
WANDERING TRIANGLES EXIST

ALEXANDER BLOKH AND LEX OVERSTEEGEN

Abstract. W. P. Thurston introduced closed σd-invariant lami-
nations (where σd = zd : S1 → S1, d ≥ 2) as a tool in complex
dynamics. He defined wandering triangles as triples T ⊂ S1 such
that σn

d (T ) consists of three distinct points for all n ≥ 0 and the
convex hulls of all the sets σn

d (T ) in the plane are pairwise disjoint,
and proved that σ2 admits no wandering triangles. We show that
for every d ≥ 3 there exist uncountably many σd-invariant closed
laminations with wandering triangles and pairwise non-conjugate
factor maps of σd on the corresponding quotient spaces.

1. Introduction

Laminations were introduced by Thurston [10] as a tool for study-
ing both individual complex polynomials and the space of all of them.
In the case of degree d the latter reduces to studying the parame-
ter space of degree d ≥ 2 monic centered polynomials of the form
z 7→ zd + ad−2z

d−2 + · · · + a0 [3]. The set of parameters for which the
corresponding Julia set is connected is called the connectedness locus (if
d = 2 the connectedness locus is called the Mandelbrot set and denoted
by M).

Let P : C∗ → C∗ be a degree d polynomial with a connected Julia set
JP acting on the complex sphere C∗. Denote by KP the corresponding
filled-in Julia set. Let θ = zd : D → D (D ⊂ C is the unit disk).
There exists a conformal isomorphism Ψ : D → C∗ \KP with Ψ ◦ θ =
P ◦Ψ [4, 5]. If JP is locally connected, then Ψ extends to a continuous

function Ψ : D → C∗ \KP . Let σd = θ|∂D, ψ = Ψ|∂D, for each y ∈ JP

let C(y) be the convex hull of the set ψ−1(y) in the unit disk, and let
LP be the collection of all chords of S1 contained in the boundary of
all the sets C(y), y ∈ JP (if C(y) is a point then this point is included
in LP too). Then LP is an example of a d-invariant lamination. Such
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a lamination gives a combinatorial description of JP . By Kiwi [7] a
similar construction is possible for all polynomials with connected Julia
sets and no irrational neutral cycles.

In the case d = 2 Thurston [10] proved that the space of all 2-
invariant (quadratic) laminations can be interpreted through a “meta-
lamination” called QML (quadratic minor lamination). The exact re-
lationship between QML and M is unknown (Thurston conjectured
that the boundary of M is essentially QML). A major ingredient of
Thurston’s theory is the non-existence of wandering triangles for qua-
dratic laminations. From the standpoint of the dynamics in the Ju-
lia set this is equivalent to the non-existence of non-preperiodic non-
precritical branch points in J , and can be viewed as a natural extension
of the same result for maps of finite graphs.

Extensions of Thurston’s results beyond d = 2 have been hampered
by the lack of information about the existence of wandering triangles
for d > 2. Here we sketch the construction of invariant laminations
with wandering triangles.

A lamination L is a closed set of chords and points in D ⊂ C such
that any two distinct chords in L (called leaves) intersect at most at
a common endpoint; leaves may be degenerate. A leaf with endpoints
p, q ∈ S1 is denoted by ` = pq. Denote the union of all leaves in
L by L∗. A gap G of L is the closure of a complementary domain
of L∗ in D. For each chord ` = pq let σd(`) be the chord joining
the points σd(p) and σd(q). The lamination L is d-invariant if for
each ` ∈ L we have σd(`) ∈ L, there exist d pairwise disjoint leaves
`i ∈ L (i = 1, . . . , d) with σd(`i) = `, and for each gap G either
|σd(G ∩ S1)| ≤ 2, or there exists a gap H of L such that σd|G∩S1 maps
G∩S1 onto H ∩S1 as a covering map with positive orientation; in this
case we write σd(G) = H.

Given a lamination L there exists the finest closed equivalence rela-
tion ≈L (or simply ≈) on S1 with the property that if pq ∈ L then p ≈ q
(for some laminations L all of S1 is a single class and S1/ ≈ is a point).
If L is d-invariant then ≈ is σd-invariant, and σd induces a branched
covering map fL : JL → JL, where JL is the quotient space S1/ ≈. For
a polynomial P with locally connected Julia set JP the above defined
lamination LP gives rise to the equivalence ≈P with equivalence classes
being the sets C(y)∩S1, y ∈ JP so that P |JP

and fLP
|JLP

are topologi-
cally conjugate. In particular JLP

is non-degenerate. To avoid ambigu-
ity we from now on consider only q-laminations, i.e. closed d-invariant
laminations L such that the convex hull of each non-degenerate equiv-
alence class of ≈, is either a leaf or a gap of L.
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Let us introduce some notions. Assume that L is a d-invariant q-
lamination, ≈ is its equivalence, and X ⊂ S1 is an equivalence class
of ≈. Call X critical iff σd|X is not 1-to-1 and precritical iff σj

d(X) is

critical for some j ≥ 0. Call X preperiodic if σi
d(X) = σj

d(X) for some
0 ≤ i < j. A gap G is a wandering n-gon if |G ∩ S1| = n ≥ 3 and
G ∩ S1 is neither preperiodic nor precritical. A wandering 3-gon is a
wandering triangle.

Now we list some known facts. J. Kiwi [6] extended Thurston’s
theorem by showing that every non-preperiodic non-precritical gap in
a d-invariant lamination is at most a d-gon. In [8] G. Levin showed
that laminations with one critical class do not have wandering n-gons.
Another result was obtained in [1] (see Theorem 1.1). Let kL be the
maximal number of critical classes X of ≈L with pairwise disjoint in-
finite σd-orbits such that σd(X) is a singleton.

Theorem 1.1. Let L be a d-invariant q-lamination and let Γ be a
non-empty collection of wandering dj-gons (j = 1, 2, . . . ) with distinct
grand orbits. Then

∑
j(dj − 2) ≤ kL − 1 ≤ d− 2.

Until now, it has not been known if wandering triangles exist; our
main result shows that they do.

Theorem 1.2. For each d ≥ 3 there exists an uncountable collection
of d-invariant q-laminations L(α) with a wandering triangle such that
the induced maps fL(α)|JL(α)

are pairwise non-conjugate.

2. Construction

For several obvious reasons we call laminations with wandering tri-
angles WT-laminations. Here we outline the construction of one 3-
invariant (cubic) WT-lamination. The example was inspired by ideas
of [1] and [9]. In a later paper we will use the freedom of the construc-
tion to prove the full version of Theorem 1.2.

The circle S1 is identified with the factor space R/Z; points of S1

are denoted by real numbers x ∈ [0, 1] with the induced circular order.
By an arc (p, q) in the circle we mean the positively oriented arc from
p to q. A few necessary conditions for a cubic lamination L to be a
WT-lamination follow from [1] (or from [6]). Indeed, by Theorem 1.1
if L is a cubic WT-lamination then kL = 2. This implies that the
two critical classes are leaves of L and JL is a dendrite. Other more
dynamical facts about cubic WT-laminations follow from [2].

Let X ⊂ S1. A map g : X → g(X) ⊂ S1 is said to be σ-extendable if
X∪g(X) can be embedded into S1 by means of an order-preserving (not
necessarily continuous) map ϕ so that the induced map g′ : ϕ(X) →
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g′(ϕ(X)) = ϕ(g(X)) ⊂ S1 (defined as g′ = ϕ ◦ g ◦ ϕ−1) coincides with
the map σd|ϕ(X) for some d. The minimal such d is said to be the
pseudo-degree of g.

The idea is to construct sets A ⊂ A′ ⊂ S1 and a σ-extendable map
g : A → A′ of pseudo-degree 3 so that A contains the g-orbit of a triple
T0 and T0 is a wandering triangle of g. The construction is flexible
and can be implemented in uncountably many ways. By the definition
we can then embed A′ into S1 by means of an order-preserving map
ϕ so that the induced map on ϕ(A) coincides with σ3. The set ϕ(T0)
is a wandering triangle for σ3. The σ3-forward invariant lamination
L′ consisting of the sides of all triangles ϕ(Ti) can be extended to a
non-degenerate 3-invariant (cubic) lamination L, and the uncountably
many implementations of the construction give rise to uncountably
many essentially distinct laminations L. The extension onto higher
degrees relies upon the techniques of “inserting an extra wrap” and
completes the proof of Theorem 1.2.

Set B = {0 < c′ < s0 < u0 < 1
2

< v0 < d′ < t0 < 1} and denote by

c̄0 the chord with the endpoints u0 and v0 and by d̄0 the chord with
the endpoints s0 and t0. Let the point u−k be the only point such
that u−k ∈ (u0, v0), σ3(u−k) ∈ (u0, v0), . . . , σ

k
3(u−k) = u0. Similarly

we define points v−k, s−k, t−k. Observe that limn→∞ u−n = 1/2 and
σ3(u−i) = u−i+1; similar facts hold for v−n, s−n, and t−n. All these
points together with the set B form the set B′. The chord connecting
u−k, v−k is denoted by c̄−k and the chord connecting s−k, t−k is denoted
by d̄−k.

The set B′ is an initial part of A used to determine the location
of other points of A on the circle. Below we will define the triple
T0 = {x0,y0, z0} and the set X0 = B′ ∪ T0. On each step a new triple
Tn = {xn,yn, zn} is added and the set Xn = Xn−1 ∪ {xn,yn, zn} is
defined. We denote new points added on each step by boldface letters.
This explains the notation in the next phrase: the map g on points
xn−1, yn−1, zn−1 is defined as g(xn−1) = xn, g(yn−1) = yn, g(zn−1) = zn.
Below by a “triple” we mean one of the sets Ti and by a “triangle” the
convex hull of a triple.

We suggest the following system of notation and rules which are
enforced throughout. Suppose Xi−1 has been defined. The location
of the i-th triple Ti is determined by points p, q, r ∈ Xi−1 with p <
xi < q < yi < r < zi and [(p, xi) ∪ (q, yi) ∪ (r, zi)] ∩Xi−1 = ∅. In this
case we write Ti = T (p,xi, q,yi, r, zi). If 2 or 3 points of a triple are
located between two adjacent points of Xi−1 then we need less than 6
points to denote Ti - e.g., T (p, xi, yi, q, zi) where p, q ∈ Xi−1 means that
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p < xi < yi < q < zi and [(p, yi) ∪ (q, zi)] ∩Xi−1 = ∅. Define the map
g on all points of (B′ ∩ [s−1, t−1]) ∪ {0} as σ3. Set g(u0) = g(v0) = c′,
g(s0) = g(t0) = d′. This defines a map g : B′ \ {c′, d′} → B′. In what
follows the map g is constructed to be order preserving on subsets of
A contained in the closures of components of S1 \{0, s0, u0, 1/2, t0, v0}.

Now we introduce locations of some initial triples: T0 = T (u0,x0,y0, t−1, z0),
T1 = T (c′,x1,y1, t0, z1), T2 = T (v0,x2,y2, d

′, z2), T3 = T (c′,x3,y3, z3),
T4 = T (s−1,x4, v−1,y4, z4), T5 = T (s0,x5, v0,y5, z5), T6 = T (0,x6, c

′,y6, z6),
T7 = T (x0,x7,y7, z7), T8 = (x1,x8,y8, z8), T9 = T (x2,x9,y9, z9), T10 =
T (x3,x10,y10, z10), T11 = (u−1,x11,y11, t−2, z11). Our rules force the
location of some triples, e.g. the fact that T7 ⊂ (x0, y0) forces the loca-
tion of T8, T9, T10. The segment of triples {T0, . . . , T11} is the basis of
induction (see Figure 1).
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Figure 1. Twelve first triangles

Given two disjoint chords p, q denote by S(p, q) the strip enclosed
by p, q and arcs of the circle. Since T11 is contained in S(d̄−2, c̄−1), its
image must be contained in S(d̄−1, c̄0); set T12 = T (y0,x12,y12, t−1, z12).
Thus, T12 separates the chord d̄−1 from T0 (inside the unit disk). Our
rules then imply that T13 = T (y1,x13,y13, t0, z13) separates the chord
d̄0 from T1. Moreover, this fact together with our rules forces the
location of forthcoming triples T14, T15, . . . with respect to X13, X14, . . .
for some time. The first time when the location of the triple is not
forced is when T1 is mapped onto T11 and T13 is mapped onto T23.
At this moment our rules guarantee that T23 must be located in the
arc (y11, z11), but otherwise its location is not forced. The freedom of



6 ALEXANDER BLOKH AND LEX OVERSTEEGEN

choice of the location of T23 at this point, and the similar variety of
options which will be available later on at similar moments, is exactly
the reason why the construction yields not just one, but uncountably
many types of behavior of a wandering triangle.

However here we are only interested in one example, so we choose the
location of T23 as T23 = T (s−2,x23, v−2,y23, z23) (in particular T23 ⊂
S(c̄−2, d̄−2)). This implies that T24 must be located inside S(c̄−1, d̄−1),
and we choose its location so that T24 separates c̄−1 from T4 in the
disk. This forces the location of T25 which separates c̄0 from T5. As
before with d̄0, T1 and T13, this determines the location of the triples
T26, T27, . . . relative to X25, X26, . . . for some time until the choice for
the location of the triple is not forced. This happens exactly at the
moment when T5 maps into T23 and T25 maps into T43. We choose
the location for T43 as T43 = T (u−2,x43,y43, t−3, z43) to mimic already
existing triples T0 and T11. Then we choose T44 so that it separates d̄−2

and T11 and proceed with the construction as before. The step from
T11 to T43 is the first inductive step in the construction.

Let us now describe the induction in general. Step n begins at a mo-
ment in with a triple Tin = T (u−n,xin ,yin , t−n−1, zin) ⊂ S(d̄−n−1, c̄−n).
It is followed by a segment of triples which comply with our rules
and are contained in strips S(d̄−n, c̄−n+1), S(d̄−n+1, c̄−n+2), . . . closer to
chords d̄−n, d̄−n+1, . . . than previously existing triples until the triple
Tjn whose triangle is located to the right of d̄0 and separates d̄0 from
Tjn−1 in the disk. From that time on the behavior of Tjn is forced by our
rules and behavior of Tjn−1 until at a later moment the triple Tjn−1 maps
into Tin and Tjn maps onto a new triple Tkn , closer to 1/2 than pre-
vious triples. We choose Tkn as Tkn = T (s−n−1,xkn , v−n−1,ykn , zkn) ⊂
S(c̄−n−1, d̄−n−1). We now follow this triple by a series of triples con-
tained in the strips S(c̄−n, d̄−n), S(c̄−n+1, d̄−n+1), . . . closer to the chords
c̄−n, c̄−n+1, . . . than previously existing triples. This series of triples
ends with a triple Tln whose triangle separates c̄0 from Tln−1 and whose
future behavior is forced by that of Tln−1 until the moment when Tln−1

maps onto Tkn . At this moment Tln maps onto Tin+1 and the construc-
tion repeats.

This leads to a set A′ = B′ ∪ (∪∞i=0Ti) ⊂ S1 such that all Ti’s have
pairwise disjoint convex hulls. Moreover, the map g is defined on A =
A′ \ {c′, d′}. We then prove that in fact g : A → A′ is σ-extendable
of pseudo-degree 3. Thus, we can embed A′ into S1 by means of an
order-preserving map ϕ so that the induced map on ϕ(A) coincides
with σ3. The set ϕ(T0) is a wandering triangle for σ3. This forward
invariant non-closed lamination can be completed to a closed cubic
invariant lamination. By the construction, there are countably many
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available choices as to in what strips the triangles Tin and Tkn can be
placed. That leads to uncountably many cubic WT-laminations whose
induced maps on the quotient spaces are non-conjugate. The extension
onto higher degrees relies upon the techniques of “inserting an extra
wrap” and completes the proof of Theorem 1.2.
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