1 Fun with symbols

(S,0) ¢ (T,7)

W(o)+ B — W(r)
|Blloo <2



2 The Degeneration Theorem

Theorem

4,

S i) e T) 7
(5.0 (T.7)
If [1;] = oo in Teich*(T) then, letting W; = W(T, 7;), then [|[W;||oc — o0,

and, passing to a subsequence,
W;
Willoo

— Weos

with
[T (Wy) — Wi



3 B-invariant arc diagram, B € Z"

X € AD(T) is B-invariant if V(o] € X, J[au], ..., [an] € [(X)(€ AD(S))
such that ay, ..., a, = a.

1
"W —o §W = supp(W) is B-invariant



4 The Arc Lemma

2 Lemma
Given

[i;
SET

and B, there exist finitely many B-invariant arc diagrams for (5,7, [e], [f]).



5 Cone schemes and additive relations

Let C be a (possibly infinite) simplicial complex. We define W (C) to be
all finite formal sums of vertices of C, with positive coefficients, such that if
X € W(C), then the support of X comprises the vertices of a simplex in C.
We can then multiply an element of W (C) by a non-negative real, and add
elements of W (C') if the union of their supports is again the set of vertices
of a simplex in C.



6 Weighted arc diagrams

Let S be a compact surface with (non-trivial) boundary. An arc on S is an
embedding (I,0I) — (S, 9S), up to isotopy (that is not isotopic to a constant
map). We denote the set of arcs on S by A(S). Any two arcs a, 3 € A(S)
have an intersection number (a, #) that is equal to the minimum number of
times that representatives of o and [ intersect. We say that two arcs are
disjoint if they have zero intersection number.

An arc-diagram is a (necessarily finite) set of arcs in S that are pairwise
disjoint. We denote the set of arc-diagrams by AD(S).

A weighted arc-diagram is a arc-diagram with positive real weights as-
signed to each arc. We denote the set of weighted arc-diagrams by WAD(S).
If X € WAD(S), then the support of X, denoted supp(X), is the underlying
arc-diagram. If XY € WAD(S), and supp X UsuppY € AD(X) (i.e. no
arc for X intersects one for Y) then we can form the weighted arc-diagram
X +Y by adding the weights of arcs that appear in both. We say that X > Y
if 37 € WAD(S) such that Y + Z = X.

Given X € WAD(S), we can write

X = Z’U)ia/i

where the q; are distinct. Then we write X |, = w; if @ = ¢, and X|, = 0 if
a ¢ supp X. (Note that X > Y if and only if X|, > Y|, for all o € A(S)).
Also, we write

IXo= sup Xla,

aesupp X

IXlh= 3 Xl

acsupp X

If f:S5 — T is a covering map, and Y € WAD(T), we define f*(Y) €
WAD(S) by

and

f*(Y)|a = Y|f*a

(of course, if f.cv is not an embedded arc, then Y|;, = 0).



7 Lollypop

Given
e

S—=>T

we say
a1y...,0y, = Q

if we can find embedded paths a;,a such that a; = [a;], @ = [a], and

e Ha) = U a;

(here we use the functions a,a; as shorthand for their images). We then de-
fine the relation —o between WAD(S) and WAD(T) to be the least relation
such that

1.
n
E Wi —O W -
i=1
whenever
Qpy .., Oy —>
and
n
1 1
E - S )
- Ww; w
=1

2. A —o 0 for all A € WAD(S),

3.
X oY & X' oV’ == X+X oY +Y'

whenever X + X’ and Y + Y’ are well-defined.



8 Neat path-families and weight

Let S now be a bordered Riemann surface. A path in S is a piecewise smooth
map a : (I,0I) — (S,05) (not up to isotopy). A path family on S is a set of
paths. A path family is neat if

e every path is an embedding,
e every two paths have disjoint images, and
e 1o path is homotopic (through paths) to a constant map.

Given any neat path family F and arc o € A(S) we define F|, to be the set
of paths in F that are representatives of «, and we let supp F € AD(S) be
those « for which F|, is non-empty. We then define W (F) € WAD(S) by
setting W (F)|, to be the reciprocal of the extremal length of F|,; we then
have supp W (F) C supp F. We say that X € WAD(S) is valid for a given
Riemann surface structure on S if there exists a neat path-family F such
that W (F) = X.



9 The Canonical neat path-family

Now consider the set of all bordered Riemann surfaces. We can assign to each
surface S a neat path-family, called the canonical neat path-family F(9)
in such a way that

e if 7' is any neat path-family on S, then
W(F') <W(FN(S))+ B
for some B € WAD(S) with || Bl < 2;

e if f: S — T is a conformal covering map, then FV(S) = f*(FN(T)),
in the sense that a € FN(S) iff foa € FN(T).

We define W (S) = W(FN(S)) € WAD(S).



10 The inclusion lemma

3 Lemma
If Y € WAD(T) is valid for 7, and e : (S,0) — (T,7) is a conformal
embedding, then 3X € WAD(S) valid for o such that

X oV

10



11 Almost maximality

4 Lemma
If X € WAD(S) is valid for o, then 3B, ||B||» < 2 such that

WS(O') —|—B Z X.

11



If M is an n x n matrix with non-negative entries, then either Mx > x
for some x > 0, or Vo ((Mz,u) < (x,u)) for some u > 0. We can generalize
this statement to postive linear relations:

Theorem
Suppose that 7' C R* x R is a positive linear relation. Then either T'(z, z)
for some x > 0, or there exists u > 0 such that T'(x,y) = (u,x) > (u,y).

We can generalize the multiplication of matrices to positive linear relations
as follows: Given postive linear relations R C* x™ and S C™ x!, we define
RS c" x! by

RS(z,z) <= 3Jy:R(z,y)&S(y,2).

Given any set S, let
A(S) ={(z,z) :z € S}

be the diagonal. Here’s a cool theorem:

Theorem
A positive linear relation R C™ x" satisfies R? = R and R D I if and only if
there exists V' C™ such that R = A(V4).

12



12 Domination revisited

Given a surface S, let v be a weighted sum of simple closed curves on S.
Then we define V() = (7, @)?, and we extend V,, linearly to WAD(S).

Theorem
Given e : S — T an embedding, we have

X oV
if and only if for all weighted sums of simple closed curves -,

Vi (X) = Ve, (V).

Theorem
Let (S,T,e, f) be a covering system. Consider w € AD(T). Then either
there exists W € WAD(T) with supp W C w such that

W oW

or there exists a weighted sum 7 of disjoint simple closed curves in S such
that
VA(fTW) < Ve, (W)

whenever supp W C w.

13



13 The finite basis theorem

Let N denote the natural numbers 0,1,2,....

9 Theorem
Let S C N¥. Then there exists a finite subset S’ C S, such that for all z € S,
there exists ' € S’ such that 2’ < x.

14



14 Exact Fit

We say that g : (S, [o]) — (T, [r]) is holomorphic if there exists ¢’ € [o], 7" €
[7] such that ¢ : (S,0") — (T, 7') is holomorphic. The point here is that you
isotope the structures, not the maps. Now, given e : S — T an embedding,
we again define

W, 0 —

to mean that there exist a;,a such that a; = [¢;], @ = [a], and

We then define —o as before. Given a degenerating sequence

CAINAENE)

we have, letting W; = W2 (7;) as before, and passing to a subsequence,

1

[Willoo

— 00,
with .
f Ws —0 W

The statement looks exactly like the one before, but it’s been made more
precise: we do not isotope e in either the maps (S, [0;])-> (T, [7i]) or the
definition of —o.

15



10

11

15 Exact fit and Hubbard trees

Suppose we have an embedding e : S — T. We introduce the topological
arrow. Let A € AD(S) be an arc-diagram. For o € A(T'), we say that

A~ o
to mean that there exist aq, ..., such that
a1, ...0p = Q@

and «; € A for all 4.

Now, suppose that f : C — C is a critically periodic quadratic polynomi-
al. We can define H € AD(C— Py) to be those arcs which can be homotoped
to lie in the Hubbard tree of f. We let H' D H be H augmented by those
arcs from finite points of Py to oo that do not cross any arc in H. We have
the following remarkable theorem:

Theorem
Suppose A € AD(C — Pj) satifies

FPAS A

where e : C— f~' P; — C— Py is the inclusion. Then A C H'. Moreover, A D
H or AN H = () unless f has a non-trivial renormalization, and then AN H
is either empty or the forward saturation of the H' of some renormalization

of f.

This theorem depends very much on the more precise definition of — (and
hence ~).

Now, let f : U — V be a polynomial-like restriction of f, and let n be
the period of 0 for f. We have the following corollary:

Corollary
Suppose A € AD(V — Py) satisfies

frA S A
where e : U — f~'P; — V — Py is the inclusion. Then (f*")*(A) satisfies the

conclusion of the previous theorem.

16



16 Hubbard Trees and Sums of Weights

Continuing with the notation of the previous section, suppose now that W €

WAD(V — Py) satisfies
"W —o W.

and that supp W C H'. Suppose also that f is m-renormalizable with n >
m > n/B.

12 Theorem

Y We < KDY Wi,
H

acH a€eH'—

where K depends only on B.

17



Figure 1: The weighted arc-diagram on U

17 Contracting by a finite union of disjoint
chords

Suppose that U C V C C, and V — U is a finite union of disks. Let X €
WAD(U) be given, as in figure 1. Then split X into a weighted sum of
paths, and join those endpoints of the paths that lie in (V' — U) by disjoint
chords in V' — U, as in figure 2. Finally, join the paths along the chords, to
form chains of weighted paths, and replace each chain with a single path in
V' with weight equal to the harmonic sum of the weights of the paths in the
chain, as in figure 3. The resulting weighted arc-diagram Y satisfies

X oY,

and indeed any maximal Y satisfying that equation can be realized in the
above manner.

Now let f : S — T be a smooth branched cover, and let B C T be a
disjoint union of Jordan domains, such that all of the branch values f(C)
of f liein B. Let A C S be a union of components of B' = f~'(B). Now,
suppose we are given a weighted arc-diagram Y € WAD(T — B). Again,

18



Figure 2: The weighted arc-diagram on U, about to be contracted by a
lamination

Figure 3: The weighted arc-diagram on V', after being contracted

19



13

split it into weighted paths, and connect those endpoints of the paths that
lie in OB by chords in B — f(C'). Then lift the whole picture, via f, to S,
and form chains by connecting paths by those lifts of the above chords that
lie in B — A. Again replace the chains by paths in S — A, to obtain in the
end a weighted arc-diagram X € WAD(S — A). If X can be obtained from
Y in this way, we say that
f

X o-Y.
We can now state our theorem:
Theorem

Suppose we have S, T, A, B as above. Then for any Riemann surface struc-
tures o, 7 on S, T respectively that make f : S — T conformal, we have

Ws_a(0) 6= (1+ ) Wy_p(r)

with € — 0 as |Wr_g(7)]| = .

20
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18 Contraction Applied

Let f : U — V be a quadratic-like map, and suppose that f is n-renormalizable.
Let K, be the small Julia set (around 0) of the renormalization, and let IC,, be
the union of small Julia sets. Let k& > 3, and suppose X € WAD(f~*(V) —
K,) and Y € WAD(V — K,,).

We say that the horizontal part of Y, or Y}, is the part supported on arcs
that do not touch 0V, and the vertical part of Y, or Y, is the rest. Likewise
for X.

Theorem
Suppose that

LYl < ClIX I

fkn
2. X oY

Then
1, < 10002241, .
We will apply the above Theorem in the case where we know that
[ Xnll < Cll X1

Because
X oY

via the inclusion of f=**(V) — K, into V — K,,, we have
Wally < 1XM = 1Xall + [ Xy,

and hence condition 1 above.
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19 Controlled Immersion

22



20 Wesay ... if ...

We introduce the following notational convention:
“We say

Qfilar, ... an), ..., fmlas, ... an))
if
P(ay,...,a,)"

means

We define Q(by, ... ,by) by

Qby, ... ,bm) &

Ary, .oy Py, x)&fi(z, s xn) = by ST, -
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