1 Fun with symbols $$(S,\sigma) \xrightarrow{f} (T,\tau)$$ $$W(\sigma) \in \mathcal{WAD}(S)$$ $$W(\tau) \in \mathcal{WAD}(T)$$ $$W(\sigma) = f^*(W(\tau))$$ $$W(\sigma) + B \multimap W(\tau)$$ $$||B||_{\infty} \le 2$$ ## 2 The Degeneration Theorem #### 1 Theorem $$(S, \sigma_i) \xrightarrow{f} (T, \tau_i)$$ If $[\tau_i] \to \infty$ in Teich*(T) then, letting $W_i = W(T, \tau_i)$, then $||W_i||_{\infty} \to \infty$, and, passing to a subsequence, $$\frac{W_i}{\|W_i\|_{\infty}} \to W_{\infty},$$ with $$f^*(W_\infty) \stackrel{e}{\multimap} W_\infty.$$ ## 3 B-invariant arc diagram, $B \in \mathbb{Z}^+$ $X \in \mathcal{AD}(T)$ is B-invariant if $\forall [\alpha] \in X, \exists [\alpha_1], \dots, [\alpha_n] \in f^*(X) (\in \mathcal{AD}(S))$ such that $\alpha_1, \dots, \alpha_n \stackrel{e}{\to} \alpha$. $$f^*W \longrightarrow \frac{1}{2}W \Rightarrow \operatorname{supp}(W)$$ is *B*-invariant ## 4 The Arc Lemma ## 2 Lemma Given $$S \xrightarrow{[e]}^{[f]} T$$ and B, there exist finitely many B-invariant arc diagrams for (S, T, [e], [f]). ### 5 Cone schemes and additive relations Let C be a (possibly infinite) simplicial complex. We define W(C) to be all finite formal sums of vertices of C, with positive coefficients, such that if $X \in W(C)$, then the support of X comprises the vertices of a simplex in C. We can then multiply an element of W(C) by a non-negative real, and add elements of W(C) if the union of their supports is again the set of vertices of a simplex in C. ### 6 Weighted arc diagrams Let S be a compact surface with (non-trivial) boundary. An arc on S is an embedding $(I, \partial I) \to (S, \partial S)$, up to isotopy (that is not isotopic to a constant map). We denote the set of arcs on S by $\mathcal{A}(S)$. Any two arcs $\alpha, \beta \in \mathcal{A}(S)$ have an intersection number $\langle \alpha, \beta \rangle$ that is equal to the minimum number of times that representatives of α and β intersect. We say that two arcs are disjoint if they have zero intersection number. An arc-diagram is a (necessarily finite) set of arcs in S that are pairwise disjoint. We denote the set of arc-diagrams by $\mathcal{AD}(S)$. A weighted arc-diagram is a arc-diagram with positive real weights assigned to each arc. We denote the set of weighted arc-diagrams by $\mathcal{WAD}(S)$. If $X \in \mathcal{WAD}(S)$, then the support of X, denoted $\mathrm{supp}(X)$, is the underlying arc-diagram. If $X, Y \in \mathcal{WAD}(S)$, and $\mathrm{supp}\, X \cup \mathrm{supp}\, Y \in \mathcal{AD}(X)$ (i.e. no arc for X intersects one for Y) then we can form the weighted arc-diagram X+Y by adding the weights of arcs that appear in both. We say that $X \geq Y$ if $\exists Z \in \mathcal{WAD}(S)$ such that Y+Z=X. Given $X \in \mathcal{WAD}(S)$, we can write $$X = \sum_{i} w_i \alpha_i$$ where the α_i are distinct. Then we write $X|_{\alpha} = w_i$ if $\alpha = \alpha_i$, and $X|_{\alpha} = 0$ if $\alpha \notin \text{supp } X$. (Note that $X \geq Y$ if and only if $X|_{\alpha} \geq Y|_{\alpha}$ for all $\alpha \in \mathcal{A}(S)$). Also, we write $$||X||_{\infty} = \sup_{\alpha \in \operatorname{supp} X} X|_{\alpha},$$ and $$||X||_1 = \sum_{\alpha \in \operatorname{supp} X} X|_{\alpha}.$$ If $f: S \to T$ is a covering map, and $Y \in \mathcal{WAD}(T)$, we define $f^*(Y) \in \mathcal{WAD}(S)$ by $$f^*(Y)|_{\alpha} = Y|_{f_*\alpha}$$ (of course, if $f_*\alpha$ is not an embedded arc, then $Y|_{f_*\alpha}=0$). ## 7 Lollypop Given $$S \xrightarrow{e} T$$ we say $$\alpha_1, \ldots, \alpha_n \to \alpha$$ if we can find embedded paths a_i,a such that $\alpha_i = [a_i], \alpha = [a],$ and $$e^{-1}(a) = \bigcup_{i=1}^{n} a_i$$ (here we use the functions a, a_i as shorthand for their images). We then define the relation \multimap between $\mathcal{WAD}(S)$ and $\mathcal{WAD}(T)$ to be the least relation such that 1. $$\sum_{i=1}^{n} w_i \cdot \alpha_i \multimap w \cdot \alpha$$ whenever $$\alpha_1, \ldots, \alpha_n \to \alpha$$ and $$\sum_{i=1}^{n} \frac{1}{w_i} \le \frac{1}{w},$$ 2. $A \multimap 0$ for all $A \in \mathcal{WAD}(S)$, 3. $$X \multimap Y \quad \& \quad X' \multimap Y' \qquad \Longrightarrow \qquad X + X' \multimap Y + Y'$$ whenever X + X' and Y + Y' are well-defined. ### 8 Neat path-families and weight Let S now be a bordered Riemann surface. A path in S is a piecewise smooth map $a:(I,\partial I)\to (S,\partial S)$ (not up to isotopy). A path family on S is a set of paths. A path family is neat if - every path is an embedding, - every two paths have disjoint images, and - no path is homotopic (through paths) to a constant map. Given any neat path family \mathcal{F} and arc $\alpha \in \mathcal{A}(S)$ we define $\mathcal{F}|_{\alpha}$ to be the set of paths in \mathcal{F} that are representatives of α , and we let $\operatorname{supp} \mathcal{F} \in \mathcal{AD}(S)$ be those α for which $\mathcal{F}|_{\alpha}$ is non-empty. We then define $W(\mathcal{F}) \in \mathcal{WAD}(S)$ by setting $W(\mathcal{F})|_{\alpha}$ to be the reciprocal of the extremal length of $F|_{\alpha}$; we then have $\operatorname{supp} W(\mathcal{F}) \subset \operatorname{supp} F$. We say that $X \in \mathcal{WAD}(S)$ is valid for a given Riemann surface structure on S if there exists a neat path-family \mathcal{F} such that $W(\mathcal{F}) = X$. ### 9 The Canonical neat path-family Now consider the set of all bordered Riemann surfaces. We can assign to each surface S a neat path-family, called the *canonical* neat path-family $\mathcal{F}^N(S)$ in such a way that • if \mathcal{F}' is any neat path-family on S, then $$W(\mathcal{F}') \le W(\mathcal{F}^N(S)) + B$$ for some $B \in \mathcal{WAD}(S)$ with $||B||_{\infty} \leq 2$; • if $f: S \to T$ is a conformal covering map, then $\mathcal{F}^N(S) = f^*(\mathcal{F}^N(T))$, in the sense that $a \in \mathcal{F}^N(S)$ iff $f \circ a \in \mathcal{F}^N(T)$. We define $W(S) = W(\mathcal{F}^N(S)) \in \mathcal{WAD}(S)$. ## 10 The inclusion lemma #### 3 Lemma If $Y \in \mathcal{WAD}(T)$ is valid for τ , and $e:(S,\sigma) \to (T,\tau)$ is a conformal embedding, then $\exists X \in \mathcal{WAD}(S)$ valid for σ such that $$X \stackrel{e}{\multimap} Y$$. ## 11 Almost maximality ### 4 Lemma If $X \in \mathcal{WAD}(S)$ is valid for σ , then $\exists B, \|B\|_{\infty} \leq 2$ such that $$W_S(\sigma) + B \ge X.$$ If M is an $n \times n$ matrix with non-negative entries, then either $Mx \geq x$ for some x > 0, or $\forall x (\langle Mx, u \rangle < \langle x, u \rangle)$ for some u > 0. We can generalize this statement to postive linear relations: #### 5 Theorem Suppose that $T \subset \mathbb{R}^n \times \mathbb{R}^n$ is a positive linear relation. Then either T(x,x) for some $x \geq 0$, or there exists u > 0 such that $T(x,y) \Rightarrow \langle u, x \rangle > \langle u, y \rangle$. We can generalize the multiplication of matrices to positive linear relations as follows: Given postive linear relations $R \subset^n \times^m$ and $S \subset^m \times^l$, we define $RS \subset^n \times^l$ by $$RS(x,z) \iff \exists y : R(x,y) \& S(y,z).$$ Given any set S, let $$\Delta(S) = \{(x, x) : x \in S\}$$ be the diagonal. Here's a cool theorem: #### 6 Theorem A positive linear relation $R \subset^n \times^n$ satisfies $R^2 = R$ and $R \supset I$ if and only if there exists $V \subset^n$ such that $R = \Delta(V^{\perp})$. ### 12 Domination revisited Given a surface S, let γ be a weighted sum of simple closed curves on S. Then we define $V_{\gamma}(\alpha) = \langle \gamma, \alpha \rangle^2$, and we extend V_{γ} linearly to $\mathcal{WAD}(S)$. #### 7 Theorem Given $e: S \to T$ an embedding, we have $$X \stackrel{e}{\multimap} Y$$ if and only if for all weighted sums of simple closed curves γ , $$V_{\gamma}(X) \geq V_{e_*\gamma}(Y).$$ #### 8 Theorem Let (S, T, e, f) be a covering system. Consider $w \in \mathcal{AD}(T)$. Then either there exists $W \in \mathcal{WAD}(T)$ with supp $W \subset w$ such that $$f^*W \stackrel{e}{\multimap} W$$ or there exists a weighted sum γ of disjoint simple closed curves in S such that $$V_{\gamma}(f^*W) < V_{e_*\gamma}(W)$$ whenever supp $W \subset w$. ## 13 The finite basis theorem Let $\mathbb N$ denote the natural numbers $0,1,2,\ldots$ ### 9 Theorem Let $S \subset \mathbb{N}^k$. Then there exists a finite subset $S' \subset S$, such that for all $x \in S$, there exists $x' \in S'$ such that $x' \leq x$. ### 14 Exact Fit We say that $g:(S, [\sigma]) \to (T, [\tau])$ is holomorphic if there exists $\sigma' \in [\sigma], \tau' \in [\tau]$ such that $g:(S, \sigma') \to (T, \tau')$ is holomorphic. The point here is that you isotope the structures, not the maps. Now, given $e: S \to T$ an embedding, we again define $$\alpha_1, \ldots, \alpha_n \stackrel{e}{\to} \alpha$$ to mean that there exist a_i, a such that $\alpha_i = [a_i], \alpha = [a],$ and $$e^{-1}(a) = \bigcup_{i=1}^{n} a_i.$$ We then define *→* as before. Given a degenerating sequence $$(S, [\sigma_i]) \xrightarrow{e}_{f} (T, [\tau_i])$$ we have, letting $W_i = W_T^N(\tau_i)$ as before, and passing to a subsequence, $$\frac{W_i}{\|W_i\|_{\infty}} \to \infty,$$ with $$f^*W_{\infty} \stackrel{e}{\multimap} W_{\infty}.$$ The statement looks exactly like the one before, but it's been made more precise: we do not isotope e in either the maps $(S, [\sigma_i]) \xrightarrow{e} (T, [\tau_i])$ or the definition of \multimap . ### 15 Exact fit and Hubbard trees Suppose we have an embedding $e: S \to T$. We introduce the topological arrow. Let $A \in \mathcal{AD}(S)$ be an arc-diagram. For $\alpha \in \mathcal{A}(T)$, we say that $$A \stackrel{e}{\leadsto} \alpha$$ to mean that there exist $\alpha_1, \ldots \alpha_n$ such that $$\alpha_1, \dots \alpha_n \stackrel{e}{\to} \alpha$$ and $\alpha_i \in A$ for all i. Now, suppose that $f: \mathbb{C} \to \mathbb{C}$ is a critically periodic quadratic polynomial. We can define $H \in \mathcal{AD}(\mathbb{C}-P_f)$ to be those arcs which can be homotoped to lie in the Hubbard tree of f. We let $H' \supset H$ be H augmented by those arcs from finite points of P_f to ∞ that do not cross any arc in H. We have the following remarkable theorem: #### 10 Theorem Suppose $A \in \mathcal{AD}(\mathbb{C} - P_f)$ satisfies $$f^*A \stackrel{e}{\leadsto} A$$ where $e: \mathbb{C} - f^{-1}P_f \to \mathbb{C} - P_f$ is the inclusion. Then $A \subseteq H'$. Moreover, $A \supseteq H$ or $A \cap H = \emptyset$ unless f has a non-trivial renormalization, and then $A \cap H$ is either empty or the forward saturation of the H' of some renormalization of f. This theorem depends very much on the more precise definition of \rightarrow (and hence \rightsquigarrow). Now, let $f: U \to V$ be a polynomial-like restriction of f, and let n be the period of 0 for f. We have the following corollary: #### 11 Corollary Suppose $A \in \mathcal{AD}(V - P_f)$ satisfies $$f^*A \stackrel{e}{\leadsto} A$$ where $e: U - f^{-1}P_f \to V - P_f$ is the inclusion. Then $(f^{3n})^*(A)$ satisfies the conclusion of the previous theorem. ## 16 Hubbard Trees and Sums of Weights Continuing with the notation of the previous section, suppose now that $W \in \mathcal{WAD}(V - P_f)$ satisfies $$f^*W \multimap W$$. and that supp $W \subset H'$. Suppose also that f is m-renormalizable with $n > m \ge n/B$. #### 12 Theorem $$\sum_{\alpha \in H} W|_{\alpha} < K \sum_{\alpha \in H'-H} W|_{\alpha}$$ where K depends only on B. Figure 1: The weighted arc-diagram on U # 17 Contracting by a finite union of disjoint chords Suppose that $U \subset V \subset \hat{\mathbb{C}}$, and V-U is a finite union of disks. Let $X \in \mathcal{WAD}(U)$ be given, as in figure 1. Then split X into a weighted sum of paths, and join those endpoints of the paths that lie in $\partial(V-U)$ by disjoint chords in V-U, as in figure 2. Finally, join the paths along the chords, to form chains of weighted paths, and replace each chain with a single path in V with weight equal to the harmonic sum of the weights of the paths in the chain, as in figure 3. The resulting weighted arc-diagram Y satisfies $$X \multimap Y$$ and indeed any maximal Y satisfying that equation can be realized in the above manner. Now let $f: S \to T$ be a smooth branched cover, and let $B \subset T$ be a disjoint union of Jordan domains, such that all of the branch values f(C) of f lie in B. Let $A \subset S$ be a union of components of $B' = f^{-1}(B)$. Now, suppose we are given a weighted arc-diagram $Y \in \mathcal{WAD}(T - B)$. Again, Figure 2: The weighted arc-diagram on U, about to be contracted by a lamination Figure 3: The weighted arc-diagram on V, after being contracted split it into weighted paths, and connect those endpoints of the paths that lie in ∂B by chords in B - f(C). Then lift the whole picture, via f, to S, and form chains by connecting paths by those lifts of the above chords that lie in B' - A. Again replace the chains by paths in S - A, to obtain in the end a weighted arc-diagram $X \in \mathcal{WAD}(S - A)$. If X can be obtained from Y in this way, we say that $$X \stackrel{f}{\smile} Y$$. We can now state our theorem: #### 13 Theorem Suppose we have S, T, A, B as above. Then for any Riemann surface structures σ, τ on S, T respectively that make $f: S \to T$ conformal, we have $$W_{S-A}(\sigma) \stackrel{f}{\smile} (1+\epsilon)W_{T-B}(\tau)$$ with $\epsilon \to 0$ as $||W_{T-B}(\tau)|| \to \infty$. ### 18 Contraction Applied Let $f: U \to V$ be a quadratic-like map, and suppose that f is n-renormalizable. Let K_n be the small Julia set (around 0) of the renormalization, and let \mathcal{K}_n be the union of small Julia sets. Let $k \geq 3$, and suppose $X \in \mathcal{WAD}(f^{-kn}(V) - \mathcal{K}_n)$ and $Y \in \mathcal{WAD}(V - \mathcal{K}_n)$. We say that the *horizontal* part of Y, or Y_h , is the part supported on arcs that do not touch ∂V , and the *vertical* part of Y, or Y_v , is the rest. Likewise for X. #### 14 Theorem Suppose that 1. $$||Y_h||_1 < C||X_v||_1$$ $$2. \ X \stackrel{f^{kn}}{\smile} Y$$ Then $$||X_v||_1 < 100 C^2 2^k ||Y_v||_1.$$ We will apply the above Theorem in the case where we know that $$||X_h||_1 < C||X_v||_1.$$ Because $$X \multimap Y$$ via the inclusion of $f^{-kn}(V) - \mathcal{K}_n$ into $V - \mathcal{K}_n$, we have $$||Y_h||_1 < ||X||_1 = ||X_h||_1 + ||X_v||_1,$$ and hence condition 1 above. ## 19 Controlled Immersion ## 20 We say ... if ... We introduce the following notational convention: "We say $$Q(f_1(a_1,\ldots,a_n),\ldots,f_m(a_1,\ldots,a_n))$$ if $$P(a_1,\ldots,a_n)''$$ means We define $Q(b_1, \ldots, b_m)$ by $$Q(b_1,\ldots,b_m) \Leftrightarrow$$ $$\exists x_1, \dots, x_n : P(x_1, \dots, x_n) \& f_1(x_1, \dots, x_n) = b_m, \dots, f_m(x_1, \dots, x_n) = b_m.$$