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Abstract. Let f be an entire function of finite order whose set of singular values is
bounded or, more generally, a finite composition of such functions. We show that every
escaping point of f can be connected to ∞ by a curve in I(f). This provides a positive
answer to a question of Eremenko for a large class of entire functions.

1. Introduction

The dynamical study of transcendental entire functions was initiated by Fatou in 1926
[F]. In this mémoire, Fatou observed that the Julia sets of several explicit entire functions
contain (analytic) curves of points which escape to infinity under iteration. He then remarks

Il serait intéressant de rechercher si cette propriété n’appartiendrait pas à
des substitutions beaucoup plus générales.1

Sixty years later, Eremenko [E] made a precise study of the escaping set

I(f) := {z ∈ C : |fn(z)| → ∞}
of an entire transcendental function. In particular, he showed that every component of
I(f) is unbounded, and asks whether in fact each component of I(f) is unbounded (we
will call this problem Eremenko’s conjecture). He also states that

It is plausible that the set I(f) always has the following property: every
point z ∈ I(f) can be joined with ∞ by a curve in I(f).

This can be seen as making Fatou’s original question more precise, and will be referred to
in the following as the strong form of Eremenko’s conjecture.

These problems are of particular importance since the existence of such curves can be
used to study entire functions using combinatorial methods. This is analogous to the notion
of “dynamic rays” of polynomials introduced by Douady and Hubbard [DH], which has
proved to be one of the fundamental tools for the successful study of polynomial dynamics.
(The idea that curves in I(f) may be seen as the limits of dynamic rays of approximating
polynomials, and have similar combinatorial properties, was first championed in [DGH].)

There has been some recent progress in the study of these questions [RS, RRS2] (compare
the remarks below). Nonetheless, even Fatou’s problem — whether there are any curves of
escaping points — has remained open even for function-theoretically well-behaved classes,

1“It would be interesting to study whether this property holds for much more general functions.”
1
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Figure 1. The Julia set of the linearizing coordinate Ψ of a postcritically
finite polynomial. Such functions have finite order and have finitely many
singular values, so I(Ψ) consists entirely of curves to ∞ by our theorem. The
picture on the right is a magnification of the picture near the origin.

such as that of finite-order transcendental entire functions with a finite set of singular
values; compare Figure 1. (Recall that f is of finite order if

lim sup
r→∞

log log max|z|=r |f(z)|
log r

<∞.)

In this article, we will prove Eremenko’s conjecture in its strong form for such functions,
and in fact for a much larger subset of the class B of entire transcendental functions with
bounded singular sets.

1.1. Theorem (I(f) consists of curves).
Suppose that f : C → C can be written as a finite composition f = f1 ◦ · · · ◦ fn, where each
fj ∈ B is of finite order. Then I(f) ∪ {∞} is path-connected.

Some history. It has long been known [DK, DGH] that for exponential maps f(z) =
exp(z) + κ, the set I(f) contains certain curves to ∞. A similar construction was carried
out by Devaney and Tangerman [DT] for a class of functions with finitely many singular
values whose tracts (see Section 2) satisfy some explicit geometric and growth conditions.

For the class of exponential maps, the strong form of Eremenko’s conjecture was first
proved by Schleicher and Zimmer [SZ]; this result was transferred to the space of cosine
maps in [RoS]. Recently, Rückert, Schleicher and the second author proved the strong
Eremenko conjecture for a subclass of B consisting of functions whose tracts satisfy certain
geometric conditions [RRS2] (including the type of functions treated in [DT]). On the
other hand, there is some evidence [RRS1] that Eremenko’s conjecture does not hold in its
strong form for all functions in B.

Idea and structure of proof. Our work consists of three parts.



ON A QUESTION OF EREMENKO 3

(a) We introduce a suitable subclass H ⊂ B of entire functions, which is closed both un-
der composition and under quasiconformal equivalence in the sense of [EL]. Rather
than using a geometric definition as in [RRS2], this class is defined primarily by a
growth property which we call a head-start condition.

(b) We give a straightforward proof of the strong form of Eremenko’s conjecture for
functions in class B.

(c) We show that all finite-order functions f ∈ B belong to class H.

Our class H can be shown to contain the class of functions treated in [RRS2]. (Conversely,
functions in our class H have some nice geometric properties — compare Proposition 2.5
— which indicates that the methods of [RRS2] could also be extended to give a, somewhat
less direct, proof of (b).

Further results. In [DT], it was shown that for certain functions there exist “Cantor
n-bouquets” in the Julia set. We show the following stronger statement.

1.2. Theorem (Existence of Absorbing Brush).
Let f ∈ H. Then there exists a closed unbounded set X ⊂ J(f) with the following proper-
ties.

(a) f(X) ⊂ X,
(b) every component of X is an injective curve γ : [0,∞) → J(f) with γ(t) → ∞ and

γ(t) ∈ I(f) for t > 0, and
(c) if z ∈ I(f), then fn(z) ∈ X for some n ≥ 0.

In [RR], we use this result to show that every path-connected component of

I(f) \
⋃

n≥0;z:f ′(z)=0

f−n(z)

is a curve.
We should mention that Eremenko’s conjecture (albeit not in its strong form) was re-

cently proved by Rippon and Stallard for a rather different class of entire functions, namely
those with a multiply-connected periodic Fatou component [RS]. More precisely, Rippon
and Stallard show that for any entire function, every component of the set A(f) introduced
by Bergweiler and Hinkkanen [BH] is unbounded. In the case where F (f) has a multiply
connected periodic Fatou component, A(f) is connected, and I(f) = A(f).

2. Functions satisfying a head-start condition

Let f ∈ B and set

R0 := 1 + |f(0)|+ max
s∈S(f)

|s|.

The components of

f−1({z ∈ C : |z| > R0)

are called the tracts of f . Each tract T maps to the complement of the singular disk as a
universal covering.
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If T is a tract of f , then we can define branches of arg z and arg f(z) on T , which are
unique up to an additive constant in 2πZ. The same remark applies to the functions log z
and log f(z).

In particular, the functions

wind(z, w) :=
| arg z − argw|

max{log |w|, log |z|}
and

windf (z, w) :=
| arg f(z)− arg f(w)|

max{log |f(w)|, log |f(z)|}
are well-defined for z, w ∈ T .

2.1. Definition (Head-Start Condition).
Let f ∈ B.

(a) We say that f has at most logarithmically spiralling tracts (of order θ > 0) if there
exists M > R0 such that, for every tract T and all w0, z0 ∈ T ∩ {|z| ≥M},

wind(z0, w0) ≤ θ.

(b) We say that f satisfies a head-start condition (of exponent K > 1) if for every
θ > 0 there exists a constant M > R0 with the following property.

Suppose that T is a tract of f and w0, z0 ∈ T satisfy |f(z0)|, |f(w0)| ≥ M and
windf (z0, w0) ≤ θ. If |z0| ≥ |w0|K, then

(1) |f(z0)| > |f(w0)|K .

We denote by H the class of all functions f ∈ B with at most logarithmically spiralling
tracts which satisfy a head-start condition.

Remark 1. The idea behind this definition is that, if two orbits escape in the same
directions, and the first has a “head start” over the other one, then this orbit will escape
faster. This will allow us to introduce an order on the set of points with such orbits,
showing that they are actually curves.

Remark 2. Saying that f has at most logarithmically spiralling tracts is the same as
saying that, if γ is an asymptotic path for the asymptotic value at ∞ — i.e., γ(t) → ∞
and f(γ(t)) →∞ — then γ does not spiral more than logarithmically.

Remark 3. It would be possible to replace the explicit bounds in this definition by a
more flexible condition. We have chosen the above version since it yields a large class with
many nice properties (see Theorem 2.4 below) and is very convenient for our purposes.

A study of functions satisfying more general ”head-start conditions“ by combinatorial
means will be contained in [RR].

The fundamental tool for establishing the important properties of classH is the following
expansion statement for class B. The proof is not difficult, but is more conveniently carried
out in logarithmic coordinates, which is why we postpone this argument to Section 5.
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2.2. Lemma (Growth of Orbits).
Let f ∈ B, and let θ > 0. Then there exist constants M > R0 and η, δ > 0 with the following
properties. Let T be a tract of f , and suppose that z, w ∈ T such that |f(z)| ≥ |f(w)| ≥M .

(a) Then

| log z − logw| < 1

2
| log f(z)− log f(w)|.

(b) Suppose furthermore that windf (z, w) ≤ θ and that | log z − logw| ≤ δ. Then

|f(z)| > |f(w)|exp(η| log z−logw|) ≥ |f(w)|max(|z|/|w|,|w|/|z|)η

.

2.3. Corollary. (a) Replacing (1) by

(2) |f(z0)| ≥ |f(w0)|1/K

does not change the class of functions satisfying a head-start condition of exponent
K.

(b) Suppose that f satisfies a head-start condition of exponent K0 > 1. Then f satisfies
a head-start condition of exponent K for every K ≥ K0.

Proof. Clearly (b) is a consequence of (a). So let θ > 0 and suppose that there is M1 > 0
such that (2) holds whenever z0 and w0, satisfying |f(z0)|, |f(w0)| ≥M1, |z0| ≥ |w0|K and
windf (z0, w0) ≤ θ, belong to a common tract.

Let M , δ and η be the constants from Lemma 2.2. Since f is continuous, we can choose
M2 ≥M so large that

|w| > max

(
K

1
η(K−1) , exp(

δ

K − 1
)

)
whenever |f(w)| ≥M2.

If z0, w0 are as above with |f(z0)|, |f(w0)| ≥ max(M1,M2), then

|logz0 − logw0| ≥ log
|z0|
|w0|

≥ (K − 1) log |w0| > δ and(
|z0|
|w0|

)η

≥ |w0|η(K−1) > K.

By Lemma 2.2, either

|f(z0)| > |f(w0)|K or |f(w0)| > |f(z0)|K .

By (2), the second possibility is excluded, so (1) holds, as required. �

2.4. Theorem (Properties of H). (a) H is closed under composition.
(b) H is closed under quasiconformal equivalence. That is, if f ∈ H and ϕ, ψ : C → C

are quasiconformal such that g := ϕ ◦ f ◦ ψ is holomorphic, then g ∈ H.
(c) If f ∈ B has finite order, then f ∈ H.
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Proof. If f is an entire function and g has at most logarithmically spiralling tracts, then
the tracts of f ◦ g also spiral at most logarithmically, since every asymptotic path of ∞ for
f ◦ g is also an asymptotic path for g.

Now suppose that f and g satisfy a head-start condition and that f has at most loga-
rithmically spiralling tracts; then it is easy to see that the composition f ◦ g also satisfies
a head-start condition.

To prove (b), we will use the following fact. If ϕ is quasiconformal in a neighborhood of
∞ with ϕ(∞) = ∞, and we fix any branch of arg(ϕ(z))− arg(z), then there exists Cϕ > 1
such that

|z|1/Cϕ ≤ |ϕ(z)||z|Cϕ

and

(3) | argϕ(z)− arg z| ≤ Cϕ log |z|
for all sufficiently large z; compare [EL, Lemma 4]2.

Now suppose that ϕ and ψ are quasiconformal such that g = ϕ ◦ f ◦ ψ is holomorphic,
and set C := max(Cϕ, Cψ). Let γ be an asymptotic path for g. Then ψ◦γ is an asymptotic
path for f , and thus does not spiral more than logarithmically. Thus γ does not spiral
more than logarithmically by (3), and g also has at most logarithmically spiralling tracts.

Furthermore, let θ > 0, K > 1 and choose M sufficiently large (to be fixed below).
Suppose that z and w belong to a common tract of g with |g(z)|, |g(w)| ≥ M , |z| ≥ |w|K
and windg(z, w) ≤ θ. Provided M is large enough, the points z̃ := ψ(z) and w̃ := ψ(w)
belong to a common tract of f , with |f(z̃)|, |f(w̃)| ≥M1/C and

|z̃| ≥ |z|1/C ≥ |w|K/C ≥ |w̃|K/C2

.

Furthermore,

| arg f(z̃)− arg f(w̃)| ≤ | arg g(z)− arg g(w)|+ C(log |z̃|+ log |w̃|)
≤ θmax(log |z|, log |w|) + 2Cmax(log |z̃|, log |w̃|)
≤ (θ + 2) · C ·max(log |z̃|, log |w̃|).

Thus windf (z̃, w̃) ≤ (θ + 2)C =: θ̃.
So if K > C2 was large enough such that f satisfies a head-start condition of exponent

K̃ := K/C2 for θ̃, then we can let M̃ be the corresponding constant for f and setM := M̃C .
Then

|g(z)| ≥ |f(z̃)|1/C ≥ |f(w̃)|K̃/C ≥ |g(w)|K̃/C2

> |g(w)|1/K .
By Corollary 2.3, g satisfies a head-start condition for K.

To prove (c), first recall that the tracts of any finite order function f ∈ B spiral at most
logarithmically by the Ahlfors spiral theorem [H].

So it is sufficient to show that an entire function f ∈ B which does not satisfy a head-
start condition has infinite order. Let θ > 0 and suppose that for every K > 1, there exist

2Eremenko and Lyubich refer to [LV], but we did not find a proof of the — surely classical — estimate
(3) there. A short proof can be found in the appendix of [vS].
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z and w which satisfy the hypotheses of both the head-start condition and of Lemma 2.2
(b), but

|f(z)| < |f(w)|.
Then |z|/|w| > |w|K−1 and, by Lemma 2.2 (b),

|f(w)| > |f(z)||w|η(K−1)

,

or in other words,

log log |f(w)| > η(K − 1) log |w|+ log log |f(z)| > η(K − 1) log |w|.
Since K is arbitrary, this means that f has infinite order. �

Finally, let us observe that functions in our class H have geometrically “well-behaved”
tracts. In particular, this is the case for finite-order functions in B, which may be of
independent interest.

2.5. Proposition (Geometry of tracts).
Suppose that f satisfies a head-start condition of exponent K. Then there exists M > R0

with the following property: if z ∈ C with |f(z)| ≥ M , there exists a curve γ : [0,∞) → C
connecting z and ∞ with |γ(t)| > |z|1/K and |f(γ(t))| > M for all t > 0.

Remark. This means that the boundaries of the components of f−1({|z| > M}) cannot
“wiggle” too much.

Proof. Let M be the constant from the head-start condition, and let α be the radial ray
connecting f(z) to∞. Define γ to be the preimage of α containing z. Then windf (z, γ(t)) =
0 and |f(γ(t))| > |f(z)| ≥M , and thus |γ(t)| > |z|1/K by the head-start condition. �

3. Unboundedness of escaping components

In this section, we prove Eremenko’s conjecture for f ∈ H.

3.1. Theorem (Connected components of I(f)).
Let f ∈ H.

(a) Every connected component of I(f) is unbounded.
(b) More precisely, let R > R0. Then there exists R′ ≥ R with the following property. If

z ∈ C with |fn(z)| ≥ R′ for all n ≥ 0, then there is an unbounded closed connected
set C ⊂ J(f) with z ∈ C and

|fn(w)| ≥ R

for all w ∈ C and for all n ≥ 0. If z ∈ I(f), then C can be chosen to lie in I(f) as
well.

Proof. First note that (b) implies (a). Indeed, let z ∈ I(f). Then we can find n0 such
that (a) applies to fn(z). If C is the unbounded closed connected set from (a), then the
component of f−n0(C) containing z is unbounded (because f is continuous and open).
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Thus, we need to prove (b). Let M , θ and K be the constants from Definition 2.1. We
may suppose that R ≥M . We set R′ := RK .

Let z be a point as in (b), and set zn := fn(z) for n ≥ 0. Let Tn be the tract of f
containing zn. Consider the sequence of sets

Kn := {w ∈ Tn : windf (zn, w) ≤ θ and |f(w)| ≥ |zn+1|1/K}.
Since f maps Tn to {|z| > R0} by a universal covering, the set Kn is connected.

Claim. For every n ≥ 0, Kn+1 ⊂ f(Kn).
Proof. Let w ∈ Tn+1 \ f(Kn). Since f has at most logarithmically spiralling tracts of

order θ,

wind(zn+1, w) ≤ θ.

Our assumption of w /∈ f(Kn) thus implies |w| < |zn+1|1/K . By the head-start condition,
this implies

|f(w)| < |zn+2|1/K ,
and thus w /∈ Kn+1.

Now let Cn be the connected component of f−n(Kn) containing z0. It follows from our
claim that

K0 = C0 ⊃ C1 ⊃ C2 · · · 3 z0.

Furthermore, each Cj is closed, connected and unbounded. Thus the set

C :=
⋂

Ĉj

is compact, nonempty and connected, with ∞, z0 ∈ C. Let C be the component of C \{∞}
containing z0. Since C is compact, C is unbounded.

Then, by definition,

|fn(w)| ≥ |zn|1/K ≥ R

for all w ∈ Cn. In particular, if z ∈ I(f), then every point in w also escapes to ∞. �

4. Curves in I(f)

We will now prove the strong form Eremenko’s conjecture for functions in classs H. More
precisely, we show the following.

4.1. Theorem.
Let f ∈ H. Then there exists a number R with the following property.

Suppose that C ⊂ C is a closed connected set, consisting of more than one point, with

fn(C) ⊂ {|z| ≥ R}
for all n ≥ 0.

Then the closure Ĉ of C in Ĉ is homeomorphic to [0, 1]. If C is unbounded, then ∞
is an endpoint of Ĉ. Every point of C, with the possible exception of one finite endpoint,
belongs to I(f).
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Remark. This result, together with Theorem 3.1, establishes Theorem 1.1.

Proof. Recall that f has at most logarithmically spiralling tracts of some order θ > 0,
and that f satisfies a head-start condition of some order K (with respect to θ). Let R be
larger than both the constant from this condition, and the constant M from Lemma 2.2.

We will use the fact that C as in the statement of the theorem is naturally ordered in
terms of growth rates. More precisely, let n ≥ 0, and let Tn be the tract containing fn(C).
Since f has tracts spiralling at most logarithmically of order θ,

wind(f(z), f(w)) ≤ θ

for all z, w ∈ fn(C). Since fn(C) is connected, it follows that also

windf (z, w) ≤ θ

for all z, w ∈ fn(C). Thus, if

(4) |fn0(z)| < |fn0(w)|K

for some n0 ≥ 0, we can apply the head-start condition to fn0(z) and fn0(w), finding that

|fn(z)| < |fn(w)|
for all n ≥ n0. We will say that z ≺ w if (4) holds for some n0 ≥ 0. Note that, by what
we have just said, the relation ≺ is antisymmetric and transitive.

Claim 1. The order ≺ is total; that is, for every z, w ∈ C, either z ≺ w, w ≺ z or z = w.
Proof. Let δ, η be the constants from Lemma 2.2. If neither z ≺ w nor w ≺ z, then

| log fn(z)− log fn(w)| ≤ δ′

for all n, where δ′ = max(δ,K1/η).
By Lemma 2.2 (a), it follows that

| log z − logw| < 2−nδ′

for all n. Thus z = w.

Claim 2. If z ≺ w, then w ∈ I(f).
Proof. This follows easily from Lemma 2.2 (a).

If C is unbounded, then the order ≺ is easily extended to Ĉ by setting z ≺ ∞ for all
z ∈ C.

It is clear from the definition of ≺ that, for every w ∈ Ĉ, the sets U−
w := {z ∈ Ĉ : z ≺ w}

and U+
w {z ∈ Ĉ : w ≺ z} are open in Ĉ. Thus the usual topology of Ĉ (induced from the

Riemann sphere) is at least as large as the order topology of Ĉ with respect to ≺. Since

Ĉ is compact and the order topology is Hausdorff, the two topologies coincide.
That is, Ĉ is a compact connected metric space with a compatible total order. Thus

Ĉ is homeomorphic to the interval [0, 1], and the endpoints of C are the largest and the
smallest point of C with respect to ≺. In particular, if C is unbounded, then ∞ is an
endpoint. By Claim 2, C can contain at most one nonescaping point, which is necessarily
the ≺-smallest point in C. �
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Proof of Theorem 1.2. Let R be as in Theorem 4.1, and pick R′ as in Theorem 3.1
(b). We set

Y := YR := {z ∈ C : |fn(z)| ≥ R for all n ≥ 0}.
Then Y is clearly closed. Let X̂ be the connected component of Ŷ containing ∞, and let

X := X̂ \ {∞}.
Then X is closed. Every component C of X satisfies the assumptions of Theorem 4.1,

and thus is a curve to ∞ with at most one nonescaping point.
By choice of R′,

YR′ ⊂ X,

and every point in I(f) will eventually iterate into YR′ . This completes the proof. �

5. Expansion and functions of finite order

Throughout this section, f : C → C will be a transcendental function of class B. We
will work exclusively in logarithmic coordinates (compare [EL]). More precisely, set ρ0 :=
logR0,

Hρ0 := {ζ ∈ C : Re ζ > ρ0} and

T := exp−1
(
f(exp(Hρ0))

)
.

Then every component T of T is mapped conformally to a tract of f by exp. Thus we can
define a map

F : T → Hρ0

with exp ◦F = f ◦ exp. We call the components of T the tracts of F ; note that F maps
each such tract conformally to the half plane Hρ0 . The key property of class B which we
will employ is that the map F is strongly expanding on tracts.

5.1. Lemma ([EL, Lemma 1]).

|F ′(ζ)| ≥ 1

4π
(ReF (ζ)− ρ0) for all ζ ∈ T . �

We will now prove Lemma 2.2 using this expansion estimate. To translate its statement
into logarithmic coordinates, let us define, for µ ≥ ρ0, θ > 0 and m ∈ Z, define

Wµ,θ,m := {ζ ∈ C : Re(ζ) ≥ µ and | Im(ζ)− 2πm| ≤ θRe(ζ)}.

5.2. Lemma (Growth of Orbits).
For every θ > 0, there exist constants µ > rho0 and λ, η, δ > 0 with the following properties.

Let ζ, ω belong to the same component T of T with ReF (ζ) ≥ ReF (ω) ≥ µ, and let
m ∈ Z. Then

(a) |ζ − ω| < 1

2
|F (z)− F (ω)|;

(b) if F (ζ), F (ω) ∈ Wµ,θ,m, then

Re(F (ζ)) > λ|ζ − ω|Re(F (ω));
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(c) if F (ζ), F (ω) ∈ Wµ,θ,m and furthermore |ζ − ω| ≥ δ, then

log ReF (ζ) > log ReF (ω) + η|ζ − ω|.

Proof. Set µ := max(2ρ0, ρ0 + 8π). Let us connect F (ω) and F (ζ) by a straight line
segment γ, and set γ′ := (F |T )−1 ◦ γ. Then γ′ is a curve connecting ω and ζ.

By Lemma 5.1,

(5) |F (ζ)− F (ω)| = `(γ) ≥ `(γ′)(Re(F (ω))− ρ0)

4π
≥ |ζ − ω|(ReF (ω)− ρ0)

4π

(where ` denotes euclidean length). Since ReF (ω)− ρ0 > 8π, this proves (a).

To prove (b), recall that, by assumption, Re(F (ζ)) ≥ Re(F (ω)). Therefore,

|F (ζ)− F (ω)| ≤ (2θ + 1) Re(F (ζ))

by definition of W2ρ0,θ,m. Using ReF (ω) ≥ 2ρ0, we obtain from (5) that

Re(F (ω)) · |ζ − ω|
8π

≤ |ζ − ω|(ReF (ω)− ρ0)

4π
≤ |F (ζ)− F (ω)|

≤ (2θ + 1) Re(F (ζ)) = ReF (ω) · (2θ + 1) · Re(F (ζ))

Re(F (ω))
.

Thus
Re(F (ζ))

Re(F (ω))
≥ |ζ − ω|

8π(2θ + 1)
=: λ|ζ − ω|.

This proves (b) if we choose λ > 8π(2θ + 1).

To prove (c), we assume furthermore that |ζ−ω| ≥ δ. By (b), if we choose δ sufficiently
large, then F (ζ) > 2F (ω).

In this case, the slope of the line segment γ is bounded by 3θ:

ImF (ζ)− ImF (ω)

ReF (ζ)− ReF (ω)
≤ θ

ReF (ζ) + ReF (ω)

ReF (ζ)− ReF (ω)
≤ θ

(
1 +

2 ReF (ω)

ReF (ζ)− ReF (ω)

)
< 3θ.

So if we parametrize γ by real parts as a curve γ : [ReF (ω),ReF (ζ)] → C, then

|ζ − ω| ≤ `(γ′) =

∫ ReF (ζ)

ReF (ω)

∣∣∣∣ γ′

F ′(γ(t))

∣∣∣∣ dt
< 3θ

∫ ReF (ζ)

ReF (ω)

dt

t− ρ0

= 3θ(log(ReF (ζ)− ρ0)− log(ReF (ω)− ρ0)).

So

log ReF (ζ) ≥ log(ReF (ζ)−ρ0) > log ReF (ω)− log ρ0+3θ|ζ−ω| > log ReF (ω)+2θ|ζ−ω|

if δ was chosen large enough. This completes the proof. �
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Proof of Lemma 2.2. Let µ, ν, λ, η be the constants from the previous lemma, and
set M := exp(µ). Choose ζ, ω with exp(ζ) = z and exp(ω) = w belonging to the same
component of T . Part (a) of Lemma 2.2 follows directly from (a) in the previous lemma.

Note that windf (z, w) ≤ θ if and only if F (ζ), F (ω) ∈ Wρ0,θ,m for some m ∈ Z. So if the
hypotheses of (b) in Lemma 2.2 hold for z and w, then |ζ − ω| = | log z − logw| ≥ δ.

Now by (c) in the previous Lemma, we have

log ReF (ζ) ≥ log ReF (ω) + η|ζ − ω|.

Since ReF (ζ) = log |f(z)|, we get, by exponentiating twice, that,

|f(z)| ≥ |f(w)|exp(η| log z−logw|) = |f(w)|max( |z|
|w| ,

|w|
|z| )

η

.

This completes the proof. �
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