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1. Introduction

Given a probability measure on the group of homeomorphisms of a
manifold, one can study the asymptotic behaviour of large composi-
tion of elements chosen randomly with respect to this measure. From
the 50’s the questions of the behaviour of the random walk on the
group, composition of random matrices, equidistribution of the orbits,
Lyapunov exponents (if the action is by C1 diffeomorphisms) etc. has
been largely studied and understood. We are unable to review here
all the history of these problems and we refer the interested reader
to an excellent survey of Furman [F]. Nevertheless, we would like to
mention here some important works in the development of this theory:
Kakutani [Kak], Furstenberg [Fu1], Arnold-Krylov [A-K], Furstenberg-
Kesten [F-K], Guivar’ch [Gui].

More recently was developed the idea that the maps could be taken
from a pseudo-group, rather than a group. This has been introduced in
the paper of Garnett [Ga] for the pseudo-group of a foliation, and then
studied by Ghys [Gh2, Gh3], Kaimanovich [Kai1], Ledrappier [Led] and
Candel [Can]. Following the lines of the “Sullivan’s dictionary”, one
can extend these ideas to other pseudo-groups, like for instance the one
generated by an endomorphism or a correspondence.

In this work we study random compositions of the elements of a
pseudo-group acting conformally on a manifold. Our results concern
actions of a group by conformal transformations, conformal correspon-
dences or transversely conformal foliations (for one dimensional dy-
namical systems, we suppose that the maps are of class C1); most of
them were known in the case of a group acting conformally on a com-
pact manifold, when the conditional probabilities do not depend on the
point (see [F]).

Observe that the existence of a measure which is invariant by every
element of the pseudo-group is rather rare. In the symmetric case
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(i.e. when the probabilities are symmetric) we prove the following
dichotomy. On a minimal subset, either is supported a probability
measure which is preserved by all the elements of the pseudo-group,
or the system has the property of exponential contraction: for any
point and almost every random composition of elements of the pseudo-
group there exists a neighborhood of the point which is contracted
exponentially.

We deduce some results about the equidistribution of the orbits of
the system along random compositions. In the case where the sys-
tem have the property of exponential contraction (even if the system
is not symmetric), we prove that the orbit of a point by almost every
random compositions is distributed with respect to a unique measure.
We also give examples of non symmetric systems for which the expo-
nential contraction property and the equidistribution property are not
satisfied.

1.1. Presentation of the results for a foliation. We begin by a
survey on Garnett’s theory [Ga] (see also [Can]).

Let F be a foliation of a compact manifold M , whose leaves are of
class C∞, and g a Riemannian metric on the leaves of F . In [Ga],
Garnett studies the diffusion process along the leaves of F . Namely,
the metric g induces the Laplace-Beltrami operator along the leaves,
which we denote ∆; given a continuous function f0 : M → R, one
studies the heat equation along the leaves of the foliation

∂f

∂t
= ∆f

with initial condition f(·, t) = f0. As it is well-known [Cha], because
the leaves are complete and of bounded geometry, the solution to the
heat equation is unique, defined for all positive time, and is expressed
by convolution of the initial condition with the heat kernel p(x, y; t).
A fundamental Lemma due to Garnett (see also Candel [Can]), asserts
that the functions f(·, t) on M are continuous, and that the diffusion
semi-group of operators Dt defined for all t ≥ 0 by

Dtf(0, ·) = f(t, ·)
acts continuously on C0(M).

Associated to this diffusion semi-group, Garnett considers the Brow-
nian motion along the leaves of the foliation: this is a Markovian pro-
cess with continuous time, whose trajectories stays every time in the
same leaf, and whose transition probability distributions are volume
forms whose leafwise density is the heat kernel. It is known that this
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process can be realized as a process with continuous trajectories. For
any point x in M , let Γx be the set of continuous paths parametrized by
[0,∞), starting at x, and whose image is contained in the leaf Fx pass-
ing through the point x. The space Γx is equipped with the uniform
topology on compact subsets; there is a probability Borel measure in-
duced by the Brownian motion process, expressing the probability that
a trajectory occurs. This probability measure is called the Wiener mea-
sure and denoted Wx.

We recall the definition of the holonomy pseudo-group. Because the
manifold M is compact, there is a finite cover of M by foliated box
Bi×Ti, in which the foliation F is the horizontal fibration. The change
of coordinates from Bi × Ti to Bj × Tj are of the form

(xi, ti) 7→ (xj = xj(xi, ti), tj(ti)).

The maps tj(ti) generates a pseudo-group on the union T = ∪iTi. A
measure on T which is invariant by the holonomy pseudo-group is called
a transversely invariant measure. These measures have been intro-
duced by Schwartzman for flows [Scm], by Plante and Ruelle-Sullivan
for foliations [Pl, R-S] and by Sullivan for other kind of dynamical
systems [Su1].

Now, consider a continuous path γ contained in a leaf, parametrized
by a closed interval. It crosses successively the foliation boxes Bi1 ×
Ti1 , . . . , Bik × Tik . The composition of the associated change of trans-
verse coordinates is by definition the holonomy map hγ corresponding
to γ. The following result describes the asymptotic behaviour of the
holonomy maps hγ|[0,t] when t goes to infinity, for a generic Brown-
ian path along the leaf passing throw a point x, when the foliation is
transversely conformal.

Theorem 1.1 (Main Theorem). Let F be a transversely conformal
foliation of class C1 of a compact manifold. Then either there exists a
transversely invariant measure. Or F has a finite number of minimal
sets M1, . . . ,Mk equipped with probability measures µ1, . . . , µk, and
there exists a real α > 0 such that:

• Contraction. For every point x in M and almost every leaf-
wise Brownian path γ starting at x, there is a neighborhood Tγ
of x in T and a constant Cγ > 0, such that for every t > 0, the
holonomy map hγ|[0,t] is defined on Tγ and

|hγ|[0,t](Tγ)| ≤ Cγ exp(−αt).
• Distribution. For every point x in M and almost every leaf-

wise Brownian path γ starting at x, the path γ tends to one of
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the Mj and is distributed with respect to µj, in the sense that

lim
t→∞

1

t
γ∗leb[0,t] = µj,

where leb[0,t] is the Lebesgue measure on the interval [0, t].
• Attraction. The probability pj(x) that a leafwise Brownian

path starting at a point x of M tends to Mj is a continuous
leafwise harmonic function.
• Diffusion. When t goes to infinity, the diffusions Dtf of a

continuous function f : M → R converge uniformly to the func-
tion

∑
j cjpj, where cj =

∫
fdµj. In particular, the functions pj

form a base in the space of continuous leafwise harmonic func-
tions.

The existence of a transversely invariant measure for a transversely
conformal foliation is a very strong condition. An ergodic component
of such a measure is either supported on a compact leaf, or it is diffuse.
All the examples we know of a transversely conformal foliation hav-
ing a diffuse transversely invariant measure have a transverse metric
which is transversely invariant. In the case of codimension one folia-
tion of class C2, this is an easy consequence of Sacksteder Theorem.
For higher transversely conformal foliations this has been conjectured
by Ghys [Gh1], and for codimension 3 and higher with an additional
restriction of minimality this conjecture was proven by Tarquini [Ta].

The distribution part of the theorem was proved by Garnett [Ga]
in the case of the stable foliation of the geodesic flow on the unitary
tangent bundle of a surface of constant negative curvature, using the
contraction property and the similarity, which is straightforward in
this case. This was also extended to the case of a manifold of negative
variable curvature of any dimension by Ledrappier [Led].

The diffusion part of the Theorem 1.1 gives example of foliations of
a compact manifold that have non trivial continuous leafwise harmonic
function. Such example were constructed in [F-G].

1.2. Organization of the proof. In [Ga], Garnett studies the ergodic
properties of the leafwise diffusion semi-group and of the leafwise Brow-
nian motion. She introduces the notion of harmonic measure, which
is a probability measure invariant by the diffusion semi-group. By the
Kakutani fixed point Theorem, such a measure exists. The relation
with the Brownian motion goes as follows. Consider the space Γ of all
the continuous paths contained in a leaf of F . There is a semi-group
{σt}t≥0 of transformations of Γ defined for every t, s ≥ 0 and every
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γ ∈ Γ by
σt(γ)(s) = γ(t+ s).

If µ is a measure on M , then one consider the probability measure µ
on Γ which is defined by

µ(B) =

∫

M

Wx(B ∩ Γx)dµ(x),

for every Borel subset B contained in Γ (recall that for every x ∈ M ,
Γx is the set of pathes starting at x and contained on the leaf through
x, and Wx is the Wiener measure on Γx). It is straightforward to see
that if µ is harmonic, then µ is invariant by {σt}t≥0, and reciprocally.

If a harmonic measure can not be written as a convex sum of different
harmonic measures it is called ergodic. The Random Ergodic Theorem,
due to Kakutani ([Kak], see also [F]) states that if µ is an ergodic
harmonic measure, then µ is an ergodic invariant measure of {σt}t≥0.
This implies in particular that for µ-almost every point x in M , Wx-
almost every path γ ∈ Γx is distributed with respect to µ. Thus,
the ergodic properties of harmonic measures on the foliation F can be
studied via the classical ergodic theory of one dimensional semi-groups
of transformations.

We study the Lyapunov exponent of a harmonic measure for a trans-
versely conformal foliation F of class C1 (see [Can, De]). Let | · | be a
transverse metric. Then if γ is a continuous path of Γx starting at a
point x, consider the Lyapunov exponent

λ(γ) := lim
t→∞

1

t
log |Dhγ|[0,t] |,

when it is defined. Recall that hγ|[0,t] is the holonomy map from a

transversal Tγ(0) passing through x = γ(0) to a transversal Tγ(t) pass-
ing through γ(t). By the Birkhoff Ergodic Theorem and the Random
Ergodic Theorem, if µ is an ergodic harmonic measure, then for µ-
almost every point x, and Wx-almost every Brownian path γ starting
at x, the Lyapunov exponent of γ converges to a number depending
only on µ; we call it the Lyapunov exponent of the measure µ and
denote it by λ(µ).

We begin by the study of the case where the Lyapunov exponent is
negative.

Theorem A. Let F be a transversely conformal foliation of class C1 of
a compact manifold, and suppose that on a minimal subset M is sup-
ported a harmonic ergodic measure µ with negative Lyapunov exponent.
Then the following properties are satisfied:
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• Contraction. Let α, 0 < α < |λ(µ)| be chosen. Then for any
x ∈ M, and almost every Brownian path γ ∈ Γx, there exist a
transversal Tγ at x and a constant Cγ > 0 such that for every
t > 0, the holonomy map hγ|[0,t] is defined on Tγ, and

|hγ|[0,t](Tx)| ≤ Cγ exp(−αt).
• Unique ergodicity. For any point x ∈ M, almost every

Brownian path starting at x is distributed with respect to µ.
Thus µ is the unique harmonic measure on M.
• Diffusion. The diffusions Dtf of a continuous function f :
M→ R converge uniformly to the constant function

∫
M fdµ.

• Attraction. SupposeM 6= M , and let pM(x) be the probability
that a Brownian path starting at x tends to M, is distributed
with respect to µ, and contracts exponentially a transversal at x.
Then pM is lower semi-continuous and leafwise harmonic. In
particular, pM is bounded from below be a positive constant in
some neighborhood of M.

Theorem A is proved in section 2. The idea is the following. A
lemma of contraction (Lemma 2.2) implies, together with the fact that
the Lyapunov exponent is negative, that for µ-almost every point x,
almost every Brownian path starting at x contracts a transverse ball
exponentially. We prove that if x is a point which is close to such a point
x, then there is a similarity between the Brownian motion on the leaf
Lx and on Lx. This comes from the fact that in a lot of “direction”, the
leaves approach each other exponentially. All the properties annouced
in the Theorem A are deduced from this property of similarity.

Remark 1.2. Theorem A is also true if the foliation is singular, but
the minimal set does not contain any singularity. In particular, our
result applies for singular holomorphic foliations on complex compact
surfaces. For instance, we prove that if M is a minimal subset of a
holomorphic foliation of the complex projective plane, then on M is
supported a unique harmonic measure and the Lyapunov exponent is
negative. This has been recently proved by Fornaess and Sibony for a
lamination by holomorphic curves of class C1 contained in the complex
projective plane [F-S].

In section 3, we prove that there is a dichotomy between the case of
negative Lyapunov exponent and the case where there exists a trans-
versely invariant measure:

Theorem B. Let F be a transversely conformal foliation of a compact
manifold. Then on a minimal subset, either there exists a transversely
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invariant measure, or the harmonic measure is unique and the Lya-
punov exponent is negative.

In the case of a group of diffeomorphisms, the first result of this kind
was proved by Furstenberg [Fu1]: if G is an irreducible subgroup of
projective transformations of RP n, equipped with a probability mea-
sure of finite first moment, then it has the contraction property. For a
group of diffeomorphisms of class C1 of an arbitrary compact manifold,
the dichotomy “there exists a measure which is invariant by all the ele-
ments of the group or there is a stationary measure with negative sum
of the Lyapunov exponents” were proved by Baxendale [Ba].

From Theorem B and a Theorem of Candel [Can], we obtain the
following:

Corollary 1.3. A minimal subset of a transversely conformal folia-
tion of a compact manifold (if the codimension is one, the foliation is
supposed of class C1) carries an invariant measure, or there is a loop
contained in a leaf with hyperbolic holonomy.

Our main theorem is a consequence of Theorem A and B. At the
end of section 3, we prove the main theorem.

In [Can], Candel extends Garnett’s theory to the case of a non sym-
metric Laplace operator on the leaves of a foliation. For this kind of
processes, Theorem A is still valid: negative Lyapunov exponent im-
plies unique ergodicity, contraction etc. However, in the non-symmetric
case Lyapunov exponent can be positive, the dynamics not uniquely er-
godic, even if the foliation is minimal. Such an example is presented in
Section 3.4.

The last part is a tentative to prove unique-ergodicity for a Laplace
operator whose drift vector field preserves the Riemannian volume. We
prove this when the foliation together with the Laplace operator are
similar. A foliation equipped with a Laplace operator on the leaves is
similar if there exists a transverse foliation which leaves the Laplace
operator invariant.

Theorem C. Let (F ,∆) be a similar codimension one foliation of a
compact manifold, which is transversely continuous. Suppose that the
operator ∆ is obtained by drifting the Laplacian of a Riemannian metric
by a vector field that preserves the volume. Then on every minimal
subset is supported a unique harmonic measure. Moreover, if ∆ is
symmetric, every ergodic harmonic measure is supported on a minimal.

The idea of the proof of Theorem C is, as in Theorem A, based
on the fact that the leaves through close points stay close in a lot of
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“directions”. This idea is due to Thurston ([Th], see also [C-D, Fe]).
Because we already know that the Brownian motion on different leaves
are similar, such a property implies unique-ergodicity. This property is
proved by constructing a harmonic transverse distance and to use the
Martingale Theorem. This is done in section 4.

1.3. Other examples of dynamical systems. Following the lines
of the “Sullivan’s dictionary”, our results are still valid for discrete
conformal dynamical systems. The idea is that, instead of considering
a foliation by smooth manifolds, one can consider foliations by graphs.

Let M be a compact manifold together with a conformal structure
of class C1, and Γ be a finitely generated pseudo-group of conformal
transformations of M . Then for any x in M , we denote by O(x) the
orbit of x under the action of the elements of Γ. Given a symmetric
system of generators of Γ, we consider a distance on every orbit O(x):
the distance between x and a point y in O(x) is the minimal number of
elements of the system of generators that is necessary to map x to y.

Consider a family {µx}x∈M of probability measures on M whose
support is the orbit of x. We ask that for any element γ of the pseudo-
group G, the function

x ∈ dom(γ) 7→ µx(γ(x)) ∈ (0, 1)

is Hölder. The diffusion operator acts on the space of continuous func-
tions by the formula

Df(x) =

∫

Ox

fdµx,

for any f ∈ C0(M) and any x ∈ M . An invariant measure by the
diffusion semi-group always exists, and is called a stationary measure.

Associated to this diffusion process on the leaves, we consider the
Markov process induced by the measures µx on the orbits of Γ, which
is the discrete analog of the Brownian motion on the leaves of a folia-
tion. We define the Lyapunov exponent when the following finiteness
hypothesis holds:

∀x ∈M, ∀α > 0,

∫

Ox

exp(αd(x, y))dµx(y) <∞.

Our results extends to the context of a pseudo-group with the fol-
lowing analogies:

• the leaves together with the Brownian motion process is re-
placed by the orbit of a point together with the Markovian pro-
cess with transition probabilities p(x, y) =

∑
γ(x)=y µx(γ(x)).
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• the symmetry condition in the discrete case means that there
exists a Hölder function v : M → R such that for any points
x, y ∈M :

p(x, y) exp(v(x)) = p(y, x) exp(v(y)).

The important examples are the pseudo-group generated by the ac-
tion of a group on Sn by conformal transformations, or the action of
an affine conformal correspondence on a torus Tn.
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2. Negative Lyapunov exponent

In this section, we are going to prove Theorem A for a codimension
one foliation of class C1. In this case, we can find a transversal foliation
of dimension one and of class C1, and this will simplify the proof. Such
a foliation does not necessarily exist in the case of higher codimension,
but at the appendix (Section 5.3) we explain how to adapt the proof.
Finally, we may suppose F to be transversely orientable (and we do
so from this moment), as it is always true up to a 2-folded cover, and
passing a finite cover does not change our results.

Let F be a codimension one foliation of class C1 of a compact man-
ifold M , and G a transverse foliation of class C1. Consider some min-
imal subset M ⊂ M . Let us suppose that for some ergodic harmonic
measure µ supported on M, we have λ(µ) < 0.

2.1. Contraction. The goal of this paragraph is to prove that for
generic Brownian paths, the holonomy contracts a transverse interval
exponentially, which is true infinitesimally:

Proposition 2.1. Suppose that there exists an ergodic harmonic mea-
sure µ on M , such that λ(µ) < 0. Let α > 0, α < |λ(µ)|. Then for
µ–almost every x ∈M and for Wx-almost every γ ∈ Γx, there exists a
transversal neighborhood I and a constant C > 0, such that

∀t > 0
∣∣∣hγ|[0,t](I)

∣∣∣ < C|I|e−αt.
In particular, all the holonomy maps hγ|[0,t] are defined in the same
transversal neighborhood I and, as t → ∞, this neighborhood is expo-
nentially contracted.

To this end, we have to connect the derivatives of holonomy maps
in one point x and the diameter of the images of the transversal neigh-
borhood I. The following Contraction Lemma is in the “folklore”.
For the completeness of the text, we present here both its statement
and proof. This lemma extends the Distortion Lemmas, used in C2

case by Schwartz [Sch], Denjoy [Den] and Sacksteder [Sa], in C1+τ by
Sullivan [Su2] and Hurder [Hur].

Lemma 2.2 (Contraction Lemma). Let x0, x1, · · · ∈ R be points in R,
Ij ⊂ R, Ij = Uε(xj) be their ε-neighborhoods. Let

hj : Ij → R, hj(xj) = xj+1, j = 0, 1, 2, . . .

be C1-diffeomorphisms onto their image. Let f j(y) = hj(y+xj)−xj+1

be diffeomorphisms of Uε(0), and suppose, that these diffeomorphisms
are bounded in the C1 topology.



CONFORMAL DYNAMICAL SYSTEMS 11

Denote
Fn = hn ◦ · · · ◦ h1 : I1 → R, n ∈ N,

and suppose that

(2.1) lim sup
n→∞

1

n
logF ′n(x0) = λ < 0,

and let α > 0, α < |λ|. Then there exist such an ε1 > 0 and a constant
C, that for any interval J ⊂ I0, such that x0 ∈ J, |J | < ε1 all the
compositions Fn are defined on J and we have a bound

∀n ∈ N |Fn(J)| ≤ |J | · Ce−αn.
Proof. Let us choose β, α < β < |λ|. Then, the condition (2.1)
implies that the supremum

C = sup
n∈N

eβnF ′n(x0)

is finite. Then, for every n we have F ′n(x0) ≤ Ceβn.
Note, that due to pre-compactness property the logatithms of the

derivatives log h′n are uniformly continuous. Thus, there exists ε0 > 0,
such that for every n and for every y, z ∈ In, |y − z| < ε0 we have
h′n(y)/h′n(z) < eβ−α.

Now, let ε1 = min(ε0, ε)/C, and let J be an interval of length less
than ε, containing x0. We are going to prove the following statement:
for every n, the length of |Fn(J)| < Ce−αn|J |. In fact, by the mean
value theorem |Fn(J)| = F ′n(y)|J | for some point y ∈ J . Now,

(2.2)
F ′n(y)

F ′n(x)
=

n∏
j=1

h′j(yj−1)

h′j(xj−1)
< (eβ−α)n = e(β−α)n.

Here yj = Fj(y), and the inequality
h′j(yj−1)

h′j(xj−1)
< eβ−α is satisfied due to

the recurrence hypothesis and the choice of ε0:

|xj−1 − yj−1| ≤ |Fj−1(J)| ≤ Ce−αn|J | ≤ Cε1 < ε0.

Now, from (2.2) we have:

F ′n(y) ≤ e(β−α)nF ′n(x) ≤ e(β−α)n · Ceβn = Ce−αn.

Hence,
|Fn(J)| = F ′n(y) · |J | < Ce−αn|J |.

This proves the recurrence step, and thus the entire lemma. �

Now we are going to apply the Contraction Lemma to the Brownian
motion on the leaves. In order to do that, we would like to decompose
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the holonomy map in time t as a composition of some number n of
maps, forming a Diff1-pre-compact set, with the quotient n/t being
bounded from above and from below.

Suppose δ > 0 be given. Then to any trajectory γ ∈ Γx, we associate

a sequence of points (xn) = (γ̃(nδ)) on the universal cover F̃x, where
the path γ̃ is the covering path for the path γ, and a sequence of
numbers kn = [dist(xn−1, xn)] + 1 (here [z] denotes the integer part
of z). Let us divide a segment of shortest geodesic line, joining xn−1

and xn, in kn equal parts; let us denote the vertices of this partition
by y0

n = xn−1, y
1
n, . . . , y

kn−1
n , yknn = xn. Then, the holonomy map hx0xn

between x0 and xn can be written as

hx0xn = hxn−1xn ◦ hxn−2xn−1 · · · ◦ hx0x1

and thus as

(2.3) hx0xn = (hykn−1
n yknn

◦ · · · ◦ hy0
ny

1
n
) ◦ · · · ◦ (hykn−1

1 ykn1
◦ · · · ◦ hy0

1y
1
1
).

The total number of the maps in the right hand side of (2.3) is
Kn = k1 + · · · + kn. The following lemma is some form of the Large
Numbers Law. Though it is rather clear that such statement should
take place, its rigorous proof is rather long, and we have put it in
Section 5.

Lemma 2.3. There exists a constant c > 0, such that for any x ∈
M for Wx–almost every path γ ∈ Γx we have Kn/n < c for all n
sufficiently big.

Thus, the discretization of the Brownian motion is “quasi-preserving”
the time: the number of terms in the right-hand side of the represen-
tation (2.3) is comparable with the time passed.

Proof of Proposition 2.1. Suppose that a point x ∈ M is such
that for almost every path γ ∈ Γx we have

(2.4) lim
t→∞

1

t
log h′γ|[0,t](x) = λ(µ) < 0.

Let us show that for this point the conclusion of Proposition 2.1 holds.
This will prove the Proposition — as µ–almost every point x satis-
fies (2.4).

Recall that α < |λ|. As it follows from (2.4), for Wx–almost every
path γ ∈ Γx there exists a constant C0 > 0, such that for every t > 0

(2.5) h′γ|[0,t](x) < C0e
−αt.
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Let us consider a discretization (xn, kn) of such path γ. As it follows
from Proposition 2.3, for almost every path γ we have also

(2.6) ∃N : ∀n > N
Kn

n
< c.

Suppose that for γ both (2.5) and (2.6) are satisfied. Choosing some
c′ > c, we may suppose that for all n ∈ N we have Kn < c′n. As it
follows from (2.3), for every n ∈ N the holonomy map hx0xn can be
written as a composition of Kn < c′n maps hyjl y

j+1
l

, each one being

a holonomy between two points at the distance at most 1. The set
of holonomy maps along paths of length at most 1 is pre-compact (it
is a continuous image of a compact set), and the derivative of such
composition at the point x is less then C0e

−αn < C0e
−αKn/c′ , thus, we

still have an exponential decrease of derivatives at x with respect to
the number of maps. The application of the Lemma 2.2 concludes the
proof. �

2.2. Similarity of the Brownian motions on different leaves.
Suppose that the point x is typical in the sense of Proposition 2.1,
and that almost every Brownian path starting at x is distributed with
respect to µ. Then there exist a transversal interval I, and constants
C0, α > 0, such that the set

Ex =
{
γ ∈ Γx | ∀t

∣∣∣hγ|[0,t](I)
∣∣∣ < C0 exp(−αt)|I|

}

has positive Wiener measure: Wx(Ex) > 0 (in fact, this probability
can be made arbitrary close to 1 by choosing sufficiently small I and
sufficiently big C0). Let us fix such I and C0.

If x̄ is a point close to x, consider the set Ex̄ of Brownian paths
γ̄ ∈ Γx̄ which are exponentially asymptotic to a path γ of Γx̄:

∀t ≥ 0, d(γ(t), γ̄(t)) < C0 exp(−αt)|I|.
For instance, a path of Ex̄ can be constructed from a path of Ex by
following the foliation G.

Lemma 2.4 (Similarity of the Brownian motions). There exists a
neighborhood U of x such that for any x̄ ∈ U , the Wiener measure
of Ex̄ is positive. Moreover, it can be made arbitrarily close to 1 by
choosing sufficiently small I, large C0 and small U . Finally, Wx̄-almost
every path γ ∈ Ex̄ is distributed with respect to µ.
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We are going to outline the proof of this Lemma. However, a for-
mal realization of the ideas faces some difficulties and becomes very
technical. Thus, we have postponed it until Appendix (section 5).

First, we observe that the lemma is simple to prove when the fo-
liation is similar, meaning that the foliation G preserves the Laplace
operator. In this case, the G-along holonomy preserves the metric and
thus translates the Brownian motion on an initial leaf to the Brownian
motion of the range leaf. In particular, the probabilities Wx(Ex) and
Wx̄(Ex̄) coincide if the points x and x̄ are in the same G-leaf. On the
other hand, if we consider Brownian motions starting at a point y and
at some point ȳ ∈ Fy close enough to y, the distribution of their values
at the moment δ will be absolutely continuous with respect to each
other, and the density will be close to 1. Thus, the probabilities of any
tail-type properties (in particular, of belonging to Ey and Eȳ, being
distributed with respect to µ, etc.) are close enough. The Wx(Ex) > 0
property implies the same for the points close enough on the same leaf
of F and for the points close enough on the same leaf of G. Thus,
this property is satisfied in some neighborhood of x (as F and G are
transversal). This proves the lemma for similar foliations.

In the general case, the F -leafwise implication is still valid. Unfor-
tunately, it is much more difficult to prove the G-along implication,
when the Riemannian metric is not invariant by the foliation G. Let
us suppose that x̄ ∈ Gx. Denote by Φx,x̄ : Ex → Ex̄ the holonomy
map along the transversal foliation G. Except for similar foliations,
Φx,x̄ does not translate the Wiener measure Wx on Ex to a measure
which is absolutely continuous with respect to the Wiener measure Wx̄

on Ex̄. This effect comes from small movements — typical path of the
Brownian motion, being considered on arbitrary small interval of time,
allows to reconstruct the Riemannian metrics (on its support). Thus,
we are going to pass from the Brownian paths to their discretization —
as it was already done in the previous paragraph.

Let δ > 0 be given. Let us define the discretization map F δ : Ex →
(F̃x)∞ as

(2.7) F (γ) = {γ̃(nδ)}∞n=0.

Denote by Eδ
x the image of Ex under F δ, and by W δ

x measure on Eδ
x

that is the image of the Wiener measure on Γx, restricted on Ex, under
F δ. We claim that if x̄ ∈ Gx is sufficiently close to x, then the induced
map

Φδ
x,x̄ : (Eδ

x,W
δ
x )→ (Eδ

x̄,W
δ
x̄ )
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is absolutely continuous and its Radon-Nykodym derivative is uni-
formly close to 1 on a set of a large measure. This comes from the
fact that for a finite number of steps of discretization the density can
be written explicitly: the density is the product of quotients of heat
kernels on these two leaves. The step of discretization is constant and
equals δ, and the leaves approach each other along the trajectories of
Ex exponentially. Thus, it is natural to expect that such product would
converge. Moreover, the closer initial points x and x̄ are, the closer to 1
will be the product. These facts imply that the probabilities Wx(Ex)
and Wx̄(Ex̄) are sufficiently close and thus imply the Lemma; their
rigorous proof can be found in the appendix (Section 5).

To simplify the notations, we note σ = σδ : Γ→ Γ:

∀t ≥ 0 σ(γ)(t) = γ(t+ δ).

Corollary 2.5 (Similarity of Brownian motions). For any y ∈ M for
Wy-almost every path γ ∈ Γy there exists n, such that γ(nδ) ∈ U ,
σn(γ) ∈ Eγ(nδ), and γ is distributed with respect to µ.

Proof. Let us consider the map D : Γ → Γ, defined in the following
“algorithmic” way:

D = D1 ◦D2,

where D2(γ) = σn(γ), n = inf{j | γ(jδ) ∈ U},

D1(γ) =

{
STOP, if γ ∈ Eγ(0),
σn(γ), n = inf{j | |hγ|[0,jδ](I)| ≥ Ce−α·jδ|I|}.

Note, that D2(γ) is defined on Wz-almost every γ ∈ Γz for every z ∈M
due to the minimality ofM and due to the Markovian property of the
Brownian motion: on every step of discretization, the probability of
hitting U is positive and bounded from below; thus the probability of
never hitting U is 0.

Now, note that for every z the probability of D returning “STOP”
on γ ∈ Γz is bounded from below due to Lemma 2.4. Also, due to
the Markovian property for every z, z′ the conditional distribution of
D(γ), γ ∈ Γz with respect to the condition D(γ)(0) = z′, coincides
with Wz′ . Thus, the probability of D not stopping on γ in k itera-
tions tends to zero exponentially. In particular, Wz-almost surely some
iteration Dk(γ) stops, which means, that D2(Dk−1(γ) ∈ Ez̄, where
z̄ = D2(Dk−1(γ))(0). Together with the definitions of D1 and D2, this
proves the first part of the corollary.

Finally, recall that for any n the conditional distribution of σn(γ)
with respect to the condition γ(nδ) = z coincides with Wz. Lemma 2.4
states, that for every z ∈ U almost every path γ ∈ Ez is distributed
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with respect to µ, hence, the constructed path σn(γ) almost surely is
distributed with respect to µ. A finite shift can not change the asymp-
totic distribution of a path, and so the corollary is proven. �

Before going into the applications of the preceeding results, we would
like to make a disgression that may clarify the meaning of “similarity
of the Brownian motion on the leaves”. Recall that every Riemannian
manifold N of bounded geometry has a boundary associated to the
Brownian motion process on it: this is the Poisson boundary P (N).
We recall the following facts, that characterize the Poisson bound-
ary (see [Kai1]). For every x of N there is a canonical projection
πx : Γx → P (N). The family of probability measures νx = (πx)∗Wx

depends harmonically on N , in the sense that for any bounded mea-
surable function f on P (N), the function

P (f)(x) =

∫

P (N)

fdνx

is a bounded harmonic function on N . Moreover, every bounded har-
monic function on N is obtained in this way.

There is a following question, which (even if the answer is negative),
in our opinion, clarifies the proof of Lemma 2.4, giving the good general
idea.

Question 2.6. Given two leaves Fx and Fx̄, does the argument of
the proof of Lemma 2.4 allow to identify large parts of the Poisson

boundaries of their universal covers F̃x and F̃x̄, corresponding to the
couple of “directions” in which the leaves are converging exponentially
to each other?

In the case of a foliation by hyperbolic surfaces of a 3-manifold,
Thurston has constructed the “circle at infinity” (see [C-D, Fe]). A
leaf of the universal cover of such a foliation is isometric to the hy-
perbolic plane, and its boundary (as a Gromov hyperbolic space) is a
topological circle. Thurston has proved that there is a natural topolog-
ical identification of the circle at infinity of the leaves of the foliation
on the universal cover.

Question 2.7. The boundary (as a Gromov hyperbolic space) of the
hyperbolic plane is also the Poisson boundary. Is it true that the topo-
logical identifications of the boundaries of Thusrton’s theorem preserve
the structure of the Poisson boundary as well?

2.3. Proof of Theorem A.
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2.3.1. Contraction property. Let x ∈ M. Then by Corollary 2.5, for
almost every Brownian path γ starting at x, there exists n such that
γ(nδ) belongs to U , and σnγ ∈ Eγ(nδ). Thus starting from the time nδ,
the path γ contracts a transverse interval exponentially, with expo-
nent α. The contraction property is proved.

2.3.2. Unique ergodicity. Let x ∈ M. Recall first that almost every
Brownian path starting at x is distributed with respect to µ, as it is
claimed by Corollary 2.5.

Let us prove that µ is the only harmonic measure supported on M.
Let µ′ be an ergodic harmonic measure. Then for µ′-almost every point
y, Wy-almost every Brownian path γ ∈ Wy is distributed with respect
to µ′. Fix one of these points y. By the preceeding argument, Wy-
almost every Brownian path γ is also distributed with respect to µ.
Thus µ′ = µ and µ is the unique harmonic measure supported on M.

2.3.3. Attraction. Lower semicontinuity of the function pM is imme-
diately implied by the proof of Lemma 2.4. Now, pM|M = 1 due to
Corollary 2.5. Thus, pM is bounded from below by a positive constant
in some neighborhood of M.

Now, due to the Markovian property of the Brownian motion, for
any initial point x the process pM(γ(t)) is a martingale. Due to Ito
formula, pM is leafwise harmonic.

The Theorem A is proven unless for the diffusion part, which is
absolutely analogous to the proof of the diffusion part of the Main
Theorem, see paragraph 3.2.

Remark 2.8. In fact, for any point y ∈M almost all the paths γ ∈ Γy,
tending toM (if such paths exist), are distributed with respect toM.
In particular,

pM(x) = Wx({γ ∈ Γx | γ →M})
Let us prove this. For a trajectory starting at sufficiently small

distance from M, with the probability close to 1 this trajectory will
be distributed with respect to µ. Decompose trajectories starting at
y and tending to M in two parts: finite part before arriving close
to M and infinite afterwards. The Markovian property implies, that
the probability of the trajectory being distributed with respect to µ
is arbitrary close to total probability of tending to M. Thus, as the
distance of decomposition can be chosen arbitrary small, almost every
trajectory, tending to M, is distributed with respect to µ.
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Denote by Attr(M) the basin of attraction of M: this is the union
of the leaves whose closure contains M. Now, it is rather clear that
the function pM is positive exactly in the points of Attr(M).

Corollary 2.9. Any harmonic ergodic measure different from µ has a
support disjoint from Attr(M).

Proof. A trajectory starting at y ∈ Attr(M) tends to M and is
distributed with respect to µ with positive probability. If there ex-
ists another harmonic ergodic measure µ′ with the support not disjoint
from Attr(M), for µ′-almost every point z ∈ Attr(M) almost all tra-
jectories, starting at z, would be distributed with respect to µ′, not
with respect to µ. But there are no such points, which gives us the
desired contradiction. �

2.4. Examples: holomorphic foliations on complex surfaces.
Let F be a singular holomorphic foliation of a compact complex surface
S, and let g be a hermitian metric on TF . We note ∆ the Laplacian of
g along the leaves of F . With the use of harmonic measures, one can
extend certain notions that we have for compact holomorphic curves;
for instance the Euler characteristic. The following definition is due to
Candel (see [Gh4]).

Definition 2.10. Let E → S be a holomorphic line bundle over S,
and µ a harmonic measure. The Chern-Candel class of E against µ is

c1(E, µ) :=
1

2π

∫

S

curvature(| · |)dµ,

where | · | is a hermitian metric on E of class C2. Recall that the
curvature of a hermitian metric is the function such that

curvature(| · |) := −2∆ log |s|,
where s is a local non vanishing holomorphic section of E. Because the
curvature of two different smooth hermitian metrics on E differs by
the Laplacian along F of a smooth function, the Chern-Candel class of
E does not depend on the choice of the hermitian metric. The Euler
characteristic of T is the first Chern class of the tangent bundle of F .

The following lemma expresses the Lyapunov exponent in algebraic
terms.

Lemma 2.11. Let M be a closed minimal subset, which does not con-
tain singularities of F . Let g be a hermitian metric on TF and µ a
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harmonic measure supported on M. Then

λ(µ) = −πc1(NF , µ).

Proof. Let | · | be a smooth conformal transverse metric of the
foliation. Let us compute the curvature of the normal bundle NF .
Let (z, t) some local coordinates where the foliation is defined by dt =
0. The section ∂

∂t
induces a non vanishing holomorphic section of the

normal bundle. Thus, the curvature of NF is

curvature(| · |) = −2∆ log | ∂
∂t
|.

One gets

c1(NF , Tg,µ) = − 1

π

∫
∆ log | ∂

∂t
|dµ,

and the lemma is proved by applying Lemma 3.1. �

Theorem 2.12. Let F be a singular holomorphic foliation of a com-
plex surface, and M be an exceptional minimal subset of F . Suppose
that the normal bundle of F has a metric of positive curvature along
M. Then on M is supported a unique harmonic measure of negative
Lyapunov exponent.

Proof. Let µ be an ergodic harmonic measure supported on M.
The normal bundle of F has a metric of positive curvature. Thus, by
Lemma 2.11, the Lyapunov exponent of µ is negative. The theorem is
a corollary of Theorem A. �

Recently Fornaess-Sibony proved that on a compact lamination by
holomorphic curves of class C1 of CP 2, there is a unique harmonic
measure [F-S]. We recover this result here for an exceptional minimal
set of a singular holomorphic foliation of CP 2.

Corollary 2.13. An exceptional minimal subset of a singular holomor-
phic foliation of CP 2 carries a unique harmonic measure of negative
Lyapunov exponent.

Proof. The normal bundle of a singular holomorphic foliation of
CP 2 is O(d + 2) where d > 0 is the degree. This bundle has a metric
of positive curvature everywhere. �
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3. Symmetric case

A Laplace operator is called symmetric if it is the Laplace-Beltrami
operator of a Riemannian metric. In this section we consider a foliation
equipped with a Riemannian metric on the leaves, and the Laplace-
Beltrami operator ∆ along the leaves.

3.1. The dichotomy: proof of Theorem B. In this paragraph we
prove Theorem B: on a minimal subset of a transversely conformal foli-
ation is supported a unique harmonic measure with negative Lyapunov
exponent, or there is a transversely invariant measure.

If there exists a harmonic measure for which the Lyapunov exponent
is negative, then Theorem A shows that this is the unique harmonic
measure. Thus we will prove that if the Lyapunov of any harmonic
measure is non negative, then there exists a transversely invariant mea-
sure.

We use an integral formula which expresses the Lyapunov exponent,
and which has been founded in [Can, De]. Let | · | be a transverse
conformal metric. In a foliation box we consider a transverse vector
field u which is invariant by the holonomy, and define ϕ := |u|. Note
that ϕ is well-defined up to the multiplication by a leafwise constant
function. Thus the function f = ∆ logϕ is a well-defined continuous
function on M .

Lemma 3.1. For any ergodic harmonic measure µ on M , λ(µ) =∫
M
fdµ.

Proof. For every t ≥ 0, let Lt : Γ→ R be the functional defined by:

Lt(γ) = log |Dhγ|[0,t] |.
The family {Lt}t≥0 is a cocycle with respect to the shift semi-group, in
the sense that for any s, t ≥ 0:

Lt+s = Lt + Ls ◦ σt.
Thus the integrals

∫
Γ
Ltdµ depends linearly of t. Because by definition

the limit

λ(γ) = lim
t→∞

Lt(γ)

t
exists for µ-almost every path and is equal to the Lyapunov exponent
of µ, we have for every t ≥ 0:

∫

Γ

Ltdµ = tλ(µ).
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Now, let x, y be two points in the universal cover L̃ of a leaf L. Define
the cocycle

c(x, y) := log h′x,y,

where hx,y is the holonomy between x and y. Let

λt(x) :=

∫
eL
p(x, y; t)c(x, y)volg(y).

The work of Garnett ([Ga, p. 288, Fact 1]) shows that λt is a continuous
function on M . Moreover we have the formula

(3.1) tλ(µ) =

∫

Γ

Ltdµ =

∫

M

λt(x)dµ(x).

Observe that ϕ is a function defined up to multiplication by a con-

stant on L̃ and that by definition ϕ(y)/ϕ(x) = h′x,y. Thus we get
c(x, y) = logϕ(y)− logϕ(x) and taking the derivative at t = 0:

(3.2)
dλt(x)

dt

∣∣∣∣
t=0

= ∆ logϕ(x).

Differentiating (3.1) at t = 0 and substituting (3.2), we obtain the de-
sired result. �

We will also use another formula which expresses the conservation
of mass of the diffusion semi-group. Let v be the volume form on M ,
induced by the leafwise volume form volg and the transverse metric.

Lemma 3.2.
∫
M

(∆ϕ+ |∇ϕ|2)v = 0.

Proof. Let vt be the transverse volume form induced by the transverse
metric. Then, in a foliation box B × T , there is a volume form θ on T
such that

vt = exp(qϕ)θ,

where q is the codimension of F . This is by definition of ϕ.
Consider a partition of unity: 1 =

∑
i fi, where the support of each

function fi is contained in a foliation box Bi×Ti. By Green’s formula:
∫

M

∆fi v =

∫

Bi×Ti
(∆fi) exp(ϕi) volg ∧ θi =

=

∫

Bi×Ti
fi(∆ exp(ϕi)) volg∧θi =

∫

Bi×Ti
fi(∆ϕ+|∇ϕ|2) exp(ϕ) volg∧θi =

=

∫

M

fi(∆ϕ+ |∇ϕ|2) v.
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By summing these equalities and using the fact that ∆1 = 0, we obtain

0 =

∫

M

∆1 v =
∑
i

∫

M

∆fi v =

=
∑
i

∫

M

fi(∆ϕ+ |∇ϕ|2) v =

∫

M

(∆ϕ+ |∇ϕ|2) v.

Lemma 3.2 is proved. �

3.1.1. Proof of Theorem B when M = M . By the integral definition
of a harmonic measure (see [Ga, Lemma B, p. 294]) and Lemma 3.1,
the fact that the Lyapunov exponent of every harmonic measure is non
negative is trivially satisfied if the function f is bounded from below
by the laplacian along the leaves of a smooth function h:

f ≥ ∆h.

Let us study this case as a relevant example. Let vt be the transverse
volume form induced by the transverse metric | · |, and v′t be defined by
v′t = exp(−qh) vt, where q is the codimension of F . We claim that v′t is
transversely invariant, or, what is the same, the measure µ = volg ∧ v′t
is totally invariant. By Lemma 3.2, we have∫

M

(∆ϕ′ + |∇ϕ′|2)dµ = 0.

Because ϕ′ is subharmonic, this implies that ϕ′ is locally constant along
the leaves. Thus µ is a totally invariant measure.

Remark 3.3. A more geometric proof of this goes as follows: we con-
sider the leafwise gradient of the function logϕ′, which is well-defined
everywhere. Due to sub-harmonicity of ϕ′ it dilates leafwise volume.
By definition it also dilates the transverse volume. Thus, the total
volume must increase everywhere. The only way is that the function
ϕ′ must be leafwise constant, meaning that the measure µ is totally
invariant.

Unfortunately, there exists a diffeomorphism of the circle, which is
minimal, and whose invariant transverse measure is singular [K-H].
Therefore, we can not hope to solve the functional inequality

f ≥ ∆Fh

in general. However, it is still possible to solve this inequality “approx-
imatively”. The following result is due to Ghys [Gh2, Gh3], and the
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proof is based on the use of the Hahn-Banach theorem; this idea goes
back to the famous paper [Su1] by Sullivan on the foliation cycles.

Lemma 3.4. Let f : M → R be a continuous function such that∫

M

f dµ ≥ 0

for every harmonic measure µ. Then there exists a sequence of smooth
functions ψn : M → R such that uniformly,

lim inf
n→∞

f −∆Fψn ≥ 0.

Proof. In the Banach space C0(M), consider the closed subspace
E of uniform limit of leafwise Laplacian of smooth functions, the cone
C of everywhere positive functions. Let F = C0(M)/E and C ⊂ F
be the closure of the image of the cone C under the natural projection
C0(M) → F . The conclusion of Lemma 3.4 is equivalent to the fact
that the image of f in F is in C. Suppose it is not the case. Then,
by Hahn-Banach separation theorem, there exists a linear functional
which is non-negative on C and negative on the image of f . Such a
linear functional is by definition a harmonic measure (due to the inte-
gral definition of harmonicity), if it is conveniently normalized, and the
corresponding Lyapunov exponent is negative. It gives us the desired
a contradiction. The lemma is proved. �

To prove Theorem A in the case where M = M , we consider the
family of volume forms

µn = exp(−qψn)volg ∧ vt,
where the functions ψn are given by Lemma 3.4. After normalizing
them to probability measures and taking a subsequence, they converge
to a probability measure µ on M .

Lemma 3.5. The measure µ is transversely invariant.

Proof. It is more convenient to consider the family of transverse
forms vt,n = exp(−qψn)vt as currents, i.e. as operators on the space of
p-forms along the leaves. Define:

Cn(ω) =

∫

M

ω ∧ vt,n,

for every p-form ω, where p = dim(F). The family of currents {Cn}
is bounded, thus after taking a subsequence they converge to a cur-
rent C. By construction, by choosing well the subsequence of currents
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converging to C, we have

µ = volg ∧ C.
We prove that C is a closed current, or equivalently that Cn is asymp-
totically closed as n goes to infinity. Thus by Sullivan’s Theorem ([Su1,
Theorem I.12, p. 235]) the measure µ is totally invariant.

Consider a (p− 1)-form α. Using a partition of unity, we can write
α as a finite sum of (p − 1)-forms whose support is contained in a
foliation box. Thus we will suppose that the support of α is contained
in a foliation box B × T . Let θ be a volume form on T ; write

vt,n = exp(ϕn)θ,

then

(3.3) µn = vt,n ∧ volg = exp(ϕn)θ ∧ volg.

We have ∫

M

dα ∧ vt,n =

∫

M

dα ∧ exp(ϕn)θ =
∫

M

α ∧ d(exp(ϕn)θ) =

∫

M

(α ∧ dϕn) ∧ vt,n.
Thus, by Schwarz inequality,
(3.4)∣∣∣∣

∫

M

dα ∧ vt,n
∣∣∣∣ ≤ c|α|∞

∫

M

|∇ϕn|µn ≤ c|α|∞
(∫

M

|∇ϕn|2µn
)1/2

,

where c is a constant, and ∇ denotes the leafwise gradient. Observe
that ϕn is well-defined up to addition of a leafwise constant function,
so that ∇ϕn is well-defined.

By Lemma 3.2: ∫

M

|∇ϕn|2µn = −
∫

M

∆ϕnµn,

and by Lemma 3.4, the Laplacians ∆ϕn verify uniformly

lim inf
n→∞

∆ϕn ≥ 0.

Thus the integrals ∫

M

|∇ϕn|2µn
tend to 0 when n goes to infinity. By formula 3.4, we conclude that C
is closed. Hence Lemma 3.5 is proved. �

The proof of this lemma concludes the proof of Theorem B when
M = M .
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Remark 3.6. In general, for a codimension q foliation of class C1, Osele-
dets’ Theorem states the existence of q Lyapunov exponents λ1(µ),. . . ,
λq(µ) associated to any harmonic ergodic measure µ. In fact, the
method we have used in this section proves that for any symmetric
Laplace foliation of class C1: either there exists a harmonic measure µ
for which λ1(µ) + . . .+ λq(µ) is negative, or there exists a transversely
invariant measure. This result is analogue to the one of Baxendale [Ba].

However, let us mention some differences between the context of
groups and the one of foliations. The theorem of Baxendale does not
require the dynamics to be symmetric. It is interesting to note that
Baxendale’s Theorem does not work for non symmetric Laplace folia-
tions: there exists an example of a minimal foliation (drifted geodesic
flow, see paragraph 3.4), for which every harmonic measure has positive
Lyapunov exponent. The fact that the probability does not depend on
the point in the Theorem of Baxendale should be interpreted in the
foliation context by the concept of similarity. There is also an exam-
ple of a similar Laplace lamination which does not verify Baxendale’s
Theorem (in this setting the Lyapunov exponent should be defined by
using the transverse 2-adic structure).

3.1.2. Proof of Theorem B in the exceptional minimal set case. First,
let us notice that F can not support a harmonic measure with posi-
tive Lyapunov exponent. A general idea implying this is the following.
Consider first the case of a similar foliation. Then, a harmonic mea-
sure onM induces a harmonic transverse measure (see Definition 4.3),
which is harmonic. Due to the Ito Formula, the transversal measure
of the image of a small transverse ball under the holonomy map hγ|[0,t]
associated to the Brownian path γ|[0,t] is a martingale.

Hence, its expectation at any Markovian moment equals the measure
of the initial transverse ball. On the other hand, a small transverse ball
around a typical point (in the sense of convergence of the Lyapunov
exponent) is exponentially expanded by a typical Brownian path.

Thus, the martingale takes (at some big moments of time) large
values with a large probability. Thus, the expectation is large. This
contradicts the fact that the initial transverse ball can be chosen arbi-
trarily small. Rigorous proof of this statement is presented in Section 5,
Lemma 5.4. Thus, all the Lyapunov exponents are equal to 0.

The fact that the Laplace operator is symmetric was used when we
stated that conditional measures are harmonic: if the Laplace operator
is non-symmetric, these measures are harmonic in the sense of the
adjoint operator ∆∗, not ∆.
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Now, let us continue the proof using the fact that all the Lyapunov
exponents vanish. Choose some ε > 0. Then, the arguments of
Lemma 3.4 imply that there exists a function ψ0

ε , such that −ε <
f − ∆ψ0

ε < ε. By continuity, the same inequality holds in some
neighborhood U ε of M, that we suppose to be contained in the ε-
neighborhood of M.

Lemma 3.7. If ε > 0 is small enough, there exists a function ψε,
such that ∆ψε ≥ −ε and such that at least (1− ε)-part of the measure

µε = e−ψ
0
ε+ψεvolg ∧ vt is concentrated in U ε.

Once such functions are constructed for any ε, the proof will be
finished in the same way as the proof in a minimal case. Namely,
suppose that such functions are constructed. Let us find any weak
limit µ of a subsequence of a family 1

µε(M)
µε as ε → 0. Note that µ is

supported onM: this comes from the fact that µε(U
ε) ≥ 1−ε and that⋂

ε U
ε =M. Also, note that µ is a weak limit for the same subsequence

of the (non-normalized) measures µε|Uε . But these restricted measures
can be written (locally) as eϕ

′
volg ∧ θ, where θ is a transverse measure,

and ∆ϕ′ = q∆ϕ−q∆ψ0
ε +∆ψε ≥ −2ε. Passing to the limit and making

estimates as in Lemma 3.5, we obtain that µ is totally invariant. Thus
the proof of the Theorem will be complete after the proof of Lemma
3.7.

Proof of Lemma 3.7. Recall that ε > 0, ψ0
ε and U ε are already

chosen. We choose another neighborhood V of M, V ⊂ U ε. We are
going to find a function ψ = ψε verifying Lemma 3.7.

First, let us suppose that in U ε there is no other minimal set, and
thus that every leaf passing through a point in U ε \M intersects ∂U ε.
We are going to look for the function ψ as a solution of the Poisson
equation

∆ψ(x) = −ε, x ∈ U ε \ V ; ψ|∂(Uε\V ) = 0,

extended by 0 to the complementary of U ε \ V . The solution of this
problem always exists and can be found in the following way:

ψ(x) = εET (γ),

where T (γ) denotes the first intersection moment of a Brownian path
γ with the boundary of U ε \ V ):

T (γ) = min{t : γ(t) ∈ ∂(U ε \ V )},
and E is the expectation of a function on the probability space (Γx,Wx).
Note that ∆ψ equals−ε in U ε\V , and 0 in V and in the complementary
of U ε. Moreover, on ∂(U ε \ V ), ∆ψ is a positive distribution. Thus,
one has ∆ψ ≥ −ε.
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Now, let us show that for an appropriate choice of V the major
part of µε is concentrated in U ε, with the precise estimates of the
Lemma. To do this, it suffices to check that as V tends to M, the
part of the measure µε, concentrated in U ε, tends to 1. Note that
the (non-normalized!) measure µε of M \ U ε does not change, so that
we have to prove that the measure of U ε tends to infinity. By the
monotone convergence theorem, it is equivalent to the fact that if we let
ψ̄ = limV→M ψ (maybe, ψ̄ equals infinity at some points), the function

eψ̄ will be non-integrable in U ε. Note that the function ψ̄ can be written
as:

ψ̄(x) = εET0(γ),

where

T0(γ) = min{t : γ(t) ∈ ∂U ε}
(if such an intersection does not occur, we define T0(γ) = ∞). Thus,
we have to estimate the mean ET0(γ).

Note that in a neighborhood U ε we have f − ∆hε < ε. Thus,
for a distance d̃ induced by a transversal metric e−hε| · |, we have

∆ log d̃(·,M) < ε in U ε.
Now, let us consider a random process

ξ0(t, γ) = log d̃(γ(t),M)− εt,
and let us stop it at the moment T0(γ):

ξ(t, γ) = ξ0(min(t, T0(γ)), γ).

Then, the Ito formula implies that ξ(t, γ) is a supermartingale:

∂

∂s

∣∣∣∣
s=t+0

E(ξ(s, γ)
∣∣γ|[0,t]) =

=

{
(∆ log d̃(·,M))(γ(t))− ε, γ|[0,t] ⊂ U ε

0, T0(γ) ≥ t.
≤ 0

Note also, that the function log d̃(·,M) is Lipschitz on the leaves,
thus, the conditional second moments

E(r2
n(γ)

∣∣γ|[0,t])
of the increasements

rn(γ) = ξ(n+ 1, γ)− ξ(t, γ)

are bounded uniformly on n and γ|[0,n]. Thus, due to the theory of
martingales, for every Markovian moment τ with finite expectation
the expectation of ξ at this moment does not exceed its initial value.
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Let us now use this process to estimate from below the expecta-
tion ET0(γ). Either this expectation is infinite (in which any lower
bound is satisfied automatically). Or it is finite, and in this case the
expectation of a value of a supermartinagle ξ in a Markovian moment
T0(γ) does not exceed its initial value, that is

E
[
log d̃(γ(T0(γ)),M)− εT0(γ)

]
≤ log d̃(x,M).

The expectation in the left side can be rewritten as

−εET0(γ) + E log d̃(γ(T0(γ)),M) = −εET0(γ) +O(1),

for at the moment of exiting U ε the distance toM is separated from 0.
So, we have

ψ̄ = ET0(γ) ≥ −1

ε
log d̃(x,M) + C0.

This implies that

eψ̄(x) ≥ C

(d̃(x,M))1/ε
.

Thus, if ε is less than 1/(codimF), the function eψ̄ is non-integrable
and the effect of concentration takes place. This completes the proof
under the hypothesis that M is the unique minimal subset of U ε.

To conclude the proof, we remark that if U ε contains another mini-
mal set, we can replaceM by the closure of the union of all the leaves,
entirely contained in U ε, and repeat the previous arguments. �

The proof of Theorem B is completed in all the cases.

3.2. Proof of the Main Theorem. We suppose that the foliation
F is transversely conformal and does not have a transversely invariant
measure. By Theorem B, on any minimal set is supported a unique
harmonic measure with negative Lyapunov exponent. Because of the
attraction property, any minimal set has a neighborhood which does
not contain any other minimal set. Thus, there is a finite number of
minimal setsM1, . . . ,Mk. Denote by µ1, . . . , µk their unique harmonic
measure, and λ1, . . . , λk the corresponding Lyapunov exponents. Note
that every point x ∈ M belongs to the basin of attraction of at least
one of these sets; the reason is that the set

M \ (
k⋃
j=1

Attr(Mj))

is closed, consists only of entire leaves and does not contain any minimal
subset.
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Let α > 0 be a real number such that α < |λj| for every j. For every
point x ∈M we consider the probability

pj(x) = Wx({γ ∈ Γx | γ(t) −−−→
t→∞

Mj}),

that a Brownian path starting at x tends to Mj. Note that almost
every Brownian path tending toMj (if such path exists) is distributed
with respect to µj, and contracts a transverse ball at x exponentially
with exponent −α (see Remark 2.8). We claim that the sum of these
probabilities is equal to 1; in other words, Wx-almost every trajectory
tends to one of the minimal sets, with the distribution and transverse
contraction properties. We show this in the following way: for arbi-
trary small neighborhoods U1, . . . , Uk of M1, . . . ,Mk respectively, the
complementary R = M \ ∪jUj is a closed set without any minimal
subset, thus containing no entire leaf. Hence, for any point x of R
there exists a leafwise path leading to one of the neighborhoods Uj;
moreover, by compactness of M , the length of such a path is bounded
uniformly on R. Thus, for a point x ∈ R, the probability that it lies in
one of the Uj at time 1 is bounded from below by a positive uniform
constant. Hence, for any point x ∈M , almost every trajectory starting
in x meets one of the neighborhoods Uj.

To complete the proof, let us show that
∑

j pj(x) > 1 − ε for any
ε > 0. To do this, let us choose Uj so close toMj that for every point
in Uj the probability of attracting toMj with the distribution and the
transverse contraction properties is at least 1− ε; it is possible due to
Lemma 2.4. Now, let us use the Markovian property: for any x ∈ M ,
almost every trajectory γ ∈ Γx meets one of the Uj, and for a starting
point in Uj the probability of attracting to the correspondingMj is at
least 1− ε. Thus, the probability of attracting to one of the Mj is at
least 1− ε. As ε > 0 was chosen arbitrary, we have proven that almost
every trajectory tends to one of the Uj.

Recall that the functions pj are leafwise harmonic and lower semi-
continuous. Because their sum is equal to the constant function 1 the
functions pj are continuous.

Thus, we have proved the Contraction, Distribution and Attraction
parts of the main theorem. We end the proof of Theorem 1.1 by proving
the statement about the asymptotic behaviour of the diffusion. First,
we shall prove a weaker form. Namely, we prove that the time-averages
of diffusions tends to the same limit:

1

T

∫ T

0

Dtf dt
x∈M
⇒ ψ(x),
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where ψ(x) =
∑

j pj
∫
fdµj. In the case where the foliation is minimal,

it is implied by unique ergodicity (see analogous arguments in [Fu2]).
Namely, the value of the time-average of the diffusions at a point x ∈M
can be rewritten as an integral:

1

T

∫ T

0

(Dtf)(x) dt =
1

T

∫ T

0

∫

M

Dtf dδx dt =

=
1

T

∫ T

0

∫

M

f d(Dt
∗δx) dt =

∫

M

f dmx,T ,

where

mx,T =
1

T

∫ T

0

(Dt
∗δx) dt

is the time-average of the diffusions of the measure δx. Note that due to
a classical argument in ergodic theory, a weak limit of a sequence mxn,tn

with tn →∞ is harmonic. As there exists a unique harmonic measure
µ, the time averages mx,t converge to µ uniformly in x as t tends to
infinity. Thus, the integrals of f with respect to these measures also
converge uniformly to

∫
M
f dµ, which implies the desired statement.

In the case of an exceptional minimal set we notice that the time-
averages of the diffusions can be rewritten as

(3.5)
1

T

∫ T

0

(Dtf)(x) dt =

∫

Γx

(
1

T

∫ T

0

f(γ(t)) dt

)
dWx(γ).

We know that Wx-almost all trajectories tend to one of the Mj’s and
are distributed with respect to the corresponding harmonic measure µj.
The probability that a point x tends to Mj is equal to pj(x). Hence,
the right hand side of (3.5) is equal to

k∑
j=1

pj(x)

∫

Mj

f dµj.

Moreover, a uniform argument on (1− ε)-measure of trajectories (sim-
ilarity of Brownian motions) implies that this convergence is uniform
in x ∈M.

Thus, in every case we have shown that the time-average of the
diffusions converge to the right-hand side, which we denote ψ.

Now, let us finish the proof using the arguments analogous to these
of Kaimanovich [Kai1]. Namely, notice that due to the diffusion of
the Brownian motion, there exists ε, ε′ > 0 such that for any point
x, and any point y ∈ Uε(x), the densities p(x, y, 1) and p(x, y, 2) are
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bounded from below by ε′. Thus one has for every x and every bounded
function f :

|D1f(x)−D2f(x)| ≤ 2(1− ε′vol(Uε)(x))|f |∞,
where | · |∞ is the uniform norm. Thus, because the leaves are of
bounded geometry, we have

||D1 −D2||∞ < 2,

where || · ||∞ is the norm of operators acting on L∞. The “zero-two
law” [Li] implies that ‖Dn − Dn+1‖ → 0 as n → ∞. In particular,
the time-averages of the diffusions converge if and only if the diffusions
converge themselves to the same limit [Kai2]. Hence, the diffusions
converge to the limit we have described.

Proof of Corollary 1.3. Let F be a transversely conformal foli-
ation of class C1 of a compact manifold, and M a minimal set of F .
By Theorem B, either M supports a transversely invariant measure,
or a harmonic measure of negative Lyapunov exponent. In this case,
Candel has proved that there exists a loop contained in a leaf of M
with hyperbolic holonomy (see [Can, Theorem 8.18]). �

3.3. Examples: codimension one foliations of class C2. In the
case of codimension one foliations of class C2 without compact leaf, the
following result completes the Main Theorem:

Proposition 3.8. Let F be a codimension one foliation of class C2 of
a compact manifold, without compact leaves. Then if F has a totally
invariant measure µ, this measure is the unique harmonic measure.
Then, for every point x, almost every Brownian path starting at x is
distributed with respect to µ, and the diffusions of a continuous function
f : M → R tend uniformly to the constant function

∫
fdµ.

Proof. By Sacksteder Theorem, the foliation F is minimal. We first
prove that the measure µ is the unique totally invariant measure. By
minimality of F and Haefliger’s argument [Hae], there exists a trans-
verse circle C cutting every leaf. The transversely invariant measure
(corresponding to µ) induces a measure θ on C, invariant by all the ho-
lonomy maps. This measure gives us a map h : C → R/lZ = C ′, where
l = θ(C). This map semi-conjugates the pseudo-group induced by F
on C to a finitely generated group of rotations of C ′, which we note
G. Because F is minimal, and the holonomy pseudo-group is finitely
generated, at least one of the rotations of G is irrational. Then, the
Lebesgue measure is the unique probability measure invariant by G,
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and thus µ is the unique totally invariant measure on F up to multi-
plication by a constant.

To conclude the case when there exists a totally invariant measure
µ, it suffices to show that every harmonic measure is in fact a totally
invariant measure. Observe that the group G is a group of rotations,
so that the orbits of its action on C ′ have a polynomial growth. Hence,
the same is true for the action of the holonomy group on C. Thus,
every leaf grows polynomially. Kaimanovich ([Kai1, Corollary of The-
orem 4]) proved that if for a harmonic measure, almost every leaf (with
respect to this measure) has subexponential growth, then this measure
is totally invariant. In our case, all the leaves have polynomial growth,
hence every harmonic measure is in fact totally invariant.

The distribution and diffusion property is implied by the fact that
the harmonic measure is unique. �

We end the paragraph by constructing a foliation by surfaces of a
3-dimensional compact manifold, with two exceptional minimal sets.
The example is constructed in the following way. Let F be an oriented
codimension one foliation by oriented surfaces with an exceptional min-
imal setM and suppose that there exists a transverse loop c which does
not cutM. Then a neighborhood of c in M is diffeomorphic to a solid
torus D2×S1, the foliation F being the horizontal fibration by two di-
mensional balls D2. Now consider two copies N1 and N2 of the exterior
of D2× S1 in M . These two manifolds are foliated, and have a bound-
ary component ∂B × S1 transverse to the foliation F . The foliation
F induces the horizontal foliation by circles on it. Observe also that
N1 and N2 have an exceptional minimal set in their interior. Thus,
by gluing N1 and N2 along their boundary by a diffeomorphism which
preserves the foliation and reverses the orientation, we construct a fo-
liation by surfaces of a closed manifold with two exceptional minimal
sets.

Now we are given an example of such a situation. We consider a
surface Σ of bounded topology and constant negative curvature, with
a cusp of infinite volume. The cusp determines an interval I in the
boundary of the universal cover of Σ which has two remarcable prop-
erties. The first is that it is invariant by the action of the geodesic γ

on Σ̃. The second is that it is a component of the exterior of the limit
set of π1(Σ). Now consider a compact surface S of sufficiently large
genus so that there exists a surjective morphism ρ : π1(S) → π1(Σ).
We get an action of the fundamental group of S on the boundary of

Σ̃, which leaves the limit set of π1(Σ) invariant, and for which there
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exists an element leaving I invariant, and which acts as a translation
on it. Let (M,F) be the supension of ρ: this is the foliation induced
by a flat circle bundle over S whose holonomy is smoothly conjugated
to the representation ρ (see 4.1.1). Then the saturated subset of the
limit set of π1(Σ) is an exceptional minimal subset M of F . Now, by
construction, there is a leaf L which intersects twice the component I

of the exterior of the limit set of π1(Σ) in ∂Σ̃. By the standard Hae-
fliger’s argument, we construct a transverse circle which does not cut
M. Thus applying the preceeding arguments we construct a foliation
with two minimal sets.

3.4. A counter-example in the non symmetric case. In [Can],
Candel extends Garnett’s theory to the case of non symmetric Laplace
operators on a foliation. In the case of non symmetric Laplace opera-
tors, the dichotomy “The Lyapunov exponent is positive or there exists
a transversely invariant measure” does not hold anymore. In this para-
graph we describe a nice counter-example in the non symmetric case.

Consider a compact Riemannian manifold (M, g) of dimension 3 on
which there is an orthonormal frame (Hs, V,Hu), for which the vector
fields Hs, V,Hu verify the relations:

[V,Hs] = −Hs, [V,Hu] = Hu, [Hu, Hs] = V.

Such manifolds are quotient of the universal cover of SL(2,R) by a
cocompact lattice Γ. If Σ is the quotient of the upper-half plane H by
Γ, then M is naturally identified with the unitary tangent bundle of Σ,
and under this identification V is the geodesic flow of the hyperbolic
surface, Hs and Hu the horocycle flows. The vector fields V and Hs

generate a foliation F s which is the stable foliation of the flow V .

Let gs be the restriction of the metric g on F s. For any κ ∈ R,
consider the Laplace operator ∆κ defined by

∆κ = ∆gs + κV,

where ∆gs is the Laplacian of gs along the leaves of F s. Garnett proved
that for the symmetric case κ = 0, the Liouville measure volg is the
unique harmonic measure (see [Ga, Proposition 5, p. 305]). Note that
the Liouville measure on M is also invariant by V , so that it is a
harmonic measure for all the Laplace operators ∆κ.

Theorem 3.9. For any κ, the Lyapunov exponent of any harmonic
measure µ of (F s,∆κ) is λ(µ) = κ − 1. When κ < 1 the Liouville
measure is the unique harmonic measure. When κ > 1, there exists a
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harmonic measure supported on every cylinder leaf (thus the foliation
is not uniquely ergodic).

Proof. First, we compute the Lyapunov exponent of a harmonic
measure µ of (F s,∆κ). To this end we use the formula of Lemma 3.1:

λ(µ) =

∫

M

∆κ logϕdµ.

Consider the metric | · | on the normal bundle of F which is induced
by g. We are going to compute the function ϕ, which is defined up to
multiplication by a constant. This function verifies the relations

V ϕ = ϕ, Hsϕ = 0.

In the leaves we have local coordinates z = x + iy with values in the
upper half-plane H, such that

V = y
∂

∂y
, Hs = y

∂

∂x
.

(These coordinates are well defined up to an affine transformation of the
upper half-plane). In these coordinates, ϕ = y up to a multiplicative
constant. The metric gs and the Laplacian ∆gs are expressed by

gs =
dx2 + dy2

y2
, ∆gs = y2(

∂2

∂x2
+

∂2

∂y2
).

Thus, we have ∆κϕ = κ− 1 identically, and the formula λ(µ) = κ− 1
follows. In particular, when κ < 1 the only harmonic measure is the
Liouville measure, because of Theorem A.

Now, let us suppose that κ > 1. We shall prove that every cylinder
leaf supports a harmonic measure. Observe that these leaves are those
containing a periodic orbit of the vector field V . Let L be such leaf, γ0

be the closed orbit of V in L. Then, its universal cover is the hyperbolic
plane, for which we choose the upper half-plane model H. Observe
that we have the canonical coordinates up to an affine transformation,
constructed before. Without loss of generality, we may suppose that
the geodesic in H, corresponding to γ0, is the vertical geodesic x = 0
going upwards. Denote by A the length of γ0; then the transformation
of H corresponding to γ0 as an element of π1(L), is z 7→ eAz. Thus,
the leaf L is obtained from H by identifying z and eAz.

Now, let us consider a typical Brownian trajectory γ in L and its
lift to the universal cover γ̃(t) = (x(t), y(t)). Note that γ̃ satisfies the
following stochastic differential equation:{

ẋ =
√

2y dW 1
t ,

ẏ = cy +
√

2y dW 2
t ,
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where W 1
t and W 2

t are two independent Wiener processes. Here the
coefficient

√
2 comes from our definition of Brownian motion: as we

have defined it using the heat kernel, its intensivity equals 2 (instead
of its common value 1). Let us make a change of variables: let u = log y,
v = x/y. Then

u̇ = (log y)· = (log ·)′(y) · κy +
1

2
(log ·)′′(y) · 2y2+

+ (log ·)′(y) ·
√

2ydW 1
t = (−1 + κ) +

√
2dW 1

t ,

v̇ = (
x

y
)′y · κy +

1

2
(
x

y
)′′yy · 2y2 + (

x

y
)′x ·
√

2y dW 1
t + (

x

y
)′y ·
√

2y dW 2
t =

= −κy x
y2

+
2x

y3
y2 +
√

2(dW 1
t +

x

y
dW 2

t ) = (2−κ)v+
√

2(dW 1
t +vdW 2

t ).

This implies that v satisfies a stochastic differential equation

v̇ = (2− κ)v +
√

2(1 + v2)dWt.

Let us now make another change of variable: we denote ξ = f(v) =
log(v +

√
1 + v2). Then ξ satisfies the following stochastic differential

equation:

ξ̇ = f ′(ξ)(2− κ)v +
1

2
f ′′(ξ)(

√
2(1 + v2))2 + f ′(ξ)

√
2(1 + v2)dWt =

=
1√

1 + v2
(2− κ)v − 1

4

2v√
1 + v2

3 (2(1 + v2)) +
√

2 dWt =

=
v√

1 + v2
(1− κ) +

√
2 dWt.

For κ > 1 we notice that the Brownian component of this stochastic
differential equation is constant, and the drift is towards 0 with the
velocity separated from zero for large v. Thus, there exists a proba-
bility stationary measure for this process on the real line. By lifting
this measure to the initial cylinder (by a product with the Lebesgue
measure in log y), we obtain a stationary measure on L. We have con-
structed a harmonic measure on L. �
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4. Similar foliations

A Laplace foliation (F ,∆) is called similar if there exists a transverse
continuous foliation G of dimension codim(F) such that the operator
∆ is invariant by G; thus G preserves the metric g and the drift vector
field V .

The main goal of this part is to prove the unique ergodicity property
for a codimension 1 similar Laplace foliation whose drift vector field
preserves the volume, and whose transverse structure is just supposed
continuous. We begin by giving examples of these foliations.

4.1. Some examples.

4.1.1. Suspension. Let (N,∆) be a compact manifold equipped with a
Laplace operator, and ρ : π1(N) → Homeo(F ) be a representation of
its fundamental group into the group of homeomorphisms of a compact

manifold F . Let Ñ be the universal cover of N . The diagonal action

of the discrete group π1(N) on the product Ñ ×F is discontinuous and
free. Moreover, it preserves the horizontal foliation and the vertical
fibration. Thus, the quotient N nρ F is equipped with a foliation
F (quotient of the horizontal foliation) and with a transverse fibration

F →M
π→ N (quotient of the vertical fibration). Let ∆ be the Laplace

operator on the leaves of F such that (πF)∗∆ = ∆. By construction
the foliation (F ,∆) is similar. Such foliations are called suspensions.

4.1.2. Linear Anosov diffeomorphism. Let A : Tn → Tn be a linear
Anosov diffeomorphism of the torus Tn = Rn/Zn. Consider the quo-

tient M of (0,∞)×Tn by the diffeomorphism Ã(t, x) = (2t, Ax): this
is the fiber bundle over the circle whose fiber is Tn and monodromy
is given by A. Define the foliations F and G to be respectively the
quotient of (0,∞)×Fu and of F s. We define a Laplace operator ∆ on
the leaves of F of the form

∆ = ∆t + t2
∂2

∂t2
,

where {∆t}t>0 is a family of linear Laplace operators on Fu depending
smoothly on t, and verifying the relation

∆2t = (A|Fu)∗∆t,

for every t > 0. The Laplace foliations (F , g) are similar (the invariance
of ∆ by G comes from the fact that the operators ∆t are linear).
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Remark 4.1. The similar foliations by surfaces of a compact 3-manifold
are well known [Ca, Ep]: in this case, the only examples with interest-
ing dynamics are the suspensions and the foliations induced by a linear
Anosov diffeomorphism of a 2-torus. However, it may exist other ex-
amples in higher dimension.

4.2. Non divergence of the leaves. In this paragraph we prove that
the leaves of a similar codimension 1 foliation whose drift vector field
preserves the volume volg are not diverging in a set of directions of
large measure. This has been observed by Thurston (see [C-D, Fe] for
a topological proof).

Definition 4.2. Let F be a similar foliation. A transverse harmonic
measure on F is a family {νL} of measures νL on every G-leaf L, such
that in a chart B×T in which F and G are respectively the horizontal
and vertical foliations, the function

p ∈ B 7→ ν({p} × T ) ∈ R+

is harmonic.

Lemma 4.3. On a codimension one similar Laplace foliation of a com-
pact manifold whose drift vector field preserves the leafwise volume volg,
and which is minimal, there exists a transverse harmonic measure.

Proof. The result follows from the existence of a harmonic measure
for the adjoint operator ∆∗ of ∆. Recall that ∆∗ is defined on every
F -leaf L in such a way that for any smooth functions u, v : L → R
with compact support one has∫

L

u∆vdvolg =

∫

L

(∆∗u)vdvolg.

An integration by parts shows that one has the following formula:

∆∗ = ∆g − V + divvolgV,

where V is the drift vector fields of ∆ (i.e. by definition ∆ = ∆g + V ).
If V preserves the volume volg, which means that the divergence of V
vanishes identically, then the operator ∆∗ is also a Laplace operator.
In [Can], it is proved that for such operators there exists a harmonic
measure.

Let µ be a harmonic measure on (F ,∆∗). Consider a foliation box
B × T in which F and G are respectively the horizontal and vertical
foliation. Let T ′ be an open subset of T . The image of the measure
µ by the projection B × T ′ → B is a ∆∗-harmonic measure on B, be-
cause the foliation F is similar. Thus, there is a ∆-harmonic function
LT ′ : B → [0,∞) such that for any continuous function f ∈ C0

c (B), one
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has
∫
B×T ′ f(b)dµ(b, t) =

∫
LT ′(b)f(b)volg(b). Because µ is a measure, if

Tn are disjoint open subsets of T , one has the relations
∑

n LTn = L∪nTn ;
thus there exists a transverse measure on the leaves of G such that
ν(b × T ′) := LT ′(b), for every Borel subset T ′ of T . This transverse
measure is ∆-harmonic, by construction and the lemma is proved. �

Lemma 4.4. Let F be a codimension one similar Laplace foliation of a
compact manifold. Let [x, y] be an interval in a G-orbit. There exists a

uniquely defined map Ix,z : L̃x × [x, y]→M which maps the horizontal

Laplace foliation (given by the Laplace operator on L̃x) on (F ,∆), the
vertical foliation on G, and the interval {x}× [x, y] identically on [x, y].

Proof. Let γ : [0, 1] → L̃x be a smooth path starting at x. The
restriction of Ix,y to γ([0, 1]) × [x, y] is uniquely defined, if it exists.
Let 0 ≤ t ≤ 1 be the supremum of those t such that Ix,y is defined on
γ([0, t])× [x, y]. It is clear that t > 0, because locally we have foliation
charts. Recall that the foliation G preserves the metric g; thus, for any
z ∈ [x, y] the length of the curve Ix,y(γ([0, s] × z) equals the length of
the curve γ([0, s]). This implies that it is possible to extend the map
Ix,y on the domain γ([0, t]) × [x, y], and because locally we have folia-
tion charts, to a domain γ([0, t+)) × [x, y], where t+ > t. Thus t = 1
and the lemma is proved. �

Recall that for any point x ∈ M , Γx is the set of continuous paths
contained in the leaf through the point x, and the Laplace operator ∆
induces a probability measure Wx on Γx. Here is the main result of the
paragraph, where Jx,y(p) is the point Ix,y(p, 1).

Proposition 4.5. Let F be a Laplace similar foliation of codimension 1
of a compact manifold, which is minimal, and whose drift vector fields
preserves the volume volg. For every ε > 0, there exists a constant
δ > 0 such that if x and y are two points on the same G-orbit with
d(x, y) ≤ δ, then there exists a subset Ex,y ⊂ Γx of Wx-measure 1/2
such that for any γ ∈ Ex,y, one has

lim sup
t→∞

d(γ(t), Jx,y(γ(t)) ≤ ε.

Proof. Consider a transverse harmonic measure ν constructed in
lemma 4.3. Because F is minimal, the measure ν restricted to every
leaf of G has full support, and is diffuse. Thus, there exists δ′ > 0 such
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that if [x, y] is an interval in a G-leaf of ν-measure bounded by δ′, then
the distance between x and y is bounded by ε. Moreover, there exists
δ > 0 such that if the distance between x and y is bounded by δ, then
the ν-measure of the interval [x, y] is bounded by δ′/2.

The function p ∈ L̃x 7→ f(γ) = ν(Ix,y({p} × [x, y])) ∈ (0,∞) is
harmonic. Thus by the martingale theorem, for wx-almost every γ, the
limit

lim
t→∞

f(γ(t))

exists, and its integral over Γx is f(x) = ν([x, y]) ≤ δ′/2. In particular,
there is a measurable subset Ex,y ⊂ Γx of Wx-measure 1/2 such that
for every γ ∈ Ex,y

lim
t→∞

f(γ(t)) ≤ δ′.

For every γ of Ex,y we have

lim sup
t→∞

d(γ(t), Ix,y(γ)(t, 1)) ≤ ε.

The proposition is proved. �

4.3. Application to unique ergodicity. We prove that there is only
one harmonic measure on a codimension 1 similar foliation whose drift
vector fields preserves the volume volg.

Theorem 4.6. Let (F ,∆) be a similar Laplace foliation of codimen-
sion 1 of a compact manifold M , whose drift vector field preserves the
volume volg. Then, on a minimal subset of F is supported a unique
harmonic measure.

Proof. LetM be a minimal subset of F . There are three possibilities:

• M is a compact leaf.
• M is transversely a Cantor set.
• M = M .

In the first case, the only harmonic measure is the unique ∆-harmonic
volume on the compact leaf. The second case can be reduced to the
third one by collapsing the components of the leaf of G outside M.
Thus, we suppose that M = M , i.e. F is minimal.

Lemma 4.7. Let F be a similar minimal foliation of codimension 1 of a
compact manifold M , and µ be an ergodic harmonic measure. Then for
every α > 0, and every continuous function f : M → R, the following
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property holds. For every point y ∈M , there exists a measurable subset
Ey ⊂ Γy of Wy-measure 1/2 such that for every γ ∈ Ey:∫

fdµ− α ≤ lim inf
n→∞

Bn(f, γ) ≤ lim sup
n→∞

Bn(f, γ) ≤
∫
fdµ+ α,

where Bn(f, γ) := 1
n

∑
1≤k≤n f(γ(k)) are the Birkhoff sums of f along

the path γ.

Proof. By the Birkhoff theorem for harmonic measures proved in
[Ga], there is a measurable subset X ⊂M of full µ-measure, saturated
by F , so that for every x ∈ X and wx-almost every continuous path
γ ∈ Γx, the Birkhoff sums Bn(f, γ) converge to

∫
fdµ.

Let ε > 0 such that if d(x, y) ≤ ε then |f(x) − f(y)| ≤ α. Let y
be any point of M . There exists a point x ∈ X which is in the G-
orbit of y and such that d(x, y) ≤ δ, the δ being given by Lemma 4.5.
Let Fx denote the set of element γ ∈ Γx for which the Birkhoff sums
converge to

∫
fdµ. Because x belongs to X this set is of full measure.

Define Ey := Jx,y(Fx∩Ex,y). The set Ey is of Wy-measure 1/2, because
Fx ∩ Ex,y is of Wx-measure 1/2 and that Jx,y sends Wx on Wy. Let
γ = Jx,y(γ

′) ∈ Ey. Using Lemma 4.5, we have

lim sup
t→∞

d(γ(t), γ′(t)) ≤ ε.

Thus one gets

lim sup
n→∞

|Bn(f, γ)−Bn(f, γ′)| ≤ α,

and the lemma follows because the Birkhoff sums of γ′ converge to∫
fdµ. �

We are now able to finish the proof of the theorem. Let µ′ be an-
other ergodic measure, and f be a continuous function on M . We are
going to prove that

∫
fdµ′ =

∫
fdµ. Observe that by ergodicity of

µ′ there exists a point y on M such that for wy-almost every γ ∈ Γy,
the Birkhoff sums Bn(f, γ) converge to

∫
fdµ′. Denote by Fy the set

of such paths γ which is of full wy-measure. We apply Lemma 4.7 to
the point y: for every γ ∈ Ey, the Birkhoff sums Bn(f, γ) are tending
to
∫
fdµ with an error of α. Because the measure of Ey is positive,

it intersects Fy. Thus one gets | ∫ fdµ′ − ∫ fdµ| ≤ α. Because α is
arbitrary, there is only one ergodic harmonic measure, and thus only
one harmonic measure. The theorem is proved. �
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Proposition 4.8. Let (F ,∆g) be a similar Laplace foliation of codi-
mension 1 of a compact manifold M , where ∆g is the Laplacian of a
riemannian metric. Then every ergodic harmonic measure is supported
on a minimal subset.

Proof. Let µ be an ergodic harmonic measure on (F ,∆g), andM be
a minimal closed subset contained in the support of µ. We are going
to prove that M is exactly the support of µ. It is clear that one can
suppose that µ does not charge any leaf.

Suppose that the foliation is oriented. Because the operator ∆g

is symmetric, the measure µ induces a transverse harmonic measure
which is ∆g-harmonic. From every point x of M , the positive G-orbit
of x intersects M in a first time in a point y. Consider the function
f(x) = ν([x, y)). This is a continuous function, because µ does not
charge any leaf, and it is harmonic on every leaf. By Garnett lemma
[Ga], this function has to be constant on µ-almost every leaf, thus by
continuity of f , f is constant on the support of µ. But on the min-
imal M, f vanishes, so that the restriction of f to the support of µ
is identically 0. Thus the support of µ has to be reduced to M. The
proposition is proved. �

Example 4.9. The Theorem 4.6 seems to be false when the drift does
not preserve the volume volg. We give an example of a similar Laplace
lamination of a compact space which is minimal, transversely confor-
mal, and not uniquely ergodic.

A lamination of a compact space X is an atlas of homeomorphisms
from open sets of X to the product of an euclidian ball by a topological
set, in such a way that the change of coordinates preserves the local
fibration by balls, and the diffeomorphisms from a piece of ball to
another one depends continuously of the transverse parameter in the
smooth topology. The definition of a Laplace operator on a lamination
is exactly the same as in the foliation case.

We are going to describe an example of a similar Laplace lamination
of a compact space, which has been constructed by Sullivan [Su3]. Let
H be the upper-half plane, whose hyperbolic metric is expressed by

g =
dx2 + dy2

y2
,

in the coordinates z = x + iy of H. Consider the unit vector fields
that points on the direction ∞ of ∂H. In the x, y coordinates, it is
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expressed as

V = y
∂

∂y
.

The direct isometries of (H, g, V ) are the maps of the form z 7→ az+ b
where a is a positive number, and b is a real number. For any real
number κ, these transformations preserve the Laplace operator

∆κ = ∆g + κV.

Let A(Z[1/2]) be the group of affine transformations x 7→ ax + b,
where a is a power of 2, and b is a dyadic integer of the form p/2n,
p and n being integers. The group A(Z[1/2]) acts naturally on the
product H×Q2 of the upper half plane by the field of 2-adic numbers,
the action preserving the natural structure of the horizontal Laplace
lamination (H ×Q2,∆κ). The action is discrete, without fixed point,
and the quotient (X,∆κ) is similar Laplace lamination of a compact
space.

When κ > 1 the Laplace laminations (X,∆κ) carry harmonic mea-
sures that charge any cylinder leaves. This can be seen by the same
arguments as those given in 3.4. These examples are not codimension
1 foliations, but they share with codimension 1 foliation the property
of being transversely conformal, which is the only property used in the
proof of Theorem 4.6.

It seems to us that the hypothesis divvolgV = 0 is too strong. For
instance, we conjecture that for any Laplace operator on the base of a
suspension, the conclusion of 4.6 holds.

There are analog examples of similar Laplace laminations of a com-
pact space, associated with tilings of the hyperbolic plane. They have
been studied by Petite [Pe]; many of them are minimal but not uniquely
ergodic even for a symmetric operator. The lack of unique ergodicity
is due to the fact that they do not carry a transversely invariant “con-
formal” structure.
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5. Appendix: Technical proofs

5.1. Proof of Proposition 2.3. It is a well-known fact (see [C-L-Y,
Ma]), that for a Brownian motion, the probability of making large steps
decreases very fast:

(5.1) ∃C1, d0 : ∀p ∈M, ∀d > d0 Wp(dist(γ̃(δ), p) > d) ≤ e−C1d.

Thus, we may choose a random variable ξ, such that ξ ≥ 0, Eξ < ∞
and

(5.2) ∀p ∈M, ∀d > 0 Wx(dist(γ̃(δ), p) > d) ≤ P (ξ > d).

Let us choose for every x ∈ M, a function χx : Γx → R, such that χx
depends only on γ|[0,δ], has the same distribution as ξ and such that
χx(γ) ≥ k1(γ) for every γ ∈ Γx. Recall, that σ : Γ → Γ stays for the
map, erasing the first step of the δ-discretization: σ(γ)(t) = γ(t + δ).
Then,

∀j, γ kj(γ) = k1(σj−1(γ)).

Let us denote ξj(γ) = χγ((j−1)δ)(σ
j−1(γ)). Then,

k1(γ) + · · ·+ kn(γ)

n
=
k1(γ) + k1(σ(γ)) + · · ·+ k1(σn−1γ)

n
≤

≤ χγ(0)(γ) + χγ(δ)(σ(γ)) + · · ·+ χγ((n−1)δ)(σ
n−1γ)

n
=

=
ξ1(γ) + · · ·+ ξn(γ)

n

Note, that all the ξj are distributed identically with ξ. Moreover, from
the Markovian property, the conditional distribution of the variable
ξn+1 with respect to every condition γ|[0,nδ] = γ coincides with the
distribution of ξ. On the contrary, the variables ξ1, . . . , ξn are deter-
mined by such a condition. Thus, the variable ξn+1 is independent
from ξ1, . . . , ξn. As n is arbitrary, all the variables ξ1, . . . , ξn, . . . are
independent and identically distributed.

Now, let us take c = Eξ + 1. We are going to show that for almost
every γ ∈ Γ we have lim sup

n→∞
Kn(γ)/n < c. From the Large Numbers

Law, we have:

lim sup
n→∞

ξ1(γ) + · · ·+ ξn(γ)

n
= Eξ < c

Wx–almost surely. But

lim sup
n→∞

k1(γ) + · · ·+ kn(γ)

n
≤ lim sup

n→∞

ξ1(γ) + · · ·+ ξn(γ)

n
,
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and thus

lim sup
n→∞

k1(γ) + · · ·+ kn(γ)

n
< c

Wx-almost surely. This concludes the proof of the proposition. �

5.2. Proof of Lemma 2.4. First, we are going to prove the lemma in
the particular case of a codimension one foliation F , using the transver-
sal one-dimensional foliation G, described in Section 2.

In order to prove the lemma, we shall study the behaviour of heat
kernels for a time t = δ fixed on different but close enough leaves. We
are going to use the following idea: major parts of the heat distribution
measures on these two leaves are similar (i.e. the density of G-holonomy
image of one with respect to another is close to 1). Moreover, the infi-
nite product of these densities converges along most Brownian paths,
because along these paths the leaves approach exponentially. Thus, the
measures W δ

x = F∗Wx|Ex and (F ◦ Φx̄,x)∗Wx̄|Ex̄ are absolutely contin-
uous with respect to each other, and the density on the major part of
trajectories is close to 1. In particular, the total measures Wx(Ex) and
Wx̄(Ex̄) are close to each other.

Proposition 5.1. Let x̄ ∈ Gx, distG(x, x̄) = θ. Consider the measures
νx and νx̄, where the measure νz = p(z, ·; δ) dvolg on Fz gives the dis-
tribution of Brownian motion at the time δ. Also, let ε2 > 0 and R be
chosen. Then, there exists a set S = S(R, ε2, θ, x) ⊂ BFR (x), such that

• νx(S) > 1− ε1,

• dνx
d(Φ∗x,x̄νx̄)

∣∣∣
S
∈ [1− ε2, 1 + ε2],

where ε1 = 1
ε2

(
G′1e

G′2Rθ + e−G3R2
)

, and G′1, G
′
2, G3 are geometric con-

stants (depending only on the foliation F).

Proof. First, let us equip the leaf Fx with another Riemannian metric
g′, coinciding with Φ∗g|Fx̄ inside BFR (x) and with g|Fx outside BF2R(x);
in the annulus left, the metrics g′ is defined using cut-off function.

Note, that the distance (in C2d-topology, where d is the dimension
of the leaves of F) between g and g′ is at most G0θe

G1·2R, where G1 is
a constant, giving the maximum deviation of leaves of F , and G0 gives
the maximum of derivative of g along G.

Also, we recall, that the heat kernel can be constructed explicitly as
a series of convolutions. This procedure is described in the books of
Candel [C-C] and Chavel [Cha]. In a few words, a function L, which
“almost satisfies” the heat equation, is explicitly constructed, and then
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the real heat kernel is obtained as a sum of L and a series of convo-
lutions. These series are converging uniformly for every fixed moment
of time t, and the dependence of the metrics is smooth (due to the
explicit nature of the construction). Thus, the distance between the
heat kernels for the metrics g and g′ at the time t = δ can be bounded
by the product of a constant G2 (depending only on the geometry of
foliation F and of the moment δ) and of the distance between g and g′.
This distance is at most e2G1Rθ; hence, the difference between these
kernels is bounded by G2e

2G1Rθ.
Now, due to the upper bounds for the heat kernel [C-L-Y, Ma], the

set of Brownian trajectories on the interval of time [0, δ], starting at
x and exiting from the ball BFR (x) at some intermediate moment, has

the measure at most e−G3R2
. We notice that these trajectories for the

metric g′ and for the metric Φ∗x,x̄g|Fx̄ are the same (they do not pass
through the points where these metrics do not coincide). Thus, the
parts of heat kernel at time δ, coming from these trajectories, are the
same for these two metrics.

Let us define the set S in a following way: z ∈ S, if

• The density pg′(x, z; δ) is at least 3G2e
2G1Rθ/ε2

• At least 1 − ε2/3 of this density comes from the trajectories
staying inside BFR (in particular, z ∈ BFR (x)).

Then, the second condition for S (quotient of densities) is satisfied
automatically: the maximum possible change of density at a point of S
is the sum of changes while passing from g to g′ (at most ε2/3 part) and
from g′ to g|Fx̄ (at most ε2/3 part due to common set of trajectories).

Now, let us estimate ν(Fx\S), thus verifying the first condition. The
points of this complementary can be of two types: either points of BFR
with too small value of density (we note this set X1), or with too big
part of this density coming from trajectories, exiting the ball BFR (x)
(we note this set X2).

The first part is estimated as

ν(X1) =

∫

BFR (x)

p(x, z; δ)dvolg ≤ 3G2e
2G1Rθ/ε2 · volg(B

F
R (x)) ≤

≤ (3G2e
2G1Rθ/ε2) · eG4R,

where G4 is the constant, bounding the growth of the leaves of F .
The second part is estimated as follows: denote by ρ(z) the part of

the density p(x, z; δ), coming from the trajectories exiting from the ball
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BFR (x). Then,

ν(X2) =

∫

{z: ρ(z)/p(x,z;δ)>ε2/3}
p(x, z; δ) dvolg(z) ≤

≤
∫

{z: ρ(z)/p(x,z;δ)>ε2/3}

3

ε2

· ρ(z) dvolg(z) ≤

≤ 3

ε2

∫

Fx
ρ(z) dvolg(z) <

3

ε2

· e−G3R2

(the last inequality comes from the upper bound for the probability of
all the set of trajectories, leaving the ball of radius R at some moment
between 0 and δ).

Finally, we obtain

ν(Fx \ S) = ν(X1 ∪X2) <
3G2e

(2G1+G4)R

ε2

· θ +
3

ε2

· e−G3R2

=

=
1

ε2

(
G′1e

G′2Rθ + e−G3R2
)
,

where G′1 = 3G2, G′2 = 2G1 +G4.
The first condition on S is satisfied. �

For any R, θ > 0 let us denote

Ψ(R, θ) =
√
G′1eG

′
2Rθ + e−G3R2 .

Also, let r(θ) = (log 1
2θG′1

)/(2G′2). Then G′1e
G′2r(θ)θ = 1

2

√
θ, and for all

θ sufficiently small e−G3r(θ)2
< 1

2

√
θ. Thus, for all θ sufficiently small

Ψ(θ) := Ψ(r(θ), θ) <
√
θ.

Now, denote

S(θ, x) = S(r(θ),Ψ(θ), θ, x).

For this set, the conclusions of Proposition 5.1 is satisfied with ε1 =
ε2 <

√
θ. Let us choose a small transversal interval J ⊂ I, J 3 x, and

consider the subset of Ex, defined as

(5.3) E ′x = {γ ∈ Ex| ∀n ≥ 0 xn+1 ∈ S(θn, xn)} ,
where xn = γ(nδ) is the discretization sequence, corresponding to γ,
and θn = |hγ|[0,nδ](J)| is the sequence of the corresponding transverse

distances (exponentially decreasing due to the nature of Ex).



CONFORMAL DYNAMICAL SYSTEMS 47

Lemma 5.2. For x̄ ∈ J , the images of the measure Wx|E′x under F
and of the measure Wx̄|E ′̄x under F ◦Φx̄,x are absolutely continuous with
respect to each other. The density can be made arbitrary close to 1 by
choice of sufficiently small intervals I and J . Moreover, by such a
choice, the differences Wx(Ex)−Wx(E

′
x) and Wx̄(Ex̄)−Wx̄(E

′
x̄) can be

made arbitrarily small.

Proof. Let us consider the projection map

πn : (F̃x)∞ → (F̃x)n+1, πn({xj}∞j=0) = {xj}nj=0

and its composition with F , which we denote Fn : E ′x → (F̃x)n+1,

Fn(γ) = {γ̃(jδ)}nj=0.

Let us denote

µ1 = F∗Wx|E′x , µ2 = (F ◦ Φx̄,x)∗Wx̄|E ′̄x ,
µn1 = (πn)∗µ1 = (Fn)∗Wx|E′x , µn2 = (πn)∗µ2 = (Fn ◦ Φx̄,x)∗Wx̄|E ′̄x .

Proposition 5.3. The measures µn1 and µn2 are absolutely continuous
with respect to each other, and

dµn2
dµn1

∣∣∣∣
(xj)

= ρn((xj)) =
n−1∏
j=0

dνxj
d(Φ∗xj ,x̄jνx̄j)

,

To prove Lemma 5.2, it suffices to show that for µ1–almost every

point (xj) ∈ (F̃x)N the sequence ρn((xj)) converges to some number
between 0 and ∞. It is equivalent to the convergence of the infinite
product

(5.4)
∞∏
j=1

dνxj
d(Φ∗xj ,x̄jνx̄j)

= lim
n→∞

ρn((xj))

(again, for µ1–almost every (xj) ∈ (F̃x)N).
Now, for every (xj) in the image F (E ′x), the logarithm of the prod-

uct (5.4) can be estimated as

(5.5)

∣∣∣∣∣log
∞∏
j=1

dνxj
d(Φ∗xj ,x̄jνx̄j)

∣∣∣∣∣ ≤
∞∑
j=0

∣∣∣∣∣log
dνxj

d(Φ∗xj ,x̄jνx̄j)

∣∣∣∣∣

≤
∞∑
j=0

∣∣∣2
√
θj

∣∣∣ ≤
∞∑
j=0

∣∣∣2
√
Ce−αj|J |

∣∣∣ ≤ C3

√
|J |

∞∑
j=0

e−αj/2 = C4

√
|J |.

Here we used the definition of E ′x to bound the density
dνxj

d(Φ∗xj,x̄j νx̄j )
, and

then again to estimate θn.
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We have estimated the density; moreover, for J sufficiently small this
density (due to (5.5)) can be made arbitrary close to 1.

Now, let us estimate the difference Wz(Ez)−Wz(E
′
z), where z ∈ J .

Denote

Ez,n = {γ ∈ Ez| ∀j, 0 ≤ j < n xn+1 ∈ S(θn, xn)} ,
C̃z,n = Fn(Ez,n),

and let µ̃n be a measure on (F̃z)n+1, defined as the discretization image

of Wz|Ez,n . Also, consider projection maps π̃n : C̃z,n+1 → C̃z,n. Then,
(π̃n)∗µ̃n+1 is absolutely continuous with respect to µ̃n, and the density
is equal to

ρ̃n((xj)) = νxn(S(θn, xn)) ≥ 1− 2
√
θn ≥ 1− 2

√
Ce−αn|J |.

Thus,

Wz(En,z \ En+1,z) =

∫
eCn,z

(1− ρ̃n)((xj)) dµ̃n((xj)
n
j=0) ≤

≤
∫

eCn,z

2
√
Ce−αn|J | dµ̃n((xj)

n
j=0) ≤ C3e

−αn/2√|J |.

Now, recall that E ′z =
⋂∞
n=1Ez,n, hence,

(5.6) Wz(Ez)−Wz(E
′
z) =

∞∑
n=0

Wz(Ez,n \ Ez,n+1) ≤

≤
∞∑
n=0

C3e
−αn/2√|J | ≤ C4

√
|J |.

The difference Wz(Ez)−Wz(E
′
z) tends to 0 as |J | tends to 0. �

Proof of Lemma 2.4.

5.2.1. “Positive measure” part. First, let us prove the “positive mea-
sure” part. Namely, estimate the difference |Wx(Ex) − Wx̄(Ex̄)| if
x̄ ∈ J ⊂ I:

|Wx(Ex)−Wx̄(Ex̄)| ≤ |Wx(Ex)−Wx(E
′
x)|+

+ |Wx(E
′
x)−Wx̄(E

′
x̄)|+ |Wx̄(E

′
x̄)−Wx̄(Ex̄)|.

All the three differences can be estimated using Lemma 5.2. Thus,
choosing any p1 < Wx(Ex), we can find a sufficiently small transversal
interval J , such that for any x̄ ∈ J we have Wx̄(Ex̄) ≥ p1.
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Now, suppose that y ∈ F̃x̄. Then, the measures νy and νx̄ are ab-
solutely continuous with respect to each other, and the density on the

major (with respect to these measures) part of F̃x̄ is close to 1. Let us
choose ε3 > 0 and denote the set

S̃(x̄, y, ε3) =

{
z ∈ F̃x̄ | dνx̄

dνy
(z) ∈ [

1

1 + ε3

, 1 + ε3]

}
.

Then,

∀ε3 > 0∃r > 0 : ∀y ∈ F̃x̄, d(y, x̄) < r νx̄(S̃) > 1− ε3, νy(S̃) > 1− ε3.

Note that due to the Markovian property (the conditional distribution
of σ(γ) with respect to every condition σ(γ)(0) = z′ coincides with
Wz′), we have

Wz(Ez) =

∫
eFz
Wz′(E

1
z′) dνz(z

′),

where

E1
z′ =

{
γ | ∀n

∣∣∣hγ|[0,nδ](hz,z′(I))
∣∣∣ < C0e

−α·(n+1)δ|I|
}

(this is the definition of Ez, rewritten in terms of the shift σ(γ)). Thus,
for d(y, x̄) < r we have

(5.7) Wy(Ey) = Wy(Ey ∩ {x1 /∈ S̃}) +

∫
eS
Wz(E

1
z ) dνy(z),

(5.8) Wx̄(Ex̄) = Wx̄(Ex̄ ∩ {x1 /∈ S̃}) +

∫
eS
Wz(E

1
z ) dνx̄(z) =

= Wx̄(Ex̄ ∩ {x1 /∈ S̃}) +

∫
eS
Wz(E

1
z )
dνx̄
dνy

(z) dνy(z).

The first summands in the right hand sides of (5.7) and (5.8) are no
greater than ε3, and the quotient of the second summands is bounded
by 1 + ε3. Thus, for y and x̄ being sufficiently close to each other,
the probabilities Wx̄(Ex̄) and Wy(Ey) are also close to each other. In
particular, for every p0 < p1 we can find r > 0, such that for U being
the union of r-leafwise-neighborhoods of points of J , we have

∀y ∈ U Wy(Ey) ≥ p0.

It completes the proof of this part of the lemma.
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5.2.2. Proof of the “distributions” part. Note that due to the argu-
ments already used we may suppose that y ∈ Gx: for y and y′ on the
same F -leaf, the measures νy′ and νy are absolutely continuous with re-
spect to each other, and hence any tail-type property holds (or does not
hold) simultaneously for typical trajectories in Γy and Γy′ . Hence, if y
does not belong to Gx, we may replace it by y′, which is an intersection
point of Fy and Gx.

Recall that almost every trajectory γ ∈ Γx (due to the choice of x)
is distributed with respect to µ. Thus, for almost every path γ ∈ Γx
we have

(5.9) lim
T→∞

1

T
γ∗leb[0,T ] = µ.

We know that a trajectory of Ey approaches a trajectory of Ex.
Unfortunately, we can not claim that the map giving the trajectory of
Ex by a trajectory of Ey is absolutely continuous (or, what is the same,
maps typical trajectories to typical ones): we have this statement only
for discretizations of trajectories.

Thus, we have to prove the distributions property using discretiza-
tions behaviour. The following arguments are a technical realization of
this idea.

Rewrite (5.9) in the terms of discretization. Let a continuous func-
tion ϕ on M be chosen. Then, for Wx-almost every γ ∈ Γx,

(5.10)

(
1

T
γ∗leb[0,T ]

)
(ϕ) =

1

T

∫ T

0

ϕ(γ(t)) dt.

It is clear that we can restrict to the moments of time of the form
T = nδ; for such T ,

(5.11)
1

nδ

∫ nδ

0

ϕ(γ(t)) dt =
1

nδ

n−1∑
j=0

∫ (j+1)δ

jδ

ϕ(γ(t)) dt =

=
1

n

n−1∑
j=0

1

δ

∫ (j+1)δ

jδ

ϕ(γ(t)) dt.

Let z ∈ M be some point, and let us rewrite (5.11) for a typical
trajectory γ ∈ Γz. Namely, we divide this sum into discrete averaging
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and the rest term:

(5.12)
1

nδ

∫ nδ

0

ϕ(γ(t)) dt =
1

n

n−1∑
j=0

ϕ(γ(jδ))+

+
1

n

n−1∑
j=0

1

δ

∫ (j+1)δ

jδ

(ϕ(γ(t))− ϕ(γ(jδ))) dt.

We estimate the second term in the right hand side of (5.11), de-
composing the sum in two parts, the one corresponding to j with
diam(γ([jδ, (j+1)δ])) < r and the one with diam(γ([jδ, (j+1)δ])) ≥ r.

(5.13)

∣∣∣∣∣
1

n

n−1∑
j=0

1

δ

∫ (j+1)δ

jδ

(ϕ(γ(t))− ϕ(γ(jδ))) dt.

∣∣∣∣∣ ≤

≤ 1

n

∑

j<n,diam(γ([jδ,(j+1)δ]))<r

1

δ

∫ (j+1)δ′′

jδ′′
|ϕ(γ(jδ))− ϕ(γ(t)) dt|+

+
1

n

∑

j<n,diam(γ([jδ,(j+1)δ]))≥r

1

δ

∫ (j+1)δ′′

jδ′′
|ϕ(γ(jδ))− ϕ(γ(t)) dt| ≤

≤ ωϕ(r) + 2
#{j : diam ≥ r}

n
sup
M
|ϕ|,

where ωϕ is the modulus of continuity of the function ϕ.
Let us pass in (5.13) to the upper limit:

(5.14) lim sup
n→∞

∣∣∣∣∣
1

n

n−1∑
j=0

1

δ

∫ (j+1)δ

nδ

(ϕ(γ(t))− ϕ(γ(jδ))) dt.

∣∣∣∣∣ ≤

≤ ωϕ(r) + 2 sup
M
|ϕ| · lim sup

j→∞

#{j < n | diam(γ[jδ, (j + 1)δ]) ≥ r}
n

.

For a function ϕ chosen, the first summand can be made arbitrarily
small by a choice of r due to the continuity of ϕ. For every r > 0
chosen, the second summand can be made arbitrarily small for almost
all trajectories by a choice of sufficiently small δ > 0 (which is uniform
in z ∈M) due to the same arguments as the ones used in the proof of
Proposition 2.3.

Hence, for every ε > 0 we can find r and then δ small enough, such
that for almost all γ ∈ Γz,

lim sup
n→∞

∣∣∣∣∣
1

n

n−1∑
j=0

1

δ

∫ (j+1)δ

jδ

(ϕ(γ(t))− ϕ(γ(jδ))) dt

∣∣∣∣∣ < ε.
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The rest term in (5.12) is estimated, and taking it together with (5.10),
for a discretization (xj) = F δ(γ) of a typical path γ ∈ Γx, we have

lim sup
n→∞

∣∣∣∣∣
1

n

n−1∑
j=0

ϕ(xj)−
∫

M

ϕdµ

∣∣∣∣∣ < ε.

Now, for a Wx̄-typical path γ from E ′y let us estimate the difference

(5.15) lim sup
n→∞

∣∣∣∣
1

nδ

∫ nδ

0

ϕ(γ(t)) dt−
∫

M
ϕdµ

∣∣∣∣ .

We have:

lim sup
n→∞

∣∣∣∣
1

nδ

∫ nδ

0

ϕ(γ(t)) dt−
∫

M
ϕdµ

∣∣∣∣ ≤

≤ lim sup
n→∞

∣∣∣∣∣
1

nδ

∫ nδ

0

ϕ(γ(t)) dt− 1

n

n−1∑
j=0

ϕ(yj)

∣∣∣∣∣+

+ lim sup
n→∞

1

n

n−1∑

j=k

|ϕ(yj)− ϕ(xj)|+

+ lim sup
n→∞

∣∣∣∣∣
1

n

n−1∑
j=0

ϕ(xj)−
∫

M
ϕdµ

∣∣∣∣∣ ,

where (yn) is the discretization of the path γ ∈ Γy, and (xn) is its Φy,x-
image. We know that the measures F δ

∗Wx|E′x and (F δ ◦Φy,x)∗Wy|E′y are
absolutely continuous; thus, the image of a typical sequence is a typical
sequence. Hence, for a typical trajectory γ ∈ E ′y the first and the last
summands do not exceed ε. So, we have

(5.16) lim sup
n→∞

∣∣∣∣
1

nδ

∫ nδ

0

ϕ(γ(t)) dt−
∫

M
ϕdµ

∣∣∣∣ < 2ε

for a typical path γ ∈ E ′y, which implies, that

(5.17) lim sup
T→∞

∣∣∣∣
1

T

∫ T

0

ϕ(γ(t)) dt−
∫

M
ϕdµ

∣∣∣∣ < 2ε.

For a typical path from E ′y we have obtained an estimate on the
difference between the integral of ϕ and its average along the path.
Let us extend this statement to all the Ey. Namely, repeating the
arguments used in the proof of Remark 2.8, we see that almost every
path from Ey can be decomposed into a finite starting segment and a
path from some E ′z for some z close to M . Then, the estimate (5.17)
holds also for a Wy-typical path from Ey.
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But the definition of Ey does not depend on δ, thus, choosing arbi-
trarily small δ and r, we have finally:

lim sup
n→∞

∣∣∣∣
1

T

∫ T

0

ϕ(γ(t)) dt−
∫

M
ϕdµ

∣∣∣∣ = 0.

Hence,
1

T

∫ T

0

ϕ(γ(t)) dt −−−→
T→∞

∫
ϕdµ

for a typical path γ ∈ Ey.
Recall that by definition the measures µt weakly converge to µ if and

only if for every continuous function ϕ we have∫
ϕdµt →

∫
ϕdµ.

Moreover, it suffices to check such convergence for a well-chosen count-
able family ϕk. We have already obtained, that for any function ϕ and
for a typical path γ ∈ Ey(

1

T
γ∗leb[0,T ]

)
(ϕ) =

1

T

∫ T

0

ϕ(γ(t)) dt −−−→
T→∞

∫
ϕdµ.

A countable family of typically satisfied conditions still is a typically
satisfied condition, and hence for Wy-almost every trajectory γ ∈ Ey

lim
t→∞

1

t
γ∗leb[0,t] = µ.

This completes the proof of the lemma. �

5.3. Codimension higher than one. Here we present a construction
which permits us to handle the case of transversely conformal foliation
of codimension higher than one. Let F be such a foliation. Equip M
with a Riemannian metric and for any point x ∈ M , let a transversal
Gx be an image of the image of the exponential map for a small disk in
(TxF)⊥ disk. We notice that these transversals depend smoothly on x,
and in a small neighborhood of every point x for every point y there
exists a unique point z in its small F -leafwise neighborhood, such that
z ∈ Gy.

We remark that the family of transversals {Gx}x∈M does not necessar-
ily form a foliation, for the reason that we can not control intersections
of transversals with starting points on different F -leaves.

Now, for a point x0 ∈M, let us consider the set

M = ∪y∈ eFx0
{y} × Gy.
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Note that M is a manifold with boundary, naturally inheriting from
M its foliation structure (except for the fact that for M some leaves
intersect the boundary ∂M) and Riemannian metric on the leaves. But,
on M we have a natural smooth transversal foliation G, leaves of which
are {y} × Gy. Now, we can apply the same arguments as these used in
the codimension one case, to prove Lemma 2.4.

5.4. Non-positivity of Lyapunov exponents. This section is de-
voted to the following lemma:

Lemma 5.4. Let F be a transversely conformal foliation, M be a
minimal set in F , and µ be a harmonic ergodic measure supported
on M. Then, λ(µ) ≤ 0.

Proof. We will present the proof for the case of codimension one
foliation, using the existence of a transversal foliation G. Then, it is
generalized to an arbitrary codimension case in the same way as in the
proof of Lemma 2.4.

Assume the contrary: let λ(µ) > 0. We take some α, β, α < β <
λ(µ). Prove first that the measure µ does not charge any leaf. Assume
the contrary: µ(L) > 0 for some leaf L. Then, the density with respect

to the volume dµ|L
dvolg

is a harmonic function on the leaf L. Moreover, this

function is positive, bounded (because of harmonicity and boundedness
of geometry of L) and of integral 1. Extending this function by 0 to
the complementary, we obtain a harmonic measurable positive leafwise
integrable function. Garnett [Ga, Proposition 1, p. 295] have proved
that such a function should be leafwise constant. Thus, it is equal to
a positive constant on L and hence (as it is integrable) L is a compact
leaf. But for a compact leaf the Lyapunov exponent equals 0, as the
corresponding Dirac measure is transversely invariant.

Let us choose a point x0 ∈ M, typical in the sense of Lyapunov
exponents: for Wx0-almost every path γ ∈ Γx0 the corresponding path
has the Lyapunov exponent equal to λ(µ).

First, let us consider the simplest case: suppose, that the foliation G
preserves the metric g. Also, we suppose that any F -along holonomy
extends to some fixed neighborhood U ⊂ Gx0 . Finally, we suppose that
the measure µ does not charge any leaf, or equivalently, that measures
ν· have no points of positive measure.

In this case, the measure µ induces on every leaf Gx a conditional
measure νx, which is harmonic in the sense of measure-valued functions
(see Section 4.2). Let us take some T > 0 and C > 1 and for every path
γ, starting at x0, try to find a τ = τ(γ), T < τ < 2T , as a minimal
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value t0 in this interval possessing the following property:

(5.18) ∀t ∈ [0, τ ] h′γ|[τ,t](γ(τ)) < Ce−β(τ−t).

Here, we use hγ|[τ,t] as a short notation for h−1
γ|[t,τ ]

(t < τ , and thus the

first notation is not absolutely clear). Note, that as the holonomy is
taken in the inverse sense, from the moment τ to t < τ , one can expect
that the derivative is will be small.

Note that the non-existence of such τ means, that

h′γ|[0,2T ]

h′γ|[0,T ]

≤ eβT (x0),

so for Wx0-almost every path γ and for every T , sufficiently big such
τ exists. If in the interval [T, 2T ] we can not find a moment satisfy-
ing (5.18), then we choose τ(γ) = 2T . Finally, we remark that τ(·) is
a Markovian moment.

The transversal measures νx depend on x in a harmonic way, thus
for a transversal interval I ⊂ Gx0 the measures of its holonomy images
νγ(t)(hγ|[0,t](I)) form a martingale. The expectation of value of this
martingale at the Markovian moment τ should be equal to its initial
value:

(5.19) Eνγ(τ(γ))(hγ|[0,τ(γ)]
(I)) = νx0(I).

Now, note that due to the definition of τ(I) for all the paths γ with
τ(γ) < 2T a neighborhood V of γ(τ) is contracted exponentially by
the holonomy hγ|[τ,0]

, the radius of V is bounded from below by means
of C, α, β and the geometry of the foliation. Namely,

|hγ|[τ,0]
(Uε(γ(τ)))| ≤ e−ατ ≤ e−αT ,

where ε > 0 does not depend on T . Passing from inverse to direct
time we see that an exponentially small neighborhood of x0 = γ(0) is
expanded:

hγ|[0,τ ]
(Ue−αT (x0)) ⊃ Uε(γ(τ)).

Now, let us estimate the left part of (5.19) for I = Ue−αT (x0):

(5.20) Eνγ(τ(γ))(hγ|[0,τ(γ)]
(I)) ≥

≥
∫

{γ:τ(γ)<2T}
νγ(τ(γ))(hγ|[0,τ(γ)]

(I)) dWx0 ≥

≥
∫

{γ:τ(γ)<2T}
νγ(τ(γ))(Uε(γ(τ))) dWx0 ≥

≥ Wx0{γ : τ(γ) < 2T} · inf
y∈M

(νy(Uε(y))).
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As M is compact and suppµ = M, the infimum in the last term
of (5.20) is positive. Thus, the last term stays separated from 0 as T
tends to infinity, so it is no less than some constant c0 > 0. Hence (5.19)
and (5.20) imply that

νx0(Ue−αT (x0)) ≥ Wx0{γ : τ(γ) < 2T} · inf
y∈M

(νy(Uε(y))) > c0,

and thus the left term does not tend to 0 as T tends to infinity. This
contradicts the fact that the measure νx0 can not have atoms. We have
obtained the desired contradiction. So, this case is handled.

Let us now consider the case of generic Riemannian structure (not
necessarily preserved by the transversal foliation). Note, that the har-
monic measure µ still defines conditional measures on the transversals
{Gy}, which are its Fubini conditional measures with respect to volg
on the leaves. We still suppose that the F -along holonomy maps are
defined on the entire transverse leaves {Gy}. Also, we add the following
(simplifying the explanation of this step) hypothesis: all the leaves of
F are simply connected.

For these conditional distributions, the harmonicity condition implies
that for a transversal interval I at a point x ∈M and a function ρ, we
have:
(5.21)∫

I

ρ(y) dνx(y) = E
∫

hγ|[0,t] (I)

p(hγ|[t,0]
(z), z; t)

p(x, γ(t); t)
ρ(hγ|[t,0]

(z)) dνγ(t)(z),

where the expectation is taken in the sense of Wx. To prove this for-
mula, we take a smooth function f on M supported in the neighbor-
hood of I, with integral on Fy equal to ρ(y). For every fixed t, as the
support of f tends to I, the integral of f with respect to µ tends to the
left hand side of (5.21), and the integral of Dtf to the right hand side.
The harmonicity of µ implies that these two integrals coincide, which
proves the formula.

Now, let us repeat the arguments used in the similar case with the
following modification: we consider only discrete moments of time t =
kδ, where sufficiently small δ > 0 is fixed.

Applying (5.21) several times for the initial function ρ = 1I , we
obtain, that for a Markovian moment (taking discrete values) t(γ) =
k(γ)δ

(5.22) νx(I) = E
∫

hγ|[0,t] (I)

k∏
j=1

p(zj−1, zj; δ)

p(xj−1, xj; δ)
dνγ(t)(z),
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where xj = γ(jδ), zj = hγ|[kδ,jδ](z), and the expectation is taken in the
sense of the measure Wx0 .

Let us take, as in the previous case, for T = Kδ sufficiently big, a
Markovian moment τ(γ) = k(γ)δ defined as the smallest value in the
interval [T, 2T ] such that for every t = lδ < τ

h′γ|[τ,t](γ(τ)) < Ce−β(τ−t).

Once again, if such a moment does not exist, we take τ = 2T .
For T sufficiently big, the probability of τ < 2T is close to 1. Now,

let us take I = Ue−αT (x0). For most paths, as we know, the holonomy
maps expand exponentially and thus hγ|[0,τ ]

(I) ⊃ Uε(γ(τ)).
Note that for most of the paths starting at x0, and for a point z0 in

the holonomy preimage hγ|[τ,0]
(Uε(γ(τ))), the product of the quotients

of the heat kernels (due to estimates analogue to these of Lemma 2.4)
is bounded from below by some constant c1 > 0. Let us denote

N =
{
γ ∈ Γx0 : τ(γ) < 2T, hγ|[0,τ ]

(I) ⊃ Uε(γ(τ)),

∀z0 ∈ hγ|[τ,0]
(Uε(γ(τ)))

k∏
j=1

p(zj−1, zj; δ)

p(xj−1, xj; δ)
≥ c1

}

Thus, the right hand side of (5.22) can be estimated as

(5.23) E
∫

hγ|[0,t] (I)

k∏
j=1

p(zj−1, zj; δ)

p(xj−1, xj; δ)
dνγ(t)(z) ≥

≥
∫

N

∫

hγ|[0,t] (I)

k∏
j=1

p(zj−1, zj; δ)

p(xj−1, xj; δ)
dνγ(t)(z) dWx0 ≥

≥
∫

N

∫

Uε(γ(τ))

c1 dνγ(t)(z) dWx0 =

=

∫

N

c1νγ(t)(Uε(γ(τ))) dWx0 ≥ Wx0(N) · c1 · c0.

Once again we see that the measure νx0(I) does not tend to 0 as I
contracts to x0, which contradicts the fact that the measure ν can not
have atoms.

The higher codimension case is handled in the same way by working
in M defined in Section 5.3. The measure µ defines a σ-finite measure
on M , which harmonic in the sense of integral definition for compactly
supported test function. Considering leafwise Brownian motion in M
(with the possibility of exiting through the boundary) we see that this
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measure is superharmonic in the sense that µ ≥ Dt
∗µ, and the same is

true for the conditional measures νx.
Note that as in (5.23) the only trajectories used for estimates are

those who arrive in ε-neighborhood of the γ(τ); hence due to exponen-
tial contraction in the inverse time they stay closer and closer to the
main leaf Fx0 . In particular, they stay in M for all the time in the
interval [0, τ ].

Adding all this together, we see that the same estimates work in this
case. So, the general case is handled in the same way. �
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[Gh4] É. Ghys. Laminations par surfaces de Riemann. Dynamique et géométrie
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