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Abstract

Let us denote by X (n) the space of degree n ∈ N foliations of
the complex projective plane CP (2) which leave invariantthe line at
infinity. We prove that for each n ≥ 2, there exists an open dense subset
Rig(n) ⊂ X (n) such that any analytic deformation {Ft}t∈D of F0 =
F ∈ Rig(n) which is topological trivial in C2 must be analytical trivial
in CP (2) for t ≈ 0. We stress the fact that a priori, our deformations
are allowed to move the line L∞ which is F0-invariant by hypothesis.
We also state results for deformations which are topological trivial in
C2 not necessarily in CP (2). Finally we obtain a link between the
analytic classification of the unfolding and the one of its germs at the
singularities p ∈ Sing(F0) ∩ L∞.

Introduction

A holomorphic foliation by curves on CP (2) is given in an affine space C2 ↪→
CP (2) by a polynomial vector field X = (P,Q) ∈ X(C2) with gcd(P,Q) = 1.
We fix the line at infinity L∞ = CP (2)\C2 and denote by X (n) the space
of foliations of degree n ∈ N which leave invariant L∞. Let us denote by
F(n) the space of degree n foliations on CP (2) as introduced in [Li]. We
are interested in the two following questions:

(1) Under which conditions topologically trivial deformations of a folia-
tion F ∈ F(n) are analytically trivial?

(2) When does a foliation F ∈ F(n) has dense leaves?
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Part I

TOPOLOGICAL RIGIDITY

We refer to [Il] and [LiSaSc] for the notions of analytic deformation of a
foliation, topological and analytical equivalence and topological rigidity. We
only recall the following less unusual definition:
Definition. Let C ⊂ F(n) be a class of foliations. A foliation F0 ∈ C
is topologically rigid in the class if any topologically trivial deformation
{Ft}t∈D of F0 with Ft ∈ C is analytically trivial.

We also say that F0 ∈ C is U-topological rigid in the class C, where
U ⊂ CP (2) is an open subset, if any analytic deformation {Ft}t∈D of F0

with Ft ∈ C, ∀t; which is topologically trivial in U , is in fact analytically
trivial in CP (2).

A remarkable result of Y.Ilyashenko states topological rigidity for a resid-
ual set of foliations on X (n) if n ≥ 2.

More precisely we have:

Theorem 0.1 [Il] For any n ≥ 2 there exists a residual subset I(n) ⊂ X (n)
whose foliations are topologically rigid in the class X (n).

This result has been later improved by A. Lins Neto, P. Sad and B.
Scardua as follows:

Theorem 0.2 [LiSaSc] For each n ≥ 2, X (n) contains an open dense subset
R ⊂ X (n) whose foliations are topologically rigid in the class X (n)

We stress the fact that in both theorems above we consider deformations
{Ft}t∈D in the class X (n), that is, Ft leaves invariant L∞,∀t ∈ D; and we
assume topological triviality in CP (2). We relax slightly this last hypothesis
by requiring topological triviality for the set of separatrices through the
singularities at L∞:

Theorem 0.3 [LiSaSc]For any n ≥ 2, X (n) contains an open dense subset
SRig(n) whose foliations are s-rigid in the class X (n).

According to [LiSaSc] a foliation F0 ∈ X (n) is s-rigid if for any deforma-
tion {Ft}t∈D ⊂ X (n) of F0 with the s-triviality property that is: If St ⊂ C2

denotes the set of separatrices of Ft which are transverse to L∞ then there
exists a continuous family of maps φt : S0 → C2 such that φ0 is the inclusion
map and φt is a continuous injection map from S0 to C2 with φt(S0) = St;
then {Ft} is analytically trivial.

Remark. Topological triviality in C2 implies s-triviality.
Let us change now our point of view.
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A deformation {Ft}t∈D of a foliation F0 on a manifold M, is an unfolding
if there exists an analytic foliation F̃ on M × D with the property that:
F̃ |M×{t} ≡ Ft, ∀t ∈ D. In other words, an unfolding is a deformation which
embeds into an analytic foliation. The trivial unfolding of F is given by the
Ft := F , ∀t ∈ D and F̃ is the product foliation F × D in M × D.

Two unfoldings {Ft}t∈D and {F1
t }t∈D of F are topologically equivalent

respectively analytically equivalent if there exists a continuous respectively
analytic map φ : M × D → M such that each map φt : M → M , φt(p) =
φ(p, t), is a topological respectively analytical equivalence between Ft and
F1

t .
Definition. An unfolding {Ft}t∈D of a foliation F0 on M is said to be
topologically rigid in the class C ⊂ F(n) if any analytic unfolding {F1

t }t∈D
of F (F1

t ∈ C, ∀t), which is topologically equivalent to {Ft}t∈D, is necessarily
analytically equivalent.

These notions rewrite theorems 0.1 and 0.2 as follows:

Theorem 0.4 [Il]For any n ≥ 2 there exists a residual subset I(n) ⊂ X (n)
whose foliations are topologically rigid trivial unfolding in the class X (n).

Theorem 0.5 [LiSaSc]For each n ≥ 2, X (n) contains an open dense subset
Rig(n) ⊂ X (n) whose foliations are topologically rigid trivial unfolding in
the class X (n).

We are now in conditions of stating our main results concerning topolog-
ical rigidity. We stress the fact that a priori, our deformations are allowed to
move the line L∞ (Theorems A, B and C) which is F0-invariant by hypothe-
sis. We also state results for deformations which are topological trivial in C2

not necessarily in CP (2). Finally, we may relax the hypothesis of hyperbol-
icities for Sing(F0) ∩ L∞ by allowing quasi-hyperbolic singularities(defined
below) and obtaining this way a link between the analytical classification of
the unfolding and the one of its germs at the singularities p ∈ Sing(F0)∩L∞.

Our main results are the following:

Theorem A. Given n ≥ 2 there exists an open dense subset Rig(n) ⊂ X (n)
such that any foliation in Rig(n) is C2-topological rigid: any deformation
{Ft}t∈D of F = F0 which is topologically trivial in C2 must be analytically
trivial in CP (2) for t ≈ 0.

Theorem B. Let {Ft}t∈D be topological trivial (in C2) analytic deformation
of a foliation F0 on C2 such that:

(i) F0 leave L∞ invariant
(ii) ∀p ∈ Sing(F0) ∩ L∞, p is a quasi-hyperbolic singularity
(iii) F0 has degree n ≥ 2 and exhibits at least two simple singularities in

L∞.
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Then we have two possibilities:
(a) F is a Darboux (logarithmic) foliation.
(b) {Ft}t∈D is an unfolding.

In this last case the unfolding is analytically trivial if and only if given a
singularity p ∈ Sing(F0) ∩ L∞ the germ of the unfolding {Ft}t∈D at p is
analytically trivial for t ≈ 0.

Theorem C. Let F0 be a foliation on CP (2) with the following proper-
ties:

(i) F0 leaves L∞ invariant.
(ii) ∀p ∈ Sing(F0) ∩ L∞, p is a quasi-hyperbolic singularity
(iii) Sing(F0) ∩ L∞ has at least two simple singularities.

Given two topologically equivalent unfolding {Ft}t∈D and {F1
t }t∈D of F0 we

have that they are analytically equivalent if and only if the germs of unfold-
ings are analytically equivalent at the singular points p ∈ Sing(F0) ∩ L∞.

1 PRELIMINARIES

We denote by F(n) the space of degree n foliations on CP (2). Then F(n)
has a natural structure of projective manifold and we consider the following
subsets:

S(n) := {F ∈ F(n)| the singularities of F are non-degenerated}
T (n) := {F ∈ S(n)| any characteristic number λ of F satisfies λ ∈

C\Q+} = {F ∈ S(n)|F has simple singularities}
A(n) := T (n)

⋂
X (n)

H(n) := {F ∈ A(n)|all singularities of F in L∞ are hyperbolic }

Proposition 1.1 [Li][LiSaSc] X(n) is an analytic subvariety of F(n) and
also if n ≥ 2 then:

(i)T (n) contains an open dense subset of F(n)
(ii)H(n) contains an open dense subset M1(n) such that if F ∈M1(n),

n ≥ 2 then:
(a)L∞ is the only algebraic solution of F
(b)The holonomy group of the leaf L∞\Sing(F) is nonsolvable.
(iii)T (n) ⊂ H(n) ⊂ X (n) are open subsets.

Lemma 1.2 Let F ∈ M1(n), n ≥ 2; then each leaf L 6= L∞ is dense in
CP (2).

Proof. First we notice that Lmust accumulate L∞. Since L is non-algebraic
leaf it must accumulate some regular point p ∈ L∞\Sing(F). Choose a small
transverse disk Σ t L∞ with Σ ⊂ V , V is a flow-box neighborhood of p. We
consider the holonomy group Hol(F , L∞,Σ). Then L accumulates the origin
p ∈ Σ and since by [Na] (see also theorem 2.1) G has dense pseudo-orbits in a
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neighborhood the origin, it follows that L is dense in a neighborhood of p in
Σ. Any other leaf L′ of F , L′ 6= L∞ must have the same property. Using the
continuous dependence of the solutions with respect to the initial conditions
we may conclude that L accumulates any point q ∈ L′ , ∀L′ 6= L∞. Thus L
is dense in C2 and since L∞ is F-invariant, L is dense in CP (2).

Proposition 1.3 Let {Ft}t∈D, F0 = F ∈ M1(n) is an unfolding then it is
analytically equivalent to the trivial unfolding of F for t ≈ 0.

Proof. Denote by F̃ the foliation on CP (2)× D such that
∀t ∈ D F̃ |CP (2)×{t} = Ft ,
π : C3\{0} → CP (2) the canonical projection and
Π : (C3\{0})× D → CP (2)× D the map
Π(p, t) := (π(p), t).
Denote by F∗ := Π∗(F̃), pull-back foliation on (C3\{0})× D. Then F∗

extends to a foliation on C3 × D by a Hartogs type argument.
Claim. We may choose an integrable holomorphic 1-form Ω which defines
F∗ on C3 × D such that

Ω = A(x, t)dt+
3∑

i=1

Bj(x, t)dxj ,

where Bj is a homogeneous polynomial of degree n + 1 in x, A is a homo-
geneous polynomial of degree n + 2 in x,

∑3
i=1 xjBj(x, t) ≡ 0 and Ωt :=∑3

i=1Bj(x, t)dxj defines π∗(Ft) on C3.
Proof of the claim. First we remark that by triviality of Dolbeault and Cech
cohomology groups of C3 × D, F∗ is given by an integrable holomorphic
1-form, say, ω in C3 × D.

The restriction ωt := ω|C3×{t} defines F∗
t := π∗(Ft) in C3. Thus we may

write ω = α(x, t)dt+
∑3

k=1 β
k(x, t)dxk = α(x, t)dt+ ωt(x)

Since the radial vector field R is tangent to the leaves of F∗ we have
ω ◦ R = 0 so that ωt ◦ R = 0, i.e.

∑3
k=1 xkβ

k(x, t) = 0. Now we use
the Taylor expansion in variable x = (x1, x2, x3) of ω around a point (0, t)
so that ω =

∑+∞
j=ν ωj where ωj(x, t) := αj(x, t)dt +

∑3
k=1 β

k
j (x, t)dxk =

αj(x, t)dt+ ωt
j and αj , βk

j are holomorphic in (x, t), polynomial of degree j
in x, ων ≡ 0. Now the main argument is the following:

Lemma 1.4 Ω = αν+1dt+ ωt
ν defines F∗ in C3 × D.

Proof. Indeed, ω ∧ dω = 0 ⇒ iR(ω ∧ dω) = iR(ω).dω − ω ∧ iR(dω) = 0
ω ∧ iR(dω) = 0 (since iR(ω) = 0) ⇒ iR(dω) = fω for some holomorphic

function f (Divisor lemma of Saito). Therefor the Lie derivative of ω with
respect to R is
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LR(ω) = iR(dω) + d(iR(ω)) = fω. (1)

On the other hand since ω =
∑+∞

j=ν ωj =
∑+∞

j=ν(αj(x, t)dt+ ωt
j) we obtain

LR(ω) =
+∞∑
j=ν

LR(αj(x, t)dt+ ωt
j)

=
+∞∑
j=ν

d

dz
[αj(ezx, t)dt+

3∑
k=1

βk
j (ezx, t)ezdxk]|z=0

(The flow of R is Rz(x, t) = (ezx, t))

=
+∞∑
j=ν

[jαj(x, t)dt+ (j + 1)ωt
j ]. (2)

Now we write the Taylor expansion also for f in the variable x. f(x, t) =∑+∞
j=0 fj(x, t) where fj(x, t) is holomorphic in (x, t) homogeneous polynomial

of degree j in x. We obtain from (1) and (2)

+∞∑
j=ν

jαjdt+ (j + 1)ωt
j = (

+∞∑
k=0

fk)(
+∞∑
l=ν

ωl)

=
∑
j≥ν

(
∑

l+k=j

fkωl)jαjdt+ (j + 1)ωt
j

=
∑

l+k=j

fkωl

=
∑

l+k=j

(fkαldt+ fkω
t
l ) l ≥ ν and ∀j ≥ ν

Then

jαj =
∑

l+k=j

(fkαl) (3)

(j + 1)ωt
j =

∑
l+k=j

(fkω
t
l ) ∀j ≥ ν and l ≥ ν (4)

In particular (3) and (4) imply f0αν = ναν and f0ω
t
ν = (ν + 1)ωt

ν then
f0 = ν + 1, αν = 0.

An induction argument shows that:
j ≥ ν ⇒ (αj+1dt+ ωt

j) ∧ Ω = 0, (Ω := αν+1dt+ ωt
ν)

Finally since the degree of the foliation F = F0 is n we have ν = n+ 1.
This proves the lemma (2.4).
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Lemma 1.5 There exists a complete holomorphic vector field X on C3×Dε ,
Dε ⊂ D small subdisk, such that X(x, t) = 1 ∂

∂t +
∑3

j=1 Fj(x, t) ∂
∂xj

, Ω◦X = 0
and Fj(x, t) is linear on x.

Proof. We may present Ω = A(x, t)dt+
∑3

j=1Bj(x, t)dxj = A(x, t)dt+ ωt

where iR(ωt) = 0, Bj is a homogeneous polynomial of degree n+ 1 in x, A
is a homogeneous polynomial of degree n+ 2 in x.
Claim. ∀t ∈ Dε (ε ≥ 0 small enough) we have Sing(Ft) ⊂ {A(., t) = 0}.
Proof of the claim. Since Ω∧dΩ = 0 we have the coefficients of dt∧dxi∧dxj

equal to zero, that is:

A(
∂Bj

∂xi
− ∂Bi

∂xj
) +Bj

∂Bj

∂t
−Bi

∂Bj

∂t
+Bi

∂A

∂xj
−Bj

∂A

∂xi
= 0 (5)

Now given p0 ∈ Sing(Ft0), (t0 ≈ 0, so that Ft0 ∈ M1(n)) we have from
(5) that (Bi(p0, t0) = Bi(p0, t0) = 0) : A(p0, t0)(

∂Bj

∂xi
(p0, t0) − ∂Bi

∂xj
(p0, t0)).

Since Ft0 ∈ T (n) we have ∂Bj

∂xi
(p0, t0) 6= ∂Bi

∂xj
(p0, t0)(i 6= j) and A(p0, t0) = 0.

Using now Noether’s lemma for foliations we conclude that there exist
Fj(x, t) holomorphic in (x, t), homogeneous polynomial of degree 1 = (n +
2)− (n+ 1) in x, such that A(x, t) =

∑3
j=1 Fj(x, t)Bj(x, t). Now we define

X(x, t) := 1 ∂
∂t +

∑3
j=1 Fj(x, t) ∂

∂xj
so that Ω ◦X = A−

∑3
j=1 FjBj = 0.

In addition X is complete because each Fj is of degree one in x. The flow
of X writes Xz(x, t) = (Ψz(x, t), t+ z). Clearly the Ψz : C3\{0} −→ C3\{0}
defines an analytic equivalence between F and Fz. The proposition 2.3 is
now proved.

Another important remark is the following:

Proposition 1.6 Let F , G be foliations with hyperbolic singularities on
CP (2). Assume that L∞ is the only algebraic leaf of F and that F|C2 and
G|C2 are topologically equivalent. Then L∞ is also G-invariant.

Proof. Let φ : C2 → C2 be a topological equivalence between F and G
in C2. We notice that given a singularity p ∈ Sing(F) ∩ L∞, there exist
local coordinates (x, y) ∈ U , x(p) = y(p) = 0, L∞ ∩ U = {y = 0} such
that F|U : xdy − λydx = 0, λ ∈ C\R and U ∩ Sing(F) = {p}. Let U∗ =
U\(L∞∩U), V ∗ = φ(U∗) ⊂ C2, Γ := (x = 0), Γ∗ := Γ∩U∗ = Γ\{p}.Γ is the
local separatrix of F at p, transverse to L∞. We put Γ∗1 = φ(Γ∗) ⊂ V ∗. We
remark that Γ∗1 is contained in a leaf of G and it is closed in V ∗. On the other
hand if we take any local leaf L of F|U∗ , L 6= Γ; then by the hyperbolicity
of p ∈ Sing(F) we have that L accumulates Γ. Thus the image L1 = φ(L)
is a leaf of G|V ∗ that accumulates Γ∗1 6= L1.

Assume by contradiction that L∞ is not G-invariant. The curve Γ∗1 ⊂
C2 accumulates L∞. By the Flow Box Theorem, a point of accumulation
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q ∈ L∞ ∩ Γ̄∗1 which is not a singularity of G, must be a point near to which
the closure (in CP (2)) Γ̄∗1 is analytic.

Thus if there are no singularities of G in Γ̄∗1∩L∞ then Γ̄∗1 is an algebraic G-
invariant curve in CP (2). This implies that if L0 is the leaf of F on CP (2)
that contains Γ∗ then L̄0 is an algebraic invariant curve and F-invariant.
Since L̄0 6= L∞ we have a contradiction to our hypothesis. Therefor Γ∗1
must accumulate to some singularity r of G in L∞. Once again by the local
behavior of the leaves close to Γ∗1 and due to the fact that r is hyperbolic, it
follows that Γ̄∗1 is locally a separatrix of G at r. Since L∞ is not G-invariant,
we have two local separatrices Λ1, Λ2 for G at r with Λj * L∞, j = 1, 2.
Thus Γ̄∗1 is locally contained in Λ1 ∪ Λ2 and in particular Γ̄∗1 is analytic
around r. Since (as we have seen) Γ̄∗1 is also analytic around the points
q ∈ Sing(G), it follows that Γ̄∗1 is analytic in CP (2) and once again it is an
algebraic curve. Again we conclude that Γ is contained in an algebraic leaf
of F , other than L∞. Contradiction!

The proof given above also shows us:

Proposition 1.7 Let F , G be foliations on CP (2) both leaving invariant
the line L∞. Let φ : C2 → C2 be a topological invariant equivalence for F|C2

and F|C2 . Then φ takes the separatrix set SF onto the separatix set SG.

Here SF and SG are respectively the set of separatrices of F and G in C2

that are transverse to L∞ at some singular point p ∈ Sing(F).

Corollary 1.8 Let F0 ∈ H(n), n ≥ 2. Then any C2-topologically trivial
deformation {Ft}t∈D of F0, is a deformation in the class H(n) and it is also
s-trivial if we consider t ≈ 0.

Proof. First we recall that H(n) is open in X (n). Thus it remains to
use proposition 1.6 to conclude that Ft ∈ H(n), ∀t ≈ 0 and then we use
proposition 1.7 to conclude that {Ft}t≈0 is s-trivial.

2 FIXED POINTS AND ONE-PARAMETER PSEU-
DOGROUP

Diff(C, 0) denotes the group of germs of complex diffeomorphisms fixing
0 ∈ C, f(z) = λz +

∑
n≥2 anz

n; λ 6= 0.
Let G ⊂ Diff(C, 0) be a finitely generated subgroup with a set of gener-

ators g1, · · · , gr ∈ G defined in a compact disk D̄ε.

Theorem 2.1 [BeLiLo], [Na] Suppose G is nonsolvable. Then:
(i) The basin of attraction of (the pseudo-orbits of) G is an open neigh-

borhood of the origin Ω.(0 ∈ Ω)
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(ii) Either G has dense pseudo-orbits in some neighborhood 0 ∈ V ⊂ Ω
or there exists an invariant germ of analytic curve Γ (equivalent to Imzk = 0
for some k ∈ N) where G has dense pseudo-orbits and such that G has also
dense pseudo-orbits in each component of V \Γ.

(iii) G is topologically rigid: Given another nonsolvable subgroup G′ ⊂
Diff(C, 0) and a topological conjugation φ : Ω → Ω′ between G and G′, then
φ is holomorphic in a neighborhood of 0.

(iv) There exists a neighborhood 0 ∈ W ⊂ V ⊂ Ω where G has a dense
set of hyperbolic fixed points.

Remark. In case G is nonsolvable contains some f ∈ G with f ′(0)n 6= 1,
∀n ∈ Z\{0} (i.e., f ′(0) = e2πiλ, λ /∈ Q) we have the following from (iii).

(iii)′ (Dense Orbits Property): There exists a neighborhood 0 ∈ V ⊂ Ω
where the pseudo-orbits of G are dense.

HOLOMORPHIC DEFORMATIONS IN Diff(C, 0)

Let g ∈ Diff(C, 0) defined in some open neighborhood 0 ∈ Ω. A holomorphic
(one-parameter) deformation of g is a map G : Dε → Diff(C, 0), (ε > 0)
which verifies the four properties:

(1) G(0) = g as germs
(2) The Taylor expansion coefficients of G(t) depend holomorphically on

t
(3) The radii of convergence of G(t) and G(t)−1 are both uniformly

minorated by some constant R ≥ 0 (∀t ∈ Dε)
(4) The modules of the linear coefficient of G(t) is uniformly minorated

by some constant C ≥ 0. In particular |(G(t)−1)′(0)| is uniformly majorated
by 0 < t <∞.

Given a finitely generated pseudo-group G ⊂ Diff(C, 0) with a set of
generators g1, · · · gr ∈ G; a holomorphic (one parameter) deformation of G
is given by holomorphic deformation of gj , j = 1, · · · , r. We may restrict
ourselves to the following situation:

Gt is an one-parameter analytic deformation of G with t ∈ D, G0 = G.
We have g1,t · · · gr,t as a set of generators for Gt, all of them defined in a disk
D̄δ (uniformly on t). We will consider dynamical and analytical properties
of such deformations. The results we state below have their proofs reduced
to the following case which is studied in [Wi3].

g1,t(z) = g1(z) + tzD+1 where D ∈ N is fixed,
g2,t(z) = g2(z), · · · , gr,t(z) = gr(z).
For such deformations we have:

Theorem 2.2 [Wi3] Given a hyperbolic fixed point p ≈ 0 for a word f =
fn ◦ fn−1 ◦ · · · ◦ f1 in G, we consider the corresponding word ft = f =
fn,t ◦ · · · ◦ f1,t in Gt. Then ft has a hyperbolic fixed point p(t) given by the
implicit differential equation with initial conditions:
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dp(t)

p(t)D+1dt
=

f ′t(p(t))
f ′t(p(t))− 1

f ′1,t(p(t)), p(0) = p.

In particular p(t) depends analytically on t as well as its multiplicator
ft
′(p(t)).

This holds for |t| < ε if ε > 0 is small enough.

We also have:

Theorem 2.3 [Wi2] Let f and g be two non-commuting complex diffeomor-
phisms defined in some neighborhood of the origin 0 ∈ C, fixed by f and g.
Assume that f ′(0) = e2πiλ, g′(0) = e2πiµ with λ, µ ∈ C\R, Reλ,Reµ /∈ Q.
Then there exist some bound K > 0 and some radius r0 > 0 such that if
r ∈ (0, r0) and |t| ≤ Kr then the orbits of the pseudo-group generated by g
and ft(z) = t+ f(z − t) are dense in D̄r.

Corollary 2.4 [Wi1] Let f and g be as above. Any holomorphic deforma-
tion of the subgroup < f, g >⊂ Diff(C, 0) preserves locally at the origin the
dense orbits property.

3 PROOF OF THEOREM A

We use the terminology of [LiSaSc]and some of the original ideas of [Il].
We give the main steps, for remaining details are found in [LiSaSc]. Let
therefore {Ft}t∈D be a C2-topological trivial deformation of F0 ∈ H(n),
n ≥ 2. As we have proved in corollary (2.8) there exists ε > 0 such that
{Ft}t∈Dε is a s-trivial deformation of F0 in the class H(n). Now we consider
the continuous foliation F̃ on CP (2)× Dε defined as follows:

(i)Sing(F̃) =
⋃
|t|<ε Sing(Ft)× {t}

(ii)The leaves of Ft are the intersections of the leaves of F̃ with CP (2)×
{t}, ∀|t| < ε.

Because of the topological triviality F̃ is a continuous foliation on C2×Dε.
This foliation extends to a continuous foliation on CP (2)×Dε by adding the
leaf with singularities L∞×Dε. In order to prove that F̃ is holomorphic we
begin by proving that it has holomorphic leaves and then it is transversely
holomorphic. This is basically done by the following lemma:

Lemma 3.1 Let p1, · · · , pn+1 ∈ L∞ be the singularity of F0 in L∞. Then
(i) There exist analytic functions pj(t), t ∈ Dε such that {p1(t), · · · , pn+1(t)} =

Sing(Ft) ∩ L∞, pj(0) = pj , j = 1, · · · , n+ 1.
Fix q ∈ L∞\Sing(F0) and take small simple loops αj ∈ π1(L∞\Sing(F0), q)

and a small transverse disk Σ t L∞. Then for ε > 0 small we have:
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(ii) The holonomy group Gt := Hol(Ft, L∞,Σi) ⊂ Diff(Σ, q) is generated
by the holonomy maps fj,t associated to the loops αj (αj is also simple loop
around pj(t)).

In particular we obtain
(iii){Gt}t∈Dε

is an one-parameter holomorphic deformation of G0 =
Hol(F0, L∞,Σ).

(iv)The group Gt is nonsolvable with the Density Orbits Property, a
dense set ηt ⊂ Σ × {t} of hyperbolic fixed points around the origin (q, t).
Moreover, given any p0 ∈ η0, p0 = f0(p0), there exists an analytic curve
pt ∈ ηt such that p(0) = p0, ft(pt) = pt where ft ∈ Gt is the corresponding
deformation of f0.

Using above lemma we prove that F̃ is holomorphic close to L∞ × Dε:
Given a point p0 ∈ η0 and f0 ∈ G0 as above, the curve p(t) and ft ∈ Gt

given by (iv) above we have {p(t), |t| < ε} ⊂ L̃p0 ∩ (Σ×Dε) where L̃p0 is the
F̃-leaf through p0. On the other hand L̃p0 is already holomorphic along the
cuts L̃p0 ∩ (CP (2)× {t}) for Lp′0,t for p0 = (p′0, 0). This implies that L̃p0 is
analytic.

Since the curves {p(t), |t| < ε} with p0 ∈ η0 are analytic and locally
dense around {q} × Dε ⊂ Σ× Dε it follows that any leaf L̃ of F̃ is a uniform
limit of holomorphic leaves L̃p0 and it is therefore holomorphic. Thus F̃
has holomorphic leave. We proceed to prove that it is transversely holomor-
phic. This is in fact a consequence of topological rigidity theorem [Na] for
nonsolvable groups of Diff(C, 0).

Fix transverse section Σ t L∞ as above. We may assume that Σ ⊂ V
where V is a flow-box neighborhood for F0 with q ∈ V . The homeomor-
phisms φt : C2 → C2 take the separatrices S0 of F0 onto the set of separa-
trices St of Ft. Now we use the following proposition:

Proposition 3.2 Given F ∈ H(n), n ≥ 2, the set of separatrices SF of F
is dense in CP (2) and it accumulates densely a neighborhood of the origin
for any transverse disk Σ t L∞, q /∈ SingF .

Proof. Indeed, given a separatrix Γ ⊂ SF the leaf L ⊃ Γ is nonalgebraic
for F ∈ H(n). This implies that L\Γ accumulates L∞ and therefor any
transverse disk Σ as above is cut by L. Now it remains to use the density
of the pseudo-orbits of Hol(F , L∞) stated in theorem 2.1.

Returning to our argumentation we fix any p ∈ Σ, separatrix (p0 ∈)Γ0 ⊂
S0 of F0 and denote by P (Γ0, p) the local plaque of F0|V that is contained in
Γ0∩V and contains the fixed point p. Put Γt = φt(Γ0) and consider the map
t 7→ p(t) := P (Γt, p). clearly we may write p(t) = φt(P (Γ0, p)) ∩ Σ× {t} by
choosing Σ and |t| small enough. This map t 7→ p(t) is holomorphic as a
consequence of proposition below:
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Proposition 3.3 Given any singularity p0
j ∈ SingF there exists a connected

neighborhood (p0
j ∈)Uj, a neighborhood U 3 F0 in S(n) and a holomorphic

map ψj : U → Uj such that ∀F ∈ U , ψj(F) = SingF ∩ Uj, ψj(F0) = p0
j .

In particular, if {Ft}t∈D is a deformation of F0 ∈ H(n), n ≥ 2; then given
Γ0 ∈ S0 = SF , Σ t L∞, V and p ∈ Γ0 ∩ Σ as above, there exist analytic
curves pj(t) and p(t) such that: pj(t) = SingFt ∩ Uj, pj(0) = p0

j , p(t) =
P (Γt, p(t)), p(0) = p and p(t) ∈ Γt ∩ Σ.

Roughly speaking, the proposition says that both the singularities and
the separatrices of a foliation with nondegenerate singularities, move ana-
lytically under analytic deformations of the foliation.

Finally we define ht(p) := p(t) obtaining this way an injective map in
a dense subset of Σ (F0 has dense separatrices in (Σ, q)), so that by the
λ-lemma for complex mapping we may extend ht to a map that ht : Σ → Σ.
Moreover, it is clear that if fj,t is a holonomy map as above then we have

ht(fj,0(p)) = fj,t(ht(p))

Because f0 and ft fix the separatrices. Therefore, by density we have
ht ◦ fj,0 = fj,t ◦ ht, ∀j ∈ {1, · · · , n + 1} and the mapping ht conjugates the
holonomy groups Gt = Hol(Ft, L∞,Σ) and G0. By the topological rigidity
theorem ht is holomorphic which implies that F̃ is transversely holomorphic
close to L∞ × Dε [Na]. The density of St, ∀t assures that F̃ is in fact
holomorphic in CP (2)× Dε.

Summarizing the discussion above we have:

Proposition 3.4 Let {Ft}t∈D be a C2-topologically trivial deformation of
F0 ∈ H(n), n ≥ 2. Then there exists ε > 0 such that {Ft}t∈Dε

is an
unfolding of F0 in CP (2).

Proof of Theorem A. The proof is a consequence of propositions 1.3 and
3.4 above.

4 GENERALIZATIONS

foliations on other projective spaces. This is the goal of this section.Before
going further into generalizations we state a kind of Noether’s lemma for
foliations.

Lemma 4.1 Let {Ft}t∈D be a holomorphic unfolding of a foliation F0 of
degree n on CP (2). Assume that for each singularity p ∈ SingF0 ∩ L∞ the
germ of unfolding at p is analytically trivial. Then there exists ε > 0 such
that {Ft}|t|<ε is analytically trivial.
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Proof. Denote by
π : C3\{0} → CP (2) the canonical projection and by
Π : (C3\{0})× D → CP (2)× D the map Π(p, t) := (π(p), t).
Choose a holomorphic integrable 1-form Ω which defines F̃∗ extension

of Π∗(F) to C3 × D, so that we may choose

Ω = A(x, t)dt+
3∑

i=1

Bj(x, t)dxj ,

where A, Bj are holomorphic in (x, t) ∈ C3 × D, homogeneous polynomial
in x of degree n+ 2, n+ 1;

∑3
i=1 xjBj = 0. The foliation π∗(Ft) extends to

C3 and this extension F∗
t is given by Ωt = 0 for Ωt :=

∑3
i=1Bjdxj .

Claim. Given point q ∈ C3 × Dε, q /∈ {0} × D, there exist a neighborhood
U(q) of q in C3 × Dε and local holomorphic vector field Xq ∈ X(U(q)) such
that A = Ω ◦Xq in U(q), for ε small enough.
Proof of the claim. If q = (x1, t1) with x1 /∈ Sing(F0) then x1 /∈ Sing(Ft) for
|t| small enough and in particular x1 /∈ Sing(Ft1). Thus the existence ofXq ∈
X(U(q)) is assured in this case. On the other hand if x1 /∈ Sing(F0) then
we still have the existence of Xq ∈ X(U(q)) because of the local analytical
triviality hypothesis for the unfolding at x1.

Using the claim we obtain an open cover {Uα}α∈Q of M := C3\{0} × D
with Uα connected and Xα ∈ X(Uα) such that A = Ω ◦Xα in Uα, ∀α ∈ Q.
Let Uα ∩ Uβ 6= ∅ then we put Xαβ := (Xα − Xβ)|Uα∩Uβ

to obtain Xαβ ∈
X(Uα ∩ Uβ) such that Ω ◦Xαβ = 0. Take now the rotational vector field

Y = rot(B1, B2, B3)

= (
∂B3

∂x2
− ∂B2

∂x3
)
∂

∂x1
+ (

∂B1

∂x3
− ∂B3

∂x1
)
∂

∂x2
+ (

∂B2

∂x1
− ∂B1

∂x2
)
∂

∂x3
.

Y ∈ X(C3 × D) and for each t ∈ D we have iY (Vol) = dΩt where
Vol = dx1 ∧ dx2 ∧ dx3 is the volume element of C3 in the x-coordinates.
Fixed now q = (x1, t1) /∈ Sing(Ωt1) then the leaf of F∗

t1 through q is spanned
by Y (q) the radial vector field R(q), as a consequence of the remark above:
actually, we have iRiY (Vol) = iR(dΩt) = (n+ 1)Ωt.

Given thus Uαβ := Uα ∩ Uβ 6= ∅, since Ωt(Xαβ) we have that Xαβ is tan-
gent to F∗

t outside the points (x, t) ∈ Sing(Ωt) so that we can write Xαβ =
gαβR+ hαβY for some holomorphic functions gαβ , hαβ ∈ O(Uαβ\Sing(Ωt)).
Since Sing(Ωt) is an analytic set of codimension ≥ 2, Hartogs extension
theorem [Si] implies that gαβ , hαβ extend holomorphically to Uαβ . Now if
Uα∩Uβ ∩Uγ 6= ∅ then 0 = Xαβ +Xβγ +Xγα = (gαβ +gβγ +gγα)R+(hαβ +
hβγ + hγα)Y and since R and Y are linearly independent outside Sing(Ωt)
we obtain: gαβ + gβγ + gγα = 0, hαβ + hβγ + hγα = 0.

Thus (gαβ), (hαβ) are additive cocycles in M and by Cartan’s theorem
(for Cn+1\{0}, n ≥ 2) these cocycles are trivial, that is, ∃gα, hα ∈ O(Uα)
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such that if Uα ∩ Uβ 6= φ then gαβ = gα − gβhαβ = hα − hβ in Uα ∩ Uβ .
This gives Xα − Xβ = Xαβ = gαβR + hαβY (gαR + hαY ) − (gβR + hβY )
in Uα ∩ Uβ 6= φ. Thus, in Uα ∩ Uβ 6= φ we obtain Xα − gαR − hαY =
Xβ − gβR − hβY and this gives a global vector field X̃ ∈ X(M) such that
X̃|Uα := Xα − gαR − hαY . This vector field extends holomorphically to
C3 × D and we have (Ωt ◦ X̃)|Uα = Ωt ◦Xα − gαΩt ◦ R − hαΩt ◦ Y = A so
that Ωt ◦ X̃ = A.

It remains to prove that we may choose X̃ polynomial in the variable x.
Indeed, we write X̃ =

∑∞
k=0 X̃k for the Taylor expansion of X̃ around the

origin, in the variable x.
Then X̃k is holomorphic in (x, t) and homogeneous polynomial of degree

k in the variable x. We have A = Ωt◦X̃ =
∑+∞

k=0 Ωt(X̃k) and since it is poly-
nomial homogeneous of degree n+2 in x it follows that k 6= 1 ⇒ Ωt(X̃k) = 0
and Ωt(X̃1) = A. Since X̃1 is linear, as before in ... the flow of X̃1 gives an
analytic trivialization for {Ft}t∈Dε .

QUASI-HYPERBOLIC FOLIATIONS

Now we recall some of the features coming from [MaSa2]. A germ of holo-
morphic foliation at 0 ∈ C2, is quasi-hyperbolic if after its reduction of
singularities process[Se] we obtain an exceptional divisor that is a finite
union of invariant projective lines meeting transversely at double points and
a foliation with saddle-type singularities: xdy− λydx = 0, λ ∈ (C\R) ∪ R−.

In [MaSa2] we also find the notion of generic quasi-hyperbolic germs of
foliation with some dynamical restrictions on the structure of the foliation
after the reduction process.

The outstanding result is:

Theorem 4.2 A topological trivial deformation of a generic quasi-hyperbolic
germ of foliation is an (equisingular) unfolding.

Using the concept of singular holonomy[CaSc] we may strength this re-
sult as follows:

Theorem 4.3 [MaSa2] Let {Ft}t∈D be a topologically trivial analytic defor-
mation of a germ of quasi-hyperbolic foliation F0 at 0 ∈ C2. We have the
following possibilities:

(i) F0 admits a Liouvillian first integral and all its projective holonomy
groups are solvable,

(ii) {Ft}|t|<ε is an (equisingular) unfolding.

Proof. First we recall that {Ft}t∈D is equireducible as a consequence of
[MaSa2]. Assume that all the projective singular holonomy groups of F0
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are solvable. In this case according to [CaSc] F0 has a Liouvillian first in-
tegral.(here we use strongly the fact that F0 is quasi-hyperbolic) We may
therefore consider the case where some component of the exceptional divisor
has non solvable singular holonomy group. This implies topological rigidity
and abundance of hyperbolic fixed points as well as the Dense Orbits Prop-
erty for this group as well as for all the projective singular holonomy groups,
which are the main ingredients in the proof of (0.26)[MaSa1], so that a slight
adaptation of their original proof gives us that {Ft}|t|<ε is an unfolding for
|t| < ε.

Proof of Theorem B. First we remark that by the topological trivial-
ity on CP (2) we may assume that L∞ is an algebraic leaf for Ft and that
φt(L∞) = L∞, ∀t ∈ D. In fact, we take St = φt(L∞) ⊂ CP (2). Then St

is compact Ft-invariant and of dimension one, so that St is an algebraic
leaf of Ft. By a well-known theorem of Zariski St is smooth. Since the
self-intersection number is a topological invariant we conclude that St has
self-intersection number one and by Bezout’s theorem St has degree one,
that is, St is a straight line in CP (2).

The problem here is that St may do not depend analytically on t. That
is where we use the hypothesis that there exist at least two simple sin-
gularities p1, p2 ∈ SingF0 ∩ L∞. Since pj is simple there exists an ana-
lytic curve pj(t) ∈ SingFt such that pj(t) is simple singularity of Ft and
pj(t) = φt(pj), pj(0) = pj . since the line St contains p1(t) 6= p2(t) it follows
that St depends analytically on t and there exists a unique automorphism
Tt : CP (2) → CP (2) such that Tt(St) = S0 = L∞; Tt(pj(t)) = pj , j = 1, 2.
Thus ψt = Tt ◦ φt : CP (2) → CP (2) gives a topological trivialization for
the deformation {F1

t }t∈D of F0, where F1
t := Tt(Ft), and L∞ is an algebraic

leaf of F1
t , ∀t ∈ D. Thus we may assume that L∞ is Ft-invariant, ∀t ∈ D.

Now we proceed after performing the reduction of singularities for F0|L∞
we consider the exceptional divisor D = ∪r

j=1Dj , D0
∼= L∞, Dj

∼= CP (1),
∀j ∈ {1, · · · , r} and observe that if the singular holonomy groups of the
components Dj are all solvable then according to [CaSc](using the fact that
the singularities p ∈ Sing(F0) ∩ L∞ are quasi-hyperbolic) we get that F is
a Darboux (logarithmic) foliation. We assume therefor that some singular
holonomy groups is nonsolvable, then it follows that by definition of sin-
gular holonomy group and due to the fact that the divisor D is invariant
and connected and has saddle-singularities at the corners, we can conclude
that all components of D has nonsolvable singular holonomy groups. This
implies, that each germ of {Ft}t∈D at a singular point p ∈ Sing(F0) ∩ L∞
is an unfolding(these germs are evidently topologically trivial). Using now
arguments similar to the ones in proof of (0.27) we conclude that {Ft}t∈Dε

is an unfolding for ε > 0 small enough.
If we assume that for any singularity p ∈ Sing(F0) ∩ L∞ the germs of

unfolding is analytically trivial, then as consequence of (0.25) we conclude
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that {Ft}t∈Dε
is analytically trivial for ε > 0 small enough. Theorem B is

now proved
Remark. Above theorem is still true if one replace condition (iii) by the
following

(iii)’φt(L∞) = L∞, ∀t ∈ D.
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Part II

DENSITY

The problem of density of the leaves of generic foliations F on CP (2) has
been considered by several authors,e.g. [Mj][Il] and [Sh1]. It is also related
to the problem of the existence of foliations on CP (2) having an exceptional
minimal set[CaLiSa].

It is now well-known that given any integer n ≥ 2 there exists an open
dense subset M1(n) of degree n foliations leaving invariant the line at infin-
ity whose foliations have dense leaves on CP (2) except the line at infinity.
we demand basically whether it is possible to perform deformations of an
element F0 ∈M1(n) in such a way that the perturbed foliation has all leaves
dense in CP (2). Towards this we have the following result:

Theorem 4.4 (Density theorem). Let F0 ∈M1(n) be given with n ≥ 2.
Then any analytic deformation {Ft}t∈D of F0 in CP (2) has the property
that if t is close enough to zero then Ft has dense leaves in C2. In case L∞
is not invariant for Ft then the leaves are dense in CP (2).

As a corollary of this result we obtain:

Theorem 4.5 Given F0 ∈M1(n), n ≥ 2, there exist analytic deformations
{Ft}t∈D of F0 in CP (2) whose foliations have dense leaves in CP (2).

5 PRELIMINARIES

Let F be a foliation on CP (2). The following result is a well-known conse-
quence of the Maximum Principle for holomorphic foliations:

Proposition 5.1 Let L be a leaf of F . Then L accumulates L∞.

Proof. Indeed, take a point p0 ∈ L ∩ C2 and let X = P ∂
∂x + Q ∂

∂y be an
isolated singularity polynomial vector field defining F0 in C2; p0 = (x0, y0),
X(p0) 6= 0. Denote by φ(z, (x0, y0)) the local solution of X that satisfies
φ(0, (x0, y0)) = (x0, y0). Assume by contradiction that L̄∩L∞ = ∅, then L̄
is a compact set on C2 and therefor φ(z, (x0, y0)) ∈ L̄,∀z. This implies (by
a canonical ODE argument) that φ(z, (x0, y0)) is defined for all z ∈ C. Now
Liouville’s theorem is applied in order to prove that φ(z, (x0, y0)) is constant
which gives X(p0) = 0, contradiction.

This first remark allows us to restrict in a certain sense, our argumenta-
tion to when occurs in a neighborhood of L∞. This will be done by studying
the deformations of the holonomy group of F0 associated to this algebraic
leaf. Let us thus consider the setting we will work with:
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F0 ∈M1(n), n ≥ 2. Denote by {p1, . . . , pn+1} ⊂ L∞ the singularities of
F0 in L∞. Fix a point O ∈ L∞, O 6= pj , ∀j and take cycles γ1, . . . , γn ∈
π1(L∞\{p1, . . . , pn+1}) which are generators of this homotopy group with
no relations. Let Σ be a transverse section to F0 at O, Σ t L∞, Σ ≈ D.

Given a polynomial vector field X = (P,Q) with g.c.d(P,Q) = 1,
which defines F0 in C2 and given any holomorphic 1-parameter deformation
{Ft}t∈D of F0 in CP (2). We may find a 1-parameter holomorphic family
{Pt, Qt} ⊂ C[x, y], ∀t ∈ D with g.c.d(Pt, Qt) = 1, P0 = P , Q0 = Q such
that Ft is given by Xt = (Pt, Qt) in C2. If ε > 0 is small enough then for
|t| < ε, the foliation Ft has leaves transverse to Σ. Let us change projective
coordinates in CP (2) so that L∞ ∩ C2 becomes the x-axis (y = 0), O is
the origin (0, 0). Since (y = 0) is now F0 invariant we may take Σ as small
disk D ⊂ (x = 0). The singularities pj write pj = (aj , 0), j = 1, · · · , n and
pn+1 = (x = ∞, y = 0) and the cycles γj write γj(s) = (xj(s), 0), s ∈ [0, 1],
xj(0) = xj(1) = 0, xj(s) 6= aj ,∀s, ∀i, j = 1, · · · , n.

Given any point (x0, y0) ∈ C2 such that X(x0, y0) 6= 0 and P (x0, y0) 6= 0
we consider the solution φ(x, (x0, y0), t) of the Cauchy problem

dy

dx
=
Qt(x, y)
Pt(x, y)

y(x0) = y0.

(6)

Note that since L∞ is F0-invariant we may arbitrarily choose small neigh-
borhood Uj of pj in CP (2) such that ∃ neighborhood V of L∞ in CP (2) and
ε > 0 with: |t| < ε, (x, y) ∈ V \

⋃n+1
j=1 Uj ⇒ Xt(x, y) 6= 0 and Pt(x, y) 6= 0.

In what follows, we will restrict ourselves to |t| < ε and (x, y) ∈ V ∩ C2.
Denote by Yj(s, y0, t), s ∈ [0, 1] the analytic continuation of φ(x, (0, y0), t)
along the curve γj , with the initial value Yj(0, y0, t) = (0, y0) ∈ Σ. We
denote by fj

t = Yj(1, y0, t) the final value of this analytic continuation so
that fj

t(y0) ∈ Σ for y0 ≈ 0 enough and t ≈ 0 enough. Indeed fj
0(0) = 0 be-

cause L∞ is F0-invariant. Thus we obtain that {f1
0, . . . , fn

0} ⊂ Diff(Σ,O)
generate the holonomy group Hol(F0, L∞). Let Ht be the pseudogroup of
local map Σ → Σ generated by the mappings f1

t, . . . , fn
t. Then Ht is an

one-parameter pseudogroup holomorphic deformation of H0 = Hol(F0, L∞).
Since F0 ∈M1(n) the holonomy group is nonsolvable so that we have as

a consequence of [Na]:

Proposition 5.2 For ε > 0 small enough the pseudo-orbits of Ht, |t| < ε
are dense in an open neighborhood of the origin in Σ.

Remark. Any leaf which dose not contain a separatrix must accumulate
both separatrices of a hyperbolic singularity.

Now we state several lemmas which are consequence of the analytic de-
pendence of the solutions of a one-parameter family of ODEs in the param-
eter and initial condition, or also of lemma [??] in part I and above remark.
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The important fact is that L∞ is F0-invariant and that Ft has hyperbolic
singularities for |t| < ε. Let Σ′ ⊂ Σ be a compact subdisk.

Lemma 5.3 There exists a compact set K such that:
(i)∀|t| < ε, K ∩ SingFt = ∅
(ii)∀|t| < ε, Lt is a leaf of Ft not containing any separatrix of singularity

pj(t) ⇒ Lt ∩K 6= ∅
(iii) ∀p ∈ K the F0-leaf, L0

p cuts Σ′

Lemma 5.4 We may choose Σ′ in such a way that there exists a neighbor-
hood W of Σ′ with Ft trivial in a neighborhood of W , ∀|t| < ε so that if
q ∈W then the Ft leaf, Lt

q cuts Σ

Lemma 5.5 ∃ 0 < ε1 < ε such that if |t| < ε1 and Lt ∩ K 6= ∅ then
Lt ∩W 6= ∅

The existence of W as in lemma 5.4 is an easy consequence of the Flow
Box theorem for one parameter families of foliation and of the fact that
given a vertical transverse disk Σ′ in a flow box neighborhood W then any
leaf of the trivialized (horizontal) foliation must cut this disk.

The existence of compact set K satisfying the conditions of lemma 5.3
may obtain as follows:

Take initially the Uj as small bidisks, Uj = D(pj , α)×D(0, 2δ) a compact
tubular neighborhood A = L∞ × Dδ of L∞ and put B = A\(

⋃n+1
j=1 Uj ∩A)

Notice that L∞\
⋃∞

j=1(Uj ∩ L∞) is compact and F0-invariant so that
(Since Uj may be chosen arbitrarily small if |t| < ε and ε is small enough)
we may choose K arbitrarily small and such that

∀p ∈ K, L0
p ∩ Σ′ 6= ∅

Uj ⊂ A, ∀j, Uj is a bidisk. Now we recall that according to proposition
[??] the singularity pj as well as its separatrices move analytically in t. In
particular if we take the vertical fibration and recall that L∞ is invariant
and transverse to the fibration for F0 then we will have for small |t| a smooth
separatrices for Ft at pj(t) that is still transverse to the vertical fibration in
a neighborhood of p0. Now, take Vj = D(pj , α) × D(0, δ1) for 0 < δ1 << δ.
Then it follows that for |t| < ε1 << ε we have a separatrix of Ft through
pj(t), which is transverse to the vertical fibration and meeting the boundary
∂Vj at S(pj , α)× D(0, δ1) transversely so that the corresponding leaf enters
the compact set A. Now, according to lemma [] given any leaf Lt of Ft

we know that Lt must intersect the compact neighborhood of L∞ given by
L∞ × D(0, δ1). In particular we may conclude that if |t| < ε1 then we have
two possibilities:

(i)Either Lt intersects K or some Vj and therefor Lt ∩K = ∅
(ii)Either Lt dose not intersect K and Lt∩Vj is always contained in some

separatrix of Ft|Vj which correspond to the deformation of the separatrix of
F0 at pj transverse to L∞.
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In this last case Lt cuts L∞ transversely and it is transverse to the
horizontal fibration (x = cte) so that we conclude that Lt is analytic in a
neighborhood of L∞. This implies that Lt is analytic in CP (2) and therefor
it is an algebraic and Ft-invariant curve.

6 PROOF OF DENSITY THEOREM

We are now able to prove theorem 4.4:
Given an one-parameter holomorphic deformation Ft∈D of a foliation F0 ∈
M1(n), n ≥ 2 on CP (2) we may consider Σ t L∞ at O ∈ L∞, Ht and |t| < ε1
as above. Then |t| < ε1 implies any non-algebraic Ft-leaf Lt intersects any
immersed compact subdisk Σ1 ⊂ Σ so that in particular using the fact that
Ht has dense pseudo-orbits in a fixed neighborhood of the origin in Σ we
conclude that all the non-algebraic leaves of Ft are dense in CP (2). This
proves theorem 4.4.

In order to prove theorem 4.5., it is enough to use theorem 4.4. and the
following result of Lins Neto[Li]:
For every n ≥ 2 the set of foliations of degree n and without algebraic
solutions in CP (2), contains an open dense subset.
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[Sc1] Scrádua, B.: Integration of complex differential equations. J. Dy-
nam. Control Systems 5 (1999), no. 1, 1–50

[Sh1] Shcherbakov, A.: Density of the orbit of a pseudogroup of confor-
mal mappings and generalization of the Khudai -Verenov theorem. Vestnik
Moskov. Univ. Ser. I Mat. Mekh. 1982, no. 4, 10–15, 84

[Si] Siu Y,: Techniques of extension of analytic objects. Lecture Notes
in Pure and Applied Mathematics, Vol. 8. Marcel Dekker, Inc., New York,
1974.

[Wi1] Wirtz, B.: A property of global density for generic pseudo-groups
of holomorphic diffeomorphisms of C with linearizable generators. Preprint
1999.

[Wi2] Wirtz, B.: Persistence de densite locale D’orbites de pseudo-groups
de diffeomorphisms holomorphes par perturbation de points fixes. Preprint,
1999.

[Wi3] Wirtz, B.: Fixed points of one parameter-family of pseudo-groups
of Diff(C, 0) 1998

21


