamination map. Then the induced map
��F �� is a groupoid homomorphism.

Proof. Denote the product in ��π1���L �x�, ��π1���L ��x�� by !. Let �ı� ı��G� be a training for
F. Then by (18),

��ı�����F ��
�
��u��! ��v��

�
� ��ı���

�
��F ����u��! ��F ����v��

�
�

Since ��ı��� is injective,

��F ��
�
��u��! ��v��

�
� ��F ����u��! ��F ����v���

�

Corollary 4. Let F : �F �x�� �F ��x�� be a map of foliations. Suppose that the inclusions
into the underlying manifolds ı : F �M, ı� : F ��M� are fidelities. Then ��F �� is a groupoid
homomorphism.

Proof. Take G : M�M� to be F , viewed as a map on underlying manifolds. Then �ı� ı ��G�
is a training. �

In particular,

Corollary 5. Any map F : FV � FV � of toral foliations induces a homomorphism ��F �� of
fundamental germs.

12. GERM COVERING SPACES

We end our study with a brief discussion of covering space theory for ��π�� 1. The themes
we treat are universal covering, the correspondence between subgroupoids and lamina-
tion coverings maps and deck groupoids. Throughout this section, we assume that L is a
weakly-minimal algebraic lamination with topologically tame fundamental germ.

12.1. The Germ Universal Cover. Let x�L be contained in a dense leaf L. Let p : �L� L
be the universal cover and denote by ��π ��1L the germ completion associated to ��π��1�L �x�,
equipped with the enlargement topology �τ. Given ��g �� � ��π ��1L represented by �gα� and
z̃ � �L, ��z �� � ��g �� � z̃ is the element of ��L defined by the sequence �gα � z̃�. We define the
germ universal cover to be

��L �� �
�
��g �� � z̃

��� ��g �� � ��π ��1L � z̃ � �L� �

The trivial lamination �L� ��π ��1L
projects onto ��L �� by the map

�z̃� ��g ��� �� ��g �� � z̃�
We give �L� ��π ��1L the product topology and ��L �� the quotient topology with respect to
the projection.

Note that ��L �� may be decomposed as a disjoint union of leaves: the leaf through ��z �� �
��g �� � z̃ is the set �L��z �� :�

�
��g �� � w̃

��� w̃ � �L� �
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The map �L� �L��z ��, defined w̃ �� ��g �� � w̃, is a continuous bijection.

Let L � �B�ρ F be a suspension, so that �L � �B. Note that there is a representation
��ρ�� : π1B� ��������π ��1L� defined

��g �� �� ��g �� � γ � �� g � γ�1���

Theorem 29. If L is a suspension, then ��L �� is equal to the homogeneous suspension

�L���ρ�� ��π ��1L �

Proof. ��g ��1 � z̃ and ��g ��2 � w̃ define the same element of ��L �� if and only if

z̃ � ��g ���1
1 ��g ��2 � w̃ � γ � w̃

for some γ � π1B. �

In particular, we see that ��L �� is itself a lamination.

Note 88. If L is the toral foliation FV , we have

��FV �� � �p ���ρ��
��q�

If L is the algebraic universal cover �M of a manifold M, we have

�� �M �� � �M���ρ��
�π1M�

We define a projection
�� p �� : ��L ���� L

as follows. Given ��z �� � ��L �� represented by �z̃α� � �L, we write �� p ����z �� � ẑ if zα � p�z̃α�
converges (transversally) to ẑ in L . Note that �� p �� is a continuous map.

On the other hand, there is a natural left groupoid action of ��π�� 1�L �x� on ��L ��, defined

��u�� � ���g �� � z̃� � ���u�� � ��g ��� � z̃
whenever ��g �� � �����u��. Let

�����L ����u�� � ���g �� � z̃ � ��g �� � �����u��� �
Then �����L ����u�� is a sublamination of ��L ��, and ��π��1�L �x� is a groupoid with respect to

the unit space ��L ��.

Proposition 34. The quotient
��π��1L

�
��L ��

is homeomorphic to L .

Proof. The equivalence relation enacted by the action of ��π�� 1L identifies precisely those
points of ��L �� which map to the same point z � L by �� p ��. It remains to show that the
quotient topology is that of L . For D � �L a sufficiently small open and Gig a coset, the
product

D� �Gig � �L� ��π ��1L
maps homeomorphically onto an open ��O �� of ��L ��; conversely, a basis of ��L �� consists of
opens of this form. The image O � �� p ��

�
��O ��

�
of such an open is a flow box of L . Thus

�� p �� is an open map; hence the map ��π��1L
�
��L �� � L is a homeomorphism. �

The utility of ��L �� stems from the map lifting property.
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Proposition 35. Let F : L � L � be a lamination map. Then F induces an injective map

��F �� : ��L ���� ��L � ���

Proof. Let F�L� � L�, and denote by p� : �L�� L� the universal cover. We use L� to define
all relevant germs. Let ��z �� � ��L �� be represented by the sequence �z̃ α�, and

z̃�α � �F�zα��

Then �p�z̃�α�� converges transversally to a point ẑ � � L �. Thus it is asymptotic to a unique
sequence of the form �g �αw��, where �g�α� defines an element ��g �� � ��π ��1L � and w̃� ��L�. The map ��F �� defined ��z �� �� ��g ��� � w̃� is an injective, continuous map taking leaves to
leaves. �

12.2. Covering Maps and Subgroupoids. A surjective lamination map P : L � L � is
called a laminated covering if P�L is a covering map for every leaf L� L .

Note 89. A lamination map which is a covering map (in the classical sense) is a laminated
covering.

Note 90. The map L � L � from a suspension to a quasi-suspension is a laminated cover-
ing.

Note 91. Let L � �B�ρ F be a suspension. Then the projection ξ : �L �x�� �B�x �� is a
laminated covering map. It is not however a covering map.

Proposition 36. Let P : L � L � be a laminated covering map. Then the induced map

��P�� : ��π��1�L �x��� ��π��1�L ��x��

is injective.

Proof. Let L, L� be dense leaves in L , L � containing x, x�. Then the lift of the restriction
P�L, �P : �L�� �L��
is a homeomorphism. It follows that the induced map ��P�� is injective. �

Here, again, we cannot say if P is a homomorphism. If it is, then the image

C � ��P��
�
��π��1�L �x�

�
is a subgroupoid of ��π��1�L ��x��. In this section, we characterize the subgroupoids of the
fundamental germ which give rise to laminated covering maps.

Abbreviate ��π ��1 ���π ��1L . Let C� ��π1���L �x� be a subgroupoid. Thus, for all ��u���C,

���C��u��������u�� and ��u���1 � C�

The unit space of C is then
��π ��C1 :�

�
���C��u���

where ��u�� ranges over C and is not equal to ��1��. Note that since 
��C��u�� � ���C��u���1,
we have


��C��g�� � ��π ��C1
for all ��u�� � C. The enlargement and internal topologies �τ and �τ� on ��π ��C1 are induced
via the inclusion in ��π ��1. Let ��τ��C be a topology on ��π ��C1 in which �τ� ��τ��C � ��τ��.

Define the relation
��g �� 
C ��g ���

if and only if
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(1) There exists an infinitesimal coset �H ���� � ��π ��1 with ��g ��� ��g ��� � �H ����.
(2) There exists ��u�� � C such that

��u�� � ��g �� � ��g ����

Clearly 
C is reflexive and symmetric.

Note 92. If we denote by R and R
 the subsets of ��π ��1� ��π ��1 and ��π ��
1 � ��π ��
1 defined
by
 and

, then R
 � R.

��L ��C is defined by replacing ��π ��1 by ��π ��C1 in the definition of ��L ��. C acts on the left
of ��L ��C.

We say that C is a regular subgroupoid of ��π��1�L �x� if

(1) 
C is transitive (i.e is an equivalence relation).
(2) R
 is saturated in R: i.e. for every ��g �� � ��π ��1,

R
�
��z ��� �� � ��π ��
1 �� /0�

(3) The quotient
TC :� ��π ��C1 �
C

with respect to the quotient ��τ��C-topology is a Haussdorf space.
(4) For every ��z �� � ��L ��C,

����C��L��z ��� �
�
��u�� � C

��� ��u�� ��L��z �� � �L��z ��

�
is a group.

We use the notation
C 	 ��π��1�L �x�

to indicate that C is a regular subgroupoid. The complete groupoid structure of C is defined
with respect to 
C as in 	7.1.

By property (1) above, the quotient

LC :� C � ��L ��C

is well-defined as a set.

Theorem 30. If C 	 ��π��1�L �x�, then LC is a laminated covering of L .

Proof. C preserves leaves by definition of its action on ��L ��C. Let ������L��z ��� be the sta-

bilizer of �L��z �� with respect to the action of ��π��1�L �x�. We have

(19) ����C��L��z ��� � ������L��z ����

hence ����C��L��z ��� must act properly discontinuously. Thus the image of each leaf of

��L ��C in LC is a manifold. In addition, the image of a transversal is homeomorphic to the
Haussdorf space TC. In particular, LC is a lamination.

Since R
 is a saturated subset of R, there is a well-defined surjective map P : L 
�L . P
is lamination map because �τ� ��τ��
 and because transversals are mapped to transversals.
By (19), every restriction P�L� , where L
 is a leaf of L
, is a covering map. �

Let us restrict ourselves to the case where ��π��1�L �x� is a group, and consider subgroups
C � ��π��1�L �x� acting on the unit space ��π ��1. Let X be the set of all topologies ��τ�� on
��π ��1, ordered with respect to inclusion, which have the property that C �� ��τ��. Then X is
closed under chains, so we may find a maximal element ��τ��C, called the regular topology.
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Lemma 5. The quotient C���π ��1 is Hausdorff with respect to the quotient ��τ��C-topology.

Proof. Since ��τ��C is maximal,
C �

�

C�U���τ��C
U�

The lemma follows immediately. �

Theorem 31. C 	 ��π��1�L �x�.

Proof. By Lemma 5, The relation 
C is transitive since C is a group, and is trivially
saturated with repsect to 
. T C is Haussdorf by Lemma 5. Since C is a group, every
stabilizer ����C��L��z ��� is a group. �

Two laminated coverings Pi : Li�L , i� 1�2, are isomorphic if there exists a lamination
homeomorphism F : L1� L2 such that P1 � P2 ÆF.

Proposition 37. Let ��π��1�L �x� be a group, C a subgroup. Then the isomorphism class of
the laminated covering L C� L depends only on the conjugacy class of C in ��π��1�L �x�.

Proof. Suppose that C� � ��u�� �C � ��u���1. The homeomorphism ��L ��� ��L ��, defined

��g �� � z̃ ��� ���u�� � ��g ��� � z̃�
descends to the desired homeomorphism L 
� LC� . �

12.3. Deck Germs. In this section, we continue to assume that ��π��1�L �x� is a group. Let
C � ��π��1�L �x� be a normal subgroup, ��τ��C the regular topology and PC : LC � L the
associated covering.

Theorem 32. The quotient group

�����PC� :� ��π��1�L �x��C

acts by homeomorphisms on L C, with quotient L .

Proof. Every element of L C is a class C � ��z ��, for ��z �� � ��π ��C1 . The action of �����PC�
on such a class is well-defined, and the quotient is L . �

Deck groups give among other things, a natural way to construct groups of homeomor-
phisms of laminations. For example, in the case of foliation of � 2 by irrational lines, the
suspension map Fr� S1 yields a deck group

�����r

which contains elements of all finite orders, as well as elements of infinite order.
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