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Abstract. In this paper we develop a general framework for verifying hyperbolicity
of holomorphic dynamical systems in C2. This framework in particular enables us to
construct the first example of a hyperbolic (cubic) Hénon map of C2 which cannot
be topologically conjugate on its Julia set to a small perturbation of any expanding
polynomial in one variable. Key ideas in its proof are: the Poincaré box which is a
building block to apply our criterion for hyperbolicity, an operation called fusion to
produce essentially two–dimensional dynamics from two polynomials in one variable,
and rigorous computation techniques by using interval arithmetic. Some applications
to the analysis of parameter loci for the Hénon family in R2 are also given.
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1. Introduction and Main Results

Hyperbolic polynomial diffeomorphisms of C2 have been extensively studied, e.g.,
from the viewpoint of Axiom A theory by [BSC1] and the combinatorial point of view
by [BSC7]. Here, a polynomial diffeomorphism f of C2 is said to be hyperbolic if its
Julia set is a hyperbolic set for f (see Subsection 2.1 for the definition of the Julia set
J of f). In [HO2, FS, BSC3] it has been shown that a sufficiently small perturbation
of any expanding polynomial in one variable inside the generalized Hénon family:

fp,b : (x, y) 7−→ (p(x)− by, x)

is hyperbolic, i.e. for any expanding polynomial p(x) there exists a small b∗ > 0 such
that {0 < |b| < b∗} is contained in Hp ≡ {b ∈ C× : fp,b is hyperbolic}. However,
this is so far the only known example of a polynomial diffeomorphism of C2 which is
rigorously shown to be hyperbolic. Moreover, the dynamics of such fp,b is conjugate to
the projective limit of p on its Julia set [HO2]. It is thus still not known if there exists
a hyperbolic polynomial diffeomorphism with essentially two–dimensional dynamics.

The purpose of this article is to develop a general framework for verifying hyperbol-
icity of holomorphic dynamical systems in C2. This framework in particular enables us
to construct the first example of a hyperbolic polynomial diffeomorphism of C2 which
can not be obtained in the way described above. Consider a cubic complex Hénon map:

fa,b : (x, y) 7−→ (−x3 + a− by, x)

with (a, b) = (−1.35, 0.2).

Theorem A. The cubic complex Hénon map above is hyperbolic but is not topologically
conjugate on J to a small perturbation of any expanding polynomial in one variable.

The method for proving the hyperbolicity of fa,b in Theorem A also enables us to
analyze topology and combinatorics of the Julia set. In particular, in Theorem 4.23 it
is shown that the Julia set is obtained by gluing two solenoids and uncountably many
topological circles, and by adding Cantor sets and finite points to them. Moreover,
these pieces are identified only inside the stable manifold of the saddle fixed point in
the third quadrant of R2 and this identification is at most two to one. We also obtain
a necessary condition for the pieces to be glued in terms of symbolic dynamics.

The Julia set of the map in Theorem A is not connected, thus it would be interesting
to find a connected example to apply results in [BSC7]. Oliva [Ol] found some examples
of complex Hénon maps whose Julia sets seem hyperbolic and connected, and can not
be obtained by small perturbation of expanding one–dimensional maps.

The proof of Theorem A relies on the combination of some analytic tools from complex
analysis, a combinatorial idea called the fusion, and rigorous numerical computation by
using interval arithmetic. The analytic and the combinatorial parts behind the proof
allow us to show the next theorem without computer assistance. Given an expanding
polynomial map p(x), let H0

p be the connected component of Hp containing the small
punctured disk {0 < |b| < b∗} in the small perturbation result above.
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Theorem B. For any 0 < δ < 1/2 there exists an expanding polynomial p0(x) so that
{δ < |b| < 1− δ} ⊂ Hp0 \ H0

p0
(see Figure 1 below).

We also see in Theorem 6.1 that if fp0,b0 with δ < |b0| < 1 − δ as in Theorem B is
conjugate to a small perturbation of some expanding polynomial q(x), then q should be
conjugate to p0. Thus, once fp0,b0 is shown not to be conjugate to a small perturbation
of p0, it follows that fp0,b0 is the first example of a polynomial diffeomorphism of C2

with essentially two–dimensional dynamics which is proved to be hyperbolic without
computer assistance.
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Figure 1. The b–plane through the polynomial p0(x).

To prove Theorems A and B, we first establish several topological criteria which imply
hyperbolicity of a polynomial diffeomorphism f . Let Ax and Ay be bounded domains in
C. Then, two kinds of cone fields called the horizontal/vertical Poincaré cone fields on
A = Ax ×Ay ⊂ C2 can be defined in terms of the “slope” with respect to the Poincaré
metrics in Ax and Ay. In our central claim Theorem 2.14 it is shown that two topological
conditions for f : A ∩ f−1(A) → A called the crossed mapping condition and the no–
tangency condition imply the expansion/contraction of the horizontal/vertical Poincaré
cone fields. We will also see in Corollaries 2.17 and 2.18 that these two conditions can
be restated by more checkable ones called the boundary compatibility condition and the
off–criticality condition respectively. The product set A = Ax × Ay equipped with the
horizontal and vertical Poincaré cone fields will be a building block of our construction
throughout this article, and is called a Poincaré box.
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The combinatorial idea to construct new types of hyperbolic generalized Hénon maps
as in Theorems A and B is to make a fusion of two different polynomials in one variable.
Let us put ∆x(x0; r) = {x ∈ C : |x − x0| < r} and take some R > 0. For i = 1, 2,
we choose yi ∈ ∆y(0;R) with y1 6= y2. Take a small ε > 0 so that the bidisks Ai =
∆x(0;R) × ∆y(yi; ε) become disjoint. Since ε > 0 is small, we see that fp,b|Ai(x, y) ≈
(pi(x), x), where pi(x) = p(x) − byi. In this way, the generalized Hénon map fp,b
restricted to A1 ∪ A2 can be viewed as a fusion of two polynomials p1(x) and p2(x)
in one variable. Notice that we are not assuming |b| being small, so the constant
p1(x) − p2(x) = b(y2 − y1) is not necessarily close to zero and thus p1 and p2 may be
combinatorially different. Now, our task is to find a polynomial p(x), a constant b ∈ C
and Poincaré boxes Ai so that fp,b : A1 ∪ A2 → A1 ∪ A2

1 satisfies the hyperbolicity
criterion. This can be done since fp,b|Ai is close to (pi(x), x) and pi(x) is chosen to be
expanding. Moreover, since p1(x) and p2(x) are combinatorially different, we are able to
show that the map constructed in Theorem A is not conjugate to a small perturbation
of any expanding polynomial in one variable, and that any continuous one–parameter
family {fp0,bµ}µ∈[0,1] in the b–plane connecting fp0,b0 with δ < |b0| < 1 − δ constructed
in Theorem B and a small perturbation fp0,b1 of p0(x) must experience bifurcation at
some µ0 ∈ (0, 1). To this end, we decompose the Julia sets in Theorems A and B into
the connected components by using symbolic dynamics and analyze their topology.

Another by–product of Theorem 2.14 is explicit lower estimates on the size of H0
p

for various polynomials p. As an illustration we give the following result when p is a
quadratic polynomial p(x) = x2 + c, i.e. we consider the (quadratic) Hénon family:

fc,b : (x, y) 7−→ (x2 + c− by, x),

where b ∈ C× = C \ {0} and c ∈ C are complex parameters.

Theorem C. If (c, b) satisfies either

(i) |c| > 2(1 + |b|)2 (a hyperbolic horseshoe case),
(ii) c = 0 and |b| < (

√
2− 1)/2 (an attractive fixed point case) or

(iii) c = −1 and |b| < 0.02 (an attractive cycle of period two case),

then the complex Hénon map fc,b is hyperbolic on J .

We note that Hubbard and Oberste-Vorth [Ob] has obtained a weaker estimate to
(i) in Theorem C and Ueda [MNTU] has obtained the same bound as in (i). Confer
also [Hr] where some particular parameters slightly outside our estimates (i) and (ii) are
shown to be hyperbolic, but her method could not verify hyperbolicity for the case (iii).
Topology of the Julia sets of the hyperbolic complex Hénon maps in Theorem C will be
studied through the framework developed in this article in terms of the projective limits
of p(x) = x2 + c in a separated paper [IS] (see also the end of the proof of Theorem 6.1,
where a part of its idea is shown for complex one–dimensional systems).

1When we write f : X → Y , this does not necessarily mean f(X) ⊂ Y . Rather than that, we are
interested in relative position of f(X) with respect to Y (see the conditions presented in Subsection
2.3 for more details).
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When the parameters b and c are real, the Hénon map fc,b becomes a polynomial
automorphism of R2. It is known [FM] that 0 ≤ htop(fc,b|R2) ≤ log 2. Thus, it would
be interesting to investigate the shape of the maximal entropy locus:

M≡ {
(c, b) ∈ R× R× : htop(fc,b|R2) = log 2

}

and the hyperbolic horseshoe locus:

H ≡ {
(c, b) ∈ R× R× : fc,b|R2 is a hyperbolic horseshoe

}
.

Note that H ⊂ M, M is closed and H is open (see, e.g. [M]). Our method in this
article also provides a way to compute these two loci quite accurately.

Theorem D. Below in the list, for each b chosen, (i) c1 is a value of c such that the
Hénon map fc,b is rigorously shown to be a hyperbolic horseshoe on R2 for all c ≤ c1,
(ii) c2 is a value of c such that htop(fc,b|R2) < log 2 is rigorously shown for all c ≥ c2.

b c1 ct c2

1.000 −5.900 −5.700 −5.699
0.900 −5.320 −5.151 −5.149
0.800 −4.800 −4.644 −4.642
0.700 −4.310 −4.179 −4.176
0.600 −3.860 −3.755 −3.752
0.500 −3.450 −3.372 −3.368
0.400 −3.090 −3.028 −3.025
0.300 −2.760 −2.722 −2.716
0.200 −2.480 −2.451 NA
0.100 −2.240 −2.212 NA
0.000 ——— −2.000 ———

−0.100 −2.280 −2.244 NA
−0.200 −2.570 −2.525 NA
−0.300 −2.900 −2.845 NA
−0.400 −3.280 −3.204 −3.171
−0.500 −3.700 −3.603 −3.567
−0.600 −4.160 −4.042 −4.002
−0.700 −4.640 −4.521 −4.457
−0.800 −5.170 −5.040 −4.960
−0.900 −5.740 −5.599 −5.488
−1.000 −6.380 −6.199 −6.049

The value ct in the list is an approximate value of c so that fc,b has the first tangency,
thus (ct, b) seems to approximate the boundary of the two loci. It is obtained by
using the programs PlanarIterations and FractalAsm [DC]. Due to some technical
difficulties, we are not able to give bounds for c2 when −0.4 < b < 0.3 (see Remark 5.9
for details). Confer also the bifurcation diagram of Mira et al [EM], where the boundary
of these loci has been implicitly figured out.
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We hope that Theorem D will be an indispensable step to prove the following

Conjecture 1. There exists a piecewise real analytic, piecewise monotone function
ccrit : R \ {0} → R with two monotone pieces from the b-axis to the c-axis of the
parameter space for the Hénon family fc,b on R2 with the following properties:

(i) c < ccrit(b) iff fc,b|R2 is a hyperbolic horseshoe.
(ii) c > ccrit(b) iff htop(fc,b|R2) < log 2.
(iii) When b > 0, we have c = ccrit(b) iff fc,b|K is topologically conjugate to the factor

σ/∼ of the shift map σ on {0, 1}Z/∼, where ∼ is given by

σn(· · · 111100.01111 · · · )∼σn(· · · 111101.01111 · · · )
for n ∈ Z. Moreover, fc,b|R2 has exactly one orbit of homoclinic tangencies
between the stable and unstable manifolds of the saddle fixed point in the first
quadrant.

When b < 0, we have c = ccrit(b) iff fc,b|K is topologically conjugate to the
factor σ/∼ of the shift map σ on {0, 1}Z/∼, where ∼ is given by

σn(· · · 000010.01111 · · · )∼σn(· · · 000011.01111 · · · )
for n ∈ Z. Moreover, fc,b|R2 has exactly one orbit of heteroclinic tangencies
between the stable manifold of the saddle fixed point in the first quadrant and
the unstable manifold of the saddle fixed point in the third quadrant.

This conjecture in particular implies that H and M are connected (by adding the
lines {(c, b) ∈ R × R× : b = 0, c < −2} and {(c, b) ∈ R × R× : b = 0, c ≤ −2} to them
respectively) and simply connected, H = M, and ∂H = ∂M.

Notice that an affirmative answer to this conjecture in the case |b| < 0.08 has been
recently provided in the paper [BSR2] through the analysis of some complex one–
dimensional dynamics (see also [CLR]). Theorem D of the current article can be seen
as a sharpened version of Theorem 1.1 and Theorem 1.2 of [BSR2] which were important
steps in their proof. Moreover, we have also already obtained a key claim for the cases
b = 1, 0.7, 0.5, 0.3, etc which corresponds to the crossed mapping condition near the
first tangency parameter ct as in Proposition 2.2 and Corollary 2.3 of [BSR2], but with
a completely different choice of bidisks from the ones in their paper.

A corresponding claim for a family of piecewise affine homeomorphisms of R2 called
the Lozi family:

La,b : (x, y) 7−→ (1− a|x|+ by, x)

has been established in [I1], where the boundaries of the two loci are shown to be the
graph of a piecewise algebraic function from the b-axis to the a-axis in the parameter
space. It has been also proved that the topological entropy and the bifurcations are
monotone near the boundary of the loci [I2]. It might be interesting to compare this
monotonicity result to the anti–monotonicity theorem of Kan et al [KKY] which claims
that one can find both infinitely many orbit–creation and orbit–annihilation parameter
values in an arbitrary neighborhood of a non-degenerate homoclinic tangency of a one–
parameter family of dissipative C3-diffeomorphisms of the plane. In fact, contrary to



HYPERBOLIC POLYNOMIAL DIFFEOMORPHISMS OF C2 7

the monotonicity of the Lozi family, such anti–monotonicity phenomena is shown to be
inevitable in the Hénon family near the boundary of the loci when |b| < 0.08 [BSR2].

The plan of this paper is as follows: in Section 2, we recall some basic facts and present
a general framework for verifying hyperbolicity of biholomorphic dynamics in complex
dimension two. The fundamental claim is Theorem 2.14, where the expansion of the
horizontal Poincaré cone field is shown to be equivalent to some topological conditions.
More checkable criteria are presented in Corollaries 2.17 and 2.18, and Theorem C is
proved as a consequence of them. In Section 3, a detailed topological model of fusion
is given. This model is realized as an actual generalized Hénon map and shown to be
hyperbolic by constructing a polynomial in one variable whose Julia set has some special
geometric properties. The next section is dedicated to the proof of Theorem A. For
this, we have to treat the case where several Poincaré boxes have overlaps. A problem
then is to define a new cone field on the overlaps which maintains its invariance and
expansion/contraction. This section begins with a general treatment of this problem.
Some techniques from interval arithmetic will be explained in Subsection 4.3. In the
next subsection, we construct a topological model of the map in Theorem A inspired
by the idea of fusion and verify its hyperbolicity with the help of interval arithmetic.
To do this, 10 programs written in C++ with an interval arithmetic software called
PROFIL (Programmer’s Runtime Optimized Fast Interval Library) [P] are used. The
discussions above combined with the idea of fusion give a proof of Theorem A. Section
5 consists of the proof of Theorem D. To get the estimates c1 in Theorem D, we use
our criteria for hyperbolicity together with rigorous computation and the notion of a
projective bidisk which fits to the trellis formed by stable and unstable manifolds of fc,b
in R2. An algorithm to verify if a given Hénon map on R2 has maximal entropy is
also given by using some ideas from the pluripotential theory. In the last section, some
conjectures and open problems related to the subject of this article are proposed.

Acknowledgment. The content presented in Section 2 of this paper is based on my
joint work with John Smillie which was initiated while I was at Cornell University
during the academic year 1999–2000. I would like to thank him for many stimulating
discussion and inspiring suggestions throughout this work, and thank the Department of
Mathematics in Cornell University for the hospitality. I am also grateful to Eric Bedford,
John H. Hubbard and Tetsuo Ueda for their fruitful comments and encouragement.
My colleague in Kyushu, Kaori Nagatou, prepared me a nice environment of interval
arithmetic, whom I thank so much. Part of this manuscript is written during my
participation to the year–long project “Complex Dynamics” in 2003 at the Research
Institute for Mathematical Sciences in Kyoto University and to the trimester “Analyse
Complexe et Applications” in 2004 at l’Institut Henri Poincaré in Paris. I appreciate the
hospitality of the both Institutes and thank Mitsuhiro Shishikura and Nessim Sibony,
the chief organizers of these projects.

Note. After the preparation of this article, the author received a preprint [BS] which
contains a result similar to Theorem 4.23 of this article for a different kind of map from
the one in Theoreom A but without proof.
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2. Topological Criteria for the Hyperbolicity

In this section several criteria for verifying hyperbolicity of holomorphic dynamics in
C2 are established. In Subsection 2.1 we collect some preliminary results which will be
used later. Our hyperbolicity criteria are Theorem 2.14, Corollaries 2.17 and 2.18 in
the next subsection. As an immediate consequence of them, Theorem C is obtained in
Subsection 2.3.

2.1. Preliminary results. Let f be a polynomial diffeomorphism of C2. It is known
by a result of Friedland and Milnor [FM] that f is conjugate to either (i) an affine
map, (ii) an elementary map, or (iii) the composition of finitely many generalized
complex Hénon maps. Since the affine maps and the elementary maps do not present
dynamically interesting behavior, we will hereafter focus only on a map in the class
(iii), i.e. a map of the form f = fp1,b1 ◦ · · · ◦ fpk,bk throughout this article. The product
d ≡ deg p1 · · · deg pk is called the (algebraic) degree of f . Note also that we have
b ≡ det(Df) = det(Dfp1,b1) · · · det(Dfpk,bk) = b1 · · · bk.

For a polynomial diffeomorphism f , let us define

K± = K±
f ≡

{
(x, y) ∈ C2 : {f±n(x, y)}n>0 is bounded in C2

}
,

i.e. K+ (resp. K−) is the set of points whose forward (resp. backward) orbits are
bounded in C2. We also put K ≡ K+ ∩ K− and J± ≡ ∂K±. The Julia set of f is
defined as J = Jf ≡ J+ ∩ J− (see [HO1]). Obviously these sets are invariant by f .

Hereafter, we will often consider two different spaces A∗ ⊂ C2 where ∗ = D or R,
and consider a polynomial diffeomorphism f : AD → AR (again notice that this does
not necessarily mean f(AD) ⊂ AR). Here, D signifies the domain and R signifies the
range of f .

A subset of TpC2 is called a cone if it can be expressed as the union of complex lines
through the origin of TpC2. Let {C∗p}p∈A∗ (∗ = D,R) be two cone fields in TpC2 over
A∗ and ‖ · ‖∗ be metrics in C∗p .

Definition 2.1 (Pair of Expanding/Contracting Cone Fields). We say that
({CD

p }p∈AD , ‖ · ‖D) and ({CR
p }p∈AR , ‖ · ‖R) form a pair of weakly expanding cone fields

for f (or, f weakly expands the pair of cone fields) if there exists a constant λ ≥ 1 so
that

Df(CD
p ) ⊂ CR

f(p) and λ‖v‖D ≤ ‖Df(v)‖R

hold for all p ∈ AD ∩ f−1(AR) and all v ∈ CD
p . When we can take λ > 1 uniformly

with respect to p and v, we call the cone fields a pair of expanding cone fields for f (or,
f expands the pair of cone fields). Similarly, a pair of (weakly) contracting cone fields
for f is defined as a pair of (weakly) expanding cone fields for f−1.

In particular, if A ≡ AD = AR, ‖ · ‖ ≡ ‖ · ‖D = ‖ · ‖R and Cu
p ≡ CD

p = CR
p for

all p ∈ A ∩ f−1(A) and the above condition holds, then we say ({Cu
p }p∈A, ‖ · ‖) forms

an (weakly) expanding cone field (or, f (weakly) expands the cone field). Similarly, the
notion of (weakly) contracting cone field (or, f (weakly) contracts the cone field) can be
defined.
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The next claim tells that, to prove hyperbolicity, it is sufficient to construct some
expanding/contracting cone fields.

Lemma 2.2. If f : A → A has both non–empty expanding/contracting cone fields

{Cu/s
p }p∈A, then f is hyperbolic on

⋂
n∈Z f

n(A).

Proof. Let us put

Eu
p ≡

⋂
n≥0

Dfn(Cu
f−n(p)) and Es

p ≡
⋂
n≥0

Df−n(Cs
fn(p)).

Because C
u/s
p is a non–empty cone, so is E

u/s
p , and thus it is the union of complex

lines through the origin of TpC2. By replacing f by f−1 if necessary, we may assume

that |b| ≤ 1. Let us put Mp ≡ (1/
√
|b|)(Df)p, and define M

(n)
p ≡ Mfn−1(p) · · ·Mp

and M
(−n)
p ≡ M−1

f−n(p) · · ·M−1
f−1(p) for n ≥ 1. Then, | detM

(n)
p | = 1. Because |b| ≤ 1,

M−1
p =

√
|b|(Df)−1

p is contracting on Eu
p . Suppose that Eu

p contains two distinct

complex lines. Then every vector v ∈ TpC2 is expressed as a linear combination of two

vectors in Eu
p . Thus, ‖M (−n)

p v‖ decreases exponentially to zero, which contradicts to

the fact that | detM
(−n)
p | = 1. So Eu

p is a vector space of dimension one over C.
Again, suppose that Es

p contains two distinct complex lines. Then, in the same way,

we see that ‖(Df)fn(p) · · · (Df)pv‖ decreases exponentially to zero for any v ∈ TpC2,
which contradicts to the existence of the expanding subspace Eu

p . So Es
p forms a vector

space of dimension one over C.

Due to the contraction/expansion along E
s/u
p , we see that Es

p∩Eu
p = {0}. This means

that Eu
p ⊕ Es

p = TpC2. Thus we are done. Q.E.D.

On the hyperbolicity of the polynomial diffeomorphisms of C2, the following fact is
known (see [BSC1], Lemma 5.5 and Theorem 5.6).

Lemma 2.3. f is hyperbolic on J iff so is on its nonwandering set iff so is on its chain
recurrent set iff so is on K.

Thanks to this fact, one may simply say that a polynomial diffeomorphism f is
hyperbolic when one of the four sets in the above lemma is a hyperbolic set. In what
follows, we thus prove hyperbolicity of some f on its Julia set J .

2.2. Poincaré boxes. Let Ax and Ay be bounded regions in C. Define A = Ax ×Ay,
and let πx : A → Ax and πy : A → Ay be two projections. Below, we will define several
types of cone fields on A. The first one (to which we do not equip a metric) looks the
most general cone field among those.

Definition 2.4 (Horizontal/Vertical Cone Fields). A cone field on A is called a
horizontal cone field if each cone contains the horizontal direction but not the vertical
direction. A vertical cone field can be defined similarly.
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Next, a very specific cone field is defined in terms of Poincaré metrics. Let | · |D be
the Poincaré metric in a bounded domain D ⊂ C. Define a cone field in terms of the
“slope” with respect to the Poincaré metrics in Ax and Ay as

Ch
p ≡

{
v = (vx, vy) ∈ TpA : |vx|Ax ≥ |vy|Ay

}
.

A metric in this cone is given by ‖v‖h ≡ |Dπx(v)|Ax .
Definition 2.5 (Poincaré Cone Fields). We call ({Ch

p }p∈A, ‖ · ‖h) the horizontal
Poincaré cone field. The vertical Poincaré cone field ({Cv

p}p∈A, ‖ · ‖v) can be defined
similarly.

Finally we define the third type of cone fields which will be useful in the proof of our
central claim for hyperbolicity. To do this, let us prepare some notations here. Given
x0 ∈ C and r > 0, we set ∆(x0; r) ≡ {x ∈ C : |x−x0| < r}. Let ∆ = ∆x = ∆y ≡ ∆(0; 1)
be unit disks and let D = ∆x ×∆y be a unit bidisk.

Let ∆x = Ãx be the universal covering space of Ax and τx : ∆x → Ax be the natural
projection. It then follows that (τx, τy) : D → A gives the universal covering of A.
Consider a holomorphic map φ : ∆ → A. Since ∆ is simply connected, there is a lift

φ̃ : ∆ → D of φ. We say a holomorphic map φ is of degree k if πx ◦ φ̃ : ∆ → ∆x is
proper of degree k. When φ : ∆ → A is of degree k, its image φ(∆) is called a degree

k disk. Note that these notions are independent of the choice of the lift φ̃.

Now, take p ∈ A. We will define a cone Ĉh
p at p in terms of degree one disks. To do

this, choose any q ∈ (τx, τy)
−1(p) ⊂ D and define

C̃h
q ≡

{
vq ∈ TqD : vq = Dφ̃(w) for a degree one φ with φ̃(z) = q and w ∈ Tz∆

}

and put Ĉh
p ≡ D(τx, τy)(C̃

h
q ).

Lemma 2.6. The cone Ĉh
p is independent of the choice of q ∈ (τx, τy)

−1(p).

Proof. Take any two points q and q′ in (τx, τy)
−1(p). Then, there exist two conformal

automorphisms γx of Ãx and γy of Ãy such that q′ = (γx, γy)(q). If φ̃ : ∆ → D is of

degree one, then so is (γx, γy) ◦ φ̃. Thus, C̃h
q′ ⊃ D(γx, γy)(C̃

h
q ). Since (τx, τy) ◦ (γx, γy) =

(τx, τy), we see that D(τx, τy)(C̃
h
q′) ⊃ D(τx, τy) ◦ D(γx, γy)(C̃

h
q ) = D(τx, τy)(C̃

h
q ). This

proves the claim. Q.E.D.

For each element vp ∈ Ĉh
p , we take q ∈ (τx, τy)

−1(p) and vq ∈ C̃h
q so that vp =

D(τx, τy)(vq). Let us define the metric:

|||vq|||h ≡ sup
{|w|∆ : vq = Dφ̃(w) for a degree one φ with φ̃(z) = q and w ∈ Tz∆

}

and put |||vp|||h ≡ |||vq|||h. This definition is again independent of the choice of q.

Definition 2.7 (Degree One Cone Fields). We call ({Ĉh
p }p∈A, ||| · |||h) the horizontal

degree one cone field. The vertical degree one cone field ({Ĉv
p}p∈A, ||| · |||v) can be defined

similarly.
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In fact we have

Lemma 2.8. These two types of cones coincide, i.e. Ch
p = Ĉh

p and Cv
p = Ĉv

p .

Proof. First consider the case A = Bx × By, where Bx and By are bounded open
topological disks. One may assume that B = ∆x × ∆y and p = (0, 0). Then, the
line which passes through (0, 0) and tangents to any (vx, vy) ∈ Ch

p can be expressed as
the graph of a holomorphic map from ∆x to ∆y because |vx|∆x ≥ |vy|∆y . So we get

(vx, vy) ∈ Ĉh
p , and thus Ĉh

p ⊃ Ch
p .

Conversely, take vp = (vx, vy) ∈ Ĉh
p with vp = Dφ(w). Since deg(φ) = 1, one can

define a holomorphic map φ̂ : ∆x → ∆y such that the image of φ coincides with the

graph of φ̂ by putting φ̂(x) ≡ πy(φ(∆)∩π−1
x (x)). Then, Dφ̂(vx) = vy. By Schwarz–Pick

Lemma it follows that |vx|∆x ≥ |vy|∆y . Thus, Ĉh
p ⊂ Ch

p .
Now, the claim for the general case easily follows from the fact that the covering

maps τx and τy are local isometries and the definition Ĉh
p ≡ D(τx, τy)(C̃

h
q ). The proof

for the vertical cone fields is similar. So, we are done. Q.E.D.

The next lemma relates the two metrics in the definitions of the cone fields.

Lemma 2.9. We have |||vp|||h = ‖vp‖h and |||vp|||v = ‖vp‖v.
Proof. Our task is to prove that |||vp|||h = |Dπx(vp)|Ax . Let vq ∈ D(τx, τy)

−1(vp).
The covering map τx is a local isometry with respect to the Poincaré metrics, so
|Dπx(vq)|fAx = |D(τx ◦ πx)(vq)|Ax = |D(πx ◦ (τx, τy))(vq)|Ax = |Dπx(vp)|Ax . Thus, it

is sufficient to show that |||vq|||h = |Dπx(vq)|fAx . Let φ̃ be a map of degree one and

w ∈ Tz∆ such that Dφ̃(w) = vq. Because πx ◦ φ̃(∆) = Ãx and πx ◦ φ̃ : ∆ → Ãx is iso-

metric, it follows that |Dπx(vq)|fAx = |D(πx ◦ φ̃)(w)|fAx = |D(πx ◦ φ̃)(w)|πx◦eφ(∆) = |w|∆.

This is true for any φ of degree one and any w, thus |Dπx(vq)|fAx = |||vq|||h as required.
The proof for the vertical norm is similar. Q.E.D.

Thus, we have the following consequence which will be essential later.

Corollary 2.10. The horizontal (resp. vertical) degree one cone field and the horizontal
(resp. vertical) Poincaré cone field are identical including their metrics.

Example. When A = ∆x(0;Rx) × ∆y(0;Ry), the following explicit expression of the
cone at each point p = (x, y) ∈ A can be obtained:

Ch
p =

{
(vx, vy) ∈ TpA : |vy|E ≤

R2
y − |y|2

R2
x − |x|2

|vx|E
}
,

where |v|E is the Euclidean metric in TpA. (End of Example.)

Definition 2.11 (Poincaré Boxes). A product set A = Ax × Ay equipped with the

horizontal/vertical Poincaré cone fields ({Ch/v
p }p∈A, ‖ · ‖h/v) is called a Poincaré box.

A Poincaré box will be a building block for verifying hyperbolicity of polynomial
diffeomorphisms throughout this article.
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2.3. Hyperbolicity criteria. In this subsection, we present several criteria for hyper-
bolicity of holomorphic dynamics inC2 in several forms. To state them, some topological
conditions for f : AD → AR which imply the expansion of several pairs of cone fields
defined in Subsection 2.2 will be employed.

Let A∗ = A∗x×A∗y (∗ = D,R) be two Poincaré boxes, f : AD → AR be a holomorphic

injection and ι : AD∩f−1(AR) → AD be the inclusion map. We first define the following
notion which extends a similar one in [HO2] (cf. Definition 2.15 below).

Definition 2.12 (Crossed Mapping Condition). We say that f : AD → AR satis-
fies the crossed mapping condition (CMC) of degree d if

ρf ≡ (πR
x ◦ f, πD

y ◦ ι) : ι−1(AD) ∩ f−1(AR) −→ AR
x × AD

y

is proprer of degree d.

Let FD
h = {AD

x (y)}y∈AD
y

be the horizontal foliation of the domain AD with the leaves

AD
x (y) = AD

x × {y}, and let FR
v = {AR

y (x)}x∈AR
x

be the vertical foliation of the range

AR with the leaves AR
y (x) = {x} × AR

y .

Definition 2.13 (No–Tangency Condition). We say that f : AD → AR satisfies
the no–tangency condition (NTC) if f(FD

h ) and FR
v have no tangencies. Similarly we

say that f−1 : AR → AD satisfies the no–tangency condition if FD
h and f−1(FR

v ) have
no tangencies.

Notice that we do not exchange h and v of the foliations in the definition of the
non–tangency condition for f−1. Hence, f satisfies the (NTC) iff so does f−1.

Example. Given a polynomial diffeomorphism f , choose a sufficiently large R > 0.
Put DR = ∆x(0;R) × ∆y(0;R), V + = V +

R ≡ {(x, y) ∈ C2 : |x| ≥ R, |x| ≥ |y|} and
V − = V −

R ≡ {(x, y) ∈ C2 : |y| ≥ R, |y| ≥ |x|}. Then, f induces a homomorphism:

f∗ : H2(DR ∪ V +, V +) −→ H2(DR ∪ V +, V +)

on the two–dimensional relative homology group. Since H2(DR∪V +, V +) = Z, one can
define the (topological) degree of f to be f∗(1). It is easy to see that the topological
degree of f is equal to the algebraic degree d of f .

Consider f : DR → DR and ρf : DR ∩ f−1(DR) → DR. Given (x, y) ∈ DR, the set
f(ρ−1(x, y)) is equal to f(Dx(y))∩Dy(x), where we write Dx(y) = ∆x(0;R)×{y} and
Dy(x) = {x} × ∆y(0;R). Since f(V +) ⊂ V + and f−1(V −) ⊂ V − hold, the number
card (f(Dx(y))∩Dy(x)) can be counted by the number of times πx ◦ f(∂Dx(y)) rounds
around ∆x(0;R) by the Argument Principle. This is also equal to the topological degree
of f , so it follows that card (f(Dx(y)) ∩ Dy(x)) = d counted with multiplicity for all
(x, y) ∈ DR. Thus, f : DR → DR satisfies the (CMC). Notice that f : DR → DR satisfies
the (NTC) if and only if card (f(Dx(y)) ∩Dy(x)) = d counted without multiplicity for
all (x, y) ∈ DR. (End of Example.)

Now, the central claim for verifying hyperbolicity is stated as
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Theorem 2.14 (Equivalent Conditions). Assume that f : AD → AR satisfies the
crossed mapping condition of degree d. Then, the following are equivalent:

(i) f preserves some pair of horizontal cone fields,
(ii) f−1 preserves some pair of vertical cone fields,
(iii) f weakly expands the pair of the horizontal Poincaré cone fields,
(iv) f−1 weakly expands the pair of the vertical Poincaré cone fields,
(v) f satisfies the no–tangency condition,
(vi) f−1 satisfies the no–tangency condition.

Moreover, when AD = AR = B = Bx × By, where Bx and By are bounded open
topological disks in C, then any of the six conditions (i) to (vi) above is equivalent to
the following:

(vii) B ∩ f−1(B) has d connected components.

Proof. We will show “(v) ⇔ (vi)”, “(v) ⇔ (vii)”, “(iii) ⇒ (i) ⇒ (v) ⇒ (iii)” and “(iv)
⇒ (ii) ⇒ (vi) ⇒ (iv)”. However, the proofs for the last two cycles of implications
are logically identical (just interchange f and f−1, and the horizontal and the vertical
directions), so it is sufficient to prove that “(v) ⇔ (vi)”, “(iii) ⇒ (i) ⇒ (v) ⇒ (iii)” and
“(v) ⇔ (vii)”.

Step 1: (v) ⇔ (vi). This immediately follows from the fact that f is a diffeomorphism
and the definition of the no–tangency conditions for f and f−1.

Step 2: (iii) ⇒ (i). This is trivial since the horizontal Poincaré cone field is a horizontal
cone field.

Step 3: (i) ⇒ (v). If f does not satisfy the no–tangency condition, then there exists a
point p ∈ ι−1(AD) ∩ f−1(AR) such that any horizontal vector in TpC2 is mapped to a
vertical vector in Tf(p)C2. This contradicts to (i).

Step 4: (v) ⇒ (iii). For simplicity of the presentation, we drop D from πD
x and R from

πR
x , and write πD

x = πR
x = πx. Take a point p ∈ ι−1(AD)∩f−1(AR) and a vector v ∈ Ch

p .

Since Ch
p = Ĉh

p by Lemma 2.8, there is a degree one disk D through p tangent to v.

Let V ≡ ι−1(D) = D ∩ f−1(AR) and consider its universal covering τ : Ṽ → V . By
the (NTC), πx ◦ f |V does not have branch points. By the (CMC), πx ◦ f |V : V → AR

x

is proper of degree d. Thus, πx ◦ f |V : V → AR
x is a (unbranched) covering and so is

πx◦f ◦τ : Ṽ → AR
x . Since Ṽ is simply connected, there exists a lift f̃ ◦ τ : Ṽ → ÃR

x ×ÃR
y

of f ◦ τ : Ṽ → AR to the bidisk ÃR
x × ÃR

y . It then follows that the degree of the disk

f̃ ◦ τ(Ṽ ) becomes one. Thus, f ◦τ(Ṽ ) is a degree one disk in AR and tangent to Df(v).

This shows that Df(Ĉh
p ) ⊂ Ĉh

f(p) and thus Df(Ch
p ) ⊂ Ch

f(p) by Lemma 2.8.
Next we prove the weak expansion of the cone fields. Since ι : V → D is the

inclusion, there exists λ ≥ 1 such that |v|πx(V ) ≥ λ|v|πx(D) holds. On the other hand,
because πx ◦ f : V → AR

x is an isometry, we see that |v|πx(V ) = |D(πx ◦ f)(v)|πx◦f(V ) =
|Dπx(Df(v))|AR

x
= ‖Df(v)‖h. So one gets ‖Df(v)‖h ≥ λ|v|πx(D). Since this holds for
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any degree one disk D through p tangent to v, it follows that ‖Df(v)‖h ≥ λ|||v|||h. By
Lemma 2.9, we conclude ‖Df(v)‖h ≥ λ‖v‖h.
Step 5: (vii) ⇒ (v). First notice that f satisfies the (NTC) if and only if ρf is un-
branched.

Let Cρ be the branch locus of ρf and let B = Bx ×By. We claim that, if B ∩ f−1(B)
has precisely d connected components, then Cρ is empty. Let B(i) be the components of
B ∩ f−1(B). If there is 1 ≤ i0 ≤ d such that deg(ρf |B(i0)) > 1, then

deg ρf =
d∑
i=1

deg(ρf |B(i)) ≥ d+ 1 > d

which is a contradiction. Thus, it follows that deg(ρf |B(i)) = 1 for all 1 ≤ i ≤ d, i.e.
ρf |B(i) is a holomorphic injection. By a standard fact in several complex variables (see,
for example, page 31 of [G]), one sees that ρf |B(i) is biholomorphic. Consequently ρf |B(i)

can not have branch points.

Step 6: (v) ⇒ (vii). The claim follows from the fact that B is simply connected.

This finishes the proof of Theorem 2.14. Q.E.D.

In what follows we restate Theorem 2.14 in a more checkable way. To do this, given
two subsets V and W of C let us write ∂v(V ×W ) = ∂V ×W and ∂h(V ×W ) = V ×∂W .

For ∗ = D, R, let B∗
x be bounded open topological disks in C and let {H∗

x,j}N
∗
x

j=1 be a
family of finitely many mutually disjoint closed topological disks which are contained in
B∗
x. Put A∗x = B∗

x\
⋃

1≤j≤N∗x H
∗
x,j. Similarly we define B∗

y and A∗y, and put A∗ = A∗x×A∗y.
The projections π∗x and π∗y can be also defined.

Definition 2.15 (Boundary Compatibility Condition). We say that f : AD → AR

satisfies the boundary compatibility condition (BCC) if

(i) dist(πR
x ◦ f(∂vAD), AR

x ) > 0 and
(ii) dist(πD

y ◦ f−1(∂hAR), AD
y ) > 0

hold, where dist(·, ·) means the Euclidean distance between two sets in C.

Note that if f : AD → AR satisfies the boundary compatibility condition, then
dist (πD

x (∂vAD), πD
x (f−1(AR) ∩ AD)) > 0.

Let us define

C = Cf ≡
⋃

y∈AD
y

{
critical points of πR

x ◦ f : BD
x × {y} → AR

x

}
,

(here, BD
x can be replaced by AD

x ) and call it the dynamical critical set of f .

Definition 2.16 (Off–Criticality Condition). We say that f : AD → AR satisfies
the off–criticality condition (OCC) if

dist(πR
x ◦ f(Cf ), AR

x ) > 0

holds.
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A more useful form of Theorem 2.14 is expressed as

Corollary 2.17 (Hyperbolicity Criterion I). If f : AD → AR satisfies the (BCC)
and the (OCC), then f expands the pair of the horizontal Poincaré cone fields and
contracts the pair of the vertical Poincaré cone fields. In particular, if AD = AR = A
and f : A → A satisfies the (BCC) and the (OCC), then f is hyperbolic on

⋂
n∈Z f

n(A).

Proof. It is fairly easy to see that the (OCC) implies the (NTC) since BD
x ×{y} ⊃ AD

x (y).
The condition (i) in the (BCC) implies that the number of intersections f(AD

x (y)) ∩
({x} × C) counted with multiplicity is independent of the choice of (x, y) ∈ AR

x × AD
y

by the Argument Principle. Consider its subset f(AD
x (y))∩AR

y (x). If the cardinality of

this subset is not constant with respect to (x, y) ∈ AR
x ×AD

y , then by the continuity of

the intersections, there exists (x0, y0) ∈ AR
x × AD

y so that some point p ∈ f(AD
x (y0)) ∩

({x0} × C) touches ∂hAR. Then, it follows that f−1(p) ∈ AD and p ∈ f−1(∂hAR),
contradicting to the condition (ii) of the (BCC).

Moreover, if f : AD → AR satisfies the (BCC), then the distance between πx(∂vAD)
and πx(f

−1(AR) ∩ AD) is strictly positive. In particular, the inclusion ι : V → D in
the proof of Theorem 2.14 has the property that [πD

x ◦ ι(V )]ε ⊂ πD
x (D) for some ε > 0

which only depends on the distance above and does not depend on the choice of the
disk D, where [X]ε is the ε-neighborhood of X. If f satisfies the (OCC), it then follows
that there exists λ > 1 which does not depend on the vector v and the disk D so that
|v|πD

x (V ) ≥ λ|v|πD
x (D). Thus, there exists λ > 1 so that ‖Df(v)‖h ≥ λ‖v‖h holds.

The argument above works for f−1 : AR → AD as well so that f−1 expands the pair
of the vertical Poincaré cone fields. When AD = AR = A, we may conclude that f is
hyperbolic on

⋂
n∈Z f

n(A) by Lemma 2.2. Q.E.D.

The argument so far can be trivially extended to the setting

f :
⊔

1≤j≤MD

AD
j −→

⊔

1≤k≤MR

AR
k ,

where each A∗
i is an open set in C2 biholomorphic to a Poincaré box of the form A∗x×A∗y

(then, two natural projections for A∗
i corresponding to π∗x and π∗y and the notion of

horizontal/vertical Poincaré cone fields in A∗
i can be defined), and the domain and the

range are assumed to be the disjoint unions of {A∗
i }1≤i≤M∗ . Then, we have the following

Corollary 2.18 (Hyperbolicity Criterion II). If f : AD
j → AR

k satisfies the (BCC)
and the (OCC) for each 1 ≤ j ≤MD and each 1 ≤ k ≤MR, then f expands the pair of
the horizontal Poincaré cone fields and contracts the pair of the vertical Poincaré cone
fields on their unions. In particular, if AD

i = AR
i = Ai for all 1 ≤ i ≤M ≡MD = MR

and f : Aj → Ak satisfies the (BCC) and the (OCC) for all 1 ≤ j, k ≤ M , then f is
hyperbolic on

⋂
n∈Z f

n(
⊔

1≤i≤M Ai).

Confer Subsection 4.1, where we present a similar criterion for hyperbolicity when
Poincaré boxes may have overlaps.
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2.4. Proof of Theorem C. Thanks to Corollary 2.17, we can give explicit bounds
on parameter regions of hyperbolic maps in the complex Hénon family. Notice that
Hubbard and Oberste–Vorth [HO2], Fornæss and Sibony [FS] and Bedford and Smil-
lie [BSC3] did not give any specific bounds on the possible perturbation width which
keeps the hyperbolicity.

Corollary 2.19. The complex Hénon map:

fc,b : (x, y) 7−→ (x2 + c− by, x)

with |c| > 2(1 + |b|)2 is a hyperbolic horseshoe on J .

Proof. Let DR = ∆x(0;R)×∆y(0;R) where R = (|b|+1+
√

(|b|+ 1)2 + 4|c|)/2. Then,
as in Example above, f : DR → DR satisfies the (BCC). The (OCC) for f : DR → DR

is written as |c − by| > R for all |y| ≤ R. A sufficient condition for this is given by
|c|−|b|R > R. It is then not difficult to obtain the desired estimate from this inequality
by Corollary 2.17. Q.E.D.

Remark 2.20. Compare with [DN] where hyperbolic horseshoes in the real Hénon family
on R2 are considered by using the Euclidean metric. We notice that our estimate is
better than that in [DN]. This is an advantage of the use of the Poincaré metric.
Confer also Theorem D on much sharper estimates for the real hyperbolic horseshoe
locus of the Hénon family on R2.

Corollary 2.21. The complex Hénon map which satisfies either

(i) c = 0 and |b| < (
√

2− 1)/2 (an attractive fixed point case), or
(ii) c = −1 and |b| < 0.02 (an attractive cycle of period two case)

is hyperbolic on J .

We start with a general remark which will be used in the rest of this paper. Let
R > 0 as in the previous corollary and A = Ax × Ay where Ax = ∆x(0;R) \ ⋃N

i=1Hi

and Ay = ∆y(0, R). Suppose that f : A → A satisfies the (BCC), the (OCC) and

|b| < 1. Then, either f(Hi ×∆y(0;R)) ⊂ int(Hj×∆y(0;R)) or f(Hi ×∆y(0;R)) ⊂ V +

holds for all 1 ≤ i ≤ N . By the Kobayashi hyperbolicity of the bidisks Hi ×∆y(0;R),
it then follows that every orbit which eventually mapped into some Hi × ∆y(0;R)
converges to an attractive cycle or tends to infinity. Thus, we have K+ ⊂ V − ∪⋂∞
n=0 f

−n(A)∪ {attractive cycles}. Because K ⊂ DR and K is invariant, one gets K ⊂⋂
n∈Z f

n(A) ∪ {attractive cycles} and K is hyperbolic. In particular, J ⊂ ⋂
n∈Z f

n(A)
follows since we know that K = J ∪ {attractive cycles} when |b| < 1 and K is a
hyperbolic set.

Proof of Corollary 2.21. We first prove (i). Define the constant αc = 1 − √
1− 4c.

Note that the fixed points of the quadratic polynomial pc(x) = x2 + c are given by αc/2
and their multipliers are αc. A sufficient condition for pc(x) to have an attracting fixed
point is thus

(2.1) |αc| < 1.
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Now, let us examine the (BCC). Our task is to find (c, b) so that there is r > 0 with
the following property: if x satisfies |x− αc/2| < r, then

|πx ◦ fc,b(x, y)− αc/2| < r

for all |y| < R. Writing x = teiθ + αc/2 (0 ≤ t < r) the above condition becomes

|teiθ(teiθ + αc)− by| < r

for all |y| < R. A sufficient condition for this is given by r(r + |αc|) + |b|R < r. Let
us put g(s) = s(s + |αc|) + |b|R − s. Then, g(0) = |b|R > 0. So, g(s) = 0 has a real
positive root if and only if (2.1) and

(2.2) (|αc| − 1)2 − 4|b|R > 0

are satisfied. Conversely, let r > 0 be the largest root of s(s+ |αc|) + |b|R = s and let
H = {x ∈ ∆x(0;R) : |x − αc/2| ≤ r}. Define A = (∆x(0;R) \ H) × ∆y(0;R). Then,
the above argument shows that fc,b : A → A satisfies the (BCC).

We remark that the hole H × ∆y(0;R) contains the critical set C because 0 ∈ H.
So the (BCC) implies the (OCC). The Hénon map which satisfies the two conditions
(2.1) and (2.2) above is hyperbolic on

⋂
n∈Z f

n
c,b(A). By putting c = 0, we obtain

|b| < (
√

2− 1)/2 ≈ 0.2071. This finishes the proof of (i).
Next we prove (ii). The polynomial p−1(x) = x2−1 has two super–attractive periodic

points {0,−1} of period 2. Let r1 > 0 and r2 > 0 be small (which we will determine
later), and put H1 ≡ {x ∈ ∆x(0;R) : |x− 0| ≤ r1}, H2 ≡ {x ∈ ∆x(0;R) : |x− (−1)| ≤
r2}, Ax = ∆x(0;R)\ (H1∪H2), Ay = ∆y(0;R) and A = Ax×Ay. A sufficient condition
for f−1,b : A → A to satisfy the (BCC) is that |πx ◦ f−1,b(x, y) − (−1)| < r2 for all
(x, y) ∈ H1 ×∆y(0;R) and |πx ◦ f−1,b(x, y)− 0| < r1 for all (x, y) ∈ H2 ×∆y(0;R). A
sufficient condition for these can be witten as

r2
1 + |b|R < r2 and r2(r2 + 2) + |b|R < r1.

To get a better bound for b, we want to find r1 > 0 and r2 > 0 so that both r2− r2
1 and

r1 − r2(r2 + 2) become as large as possible. Thus, it is necessary to estimate

r ≡ sup
r1>0, r2>0

min{r2 − r2
1, r1 − r2(r2 + 2)},

and an easy calculation shows that r > 0.04. By solving |b|R < 0.04, we obtain
|b| < 0.02. This is a sufficient condition for the (BCC).

We again remark that H1 ×∆y(0;R) contains the critical set C because 0 ∈ H1. So

the (BCC) implies that πx ◦ f−1,b(C) ⊂ intH2, and thus the (OCC) is automatically
satisfied when |b| < 0.02. This proves (ii). Q.E.D.

Remark 2.22. According to numerical experiments for the complex Hénon maps with
real parameters performed by Oliva (see Section 4.1 of [Ol]), the Hénon map with (c, b) =
(−1, 0.13) seems not conjugate on the Julia set to the projective limit of p−1.

By using Corollary 2.17, we can recover the following assertion which was originally
obtained in [HO2, FS] for the quadratic polynomial case (see [BSC3] for the general
degree case).
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Corollary 2.23. For every expanding polynomial p(x) of one variable, the generalized
complex Hénon map fp,b is hyperbolic for b sufficiently close to zero.

Proof. Recall that a polynomial map p(x) in one variable is expanding on its Julia set
Jp if and only if every critical point of p(x) converges either to an attractive cycle or to
infinity.

Define Bx = {x ∈ C : G(x) < min1≤i≤N G(ci)}, where G(x) is the Green function
of p(x) and {ci}Ni=1 are the critical points of p(x) which tend to infinity. If there is no
critical point of p(x) which tend to infinity, we simply put Bx = {x ∈ C : G(x) < 1}.
Let Hx be the points in C whose Poincaré distance in the Fatou set of p(x) to the
set of attracting periodic points including infinity is equal to or less than one. Define
A = (Bx\Hx)×∆y(0;R), where R > 0 is sufficiently large. Then, fp,b : A → A satisfies
the (BCC) and the (OCC) when b sufficiently close to zero. In fact, dist(p(∂Bx), Bx) ≥ δ
and dist(p(Hx), ∂Hx) ≥ δ for some δ > 0 with respect to the Euclidean distance in C
by the construction of Bx and Hx. Thus, we have dist(p(∂Ax), Ax) ≥ δ and the (BCC)
follows when |b| is sufficiently close to zero.

The critical set C of fp,b coincides with
⋃N
i=1{ci}×∆y(0;R). Thus, when b is close to

zero, πx◦f(C) is contained in the (|b|R)-neighborhood of
⋃N
i=1{p(ci)} which is contained

in either Hx or the complement of Bx. So, the (OCC) follows. By applying Corollary
2.17, we get the conclusion. This finishes the proof. Q.E.D.

3. Fusion of One–Dimensional Polynomials

This section is dedicated to the proof of Theorem B. In Subsection 3.1, a detailed
topological model of fusion is analyzed. This model will be realized as an actual gener-
alized Hénon map by constructing a polynomial p0(x) in one variable whose Julia set
has special geometric properties (see Corollary 3.4) in the second subsection. These
geometric properties will be essential for proving hyperbolicity of the Hénon map in
Subsection 3.3 and in 3.4 we analyze the topology of the Julia set of the generalized
Hénon map to finish the proof.

3.1. Model study of fusion. In this subsection we only consider cubic polynomials
for simplicity. Although the degree of the actual polynomial appeared in Theorem B
may be higher than three, the most relevant point of our construction can be described
in the cubic case.

Think of two cubics p1(x) and p2(x) so that p2(x) = p1(x) + δ for some δ > 0,
both have negative leading coefficients and have two real critical points c1 > c2. Let
∆x(0;R) = {|x| < R} and ∆y(0;R) = {|y| < R}. Take R > 0 sufficiently large so that
∂∆x(0;R) ×∆y(0;R) ⊂ intV + and ∆x(0;R) × ∂∆y(0;R) ⊂ intV − hold. Assume that
pi satisfies p1(c2) < −R, p2(c2) < −R and p2(c1) > R so that the orbits |pk1(c2)|, |pk2(c1)|
and |pk2(c2)| go to infinity as k → ∞. Assume also that c1 is a super–attractive fixed
point for p1. Define By,1 to be the connected component of p−1

1 (∆y(0;R)) containing
c1 and By,2 to be the other component. Let H be a closed neighborhood of c1 which
is contained in the attractive basin of c1. Put A1 = (∆x(0;R) \ H) × By,1 and A2 =
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∆x(0;R)×By,2. Now, we assume that there exists a generalized Hénon map f with

(3.1) f |Ai(x, y) ≈ (pi(x), x)

for i = 1, 2.

A

A

Af( )0

Af( )1

0

1

f( ){ }c ×By, 1

f( ){ }c ×By, 2

1

1

f

f( ){ }c ×By, 22

f( ){ }c ×By, 12

×By, 1H

Figure 2. A model for fusion of two polynomials.

(a) Consider f : A1 → A1 ∪ A2. Then, the (BCC) would hold since

f(H ×By,1) ≈ p1(H)×H ⊂ int(H ×By,1)

by (3.1) and R > 0 is large (see Figure 2). Also the (OCC) would hold since

f({c1} ×By,1) ≈ {p1(c1)} × {c1} ⊂ int(H ×By,1)

and
f({c2} ×By,1) ≈ {p1(c2)} × {c2} ⊂ intV +

again by (3.1). Thus we may conclude that f : A1 → A1 ∪A2 satisfies the (OCC) and
the (BCC) if the argument above is verified rigorously.

(b) Consider f : A2 → A1 ∪A2. Since A2 does not have any holes like H and R > 0
is large, the (BCC) would hold for f on A2. Also the (OCC) would hold since

f({c1} ×By,2) ≈ {p2(c1)} × {c1} ⊂ intV +

and
f({c2} ×By,2) ≈ {p2(c2)} × {c2} ⊂ intV +
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(again, see Figure 2). Thus we may conclude that f : A2 → A1∪A2 satisfies the (OCC)
and the (BCC) if the argument above is justified.

Combining these two considerations, we may expect that f : A1 ∪ A2 → A1 ∪ A2 is
hyperbolic on

⋂
n∈Z f

n(A1 ∪ A2) by Corollary 2.18.
In the successive subsections we will justify the argument above. The problem thus

is to find a nice polynomial p in one variable (not necessarily of degree three), b ∈ C
and domains Ai so that the argument above works. In fact, we will show the following
more detailed version of Theorem B:

Theorem 3.1 (Detailed Theorem B). For any 0 < δ < 1/2 there exists an expanding
polynomial p0(x) with the following property: take any b0 ∈ C with δ < |b0| < 1− δ and
take any continuous one–parameter family {fp0,bµ}µ∈[0,1] connecting a small perturbation
fp0,b1 of p0(x) and fp0,b0, then (i) fp0,b0 is hyperbolic, and (ii) fp0,bµ is not hyperbolic at
some µ0 ∈ (0, 1).

Apparently this implies Theorem B in the Introduction. The proof of the theorem
above occupies the rest of this section.

α
βt

ε−1+ 1 ε

−

−

Figure 3. The graph of the polynomial pc,t,l(x).
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3.2. A one–dimensional map. In this subsection we construct a polynomial in one
variable p0 with its Julia set of “good shape”.

For c < 0, t > 1 and an even l ∈ N, let us put

p(x) = pc,t,l(x) ≡ c(x+ t)xl.

Evidently p(x) is bimodal on R and 0 is its superattractive fixed point. We let γ be
the other critical point. Also, p(x) has a repelling cycle of period two {α, β} with
α < −t < 1 < β. Parameter dependence of the behavior of p(x) as a real dynamics is
described in the next lemma.

Lemma 3.2. For p = pc,t,l : R→ R, the following hold:

(i) for any ε > 0 small, we have p′(x) → 0 uniformly on F = (−1 + ε, 1 − ε) as
l→ +∞, i.e. p(x) becomes flat on F when l goes to infinity,

(ii) length(F )/(β−α) → 0 as t→ +∞, i.e. the flat part F becomes relatively small
in [α, β] when t goes to infinity,

(iii) |p′(x)| on p−1([α, β]) \ F tends to +∞ as c → −∞ (in particular, β ↓ 1 and
α ↑ −t).

The proof of this lemma is easy and thus omitted (see Figure 3).
Define R0 ≡ t + 1/(|c|tl−1) and put |p|(x) ≡ |p(x)|. The behavior of p as a complex

dynamics is described in the next lemma.

{ | }| =1z

1

2

1 2∪( ) /

−t

p(0)+

p(0)+ Bb

Bb

B B H

Figure 4. Geometry of the Julia set of pc,t,l(x).
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Lemma 3.3. For p = pc,t,l : C→ C, the following hold:

(i) all critical points of p(z) are 0 and γ (in particular, there are no critical points
outside R) and p(z) is quadratic near z = γ,

(ii) |pk(z)| ≤ |p|k(|z|) for all z ∈ C,
(iii) if |z| > R0, then |pk(z)| ≥ λk|z| for some λ > 1.

Proof. The first statement (i) is trivial. The second claim (ii) follows from

|p(z)| = |czl+1 + ctzl| ≤ |c||z|l+1 + |c||t||z|l = |c|(|z|+ t)|z|l = |p|(|z|).
This inductively implies

|pk(z)| = |pk−1(p(z))| ≤ |p|k−1(|p(z)|) ≤ |p|k−1(|p|(|z|)) = |p|k(|z|)
for z ∈ C because |p| is monotone increasing on R+. If |z| > R0, then we have
|c|tl−1(|z| − t) > 1. Since |z| ≥ λ|t| for some λ > 1, it follows that

|c(z + t)zl| ≥ |c||z|l+1 − |c||t||z|l ≥ λl−1|c|tl−1(|z| − t)|z| ≥ λ|z|.
This proves (iii) and thus we are done. Q.E.D.

We define ∆(0;R0) = {z ∈ C : |z| ≤ R0} with R0 > 0 specified as above. The
following corollary describes the shape of the Julia set of p.

Corollary 3.4 (Geometry of Jp). Let Jp ⊂ C be the Julia set of p = pc,t,l. Then, the
following hold:

(i) for any ε > 0, we have Jp ⊂ p−1(∆(0;R0)) \ H when l is large, where H ≡
∆(0; 1− ε),

(ii) p−1(∆(0;R0)) has two connected components B1 3 0 and B2 3 −t,
(iii) B1 is close to the unit disk {|z| ≤ 1} and B2 is close to the one-point set {−t}

in the Hausdorff topology when c < 0 is small and l is large,
(iv) the distance between B1 and B2 is controlled by t, i.e. dist(B1, B2) ≈ t−1 when

c < 0 is small (see Figure 4).

Proof. (i) The flat part F extends to H in the complex plane as a part of the attractive
basin of 0 thanks to the estimate in (ii) of Lemma 3.3. This and (i) of Lemma 3.2 imply
the conclusion. (ii) p has only one quadratic critical value outside ∆(0;R). (iii) Take any
κ with t−1 > κ > 0 and any z with |z| = 1+κ. Then, we see that |p(z)| = |c||z+t|(1+κ)l

is large when |c| is large. This implies that B1 is contained in {|z| ≤ 1 + κ}. But B1

contains H, so B1 is close to {|z| ≤ 1}. Since |p′(z)| = |c||z|l−1|(l+1)z+lt| ≈ |c||z|l−1|lz|
is large near z = −t when |c| is large, B2 is close to the one point set {−t}. The claim
(iv) then follows from (iii). Q.E.D.

3.3. Intersection of Julia sets. Now, we take any 0 < δ < 1/2. Our next task is to
find p0 = pc,t,l so that for any b0 ∈ C with δ < |b0| < 1 − δ, fp0,b0 satisfies the (BCC)
and the (OCC) under a suitable choice of domains like A1 and A2 as in Subsection 3.1.

We put Hx ≡ H and Bx,i = By,i ≡ Bi for i = 1, 2, where Bi and H are given in
Corollary 3.4. Let us define bidisks as follows: B1 ≡ Bx,1×By,1, B2 ≡ ∆x(0;R0)×By,2

and B3 ≡ Bx,2 ×By,1. In the place of Bi, we will also consider A1 ≡ (Bx,1 \Hx)×By,1,
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A2 ≡ B2 and A3 ≡ B3. Given X ⊂ C and λ ∈ C we write λX = {λx : x ∈ X} and
X + λ = {x+ λ : x ∈ X}. Let [X]δ denote the δ-neighborhood of X.

Lemma 3.5. Take p = pc,t,l where c < 0 is small enough and l is large enough. Then,
for any b ∈ C with 0 < |b| < 1, the map fp,b : B1 ∪ B2 ∪ B3 → B1 ∪ B2 ∪ B3 satisfies the
(BCC).

Proof. As we saw in the proof of the previous corollary, we know that |p′(y)| ≈
|c||y|l−1|ly| becomes large near By,2. So, if By,2 is taken slightly larger, one gets
p(∂By,2) ∩ [|b|∆y(0;R0)]R0 = ∅. Similarly, we get p(∂By,1) ∩ [|b|∆y(0;R0)]R0 = ∅ by
taking By,1 slightly larger if necessarily. These imply that for any x ∈ ∆x(0;R0) we
have (p(∂By,i) − x)/b ∩ ∆y(0;R0) = ∅ for i = 1, 2 in the y-plane. Now let us recall
the formula of the inverse generalized Hénon map f−1 : (x, y) 7→ (y, (p(y) − x)/b). It
follows that dist(πy ◦ f−1(∂hBi),∆y(0;R)) > 0 for i = 1, 2, 3.

By the same reasoning, we see that p(Bx,i) ⊃ [∆x(0;R0)]|b|R0 for i = 1, 3 in the
x-plane. It then follows that dist(πx ◦ f(∂vBi),∆x(0;R)) > 0 for i = 1, 3. It is
not difficult to see that the vertical boundary of B2 also has the same property. The
conclusion follows. Q.E.D.

Corollary 3.6. The sets K and J of fp,b as in the previous lemma are contained in
B1 ∪ B2 ∪ B3 for all 0 < |b| < 1.

Proof. Apparently the proof of the previous Lemma 3.5 shows that K is contained in
(Bx,1 ∪Bx,2)× (By,1 ∪By,2). Q.E.D.

Now we check the conditions for hyperbolicity, i.e. the (BCC) and the (OCC) of the
map fp,b : A1 ∪ A2 ∪ A3 → A1 ∪ A2 ∪ A3 for δ < |b| < 1 − δ (notice that Bi is now
replaced by Ai). Let d1 be the smallest r so that ∆(0; r) ⊃ B1, d2 be the diameter of
B2 and h be the smallest r so that ∆(0; r) ⊃ p(H).

(a) Consider fp,b : A2 → A1 ∪ A2 ∪ A3. The (BCC) is confirmed by the proof of
Lemma 3.5. Let γ be the unique critical point of p which is different from 0. Since we
took c < 0 so small that p(γ) < 0 becomes very small, the only critical set which will
concern with the (OCC) is {0} × By,2 ⊂ A2. Thus, a sufficient condition for fp,b to
satisfy the (OCC) is given by

(3.2) dist(Bx,1 ∪B2,x, p(0) + bBy,2) > 0

in the x-plane. Note that if |b| is too small, then Bx,1∩ (bBy,2) 6= ∅ and fp,b is conjugate
to the projective limit of p. A sufficient condition for b ∈ C \ {0} to satisfy (3.2) is

(3.3) |α||b| > β + 2d2|b|.
We know by Corollary 2.18 that fp,b : A2 → A1 ∪A2 ∪A3 is expanding with respect to
the pair of the two horizontal Poincaré cone fields when (3.3) holds.

(b) Consider fp,b : A3 → A2. The (BCC) is confirmed by the proof of Lemma
3.5. Since |p′(x)| does not vanish on Bx,2, we see that C = ∅. Thus, the (OCC) is
automatically satisfied. By Corollary 2.18 above, we may conclude that fp,b : A3 → A2

is expanding with respect to the pair of the two horizontal Poincaré cone fields.
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(c) Consider fp,b : A1 → A1 ∪ A3. By the proof of Lemma 3.5, we know that fp,b :
B1 → B1 ∪ B3 satisfies the (BCC). Thus, a sufficient condition for fp,b : A1 → A1 ∪ A3

to satisfy the (BCC) is given by

(3.4) [p(Hx)]d1|b| ⊂ intHx.

To fulfill this condition (3.4), it is sufficient to choose b ∈ C \ {0} so that

(3.5) h+ d1|b| < 1− ε.

Since the only critical point of p in Bx,1 is 0, a sufficient condition for fp,b to satisfy
the (OCC) is

(3.6) p(0) + bBy,1 ⊂ intHx

in the x-plane. A sufficient condition for (3.6) is given by

(3.7) d1|b| < 1− ε.

By Corollary 2.18, we conclude that fp,b : A1 → A1 ∪ A3 is expanding with respect to
the pair of the two horizontal Poincaré cone fields when (3.5) and (3.7) are satisfied.

Combining these three cases, we know that fp,b : A1 ∪ A2 ∪ A3 → A1 ∪ A2 ∪ A3 is
hyperbolic on

⋂
n∈Z f

n
p,b(A1 ∪ A2 ∪ A3) when (3.3), (3.5) and (3.7) hold. It is easy to

see that |α| ↓ t, β ↓ 1, d1 ↓ 1, d2 ↓ 0, h ↓ 0 and ε ↓ 0 when l →∞ and |c| large. So, we
conclude that for any 0 < δ < 1/2, there exists p0 = pc,t,l with |c| and l being large and
t > 1 so that for any b0 ∈ C with δ < |b0| < 1 − δ, the generalized Hénon map fp0,b0
satisfies all the conditions (3.3), (3.5) and (3.7).

Recall that the (BCC) in (c) means fp,b(Hx ×By,1) ⊂ int(Hx × By,1) so it follows
that J ∩ (Hx × By,1) = ∅ by the Kobayashi hyperbolicity of Hx × By,1. Thus, we have
J ⊂ A1 ∪A2 ∪A3 and there is a unique attractive fixed point in Hx×By,1. This shows
the hyperbolicity of f = fp0,b0 on Jf , where p0 and b0 chosen as above.

Remark 3.7. A crucial point of the proof of hyperbolicity is to see how the two fattened
Julia sets intersect with each other. More precisely, Let J1 be the slice of A1 ∪A2 ∪A3

by {y = 0} and J2 be the slice of A1 ∪ A2 ∪ A3 by {x = 0}. Roughly speaking, we
argued that, since there is no intersection between J1 and (−b)J2 (which followed from
the special geometric properties described in Corollary 3.4), the (OCC) is satisfied. This
consideration on “intersection geometry” of two fattened Julia sets will be also important
in the proof of Theorem A in Section 4. Compare it to a work of Buzzard [Bu1] where
he considered the stable intersection of two Julia sets without the notion of “thickness”
of Cantor sets to discuss Newhouse phenomena in two complex variables [Bu2].

3.4. Proof of Theorem B. Take any continuous one–parameter family {fp0,bµ}µ∈[0,1]

connecting a small perturbation fp0,b1 of p0(x) and the the hyperbolic generalized Hénon
map fp0,b0 with δ < |b0| < 1 − δ we have constructed so far. To finish the proof of
Theorem B, we prove that fp0,bµ is not hyperbolic at some µ0 ∈ (0, 1). To do this, the
topology of the Julia sets of maps in this family will be analyzed.

Here we need the following terminology. A compact invariant set S of a homeomor-
phism g is called a solenoid of degree k if g|S is topologically conjugate to the projective
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limit of σ : S1 → S1, σ(θ) = kθ. In this case, we say g|S a solenoidal map of degree k.
Now, consider a map f : AD

x × AD
y → AR

x × AR
y between two Poincaré boxes.

Definition 3.8 (Solenoidal and Horseshoe Type). Assume that AD
y and AR

y are

topological disks. Assume moreover that f : AD
x × AD

y → AR
x × AR

y satisfies the (BCC)

and the (OCC). Then, f is said to be of solenoidal type if AR
x is a topological annulus

and πR
x ◦ f(C) is contained in the unique bounded component of C \ AR

x . Similarly, f
is said to be of horseshoe type if AR

x is a topological disk and πR
x ◦ f(C) is contained in

C \ AR
x . The degree of a such map can be defined since it satisfies the (CMC).

An example of a map of solenoidal type is a small perturbation of z 7→ z2 + c
with |c| small, and an example of a map of horseshoe type is a small perturbation of
z 7→ z2 + c with |c| large. By following the argument in [HO2], it can be shown that,
when f : A → A is a map of solenoidal type of degree k, then f |Ω is topologically
conjugate to a solenoidal map of the same degree, where Ω =

⋂
n∈Z f

n(A). Similarly,
when f is a map of horseshoe type of degree k, then f |Ω is topologically conjugate
to the full shift with k symbols. (see also [IS] for a complete proof and more general
treatment of these facts).

Consider now the continuous one–parameter family {fp0,bµ}µ∈[0,1] and assume that
fp0,bµ is hyperbolic for all µ ∈ (0, 1). We will conclude a contradiction from this. Let
us write f ≡ fp0,b0 and g ≡ fp0,b1 .

For each ∗ = f, g, let us put A∗
1 ≡ A1, A∗

2 ≡ B2 and A∗
3 ≡ B3. Then, the following

decomposition for f :

Jf =
⋂

n∈Z
fn(Af

1 t Af
2 t Af

3) =
⊔

ε∈{1,2,3}Z
Jfε ,

is obtained, where

Jfε ≡ · · · ∩ f 2(Af
ε−2

) ∩ f(Af
ε−1

) ∩ Af
ε0
∩ f−1(Af

ε1
) ∩ f−2(Af

ε2
) ∩ · · · .

Note that x ∈ Jfε iff fn(x) ∈ Aεn for all n ∈ Z. Similarly, the decomposition for g:

Jg =
⋂

n∈Z
gn(Ag

1 t Ag
2 t Ag

3) =
⊔

ε∈{1,2,3}Z
Jgε ,

is obtained, where

Jgε ≡ · · · ∩ g2(Ag
ε−2

) ∩ g(Ag
ε−1

) ∩ Ag
ε0
∩ g−1(Ag

ε1
) ∩ g−2(Ag

ε2
) ∩ · · · .

Lemma 3.9. For both ∗ = f, g we have the following:

(i) if ε = · · · 111.111 · · · , then J∗ε becomes an invariant solenoid S∗ of degree l,
(ii) if εi 6= 1 for only finitely many and at least one i ≥ 0, then each connected

component of J∗ε is either a topological circle or an empty set,
(iii) if εi 6= 1 for infinitely many i ≥ 0, then each connected component of J∗ε is

either a point or an empty set.
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Proof. First note that g : Ag
1 → Ag

1 is of solenoidal type of degree l (and same for f).
Thus, the claim of (i) follows.

For (ii), we may assume that εi = 1 for all i ≥ 0 and ε−1 6= 1. It is then easy to see
that · · · ∩ g−2(Ag

ε2
) ∩ g−1(Ag

ε1
) ∩Ag

ε0
is homeomorphic to S1 ×By,1, where each fiber is

a holomorphic disk of degree one over By,1. Since ε−1 6= 1, g : Aε−2 → Aε−1 is either of
degree zero, one or of horseshoe type. Thus, we see that Ag

ε−1
∩g(Ag

ε−2
)∩g2(Ag

ε−3
)∩· · ·

consists of holomorphic disks of degree one over πx(Ag
ε−1

) or an empty set. It then

follows that each connected component of Jgε = · · · ∩ g−2(Ag
ε2

) ∩ g−1(Ag
ε1

) ∩ Ag
ε0
∩

g(Ag
ε−1
∩ g(Ag

ε−2
)∩ g2(Ag

ε−3
)∩ · · · ) becomes either a topological circle or an empty set.

The argument for the case ∗ = f is similar.
For (iii), we first see that each connected component of · · ·∩g−2(Ag

ε2
)∩g−1(Ag

ε1
)∩Ag

ε0
is homeomorphic to either a holomorphic disk of degree one over By,1 or an empty set.
Since Ag

ε−1
∩ g(Ag

ε−2
) ∩ g2(Ag

ε−3
) ∩ · · · consists of degree one disks over πx(Ag

ε−1
), the

conclusion follows. The argument for the case ∗ = f is similar, and thus we are done.
Q.E.D.
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Figure 5. The Julia sets Jfε and Jgε for ε = · · · 222.111 · · · .
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For the proof of Theorem 3.1, we need the following more specific fact.

Corollary 3.10. We have

(i) the set Jfε consists of exactly l − 1 circles for ε = · · · 222.111 · · · ,
(ii) the set Jgε consists of exactly one circle for ε = · · · 222.111 · · · .

Proof. For (i), recall first that W s
loc(Sf ) = · · ·∩f−2(Af

1)∩f−1(Af
1)∩Af

1 is homeomorphic
to S1 × By,1, where each fiber is a holomorphic disk of degree one over By,1. On the

other hand, W u
loc(sf ) = Af

2 ∩ f(Af
2) ∩ f 2(Af

2) ∩ · · · is a holomorphic disk of degree one

over ∆x(0;R). Since f : Af
2 → Af

1 is a degree l− 1 map of horseshoe type, we see that
Jfε = W s

loc(Sf ) ∩ f(W u
loc(sf )) consists of exactly l − 1 topological circles.

For (ii), we know that W s
loc(Sg) = · · · ∩ g−2(Ag

1) ∩ g−1(Ag
1) ∩ Ag

1 is homeomorphic
to S1 × By,1, where each fiber is a degree one disk over By,1. On the other hand,
W u

loc(sg) = Ag
2∩ g(Ag

2)∩ g2(Ag
2)∩ · · · is a holomorphic disk of degree one over ∆x(0;R).

The only difference from (i) is that g : Ag
2 → Ag

1 is a degree l − 1 map of solenoidal
type. Thus, we see that Jgε = W s

loc(Sg) ∩ g(W u
loc(sg)) consists of one topological circle

(see Figure 5). Q.E.D.

Remark 3.11. We have W u(s∗) ∩ S∗ = ∅.
End of the proof of Theorem B. Since we are assuming that fp0,bµ is hyperbolic for all
µ ∈ [0, 1], every point moves continuously with respect to µ. Corollary 3.6 says that
the set of points in Bi ∩K for fp0,bµ always stay in Bi ∩K when µ ∈ [0, 1] moves from
0 to 1. Thus, the set of points in K with same itinerary for f should be homeomorphic
to the same set for g. However, this is impossible by Corollary 3.10. It follows that
fp0,bµ cannot be hyperbolic for all µ ∈ [0, 1]. This completes the proof of Theorem 3.1,
thus of Theorem B. Q.E.D.

4. Constructing Non–Perturbative Dynamics

In this section, we prove Theorem A. To achieve this, it is necessary to generalize
Corollary 2.18 to the case where several Poincaré boxes have overlaps. Subsection
4.1 is dedicated to discuss a general treatment of this overlapping problem. In 4.2,
we introduce a new coordinate system called the projective coordinates which will fit
better than the Euclidean ones to our purpose. The next subsection explains the basic
idea of interval arithmetic as well as how this technique is used to prove some results
in complex analysis. In Subsection 4.4, we construct a topological model for the cubic
Hénon map under consideration in the same spirit (the fusion) as Theorem B, and verify
its hyperbolicity by integrating the tools explained in the previous subsections. In the
last subsection, it is shown that the map has essentially two–dimensional dynamics to
finish the proof of Theorem A. In the same subsection, a combinatorial description of
the Julia set of the cubic Hénon map is given in Theorem 4.23.

4.1. Gluing Poincaré boxes. Let {Ai}Ni=0 be a family of Poincaré boxes in C2 each
of which is biholomorphic to a product set of the form Aix × Aiy with its horizontal
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Poincaré cone field {CAip }p∈Ai in Ai. Note, however, that here we are not assuming

Ai are disjoint, so that at some point p ∈ A ≡ ⋃N
i=0Ai there may be more than one

horizontal Poincaré cones. Thus, a question is how to define a new cone on the overlaps
of the Poincaré cones. Let us put ΩA ≡

⋂
n∈Z f

n(A).

Definition 4.1 (Gluing of Poincaré Boxes). For each point p ∈ A, let us write
I(p) ≡ {i : p ∈ Ai}. We shall define a new cone field {C∩p }p∈A by

C∩p ≡
⋂

i∈I(p)
CAip

for p ∈ A and a metric ‖ · ‖∩ in it by

‖v‖∩ ≡ min{‖v‖Ai : i ∈ I(p)}
for v ∈ C∩p .

Remark 4.2. A priori we do not know if C∩p is a non–empty cone for p ∈ A with
card(I(p)) ≥ 2.

Given a subset I ⊂ {0, 1, · · · , N}, let us write

〈I〉 ≡
(⋂
i∈I
Ai

)
\

( ⋃
j∈Ic

Aj

)
= {p ∈ A : I(p) = I}.

In what follows, we only consider the case card(I(p)) ≤ 2 for all p ∈ A. One then
sees, for example, 〈i〉 = Ai \

⋃
j 6=iAj and 〈i, j〉 = Ai ∩ Aj. When there exists a point

p ∈ 〈I1〉∩ΩA so that f(p) ∈ 〈I2〉, we write 〈I1〉 → 〈I2〉 and call it an allowed transition.
We also write Ai ⇒ Aj if f : Ai → Aj satisfies the (BCC) and the (OCC).

A crucial step in the proof of Theorem A is to extend Corollary 2.18 as follows:

Proposition 4.3 (Gluing Lemma). Let p ∈ A ∩ f−1(A). If for any i ∈ I(f(p))
there exists j = j(i) ∈ I(p) such that Aj ⇒ Ai, then we have Df(C∩p ) ⊂ C∩f(p) and

‖Df(v)‖∩ ≥ λ‖v‖∩.
Proof. Since Aj ⇒ Ai, we have Df(C

Aj
p ) ⊂ CAif(p) and ‖Df(v)‖Ai ≥ λ‖v‖Aj as in

Corollary 2.18. By the very definitions of C∩p and ‖v‖∩, it follows that

C∩f(p) =
⋂

i∈I(f(p))

CAif(p)

⊃
⋂

i∈I(f(p))

Df(C
Aj(i)
p )

⊃
⋂

j∈I(p)
Df(CAjp )

= Df(C∩p ),
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and

‖Df(v)‖∩ = min{‖Df(v)‖Ai : i ∈ I(f(p))}
≥ min{λ‖v‖Aj(i) : i ∈ I(f(p))}
≥ λmin{‖v‖Aj : j ∈ I(p)}
= λ‖v‖∩.

This proves the claim. Q.E.D.

The following fact has been already shown in Theorem C (iii). However, we here
present another proof of it by using the gluing technique above.

Corollary 4.4. The quadratic Hénon map fc,b(x, y) = (x2 + c− by, x) is hyperbolic on
K for c = −1 and |b| sufficiently close to zero.

B

B

H

H
0

0

1

1

−1 0

Figure 6. Disks for p(x) = x2 − 1.

Proof. Let p(x) = x2 − 1. Bedford and Smillie observed the following fact (private
communication): there exist two topological disks B0 3 −1 = p(0) and B1 3 0 in C such
that dist(p(∂B0), B1) ≥ δ > 0, dist(p(∂B1), B0) ≥ δ > 0, and B0 ∪B1 ⊃ Kp (see Figure
6). Moreover, p : p−1(B1)∩B0 → B1 is proper of degree one and p : p−1(B0)∩B1 → B0

is proper of degree two.
Let H0 3 p(0) and H1 3 0 be the disjoint closed disks as in the proof of Corollary

2.21 and define Ai = (Bi \Hi)×∆y(0;R). Then, h ≡ f−1,b satisfies A0 ⇒ A1, A1 ⇒ A1



30 YUTAKA ISHII

(these are of degree one), and A1 ⇒ A0 (this is solenoidal type of degree two) when |b|
is sufficiently close to zero. All allowed transitions for h are 〈0〉 → 〈1〉, 〈0, 1〉 → 〈0〉,
〈0, 1〉 → 〈0, 1〉, 〈0, 1〉 → 〈1〉, 〈1〉 → 〈0〉, 〈1〉 → 〈0, 1〉 and 〈1〉 → 〈1〉. It is then
easy to see that the assumption of Proposition 4.3 is satisfied. Thus, the cone field
({C∩p }p∈A∩h−1(A), ‖ · ‖∩) is expanding. Since any horizontal Poincaré cone CAip contains
the horizontal direction, we know that C∩p is non–empty everywhere. This proves the
hyperbolicity of h. Q.E.D.

4.2. Interval arithmetic. A computer does not understand all real numbers. Let F∗
be the set of real numbers which can be represented by binary floating point numbers
no longer than a certain length of digits and put F ≡ F∗ ∪ {+∞,−∞}. Denote by I
the set of all closed intervals with their end points in F. Given x ∈ R, let ↓x↓ be the
largest number in F which is less than x and let ↑x↑ be the smallest number in F which
is greater than x (when such numbers do not exist in F∗, we assign −∞ and +∞ in F∗
respectively). It then follows that

x ∈ [↓x↓, ↑x↑] ∈ I.

Interval arithmetic is a set of operations to output an interval in I from given two
intervals in I. It contains at least four basic operations: addition, differentiation,
multiplication and division. Specifically, the addition of given two intervals I1 = [a, b],
I2 = [c, d] ∈ I is defined by

I1 + I2 ≡ [↓a+ c↓, ↑b+ d↑].
It then follows that {x+ y ∈ R : x ∈ I1, y ∈ I2} ⊂ I1 + I2 rigorously. The other three
operations can be defined similarly. A point x ∈ R is represented as the small interval
[↓x↓, ↑x↑] ∈ I. We also write [a, b] < [c, d] when b < c.

In this article interval arithmetic will be employed to prove rigorously the (BCC)
and the (OCC) for a given polynomial diffeomorphism of C2. It should be easy to
imagine how this technique is used for checking the (BCC); we simply cover the vertical
boundary of AD by small real four–dimensional cubes (i.e. product sets of four small
intervals) in C2 and see how they are mapped by πx ◦ f . Thus, below we explain how
interval arithmetic will be applied to check the (OCC).

The problem of checking the (OCC) in the Euclidean coordinates for a given gener-
alized Hénon map fp,b reduces to finding the zeros of the derivative d

dx
(p(x) − by0) for

each fixed y0. In the rest of this paper, for some reasons, we have to find a desired
number of zeros of the derivative above in a specified region not only for fp,b itself but
also for its twice iterate f 2

p,b : AD → AR with respect to certain projective coordinates.

In this case, the problem is to find the critical points of πu ◦ f 2(x, y0) in a specified
region for each fixed y0 ∈ AR

y . Essentially, this means that one has to find the zeros
for a family of polynomials qy(x) in x parameterized by y ∈ A ⊂ C. To do this, we
first apply Newton’s method to know approximate locations of its zeros. However, this
method can not tell how many zeros we found in the region since it does not detect the
multiplicity of zeros.
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In order to count the multiplicity we employ the idea of winding number. That is,
we first fix y ∈ A and write a small circle in the x–plane centered at the approximate
location of a zero (which we had already found by Newton’s method). We map the
circle by qy and count how it rounds around the image of the approximate zero, which
gives both the existence and the number of zeros inside the small circle. Our method
to count the winding number on computer is the following. We may assume that the
image of the approximate zero is the origin of the complex plane. Cover the small circle
by many tiny squares and map them by qy. We then verify the following two points:
(i) check that the images of the squares have certain distance from the origin which is
much larger than the size of the image squares, and (ii) count the number of changes of
the signs in the real and the imaginary parts of the sequence of image squares. These
data tell how the image squares move one quadrant to another (note that the transition
between the first and the third quadrants and between the second and the fourth are
prohibited by (i)), and if the signs change properly, we are able to know the winding
number of the image of the small circle.

An advantage of this method is that, since the winding number is integer–valued, its
mathematical rigorous justification becomes easier (there is almost no room for round–
off errors to be involved). Another advantage of this winding number method is its
stability; once we check that the image of the circle by qy rounds a point desired number
of times for a fixed parameter y, then this is often true for any nearby parameters. So,
by dividing the parameter set A into small squares and verifying the above points for
each squares, we can rigorously trace the zeros of qy for all y ∈ A.

4.3. Projective coordinates. Let u = (ux, uy) ∈ C2 and let Lu be a complex line
in C2 so that u /∈ Lu. Define C2

u = C2 \ L′u, where L′u is the unique complex line
through u parallel to Lu. Let πu : C2

u → Lu be the projection with respect to the focus
u = (ux, uy), i.e. for z ∈ C2

u we let L be the unique complex line containing both u and
z, then πu(z) is defined as the unique point L ∩ Lu. We call u the focus of πu.

Let u and v be two focuses and let Lu and Lv be two complex lines in general position
in C2 such that u /∈ Lu and v /∈ Lv. Consider the pair of corresponding projections
(πu, πv).

Definition 4.5 (Projective Coordinates). We call the pair of projections (πu, πv)
the projective coordinates with respect to u, v, Lu and Lv.

Evidently, the Euclidean coordinates correspond to the case u = (0,∞), v = (∞, 0),
Lu = {y = 0}, Lv = {x = 0}, L′u = ∅ and L′v = ∅, .

Take two bounded topological disks Uu ⊂ Lu and Uv ⊂ Lv so that the following
condition holds: π−1

u (z) ∩ π−1
v (Uv) is a bounded topological disk for any z ∈ Uu and

π−1
u (Uu) ∩ π−1

v (z) is a bounded topological disk for any z ∈ Uv.
Proposition 4.6. Under this assumption, π−1

u (Uu) ∩ π−1
v (Uv) is biholomorphic to a

rigid bidisk in C2.

Proof. We will first show that the map:

F : (z, w) 7−→ π−1
u (z) ∩ π−1

v (w)
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gives a biholomorphism between Uu × Uv and π−1
u (Uu) ∩ π−1

v (Uv). Evidently, it is
surjective. By the assumption, the focus v is not contained in the cone π−1

u (Uu). Thus,
for each fixed z ∈ Uu, the map above is an injective holomorphic map. Similarly, we
know that for each fixed w ∈ Uv, the map above is an injective holomorphic map.
Moreover, it is clear that π−1(z) ∩ π−1

v (Uv) and π−1(z′) ∩ π−1
v (Uv) are disjoint when

z 6= z′. Hence the map F is injective on the entire π−1
u (Uu) ∩ π−1

v (Uv). Since F is
holomorphic in each variable and continuous, a standard argument shows that F is in
fact holomorphic as a function of two variables. Thus, it follows that F is biholomorphic.

Now, the conclusion follows by applying Riemann mapping theorem to the bounded
topological disks Uu and Uv. Q.E.D.

Definition 4.7 (Projective Bidisks). We call π−1
u (Uu) ∩ π−1

v (Uv) a projective bidisk
and write Uu ×P Uv.

f

f

fA A

A

A( )0

3

i
i

f A( )0

f A( )3

( )i = 1, 2

Figure 7. Four Poincaré boxes for the cubic Hénon map fa,b.

Thus, Proposition 4.3 is valid in this projective bidisk setting as well. In what follows,
the focuses we will use are enough separated with each other and are relatively far away
from the place where the dynamics is interesting, so we may assume that the projective
coordinates we will employ always satisfy the assumption of Proposition 4.6.
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4.4. Checking hyperbolicity. Now let us suppose that f = fa,b is the cubic Hénon
map with (a, b) = (−1.35, 0.2) as in Theorem A. Our first step is to construct four
Poincaré boxes {Ai}3

i=0 whose transitions are described in Figure 7 (note that A1 and
A2 are overlapped in the figure though they are disjoint). For more precise statements,
see Propositions 4.12 and 4.16.

We first define Di (i = 0, 1, 2) as follows. Let Dx be an open hexagon inspired by
an equi–potential curve of p(z) = −z3 − 1.35. More precisely, we take 15 points in C:
p0 = −1.420 + 0.288i, p1 = p0, p2 = −0.800 − 0.656i, p3 = −0.420 + 0.000i, p4 = p2,
p5 = 0.963 + 1.075i, p6 = 0.963 + 0.000i, p7 = 0.000 + 0.000i, p8 = −0.482 + 0.825i,
p9 = 0.428 + 1.375i, p10 = p5, p11 = p6, p12 = p7, p13 = p8, p14 = p9, where pi is the
complex conjugate of pi. Define Dx to be the hexagon p0p1p14p10p5p9. Note that, in
particular, we then have

Dx ⊂ {x ∈ C : Re x ≥ −1.42}.
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Figure 8. Three pentagons Di.
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Let D0 ⊂ Dx be the open pentagon p0p1p2p3p4 (see Figure 8). Set D′
y = ∆(0; 1.05)

and D0 ≡ D0×PD
′
y. The projective coordinates to define this projective bidisk are given

by the focuses u = (ux, uy) = (−1.763356785556, 13.753270977536) and v = (vx, vy) =
(∞, 0), and the complex lines Lu = {y = 0} and Lv = {x = 0}. Let D1 ⊂ Dx be
the open pentagon given by p5p6p7p8p9 and D2 ⊂ Dx be the open pentagon defined
by p10p11p12p13p14. For i = 1, 2, we set Dy = ∆(0; 1.5) and define Di ≡ Di ×P Dy,
where the projective coordinates to define this projective bidisk are the Euclidean ones,
that is, given by the focuses u = (ux, uy) = (0,∞) and v = (vx, vy) = (∞, 0), and the

complex lines Lu = {y = 0} and Lv = {x = 0}. Finally, we put D ≡ ⋃2
i=0Di.

Now we set Bi ≡ f(Di) for i = 1, 2. The coordinate system for Di naturally induces
a coordinate system for Bi. Next we put B0 ≡ D0 and B3 ≡ f(D0). Here, when B3 is
defined, we fatten D0 slightly to theD0-direction and shrink slightly to theD′

y-direction.
The coordinate system for B0 is the same for D0. The coordinate system for B3 is the
one induced by f from D0. Remark that, since we slightly modified D0 when we define
B3 = f(D0), the map f : B0 → B3 automatically satisfies the (BCC).

To start the proof of Theorem A, we first check

Proposition 4.8. K ⊂ B0 ∪ B1 ∪ B2 ∪ B3.

Proof. By the invariance of K, the conclusion is equivalent to K ⊂ f−1(D0) ∪ D. Let
DR ≡ ∆x(0;R)×∆y(0;R) so that every point outside this bidisk tends to infinity either
by forward or backward iterations. The claim of Proposition 4.8 immediately follows
from the next fact which can be verified by the C++ program filled.cc. Q.E.D.

Numerical Check 1. For any x ∈ DR with R = 1.5, we have either x ∈ D, f(x) ∈ D0,
f 2(x) /∈ DR or f−1(x) /∈ DR.

Next we will see how Bi are sitting in C2 and how they are mapped by f .

Lemma 4.9. B1 ∩ B2 = B1 ∩ B3 = B2 ∩ B3 = ∅.
Proof. It is easy to see that D1 ∩D2 = ∅ since D1 ∩D2 = ∅ and the focuses for D1 and
D2 are the same. It then follows that B1 ∩ B2 = ∅. Similarly, a simple computation
of projective coordinates shows that D0 ∩ Di = ∅ for i = 1, 2. It then follows that
B1 ∩ B3 = B2 ∩ B3 = ∅ since B3 = f(D0). Q.E.D.

By the lemma above, card(I(p)) ≤ 2 holds for all p ∈ ⋃3
i=0 Bi. Note that, moreover,

the sets 〈1, 2〉, 〈1, 3〉, 〈2, 3〉 are empty.

Lemma 4.10. (a) f(Bi \ B0) ∩ B3 = ∅ and (b) f(B0) ∩ Bi = ∅ for i = 1, 2.

Proof. (a) follows from the fact that (Bi \B0)∩B0 = ∅. (b) is exactly what the previous
lemma says. Q.E.D.

The next claim is a key to list up all the allowed transitions of points in ΩB ≡⋂
n∈Z f

n(B), where B ≡ ⋃3
i=0 Bi.

Lemma 4.11. f(〈0〉 ∩ ΩB) ∩ B0 = ∅.
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Proof. Let us assume that x ∈ 〈0〉 ∩ ΩB. Then, first x ∈ 〈0〉 implies x ∈ B0 and
x /∈ B1 ∪ B2 ∪ B3. On the other hand, by the invariance of ΩB, x ∈ ΩB implies
x ∈ f(B0 ∪ B1 ∪ B2 ∪ B3). Since B3 = f(B0), it follows that x ∈ B0, x /∈ B1 ∪ B2 ∪ B3

and x ∈ f(B1∪B2∪B3). These conditions can be rewritten as x ∈ D0, f
−1(x) /∈ D and

f−2(x) ∈ D. We must show f(x) /∈ B0 for such x. Hence the conclusion follows from
the next Numerical Check 2 which is verified by the program allowed.cc. Q.E.D.

Numerical Check 2. For any x /∈ D such that f(x) ∈ D0 and f−1(x) ∈ D, we have
f 2(x) /∈ D0.

Proposition 4.12. Any allowed transition for a point in ΩB is one of the following:
〈0〉 → 〈3〉, 〈0, 1〉 → 〈0〉, 〈0, 1〉 → 〈0, 3〉, 〈0, 1〉 → 〈3〉, 〈1〉 → 〈0〉, 〈1〉 → 〈0, 1〉, 〈1〉 →
〈1〉, 〈1〉 → 〈0, 2〉, 〈1〉 → 〈2〉, 〈0, 2〉 → 〈0〉, 〈0, 2〉 → 〈0, 3〉, 〈0, 2〉 → 〈3〉, 〈2〉 → 〈0〉,
〈2〉 → 〈0, 1〉, 〈2〉 → 〈1〉, 〈2〉 → 〈0, 2〉, 〈2〉 → 〈2〉, 〈0, 3〉 → 〈0〉, 〈0, 3〉 → 〈0, 3〉,
〈0, 3〉 → 〈3〉, 〈3〉 → 〈0〉, 〈3〉 → 〈0, 1〉, 〈3〉 → 〈1〉, 〈3〉 → 〈0, 2〉 and 〈3〉 → 〈2〉 (thus there
are 25 transitions).

Proof. By the previous lemmas, the following transitions do not occur: 〈1〉 → 〈3〉,
〈1〉 → 〈0, 3〉, 〈2〉 → 〈3〉, 〈2〉 → 〈0, 3〉, 〈3〉 → 〈3〉, 〈3〉 → 〈0, 3〉 (these follow from (a)
of Lemma 4.10), 〈0〉 → 〈0, 1〉, 〈0〉 → 〈1〉, 〈0〉 → 〈0, 2〉, 〈0〉 → 〈2〉, 〈0, 1〉 → 〈0, 1〉,
〈0, 1〉 → 〈1〉, 〈0, 1〉 → 〈0, 2〉, 〈0, 1〉 → 〈2〉, 〈0, 2〉 → 〈0, 1〉, 〈0, 2〉 → 〈1〉, 〈0, 2〉 → 〈0, 2〉,
〈0, 2〉 → 〈2〉, 〈0, 3〉 → 〈0, 1〉, 〈0, 3〉 → 〈1〉, 〈0, 3〉 → 〈0, 2〉, 〈0, 3〉 → 〈2〉 (these follow
from (b) of Lemma 4.10).

By the definition of B3 and 〈0〉, the transition 〈0〉 → 〈0〉 does not occur. This is
because 〈0〉 ⊂ B0 \ B3 and f(〈0〉) ⊂ B3 \ f(B3) ⊂ B3. By Lemma 4.11, the transition
〈0〉 → 〈0, 3〉 does not occur. Thus, we finally get the list of all allowed transitions as
above. Q.E.D.

Next we claim that f : Bi → Bj satisfies the (BCC) for some pairs of i and j. To
do this, we need the next four Numerical Checks which are done by two programs
crossed-f.cc and crossed-i.cc.

Numerical Check 3A. f : Di → Dj (1 ≤ i, j ≤ 2) satisfies the (BCC) of degree one.

Numerical Check 3B. f 2 : Di → D0 (i = 1, 2) satisfies the (BCC) of degree three.

Numerical Check 3C. f : D0 → Di (i = 1, 2) satisfies the (BCC) of degree one.

Numerical Check 3D. f 2 : D0 → D0 satisfies the (BCC) of degree three.

Lemma 4.13. The following transitions: B0 → B3, B1 → B0, B1 → B1, B1 → B2,
B2 → B0, B2 → B1, B2 → B2, B3 → B0, B3 → B1 and B3 → B2 satisfy the (BCC).

Proof. We will analyze each transition in order.

1. f : B0 → B3.
Recall that, when we defined B3, we fatten D0 slightly to the vertical direction and
shrink slightly to the horizontal direction. Thus, the map f : B0 → B3 automatically
satisfies the (BCC) of degree one.
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2. f : Bi → Bj (1 ≤ i, j ≤ 2).
By Numerical Check 3A, we see that f : f(Di) → f(Dj) (1 ≤ i, j ≤ 2) satisfies the
(BCC). This means that f : Bi → Bj satisfies the (BCC) of degree one.

3. f : Bi → B0 (i = 1, 2).
By Numerical Check 3B, we see that f : f(Di) → D0 (i = 1, 2) satisfies the (BCC).
This means that f : Bi → B0 (i = 1, 2) satisfies the (BCC) of degree three.

4. f : B3 → Bi (i = 1, 2).
By Numerical Check 3C, we see that f : f(D0) → f(Di) (i = 1, 2) satisfies the (BCC).
This means that f : B3 → Bi satisfies the (BCC) of degree one.

5. f : B3 → B0.
By Numerical Check 3D, we see that f : f(D0) → D0 satisfies the (BCC). This means
that f : B3 → B0 satisfies the (BCC) of degree three. Q.E.D.

Next we define four Poincaré boxes {A0,A1,A2,A3}. Let H0 ≡ ∆x(−1.11275; 0.105)
and let A0 ≡ (D0 \ H0) ×P D

′
y, where the product is with respect to the projective

coordinates for B0 = D0. We also define A3 ≡ f(A0), i.e. the hole of A3 is the image
of H0 ×P D

′
y by f .

Lemma 4.14. The following transitions: A0 → A3, A1 → A0, A1 → A1, A1 → A2,
A2 → A0, A2 → A1, A2 → A2, A3 → A0, A3 → A1 and A3 → A2 satisfy the (BCC).

Proof. Thanks to Lemma 4.13, the transitions we have to care are A0 → A3 and
A3 → A0. Since we defined the hole of A3 to be f(H0×P D

′
y), we only need to see that

the hole of A3 is mapped into the hole of A0. This means that we have to check that
H0 ×P D

′
y is mapped into itself by f 2. For this, we employ computer assistance again.

Before stating the rigorous result, let us show below some analytic pre–estimate.
There are attractive periodic points of period two: one is p1 = (0.0622,−1.1252) ∈ B3

and the other is p2 = (−1.1252, 0.0622) ∈ B0. The diameter of B3 in the u-coordinate
direction is approximately

∆y ≈ diam(D′
y)|b|/|Dvf(p2)| = 2× 1.05× 0.2/(3× (−1.1252)2) < 0.12,

where Dvf means the derivative in the v-direction. Let r be the radius in the v-direction
of the hole in B0 containing p2. Then the (BCC) is satisfied if

r|Dvf(p2)||Dvf(p1)|+ |b|∆y < r.

This inequality is transfered to r × 3.80 × 0.01 + 0.024 < r and this is satisfied when
r ≥ 0.03. In fact, by taking H0 ≡ ∆x(−1.11275; 0.105), we rigorously obtain the
following claim by using a computer program called hole.cc.

Numerical Check 4. πu ◦ f 2(∂H0 ×P D
′
y) ⊂ intH0.

Here, recall that πu means the projection to the u-coordinate direction in B0. By
combining this fact and Numerical Check 3C, we know that A3 → A0 satisfies the
(BCC). Thus, we are done. Q.E.D.
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Lemma 4.15. The transitions A1 → A0, A2 → A0 and A3 → A0 satisfy the (OCC).

Proof. We remark that the other transitions except for the three above are of degree
one, so we do not need to check the (OCC).

Let us first show that f : A3 → A0 satisfies the (OCC). Since we have defined as
A3 = f(A0), it is sufficent to see that f 2 : A0 → A0 satisfies the (OCC). To do this, first
take the intersection γy0 of the vertical boundary ∂v(H0 ×P D

′
y) and {y = y0} for each

y0 ∈ D′
y. Note that γy0 is homeomorphic to a circle. If we can check that πu(f

2(γy0))
rounds around an appropriate point three times for all y0 ∈ D′

y, then we know that

f 2 : A0 → A0 satisfies the (OCC).
In fact, the next Numerical Check 5A can be verified by employing the program

sign.cc. Given a closed curve γ in C and a point α ∈ C, we let Wind(α, γ) be the
winding number of γ with respect to α.

Numerical Check 5A. Take any y0 ∈ D′
y. Then, for γ = γy0 ≡ ∂H0×P {y0} we have

(i) πu ◦ f 2(γ) ⊂ intH0, and
(ii) Wind(−1.154, πu ◦ f 2(γ)) = 3.

By Numerical Check 3D, the number of critical points of πu ◦ f |D0×P {y0} for each
y0 ∈ D′

y is 3 − 1 = 2. The condition (ii) of Numerical Check 5A says that there are
two critical points inside γ, so there is no more critical points outside. The condition
(i) says that the two critical values are in intH0. In particular, this implies that

πu ◦ f(Crit(πx ◦ f |B3)) ⊂ intH0

is satisfied. Note that the condition (i) above follows from Numerical Check 4.
Next, we show that f : Ai → A0 (i = 1, 2) satisfies the (OCC). For this, let us

first present the following rough estimate. Assume that, for simplicity, the horizontal
coordinate of Bi (i = 1, 2, 3) induced by f from Di (i = 1, 2) or from B0 is close to
the Euclidean horizontal coordinate. Then, the dynamical critical set in B1 ∪ B2 ∪ B3

is close to the slice of B1 ∪ B2 ∪ B3 by the y-axis {x = 0}. This slice consists of three
disks. Their centers form the vertices of a triangle and have distance approximately
|a|1/3 = (1.35)1/3 ≈ 1.1 from the origin. The radius of each disk is approximately
R × |b|/(3 × 1.12) ≈ 1.5 × 0.2/(3 × 1.12) < 0.1. In particular, the distance from the
real part of the slice of B1 and B2 to the origin is approximately 1.1/2 = 0.55. When
we map this by πu ◦ f , the real part of the images of the slice is close to a − by =
−1.35 − 0.2 × 0.55 = −1.46, since the radius of the disk in the image by f is about
0.1× |b| = 0.02 which is small. If the images of the three disks do not have intersection
with Dx, then the (OCC) for Ai → A0 (i = 1, 2) follows.

In fact, by using the program newton.cc which combines Newton’s method with the
winding number argument as in Subsection 4.2, we get the following rigorous claim,
and the estimate above turns out to be quite accurate. The part of Newton’s method
computes an approximate position of αy0,i in the next Numerical Check 5B, which is a
zero of ∂

∂x
(πu ◦ f 2|Di×P {y0}) where y0 ∈ Dy.
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Numerical Check 5B. Take any i = 1, 2 and y0 ∈ Dy. Then, we can find α = αy0,i ∈
Di so that γ = γy0,i ≡ ∂∆x(α; 0.04)×P {y0} ⊂ Di ×P {y0} and

(i) πu ◦ f 2(γ) ⊂ {x ∈ C : Re x < −1.425}, and
(ii) Wind(πu ◦ f 2(α, y0), πu ◦ f 2(γ)) = 3.

π °u f ( )C D H0 0

/

Re x = −1.425{ }

Figure 9. πu ◦ f(C) and D0 \H0.

By Numerical Check 3B, we know that the number of critical points of πu◦f 2|Di×P {y0}
for each y0 ∈ Dy is 3 − 1 = 2. The condition (ii) of Numerical Check 5B says that
there are two critical points inside γ, and there is no more critical points outside. The
condition (i) of Numerical Check 5B says that the two critical values are contained in
{x ∈ C : Re x < −1.425}. Recall that Dx∩{x ∈ C : Re x < −1.425} = ∅. In particular,
we have

πu ◦ f(Crit(πu ◦ f |B1∪B2)) ∩Dx = ∅.
Figure 9 above describes the relative position of πu ◦ f(C) with respect to D0 \ H0,

where C = Crit(πu ◦ f |B1∪B2∪B3).
Here, the formulae of the Newton’s method for πu ◦ f 2|Di×P {y0} are given as follows.

Fix y ∈ ∆′
y and consider

(
p(x, y)

q(x, y)

)
≡ f 2

(
x

y

)

=

(
x9 + 3(by − a)x6 + 3(by − a)2x3 − bx+ b3y3 − 3b2ay2 + 3ba2y − a3 + a

−x3 + a− by

)
.



HYPERBOLIC POLYNOMIAL DIFFEOMORPHISMS OF C2 39

By differentiating each coordinate successively , we get(
dp(x, y)

dq(x, y)

)
≡ ∂

∂x
f 2

(
x

y

)

=

(
9x8 + 18(by − a)x5 + 9(by − a)2x2 − b

−3x2

)

and (
ddp(x, y)

ddq(x, y)

)
≡ ∂2

∂x2
f 2

(
x

y

)

=

(
72x7 + 90(by − a)x4 + 18(by − a)2x

−6x

)
.

Let u = (ux, uy) = (−1.763356785556, 13.753270977536) be one of the two focuses of
D0. For each fixed y0 ∈ Dy we try to find the critical points of πu ◦ f 2|Di×P {y0}, i.e.

C 3 x 7−→ p(x, y0)− ux
q(x, y0)− uy

(−uy) + ux.

That is, we search for the zeros of its derivative:

N(x) ≡ (−uy)dp(q − uy)− dq(p− ux)

(q − uy)2

of the map above by Newton’s method. To do this, we differentiate it once more to get

N ′(x) = (−uy)ddp(q − uy)
2 − ddq(p− ux)(q − uy)− 2dpdq(q − uy) + 2dqdq(p− ux)

(q − uy)3
.

Thus, the map to iterate is given by

x 7−→ x−N(x)

N ′(x)

= x− dp(q − uy)
2 − dq(p− ux)(q − uy)

ddp(q − uy)2 − ddq(p− ux)(q − uy)− 2dpdq(q − uy) + 2dqdq(p− ux)

By using this formula, we get an approximate position of α = αy0,i.
Next we draw a circle of radius 0.04 centered at α in Di ×P {y0}, and see how many

times its image rounds around πu◦f 2(α, y0). In this way we can verify Numerical Check
5B. This proves Lemma 4.15. Q.E.D.

By Lemma 4.14 and Lemma 4.15, we obtain the

Proposition 4.16. A0 ⇒ A3, A1 ⇒ A0, A1 ⇒ A1, A1 ⇒ A2, A2 ⇒ A0, A2 ⇒ A1,
A2 ⇒ A2, A3 ⇒ A0, A3 ⇒ A1, and A3 ⇒ A2.

It is easy to see that any allowed transition listed in Proposition 4.12 satisfies the
assumption of Proposition 4.3 by Proposition 4.16, so we have the

Corollary 4.17. For the cubic Hénon map f , the pair ({C∩p }p∈A∩f−1(A), ‖ · ‖∩) forms
an expanding cone field.



40 YUTAKA ISHII

To deduce hyperbolicity of f from this claim, our next task is to show C∩p 6= ∅ for

p ∈ ΩA. For this, we use Proposition 4.16 and the invariance of the cone fields {CAip }p∈Ai
and show C∩p 6= ∅ only on certain proper subset of ΩA inductively.

Lemma 4.18. With i = 1, 2, we have CA0
p ∩ CAip 6= ∅ for all p ∈ E1

i ≡ 〈0, i〉 ∩ f(A).

Proof. By Proposition 4.12, either f−1(p) ∈ A1, f
−1(p) ∈ A2 or f−1(p) ∈ A3 holds for

any p ∈ E1
i = 〈0, i〉 ∩ f(A). Then the conclusion follows because either Df(CA1

f−1(p)) ⊂
CA0
p ∩ CAip (since A1 ⇒ A0 and A1 ⇒ Ai), Df(CA2

f−1(p)) ⊂ CA0
p ∩ CAip (since A2 ⇒ A0

and A2 ⇒ Ai) or Df(CA3

f−1(p)) ⊂ CA0
p ∩ CAip (since A3 ⇒ A0 and A3 ⇒ Ai) holds

depending on whether f−1(p) ∈ A1, f
−1(p) ∈ A2 or f−1(p) ∈ A3. Q.E.D.

From this lemma and the invariance of the cone fields, we obtain that CA0
p ∩CA3

p 6= ∅
for p ∈ E2

i ≡ 〈0, 3〉 ∩ f(E1
i ). Inductively,

Lemma 4.19. We have CA0
p ∩ CA3

p 6= ∅ for p ∈ En+1
i ≡ 〈0, 3〉 ∩ f(Eni ), where i = 1, 2

and n = 1, 2, · · · .
Proof. For p ∈ E2

i , we have q = f−1(p) ∈ E1
i . Since A0 ⇒ A3 and Ai ⇒ A0, we have

Df(CA0
q ∩CAiq ) ⊂ CA0

p ∩CA3
p . By Lemma 4.18, we see CA0

q ∩CA3
q 6= ∅ for q ∈ E1

i . This
proves the claim for the case n = 1. The proof for general case is similar. Q.E.D.

Now, the next task is to define a non–empty cone field on

(ΩA ∩ 〈0, 3〉) \
⋃
i=1,2

⋃
n≥1

Eni .

This set consists of the points in ΩA ∩ 〈0, 3〉 whose backward orbits remain in 〈0, 3〉.
Take a point p from the set above such that there exists the smallest N > 0 with
fN(p) /∈ 〈0, 3〉. Then, we construct a new cone C∩p by “pulling–back and shrinking”

the cone C∩fN (p). That is, we define C∩p as a subcone of Df−N(C∩fN (p)) such that C∩p
does not converge to the entire TqC2 when p converges to

⋂
n∈Z f

n(〈0, 3〉). We also
define the norm ‖vp‖∩ to be smaller than λ−N‖DfN(vp)‖∩ for vp ∈ C∩p so that ‖vp‖∩
does not diverge when p converges to

⋂
n∈Z f

n(〈0, 3〉)). By construction, this defines an
expanding cone field.

So far, the remaining question is how to define expanding/contracting cone fields on⋂
n∈Z f

n(〈0, 3〉). Notice that
⋂
n∈Z f

n(〈0, 3〉) is completely invariant. We again abandon
the cone C∩p = CA0

p ∩ CA3
p on this set and define a new cone field. More precisely, in

certain coordinate, we try to find a bidisk V ⊃ ⋂
n∈Z f

n(〈0, 3〉) and prove that f : V → V
is a crossed mapping of degree one. In fact, we let V = Vx ×P Vy be a projective bidisk
given by v = (0.84901∞,−0.52838∞) (the unstable direction of the unique saddle
fixed point in the third quadrant), u = (0.40838∞, 0.84901∞), Lv = {x = −0.71},
Lu = {y = −0.76}, Vx = ∆(−0.71; 0.55) and Vy = ∆(−0.76; 0.3). When we write
u = (α∞, β∞), the complex lines parallel to the v–axis in the projective coordinate are
defined to be {αy − βx = γ} for γ ∈ C.
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Numerical Check 6. With this definition, it can be checked that

(i) V ⊃ ⋂
|n|≤2 f

n(D0), and

(ii) f : V → V is a crossed mapping of degree one.

The assertion (i) above is verified by the program bidisk.cc and the second one (ii)
is verified by saddle-f.cc and saddle-i.cc.

Thus, we redefine C∩p ≡ CVp and ‖v‖∩ ≡ ‖v‖V on
⋂
n∈Z f

n(〈0, 3〉).
Remark 4.20. From Numerical Check 6 above, it then turns out that

⋂
n∈Z f

n(〈0, 3〉)
consists of a single saddle fixed point.

By Lemma 4.18, Lemma 4.19 and Numerical Check 6, we conclude

Corollary 4.21. C∩p is non–empty for all p ∈ ΩA.

Since f : Ai → A0 is a map of horseshoe type for i = 1, 2 by Numerical Check 5B,
we have the following consequence.

Corollary 4.22. ΩA is not connected.

We know that f has an attractive cycle of period two by Kobayashi hyperbolicity of
the holes, i.e.

⋂
n∈Z f

n(B) \⋂
n∈Z f

n(A) = {the attractive cycles}. By Proposition 4.8,
it follows that

⋂
n∈Z f

n(B) = ΩB = K. Thus, we have K = ΩA∪{the attractive cycles}.
Since we know that f is hyperbolic on ΩA by Corollary 4.17 and Corollary 4.21, we
conclude that f is hyperbolic on K, and that ΩA = J .

B

H

q

a

1

11

( )c1

q( )c2 a2
H 2

B0

ʹ

ʹ

ʹ ʹ

Figure 10. Disks for q(x) with its attractive cycle {a1, a2}.
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4.5. Proof of Theorem A. Our task here is to show that the cubic Hénon map
f under consideration is not topologically conjugate on J to a small perturbation of
any expanding polynomial in one variable in order to finish the proof of Theorem A.
Moreover, the tools to show the hyperbolicity gives combinatorial description of the
topology of its Julia set as in Theorem 4.23. To do this, we decompose the Julia set of
f combinatorially as in Subsection 3.4 and analyze how they are glued together.

Proof of Theorem A. Assume that f is topologically conjugate on its Julia set J to a
small perturbation g of some expanding polynomial q(x) in one variable, i.e. g = fq,b
where b is sufficiently close to zero. Then q(x) would be cubic by comparing their
entropies. Since f has an attractive cycle of period two, q ought to have a unique
attractive cycle {a1, a2} of period two as well by comparing the number of periodic
points.

Let c1 and c2 be the critical points of q. If both qn(c1) and qn(c2) diverge to infinity,
then q can not have attractive cycles. Thus, this is not the case. If both qn(c1) and
qn(c2) converge to the attractive cycle, it then follows that the Julia set of of g, thus of
f is connected, which contradicts to Corollary 4.22. So, exactly one of these two orbits
has to converges to the attractive cycle.

Assume that qn(c1) converges to the attractive cycle {a1, a2} of period two. Then,
there exist two disjoint topological open disks Bg

0 and Bg
1 such that (i) Bg

1 contains the
attractive cycle, (ii) q(c1) ∈ Bg

1 and q(c2) /∈ Bg
0 ∪ Bg

1 , (iii) dist(q(∂Bg
0 ∪ ∂Bg

1), B
g
i ) ≥ δ

for some δ > 0 for i = 1, 2. Moreover, one can find mutually disjoint two closed
topological disks Hg

1 and Hg
2 in Bg

1 such that (a) a1 ∈ intHg
1 and a2 ∈ intHg

2 , (b)
q(c1) ∈ int(Hg

1 ∪ Hg
2 ), (c) q(Hg

i ) ⊂ intHg
j for i 6= j (see Figure 10). Let us put

Ag
0 ≡ Bg

0 × ∆y(0;R) and Ag
1 ≡ (Bg

1 \ (Hg
1 ∪ Hg

2 )) × ∆y(0;R) for a sufficiently large
R > 0. Then, by (iii) and (c), it follows that g : Ag

0 ∪ Ag
1 → Ag

0 ∪ Ag
1 satisfies the

(BCC). Also by (ii) and (b), it follows that g : Ag
0 ∪Ag

1 → Ag
0 ∪Ag

1 satisfies the (OCC).
Since g : Ag

0 → Ag
0 satisfies the (BCC) of degree one by (iii), we know that there is only

one saddle fixed point sg2 in Ag
0. Thus, the other two fixed points sg0 and sg1 of g should

belong to
⋂
n∈Z g

n(Ag
1). Note that

⋂
n∈Z g

n(Ag
1) is connected. In fact,

⋂
n∈Z g

n(Ag
1) is

homeomorphic to the Julia set of a small perturbation of p−1(z) = z2− 1 (see the proof
of Theorem 6.1 at the end of Section 6 as well as [IS]). It follows that the connected
component of Jg containing sg0 and sg1 consists of uncountably many points.

Next let us consider f . Let Af =
⋃3
i=0Af

i , where Af
i ≡ Ai are the Poincaré boxes

appeared in the proof of Theorem A. We know that f : Af
i → Af

i (i = 1, 2) satisfies

the (BCC) of degree one, thus each Af
i contains exactly one saddle fixed point sfi .

Since f−1 : Af
0 → Af

i is of horseshoe type, the connected component of f−1(Af ) ∩ Af

containing sfi is equal to the connected component of f−1(Af
0∪Af

1∪Af
2)∩Af containing

sfi (see Figure 7). More generally, the connected component of f−n(Af )∩Af containing

sfi is equal to the connected component of f−n(Af
0∪Af

1∪Af
2)∩Af containing sfi for n ≥ 0.

It then follows that the connected component of
⋂
n≥0 f

−n(Af ) containing sfi is equal to

the connected component of
⋂
n≥0 f

−n(Af
0 ∪Af

1 ∪Af
2) ∩Af containing sfi . This means



HYPERBOLIC POLYNOMIAL DIFFEOMORPHISMS OF C2 43

A1

A2

A3

A0

¡
¡

¡
¡

¡¡ª

@
@

@
@

@@I@
@

@
@

@@R

@
@

@
@

@@R@
@

@
@

@@I

¡
¡

¡
¡

¡¡µ

6

¾

m
¾

m
6

Diagram 1. The transition diagram for Σf .

that the connected component of
⋂
n≥0 f

−n(Af ) containing sfi forms a vertical disk of

degree one in Af
i for i = 1, 2. Similarly, since f : Af

i → Af
0 is of horseshoe type, the

connected component of f(Af )∩Af containing sfi is equal to the connected component

of f(Af
i )∩Af containing sfi . More generally, the connected component of fn(Af )∩Af

containing sfi is equal to the connected component of fn(Af
i ) ∩ Af containing sfi . It

then follows that the connected component of
⋂
n≥0 f

n(Af ) containing sfi is equal to

the connected component of
⋂
n≥0 f

n(Af
i ) ∩ Af containing sfi . This means that the

connected component of
⋂
n≥0 f

n(Af ) containing sfi forms a horizontal disk of degree

one in Af
i . Thus, the connected component of Jf =

⋂
n∈Z f

n(Af ) containing sfi is the

intersection of a horizontal disk of degree one and the vertical disk of degree one in Af
i

which turns out to be exactly one point {sfi } for i = 1, 2.
Since any conjugacy between f and g maps their fixed points as well as the con-

nected components of the Julia sets containing them homeomorphically, we arrive at a
contradiction. This finishes the proof of Theorem A. Q.E.D.

In the rest of this subsection, we investigate more carefully the topology of the Julia
set Jf . As before, we decompose the Julia set Jf of the cubic Hénon map f by using the

family of the Poincaré boxes {Af
0 ,Af

1 ,Af
2 ,Af

3}. Let Σf ⊂ {0, 1, 2, 3}Z be the subshift
of finite type defined by the allowed words {03, 10, 11, 12, 20, 21, 22, 30, 31, 32} of length
two. In other words, a symbol sequence belongs to Σf iff it contains the words 00, 01,

02, 13, 23, 33 nowhere. Compare with the transitionsAf
i ⇒ Af

j appeared in Proposition
4.16 and see the Diagram 1. As before, given ε ∈ Σf , we set

Jfε ≡ · · · ∩ f 2(Af
ε−2

) ∩ f(Af
ε−1

) ∩ Af
ε0
∩ f−1(Af

ε1
) ∩ f−2(Af

ε2
) ∩ · · · .
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Note that {Jfε }ε∈Σf are not mutually disjoint any more. In stead, we will consider

a formal disjoint union
⊔
ε∈Σf

Jfε . Then, the inclusion map ι : Jfε → Jf naturally

induces ιf :
⊔
ε∈Σf

Jfε → Jf . Let α ≡ · · · 0303.0303 · · · and α′ ≡ · · · 3030.3030 · · · . By

Numerical Check 6, we know that there is a unique saddle fixed point sf ∈ A0∩A3. The
following describes topology of the Julia set combinatorially by gluing several pieces Jfε
in terms of the map ιf .

Theorem 4.23 (Combinatorics of Jf). Consider the map:

ιf :
⊔
ε∈Σf

Jfε −→ Jf .

(i) ιf is a continuous surjection and its restriction ιf |Jfε : Jfε → Jf is injective for

each ε ∈ Σf .
(ii) We have card(ι−1

f (x)) ≤ 2 for all x ∈ Jf . If card(ι−1
f (x)) = 2, then x ∈ W s(sf ).

(iii) (a) Jfε is a solenoid if and only if ε = α or α′.
(b) Jfε consists of topological circles if and only if there exists N ∈ Z such that

εNεN+1εN+2 · · · = 0303 · · · and ε 6= α, α′.
(c) For the other ε, Jfε is either a Cantor set or finitely many points.

(iv) The identifications by ιf occur only between the solenoids and the topological

circles. That is, if ιf (J
f
ε ) ∩ ιf (Jfε′) 6= ∅ and ε 6= ε′, then Jfε and Jfε′ are either

(a) two solenoids,
(b) a solenoid and topological circles, or
(c) topological circles.

In the case (a), we have ε = α and ε′ = α′. In the cases (b) and (c), we have

ε = · · · (i(2)
k2
· · · i(2)

1 )(03)l2(i
(1)
k1
· · · i(1)1 )(03)l10(30)∞

and

ε′ = · · · (i(2)
k2
· · · i(2)1 )(03)l2(i

(1)
k1
· · · i(1)1 )(03)l1i(03)∞

for some 0 ≤ kj ≤ ∞ and 0 ≤ lj ≤ ∞ (note that, if l1 = ∞ and k1 = l2 =
k2 = · · · = 0, then Jfε = Jfα becomes a solenoid and corresponds to the case (b)).
Here, the decimal points can be placed anywhere in ε and ε′ in such a way that
the 0 in bold and the i in bold are in the same digit.

(v) In the case (a) above, we have ιf (J
f
α) ∩ ιf (Jfα′) = {sf}. In particular,

ιf |JfαtJfα′ : (Jfα t Jfα′) \ ι−1
f (sf ) −→ ιf (J

f
α t Jfα′) \ {sf}

is injective.

Proof. (iii) The proof of this claim is same as Lemma 3.9, thus omitted.
(i) We can easily check that for any allowed transition 〈I1〉 → 〈I2〉 in Proposition

4.16 there exist i1 ∈ I1 and i2 ∈ I2 such that the word i1i2 of length two is allowed in
Σf . This shows the surjectivity of ιf . The injectivity is trivial from the definition of ιf .
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(v) Since α = · · · 0303.0303 · · · and α′ = · · · 3030.3030 · · · , we see that f(ιf (J
f
α)) =

ιf (J
f
α′) and f(ιf (J

f
α′)) = ιf (J

f
α). Take x ∈ ιf (J

f
α) ∩ ιf (J

f
α′). Then, it follows that

fn(x) ∈ ιf (J
f
α) ∩ ιf (Jfα′) ⊂ 〈0, 3〉 ≡ A0 ∩ A3 for all n ∈ Z by the invariance of the two

solenoids. By the Numerical Check 6, we know that the only point which stays in 〈0, 3〉
for all forward and backward iterates is sf . Thus, ιf (J

f
α) ∩ ιf (Jfα′) = {sf}

(ii) We first prove that, if card(ι−1
f (x)) ≥ 2, then x ∈ W s(sf ). Assume that two

distinct points x̃1 ∈ Jfε and x̃2 ∈ Jfε′ satisfy x ≡ ιf (x̃1) = ιf (x̃2). Since the restriction

ιf |Jfε is injective, it follows that ε = · · · ε−1.ε0ε1 · · · 6= ε′ = · · · ε′−1.ε
′
0ε
′
1 · · · . Evidently,

fn(ιf (x̃1)) and fn(ιf (x̃2) belong to the same Poincaré box for each n ∈ Z. Since
A0 ∩ A3 6= ∅ and A0 ∩ Ai 6= ∅ for i = 1, 2, and Aj ∩ Ak = ∅ for the other choices
of j and k, it follows that either (a) εn = ε′n, (b) εn = 0 and ε′n = 3, or (c) εn = i
and ε′n = 3 (i = 1, 2) for all n ∈ Z. Then, either (b) or (c) holds for some n0 because
ε 6= ε′. Consider first the case (b) and assume that εn0 = 0 and ε′n0

= 3. This means
that fn0(ιf (x̃1)) = fn0(ιf (x̃2)) ∈ 〈0, 3〉 = A0 ∩ A3. Here, recall Proposition 4.12 which
says that the only allowed transitions from 〈0, 3〉 are 〈0, 3〉 → 〈0〉, 〈0, 3〉 → 〈0, 3〉 and
〈0, 3〉 → 〈3〉. This means that neither εn0+1 nor ε′n0+1 can be i (i = 1, 2). By the
Diagram 1, we conclude that the only possibility is εn0+1 = 3 and ε′n0+1 = 0. This again
means that fn0+1(ιf (x̃1)) = fn0+1(ιf (x̃2)) ∈ 〈0, 3〉. By repeating this argument, we see
that fm(x) = fm(ιf (x̃1)) = fm(ιf (x̃2)) ∈ 〈0, 3〉 for all m ≥ n0. This implies x ∈ W s(sf )
by Numerical Check 6. The argument for the case (c) is similar.

Next we prove card(ι−1
f (x)) ≤ 2 for all x ∈ Jf . Assume card(ι−1

f (x)) ≥ 3 for some

x ∈ Jf . Put ι−1
f (x) = {x̃, x̃′, x̃′′} and x̃ ∈ Jfε , x̃′ ∈ Jfε′ and x̃′′ ∈ Jfε′′ . The above

argument shows that there exist N , N ′, N ′′ ∈ Z such that εNεN+1εN+2 · · · = 0303 · · · ,
ε′N ′ε

′
N ′+1ε

′
N ′+2 · · · = 0303 · · · and ε′′N ′′ε

′′
N ′′+1ε

′
N ′′+2 · · · = 0303 · · · . Since 0303 · · · is peri-

odic of period 2 by the shift map, two out of these three symbol sequences have the same
future itinerary. We may assume that there exists M ∈ Z such that εMεM+1εM+2 · · · =
ε′Mε

′
M+1ε

′
M+2 · · · = 0303 · · · . Now, we look at Diagram 1. The only transition which

comes to A3 is from A0 and the only transitions which comes to A0 are from A3

and from Ai (i = 1, 2). Since ε 6= ε′, it follows that there exists L ∈ Z such that
εLεL+1εL+2 = i0303 · · · and ε′Lε

′
L+1ε

′
L+2 = 30303 · · · . Since Ai ∩A3 = ∅ for i = 1, 2, we

see that fL(ιf (J
f
ε )) ∩ fL(ιf (J

f
ε′)) = ∅. This is a contradiction, thus we are done.

(iv) The argument in the proof of (ii) shows that if ιf (J
f
ε )∩ιf (Jfε′) 6= ∅ and ε 6= ε′, then

there exist N , N ′ ∈ Z such that εNεN+1εN+2 · · · = 0303 · · · and ε′N ′ε
′
N ′+1ε

′
N ′+2 · · · =

0303 · · · . By (iii), Jfε and Jfε′ are either two solenoids, a solenoid and topological circles,

or topological circles. In the case (a), we have ε = α and ε′ = α′ again by (iii). In the
cases (b) and (c), we may assume that ε 6= α, α′. Since the only transition to either
A0 or to A3 (but not from A0 or from A3) is from Ai (i = 1, 2), there exists M ∈ Z
such that ε′Mε

′
M+1ε

′
M+2 · · · = i0303 · · · . Then, either εMεM+1εM+2 · · · = 30303 · · · or

εMεM+1εM+2 · · · = 03030 · · · . If εM = 3, then fM(ιf (J
f
ε )) ∩ fM(ιf (J

f
ε′)) = ∅ because

Ai ∩ A3 = ∅ for i = 1, 2, which is a contradiction. Thus, the former case does not
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happen and εMεM+1εM+2 · · · = 03030 · · · . In the same way, we see that (εM−1, ε
′
M−1)

is either (3, 3) or (i, i) (i = 1, 2). If (εM−1, ε
′
M−1) = (3, 3), then (εM−2, ε

′
M−2) should

be (0, 0). If (εM−1, ε
′
M−1) = (i, i), then (εM−2, ε

′
M−2) should be either (3, 3) or (j, j)

(j = 1, 2). By continuing this argument, we obtain the desired expression for ε and ε′.
This proves Theorem 4.23. Q.E.D.

5. Applications to the Hénon Family in R2

This section is dedicated to study the dynamics of the Hénon family:

f = fc,b : (x, y) 7−→ (x2 + c− by, x)

with real coefficients as a self–map of R2. In the real parameter space of such Hénon
family, we define the maximal entropy locus M and the hyperbolic horseshoe locus H as
in Introduction. The next subsection describes an algorithm to check if a given Hénon
map is a hyperbolic horseshoe in R2. In Subsection 5.2, an algorithm which verifies
if a given Hénon map defined on R2 has entropy strictly less than log 2 is presented.
Combining these, we give an outline of the proof of Theorem D in Subsection 5.3.

q

pW ( ) pu

s
pW ( )

= q
1

2

q
3 q

4

Figure 11. A trellis and a projective bidisk in R2.
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5.1. Hyperbolic horseshoes. The algorithm to check a given real Hénon map to
be a hyperbolic horseshoe in R2 is simply a combination of our hyperbolicity criteria
combined with the idea of projective bidisks which are determined from the trellis
formed by stable and unstable manifolds of the Hénon map in R2.

For simplicity, let us consider the map fc,b where (c, b) = (−5.90, 1.00). Note that this
parameter choice has appeared as c1 in the list of Theorem D for b = 1. Then, there is a
unique saddle fixed point p in the first quadrant. Consider the stable and the unstable
manifolds W s(p) and W u(p) of p. One can find the four “most outer intersections” of
these manifolds which we will denote by p = q1, q2, q3 and q4 (see Figure 11). Let u be
the intersection of the two lines which contain the segments q2q3 and q1q4, and let Lu be
the x–axis of C2. Let v be the intersection of the two lines which contain the segments
q1q2 and q3q4, and let Lv be the y–axis of C2. These data define two projections πu
and πv. We take a topological disk Uu in Lu which contains the segment πu(q1q2) and
another topological disk Uv in Lv which contains the segment πv(q2q3). With these
data, we define a projective bidisk by B ≡ Uu ×P Uv. By choosing appropriate Uu
and Uv, one can prove with computer assistance that f : B → B satisfies the (BCC)
and the (OCC) with respect to the projective coordinates. For other parameter choices
c < −5.90, we find the four points as the “most outer intersections” of the invariant
manifolds for the new map and continue the same procedure as before. This proves
that fc,b|R2 is a hyperbolic horseshoe for b = 1 and all c ≤ −5.90.

5.2. Non–maximal entropy. The algorithm to verify non–maximality of entropy of
a given Hénon map defined on R2 relies on some ideas from the pluripotential theory
(comparison of two pluricomplex Green functions, etc.) and a result in [BLS] combined
with rigorous numerics. Below we may assume that |b| ≤ 1 since any f−1

c,b is affinely
conjugate to fc′,1/b for some c′.

Let us put R ≡ (1 + |b| +
√

(1 + |b|)2 + 4|c|)/2, V + = V +
R ≡ {(x, y) ∈ C2 : |x| ≥

R, |x| ≥ |y|} and V − = V −
R ≡ {(x, y) ∈ C2 : |y| ≥ R, |y| ≥ |x|}. We employ the norm

‖(x, y)‖ ≡ max{|x|, |y|} for (x, y) ∈ C2. Let DR ≡ ∆x(0;R)×∆y(0;R) = {(x, y) ∈ C2 :
‖(x, y)‖ < R} be a bidisk.

In what follows we shall estimate

G(x, y) ≡ max{G+(x, y), G−(x, y)}
from above and from below, where

G±(x, y) ≡ lim
n→∞

1

2n
log+ ‖f±n(x, y)‖

are the Green functions for K± and log+ x = max{0, log x}.
Lemma 5.1. Let |b| ≤ 1. For any (x, y) ∈ C2, we have

G(x, y) ≤ log(2/|b|) + max{logR, log ‖(x, y)‖}.
Proof. By the definition of R, we see that f(V +

R ) ⊂ V +
R . This and the estimate

‖f(x, y)‖ = |x2+c−by| ≤ |x|2+(1+ |b|)|x|+ |c| ≤ 2|x|2 = 2‖(x, y)‖2 imply ‖fn(x, y)‖ ≤
22n−1‖(x, y)‖2n for (x, y) ∈ V +

R , so G+(x, y) ≤ log 2 + log+ ‖(x, y)‖ for all (x, y) ∈ V +
R .
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Because G+ is plurisubharmonic and continuous on C2, we have G+(x, y) ≤ log 2 +
logR for all (x, y) ∈ DR and G+(x, y) ≤ log 2 + log |y| for all (x, y) ∈ V −

R by the
Maximum Modulus Principle (to see this, we restrict G+ to the complex line Cy0 =
{y = y0} to get a subharmonic function). This gives the desired bound for G+.

For G−(x, y), we see ‖f−1(x, y)‖ ≤ (2/|b|)‖(x, y)‖2 for (x, y) ∈ V −
R to obtain the

conclusion. Q.E.D.

We next define

gR(z) ≡ log

∣∣∣∣∣
(√

z −R

z +R
+ 1

)/(√
z −R

z +R
− 1

)∣∣∣∣∣
for z ∈ C, where the branch of the square root above is chosen so that | arg

√ · | ≤ π/2.
Notice that gR(z) is the Green function of the interval [−R,R] ⊂ R ⊂ C in the potential
theoretic sense. We hereafter use the notation g(z) ≡ gR(z).

Lemma 5.2. If htop(f |R2) = log 2, then we have

G(x, y) ≥ max{g(x), g(y)}
for any (x, y) ∈ C2.

Proof. It is shown in [BSC1] that G(x, y) is the pluricomplex Green function for K ≡
K+ ∩K−, that is,

G(x, y) = sup{h(x, y) : h is p.s.h., h|K = 0 and h(x, y) ≤ log+ ‖(x, y)‖+ C}
(see the book [Kl] for more on this). First note that max{g(x), g(y)} is plurisubharmonic
and satisfies max{g(x), g(y)} ≤ log+ ‖(x, y)‖+C for some C > 0. If htop(f |R2) = log 2,
then K ⊂ [−R,R]× [−R,R] ⊂ R2 by [BLS]. This implies that max{g(x), g(y)} = 0 on
K. Thus, we are done. Q.E.D.

Let fn(x, y) = (xn, yn). The next two lemmas generalize the previous estimates in
terms of iterated points (xn, yn), which often gives sharper bounds for G(x, y).

Lemma 5.3. For any (x, y) ∈ C2 and n ∈ Z, we have

log(2/|b|) + max{logR, log ‖(xn, yn)‖, log ‖(x−n, y−n)‖}
2|n|

≥ G(x, y).

Proof. Remark first that G±(fn(x, y)) = 2±nG±(x, y). By applying Lemma 5.1 to
(xn, yn) and (x−n, y−n), we see

log(2/|b|) + max{logR, log ‖(xn, yn)‖} ≥ max{2nG+(x, y), 2−nG−(x, y)}
and

log(2/|b|) + max{logR, log ‖(x−n, y−n)‖} ≥ max{2−nG+(x, y), 2nG−(x, y)}
for any n ∈ Z. When n ≥ 0, these inequalities imply

log(2/|b|) + max{logR, log ‖(x−n, y−n)‖, log ‖(x−n, y−n)‖}
2n

≥ max{G+(x, y), G−(x, y)}
because 2n ≥ 2−n. The case n ≤ 0 is similar. Q.E.D.
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Lemma 5.4. If htop(f |R2) = log 2, then we have

G(x, y) ≥ max{g(xm), g(ym)}
2|m|

for any (x, y) ∈ C2 and any m ∈ Z.

Proof. Suppose that htop(f |R2) = log 2. By Lemma 5.2 we obtain

G(z) = max{G+(x, y), G−(x, y)}

≥ max{2mG+(x, y), 2−mG−(x, y)}
2m

=
max{G+(xm, ym), G−(xm, ym)}

2m

≥ max{g(xm), g(ym)}
2m

if m ≥ 0, because 2m ≥ 2−m. The case m ≤ 0 is similar. Q.E.D.

The next criterion will be useful to confirm us that certain Hénon maps on R2 do not
have maximal entropy.

Corollary 5.5 (Non–Maximal Entropy Criterion). Let |b| ≤ 1. The following two
conditions are equivalent:

(i) htop(f |R2) < log 2,
(ii) there exist n, m ∈ Z and (x, y) ∈ C2 such that

log(2/|b|) + max{logR, log ‖(xn, yn)‖, log ‖(x−n, y−n)‖}
2|n|

<
max{g(xm), g(ym)}

2|m|
.

Proof. Suppose first that htop(f |R2) = log 2. By combining the two previous lemmas,
we see that

log(2/|b|) + max{logR, log ‖(xn, yn)‖, log ‖(x−n, y−n)‖}
2|n|

≥ max{g(xm), g(ym)}
2|m|

.

for any n, m ∈ Z and (x, y) ∈ C2. Thus, (ii) implies (i).
Conversely, if htop(f |R2) < log 2, then there exists a point (x, y) ∈ K \R2 (see the last

section of [BLS]). This point (x, y) satisfies f i(x, y) ∈ DR for any i ∈ Z, so the left–hand
side of the inequality in (ii) tends to zero as n → ∞. However, the right–hand side is
strictly positive for m = 0 because (x, y) is not contained in [−R,R] × [−R,R] ⊂ R2.
This proves that (i) implies (ii). Q.E.D.

5.3. Proof of Theorem D. In this subsection, we explain how the previous two cri-
teria will be implemented specifically. As we will see in the proof of Proposition 5.7,
the verification of non–maximality of entropy involves many (typically more than 10)
times iterate of a map. Moreover, the parameter of the map we will iterate will not be
a single value but move in a small subset in the parameter space. Thus, we here need a
serious use of interval arithmetic technique essentially. Since the implementation of the
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hyperbolic horseshoe algorithm is obvious, only the algorithm for the non–maximality
of entropy is discussed here. An example of our result is

Theorem 5.6. For b = 1 and c ≥ −5.699310678222, we have htop(fc,b|R2) < log 2. 2

To show this, we proceed as follows.

Proposition 5.7. Let U ≡ [−5.69− 10−6,−5.69 + 10−6]× [1− 10−6, 1 + 10−6]. Then,
for all (c, b) ∈ U , we have htop(fc,b|R2) < log 2.

Proof. Let us set f0 ≡ fc0,b0 , where (c0, b0) = (−5.69, 1). We first compute (without
using interval arithmetic) the position of the saddle fixed point of f0 in the first quadrant
of R2 and its unstable direction.

Next, take a disk of radius ≈ 0.0001 centered at the saddle and tangent to the
unstable direction, and distribute 10000000 points in it. For each such point, we check
(without interval arithmetic) if it satisfies the condition (ii) of Corollary 5.5 for f0. As
an example of such points, we find the point:

(x0, y0) = (2.50725794266830481760 · · ·+ i0.00240486218696596074 · · · ,
3.42948343899702701165 · · ·+ i0.00035808913230478455 · · · ).

Now let f ≡ fc,b, where the parameter (c, b) is no more a single point but taken to
be the product set U . One can compute (xk, yk) = fk(x0, y0) for such map by using
interval arithmetic. Note that since U is a product of intervals, the outputs for xk and
yk also become intervals. Then, as inequalities between intervals (see Subsection 4.2),
one sees for n = 13 and m = 2,

log 2 + max{logR, log ‖(xn, yn)‖, log ‖(x−n, y−n)‖}
2|n|

≤ 0.00270958478835030574

< 0.00479440418560278959

≤ max{g(xm), g(ym)}
2|m|

for all (c, b) ∈ U . This proves the claim. Q.E.D.

Proof of Theorem 5.6. Let f0 ≡ fc0,b0 , where (c0, b0) = (−5.69 + 10−6, 1). Near the
point (x0, y0) in the previous proposition, we distribute several points and try to find a
new point (x0, y0) which satisfies (ii) of Corollary 5.5 for f0 (but without using interval
arithmetic here).

Now, let us set f ≡ fc,b, where the parameter (c, b) is no more a single point but
taken to be the interval:

[−5.69 + 10−6,−5.69 + 2 · 10−6]× {1}.
For the new (x0, y0) and this f , we verify the condition (ii) of Corollary 5.5 by using
interval arithmetic.

2Zin Arai has announced that the Hénon map fc,b|R2 is a hyperbolic horseshoe for all c < −5.69995
when b = 1.00.
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We continue this process until the value of c falls in a region where we already know
that the entropy is less than log 2 (see [BSR1]). It is also possible to do this procedure
to the other direction, i.e. the direction where c decreases. We observed that this
procedure stops at c = −5.699310678222. This completes the proof. Q.E.D.

The values of c2 for other choices of b as shown in Theorem D are obtained in the
same way.

Remark 5.8. The denominator
√

(z −R)/(z +R)− 1 in the formula of gR(z) = g(z)
becomes very close to zero when |z| is large, which may be a cause of round–off errors.
To avoid this, during the above computation we should check if this value is not too
close to zero.

Remark 5.9. The reason why our algorithm for c2 does not work when −0.4 < b < 0.3
as in Theorem D is the following. First, the Jacobian determinant of f−1 is large when
|b| is small. This implies that the computation of a long backward orbit may increase
the round–off error quite rapidly. Another reason is that, when |b| becomes smaller, we
observe that the “size” of J \R2 becomes smaller in some sense so that it becomes more
difficult to find a point (x0, y0) in C2 which satisfies (ii) of Corollary 5.5.

6. Conjectures, Problems and Final Remarks

In this final section we collect several conjectures, open problems and remarks con-
cerning the results discussed in the previous sections to conclude this paper. Recall that
at the end of the Introduction, one conjecture (Conjecture 1) concerning the boundary
of the hyperbolic horseshoe locus and the maximal entropy locus for the Hénon family
on R2 has been already presented.

Another interesting question is to analyze several structures in the complex parameter
space of the complex Hénon family (more generally, polynomial diffeomorphisms of a
fixed degree). A first step towards this may be to study the “Mandelbrot set” i.e. the
connectedness locus in the parameter space. However, the Julia sets constructed in
Theorems A and B are disjoint. It is thus natural to ask the following

Problem 1. Find a hyperbolic polynomial diffeomorphism of C2 with essentially two–
dimensional dynamics whose Julia set is connected.

Such a polynomial diffeomorphism will give us the first non-trivial example to which
the theory of Bedford and Smillie [BSC7] can apply, where they have defined the exter-
nal rays and studied some combinatorial properties of connected hyperbolic Julia sets
à la Douady and Hubbard.

The reason why we chose a cubic map in Theorem A is that we must require the
vertical hight of the hole of A3 not to be too large. Recall the formula of the Hénon
map. In its second coordinate, we have x. This means that the vertical hight of the
hole in A3 is the same as the horizontal width of the hole in A0. In the first coordinate
of the formula, we have the term by. Thus, in order to satisfy the “a hole into a hole”
condition (i.e. the hole in A3 should be mapped into the hole of A0), the vertical hight
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of A3 times |b| should be smaller than the horizontal width of the hole in A0. Note
that, since the hole in A0 is contained in the Fatou–Bieberbach attractive basin of the
attractive two–cycle, our chance to verify the “a hole into a hole” condition heavily
depends on the shape of the Fatou–Bieberbach domain. We observe that, if the degree
becomes larger, the vertical hight of the hole in the Poincaré box corresponding to A3

gets smaller and we have more chance to satisfy the “a hole into a hole” condition.
In fact, for the quadratic case we failed to check the “a hole into a hole” condition
because of the reason above. On the other hand, when the degree is large, the critical
set roughly becomes the union of many small disks which form a circle–shape in the
y–axis (note that, in the case of the map in Theorem A, the critical set approximately
consists of three disks near the y-axis) and we have less chance for the (OCC) to hold
(cf. Figure 9). Thus, we are led to ask the following

Problem 2. Find a hyperbolic complex Hénon map of degree two with essentially two–
dimensional dynamics. Can its Julia set be connected?

Beside the examples of the maps presented by Oliva [Ol] which are conjectured to have
hyperbolic and connected Julia sets, we find another good candidate of such complex
Hénon map as follows.

A 0 f

f

A 1

A 2

f ( )A 0

f ( )A 1

f ( )A 2

Figure 12. Poincaré boxes for the map in Conjecture 2.
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Conjecture 2. There exists a parameter value near (b, c) = (0.2,−1.325) for which the
corresponding quadratic Hénon map has a hyperbolic and connected Julia set. Moreover,
it has two attractive cycles of period two and three.

In fact we can construct a topological model for the Hénon map in Conjecture 2 in
terms of three Poincaré boxes as in Figure 12. However, since the map in Conjecture 2
has a saddle periodic point of period three which is very close to the attractive 3–cycle,
we guess that the verification of the (BCC) and the (OCC) would be hard.

We do not still know if the hyperbolic generalized Hénon map fp0,b0 constructed
in Theorem B is not topologically conjugate to the projective limit of any expanding
polynomial in one variable. However, here is one fact we can prove concerning this
conjugacy problem.

Theorem 6.1. If fp0,b0 in Theorem B is conjugate to the projective limit of some ex-
panding polynomial q(x) of one variable, then q is topologically conjugate to p0.

Thus, if the following conjecture holds, then fp0,b0 becomes the first example of es-
sentially two–dimensional map which is shown to be hyperbolic without computer as-
sistance.

Conjecture 3. The map fp0,b0 in Theorem B is not topologically conjugate on its Julia
set to a small perturbation fp0,b1 of the expanding polynomial p0(x).

Even in the case that fp0,b0 in Theorem B is topologically conjugate to a small pertur-
bation fp0,b1 of the expanding polynomial p0(x), it would be still interesting to consider
the following Problem 3. Notice that by taking affine conjugacy, we may assume that
any polynomial p of degree d has of the form p(x) = zd + ad−2z

d−2 + · · ·+ a0 which will
be identified with (ad−2, · · · , a0) ∈ Cd−1. Let

Hd ≡
{
(p, b) ∈ Cd−1 × C× : fp,b is hyperbolic

}
.

Problem 3. Suppose that fp0,b0 is topologically conjugate to fp0,b1 on their Julia sets.
Let d be the degree of p0. Then, are these maps in the same connected component of
Hd or in different connected components of Hd?

Proof of Theorem 6.1. Assume that f = fp0,b0 in Theorem B is conjugate on Jf to
a small perturbation g = fq,b of q, where q(x) is some expanding polynomial of one
variable.

First, by comparing the entropy on C2, we see d ≡ deg g = deg q = deg f = l + 1.
Since f is hyperbolic, the multiplicity of every periodic point is one. It then follows that
f has exactly dn periodic points of period n counted without multiplicity. Moreover, f
has only one attractive fixed point which is outside Jf , and the other periodic points are
saddles in Jf . By the existence of conjugacy between Jf and Jg, we know that a small
perturbation of q must have the same number of saddle periodic points. Since each
attractive cycle of q persists under a small perturbation, it follows that g has a unique
attractive fixed point and does not have other attractive cycles. Since q is hyperbolic,
each critical point of q goes either to an attractive cycle or to infinity. So, suppose that
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da − 1 critical points of q (counted with multiplicity) are attracted to the attractive
fixed point. We define dfa = d− 1 and dga = da.

Given q as above, we take a large R > 0 so that Jq ⊂ ∆ ≡ {|z| < R}. Then,
there is the smallest M ≥ 0 so that q−M(∆) does not contain the critical points of
q whose orbits go to infinity. Suppose that q−M(∆) has L components. Let H0 be
a closed neighborhood of the attractive fixed point so that q(H0) ⊂ intH0. Define
inductively Hk to be the connected component of q−1(Hk−1) containing Hk−1. Since
any critical point of q with bounded orbit tends to the attractive fixed point, there
exists the smallest N > 0 such that HN contains all critical points of q whose orbits
go to the attractive fixed point. Note that HN is connected, simply connected and
q(HN) ⊂ intHN . Let Ag

1, Ag
2, · · · , Ag

L be the components of (q−M(∆) \ HN) × ∆,
where H1(Ag

1;Z) = Z and H1(Ag
i ;Z) = {0} for i 6= 1. We then have the following

decomposition:

Jg =
⋂

n∈Z
gn(Ag

1 t · · · t Ag
L) =

⊔

ε∈{1,··· ,L}Z
Jgε ,

where Jgε ≡ · · · ∩ g2(Ag
ε−2

) ∩ g(Ag
ε−1

) ∩ Ag
ε0
∩ g−1(Ag

ε1
) ∩ g−2(Ag

ε2
) ∩ · · · . Recall that a

similar decomposition of Jf for f can be obtained:

Jf =
⋂

n∈Z
fn(Af

1 t Af
2 t Af

3) =
⊔

ε∈{1,2,3}Z
Jfε ,

where Jfε ≡ · · · ∩ f 2(Af
ε−2

) ∩ f(Af
ε−1

) ∩ Af
ε0
∩ f−1(Af

ε1
) ∩ f−2(Af

ε2
) ∩ · · · .

Lemma 6.2. For both ∗ = f, g we have the following:

(i) if ε = · · · 111.111 · · · , then J∗ε becomes an invariant solenoid S∗ of degree d∗i ,
(ii) if εi 6= 1 for only finitely many and at least one i ≥ 0, then each connected

component of J∗ε is either a topological circle or an empty set,
(iii) if εi 6= 1 for infinitely many i ≥ 0, then each connected component of J∗ε is

either a point or an empty set.

Proof. Same as Lemma 3.9, thus omitted. Q.E.D.

Note that each pathwise connected component of the solenoid S∗ is non-compact but
the ones in the cases (ii) and (iii) are compact. Moreover, each pathwise connected
component of J∗ is contained in J∗ε for some ε. It follows that the conjugacy map sends

Sf homeomorphically to Sg. The entropy of a solenoidal map is given by the logarithm
of its degree, so from (i) of the previous lemma one gets the following

Corollary 6.3. We have dga = dfa = d− 1.

With the previous corollary, the conclusion of Theorem 6.1 immediately follows from a
result on homotopy conjugacy between two expanding systems which is due to J. Smillie.
However, for the self–consistency of this paper, we here quote its simplified statement
for our purpose. Consult [IS] for a statement in full generality as well as a similar line
of argument for hyperbolic polynomial diffeomorphisms of C2 to model their dynamics
by the projective limits of one–dimensional maps.
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Diagram 2. Commutative diagrams up to homotopy.

Definition 6.4. We call Φ = (φ, ι,X0, X1) an expanding system if

(i) X0 and X1 are bounded regions in C,
(ii) X1 = φ−1(X0) and X1 ⊂ X0,
(iii) ι : X1 → X0 is an inclusion map, and
(iv) φ : X1 → X0 is a holomorphic covering.

Since X1 ⊂ X0, it follows that φ : X1 → X0 is an expanding map in the following
sense: there exist δ > 1 and ε > 0 so that

dX0(φ(x), φ(y)) ≥ δ · dX0(ι(x), ι(y))

whenever dX1(x, y) ≤ ε. Here, dY denotes the Poincaré metric in Y ⊂ C.
Given an expanding system Φ = (φ, ι,X0, X1) we will consider a sequence of spaces

Xφ
n = φ−1(Xφ

n−1). Note that Xφ
n has the universality, that is, for any space Y and a

pair of maps α : Y → Xφ
n+1 and β : Y → Xφ

n+1 so that ι ◦ α = φ ◦ β, there exists

h : Y → Xφ
n+2 with ι ◦ hn+2 = β and φ ◦ hn+2 = α (in fact, h is given by ι−1 ◦ β).

Definition 6.5. Let Φ = (φ, ι,Xφ
0 , X

φ
1 ) and Ψ = (ψ, ι,Xψ

0 , X
ψ
1 ) be two expanding sys-

tems. We say that Φ is homotopy conjugate to Ψ if there are two maps h0 : Xφ
0 → Xψ

0

and h1 : Xφ
1 → Xψ

1 so that (a) h0 ◦φ = ψ ◦h1, and (b) h0 ◦ ι is homotopic to ι ◦h1. We
call the pair (h0, h1) a homotopy conjugacy from Φ to Ψ.

Given two expanding systems Φ = (φ, ι,Xφ
0 , X

φ
1 ) and Ψ = (ψ, ι,Xψ

0 , X
ψ
1 ) and a ho-

motopy conjugacy (h0, h1) from Φ to Ψ, below we will inductively construct a sequence
of maps hn : Xφ

n → Xψ
n and show that hn uniformly converges to some h∞ : Xφ

∞ → Xψ
∞,

where Xφ
∞ =

⋂∞
n=0X

φ
n and Xψ

∞ =
⋂∞
n=0X

ψ
n .
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Diagram 3. Existence of hn+2.

We will use the following simplified version of a more general result due to Smillie
in [IS] to complete Theorem 6.1.

Theorem 6.6 (Homotopy Conjugacy). Let Φ and Ψ be two expanding systems.
Assume that (h0, h1) is a homotopy conjugacy from Φ to Ψ. Then, it induces a semi–
conjugacy h∞ : Xφ

∞ → Xψ
∞ from φ to ψ, i.e. h∞ ◦ φ = ψ ◦ h∞ on Xφ

∞.

The proof of this theorem proceeds as follows. We first construct a sequence of maps
hn : Xφ

n → Xψ
n inductively.

Lemma 6.7. Assume that we are given hn : Xφ
n → Xψ

n , hn+1 : Xφ
n+1 → Xψ

n+1 and a

homotopy Hn(·, t) : Xφ
n+1 → Xψ

n such that (i) hn ◦ φ = ψ ◦ hn+1, (ii) Hn(·, 0) = hn ◦ ι
and (iii) Hn(·, 1) = ι ◦ hn+1. Then, there exist hn+2 : Xφ

n+2 → Xψ
n+2 and a homotopy

Hn+1(·, t) : Xφ
n+2 → Xψ

n+1 such that (i) hn+1 ◦ φ = ψ ◦ hn+2, (ii) Hn+1(·, 0) = hn+1 ◦ ι
and (iii) Hn+1(·, 1) = ι ◦ hn+2 (see Diagram 2).

Proof. Since ψ : Xψ
n+1 → Xψ

n is a covering, the homotopy φ ◦Hn(·, t) : Xφ
n+2 → Xψ

n lifts

to a homotopy Hn+1(·, t) : Xφ
n+2 → Xψ

n+1 so that Hn+1(·, 0) = hn+1 ◦ ι. We then have
Hn(·, 1) ◦ φ = ψ ◦ Hn+1(·, 1), which implies ψ ◦ Hn+1(·, 1) = ι ◦ hn+1 ◦ φ. By putting
α ≡ hn+1 ◦ φ and β ≡ Hn+1(·, 1), this condition can be rewritten as ι ◦ α = β ◦ ι. The

universality of the pull–back Xψ
n+2 implies that there exists a map hn+2 : Xφ

n+2 → Xψ
n+2

so that ι ◦ hn+2 = β = Hn+1(·, 1) and ψ ◦ hn+2 = α = hn+1 ◦ φ (see Diagram 3). Thus,
we are done. Q.E.D.

Proof of Theorem 6.6. Let lY (γ(·)) be the length of the image of a curve γ : [0, 1] → Y
with respect to the Poincaré metric in Y . To finish the proof of Theorem 6.6, we prove
the uniform convergence of hn.
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First recall that ψ : Xψ
n+1 → Xψ

n is an isometry with respect to the Poincaré metrics

of Xψ
n+1 and Xψ

n since it is a covering, and ι : Xψ
n+1 → Xψ

n is a contraction since

Xψ
n+1 ⊂ Xψ

n . We thus see that there exists 0 < λ < 1 with

lXψ
n
(ι ◦Hn+1(x, ·)) ≤ λ · lXψ

n+1
(Hn+1(x, ·))

= λ · lXψ
n
(ψ ◦Hn+1(x, ·))

= λ · lXψ
n
(Hn+1(φ(x), ·))

for all x ∈ Xφ
n+2. It then follows that

lXψ
0
(ιn ◦Hn(x, ·)) ≤ λn sup

x∈Xφ
1

lXψ
0
(H0(x, ·)) = Cλn.

Thus, the limit function

lim
n→∞

hn = h∞ : Xφ
∞ → Xψ

∞

can be defined and continuous. It is then not difficult to see that h∞ gives a semi–
conjugacy from φ to ψ. This completes the proof of Theorem 6.6. Q.E.D.

End of the proof of Theorem 6.1. Let us write p = p0. As before, we let ∆ = {|x| < R}
for a sufficiently large R > 0. There is the smallest number M ′ such that Dp ≡ p−M

′
(∆)

does not contain the unique critical value of p which goes to infinity. We let H0 be a
closed neighborhood of the attractive fixed point of p so that p(H0) ⊂ intH0, and Hk

be the connected component of p−1(Hk−1) containing the attractive fixed point of p.
There is the smallest number N ′ such that Hp ≡ HN ′ contains all the critical values
which converge to the attractive fixed point. From the previous corollary, the number
of critical points which diverge to infinity for p is the same for q, and it is one. Thus,
p−1(Dp \Hp) has two connected components Ap1 and Ap2 both of which are topological
annulus. We assume that Ap1 is the one which is surrounding the attractive fixed point.
Similarly we can define Aq1 and Aq2 for the other polynomial q. Again from the previous
corollary, the number of critical points which are attracted to the unique attractive fixed
point for p is the same for q, and it is d− 2. Thus, p : Ap1 → Dp \Hp is a non–branched
covering of degree d − 1 and p : Ap2 → Dp \Hp is injective. These claims are valid for
the other polynomial q as well.

Now, we letXp
0 ≡ Dp\Hp, Xp

1 ≡ p−1(Xp
0 ), and similarlyXq

0 ≡ Dq\Hq, Xq
1 ≡ q−1(Xq

0).
These define two expanding systems P = (p, ι,Xp

0 , X
p
1 ) and Q = (q, ι,Xq

0 , X
q
1). Due

to the observation in the previous paragraph, we can choose two homeomorphisms
h0 : Xp

0 → Xq
0 and h1 : Xp

1 → Xq
1 so that the pair (h0, h1) gives a homotopy conjugacy

from P to Q. By Theorem 6.6, this induces a semi–conjugacy h∞ : Xp
∞ → Xq

∞ from p
to q.

Similarly the homotopy conjugacy (g0, g1) = (h−1
0 , h−1

1 ) from Q to P induces a semi–
conjugacy g∞ : Xq

∞ → Xp
0 from q to p. It is not difficult to see that h∞ = g−1

∞ and
it then gives a topological conjugacy between p = p0 on Xp

∞ = Jp and q on Xq
∞ = Jq.

This finishes the proof of Theorem 6.1. Q.E.D.
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We conclude this article with the following

Problem 4. Find more examples of a hyperbolic polynomial diffeomorphism of C2

possibly of degree two and/or with connected Julia set. Find an algorithm which auto-
matically constructs Poincaré boxes for a given polynomial diffeomorphism and detects
hyperbolicity as well as combinatorics of the Julia set.
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celles d’un difféomorphisme de dimension deux. C. R. Acad. Sci. Paris, Sér. I Math. 293,
no. 10, 525–528 (1981).

[FM] S. Friedland, J. Milnor, Dynamical properties of plane polynomial automorphisms. Ergodic
Theory Dynam. Systems 9, no. 1, 67–99 (1989).
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