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Abstract

It is well known that every closed 3-manifold has a Heegaard split-
ting and the combinatorics of the Heegaard splitting identifies the
3-manifold. Yet it has been hard to use Heegaard splittings to ob-
tain information about topology and geometry of the manifold. We
develop a new approach to use hyperbolic geometry and in particular
deformation theory of compressible ends of hyperbolic manifolds to
study closed 3-manifolds. Using this approach, we have been able to
prove that a big class of 3-manifolds which admit a Heegaard split-
ting with what we call “bounded combinatorics” admit a negatively
curved metric with sectional curvatures pinched about —1. This an-
swers some unknown questions about these manifolds and in fact gives
a coarse description of the geometry of these manifolds equipped with
the negatively curved metrics.

The description of these geometries is motivated by work of Minsky
in constructing models for hyperbolic manifolds with incompressible
boundary. In fact, much of our work is aimed at developing a similar
theory in the compressible boundary case.
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1 Introduction

Suppose H* and H ™ are 3-dimensional handlebodies whose boundaries are
identified with an oriented closed surface of genus ¢ > 1 in a way that
the orientation of S agrees with the orientation of 9H" and does not agree
with the one of 0H~. If we glue the handlebodies along S, we obtain a
closed oriented 3-manifold M = H+ Ug H~. Such a decomposition is called a
Heegaard splitting and it is well known that every closed orientable 3-manifold
admits such a splitting. We call the surface S a Heegaard surface and two
Heegaard splittings for M are equivalent if the associated Heegaard surfaces
are isotopic in M. The only 3-manifolds with a Heegaard splitting of genus
< 1 are S, S? x S and Lens spaces. These manifolds are not interesting
in our discussions and therefore we always assume that a Heegaard splitting
has genus at least 2.

An important problem in studying 3-manifolds is using the combinatorics
of the Heegaard splitting and obtain topological and geometrical information
about the 3-manifold and its geometries. Hempel [HeO1] introduced an in-
variant of the Heegaard splitting, which we call handlebody distance, and
conjectured that the 3-manifold is hyperbolic (admits a hyperbolic metric)
if it has a Heegaard spltting with handlebody distance at least 3.

Work of Haken [Ha68], Casson-Gordon [CG87], Hempel [He01], Thomp-
son [Tho99] and Moriah-Scholtens [MS98] shows that every Heegaard split-
ting of a 3-manifold that is reducible, toroidal or Seifert fibered has han-
dlebody distance at most 2. Therefore Hempel’s conjecture agrees with the
description of 3-manifolds given by Thurston’s Hyperbolization Conjecture.

We introduce a large family of Heegaard splittings which have what we
call R-bounded combinatorics for some R > 0. This definition is motivated
by work of Minsky [Min01] for representations of a surface group in PSLy(C)
and will be more precisely defined in 2.6. Our main theorem here is the
following:

Main Theorem. Given € > 0 and R > 0 there exists n. > 0 depending only
on €, R and x(S) that if M = H" Usg H~ has R-bounded combinatorics and
handlebody distance > n. then M admits a Riemannian metric v such that
the sectional curvature of v is pinched between —1 — € and —1 4+ €. Moreover
v has a lower bound for the injectivity radius independently of the handlebody
distance and €.

This immediately implies that



Corollary 1.1. If the Heegaard splitting M = H* Ug H~ has R-bounded
combinatorics and sufficiently large handlebody distance, then mi (M) is infi-
nite and word hyperbolic. O

On the other hand, Tian [Ti90] has claimed a theorem that in presence
of the metric constructed in the Main Theorem for € small implies that M is
hyperbolic.

Even when we know that a 3-manifold M is hyperbolic, an important
question is to be able to describe the geometry of the hyperbolic metric and
use it to get topological information about M. The important feature of our
construction of the metric for the Main Theorem is that it gives a concrete
description of the metric in terms of known hyperbolic manifolds.

In particular, assume (M; = H;" Us H, ) is a sequence of Heegaard split-
tings with R-bounded combinatorics and handlebody distances tending to
infinity as ¢ — oo. Using the Main Theorem, we can assume that each M;
is equipped with a Riemannian metric v;, whose sectional curvatures are
pinched in the interval [—1 —¢;, —1+¢;] and ¢; — 0 as i — 0o. Then we have
the following

Theorem 1.2. Every geometric limit of the sequence (M;); is hyperbolic and
either homeomorphic to a genus g handlebody or to the trivial interval bundle

S x R.

As a matter of fact, we construct a bi-Lipschitz model for the geometry of
M; outside uniform bounded cores of handlebodies H* and H~. The model
is described in terms of the canonical marked hyperbolic surface bundle over
a Teichmiiller geodesic, where the Teichmiiller geodesic is determined using
the combinatorics of the splitting.

Our approach to the proof of the above results is by studying the deforma-
tion theory of hyperbolic structures on a handlebody. This approach is highly
motivated by works of Minsky and others in proving the Ending Lamination
Conjecture and constructing a bi-Lipschitz model for hyperbolic manifolds
with incompressible boundary. Once we have a good understanding of the
hyperbolic structures on the handlebody, we construct two such structures
which are appropriate for our purpose and glue them in a way that we have
a manifold homeomorphic to M = H* Ug H~ and with a Riemannian metric
with pinched negative curvature as required by the Main Theorem.

In section 3, we prove a version of Thurston’s uniform injectivity theo-
rem for hyperbolic structures on handlebodies. This is a starting point for
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studying these structurs. We follow this in section 4, by some observations
about the pleated surfaces in these structures.

In section 5, we prove the following theorm, which is in fact a joint work
with Juan Souto. I am thankful to him for allowing me to present this here.

Theorem 1.3. Suppose A is a filling Masur domain lamination on OH and
A is not realized in N, where N is a hyperbolic structure on H. Then ¢(\)
is the ending lamination of N for some ¢ € Mody(H), where Mody(H) is
the subgroup of the mapping class group of OH whose elements extend to
self-homeomorphisms of H homotopic to identity.

This is necessary for our construction of geometrically infinite structures
with given ending lamination on the handlebody. This theorem answers a
question about these structures which we think has been overlooked. We
should remind the reader that Ohshika [Oh] has claimed a proof of the above
theorem in a special case where N is a strong limit of convex cocompact
structures on H.

Then in section 6, we construct the family By(R) of hyperbolic structures
on a handlebody which have R-bounded combinatorics for some constant
R > 0. We prove that this family is compact in the strong topology and this
is the main tool that helps us make our arguments work.

In sections 7 and 8, similar to Minsky [Min01], we prove a quasi-convexity
result for the set of short curves in a hyperbolic structure in By(R) and then
we use it to show that all these structures have uniform bounded geometry.

We use the bounded geometry in sections 9 and 10 to construct a uniform
model for the end of hyperbolic structures in By(R). We use a description
of the model which was given by Mosher [Mo03] for the case of hyperbolic
structures on S x R. This gives a description of the structure in terms of
the canonical marked hyperbolic surface bundle over a Teichmiiller geodesic
that is determined by the end invarinat of the structure.

We should remark that our results in producing uniform models for this
family of hyperbolic structures could not be implied from such descriptions
for manifolds with incompressible boundary given by Minsky and others.
The question of constructing such models in the general case remain an open
question.

Finally in section 11, we use all these to construct appropriate hyperbolic
structures on H™ and H~. Then we use the model to show that these two
are almost isometric on two subsets homeomorphic to S x [0, 1] and if we
glue them along these subsets, we obtain a manifold homeomorphic to M =



H* U H~. All this is provided when the handlebody distance is sufficiently
large. This proves the Main Theorem and theorem 1.2 immediately. We
briefly describe Tian’s result and its consequence in our setting in section 12.

We should point out that the first known examples of Heegaard splittings
with sufficiently large handlebody distance were constructed by Luo using an
idea of Kobayashi (cf. Hempel [HeO1]). In our construction in the beginning
of the introduction we constructed the manifold by gluing H* and H~ along
S using the identity map; now suppose f is what we call a generic pseudo-
Anosov: the stable (resp. unstable) lamination is not limit of meridians
of H* (resp. H~). Then the handlebody distance for Heegaard splittings
H* Up H™ tends to infinity as n — oo. In fact, in a joint work with Juan
Souto [NS], we proved the same results as our Main Theorem and theorem
1.2 for these examples when n is sufficiently large. One can show that all
these Heegaard splittings have some bounded combinatorics depending on
f. Therefore those results follow from our theorems here; but the proofs
there were more elegant and less involved in the analysis of the ends of
hyperbolic structures on handlebodies and construction of uniform models
for such structures.

On the other hand, work of Farb-Mosher [FM02] produces many more
examples of mapping classes S which satisfy our bounded combinatorics con-
dition once used as a gluing map of a Heegaard splitting H* Uy H. In their
work, they study what they call Schottky subgroups of the mapping class
group. Using their work and work of Rafi [Ra05], we can see that if G is
such a Schottky subgroup of the mapping class group, there exists R > 0,
such that every Heegaard splitting H™ Uy H~ has R-bounded combinatorics,
where f € G. On the other hand Farb-Mosher [FM02, Thm. 1.4] prove that
if ¢1,..., ¢, are pseudo-Anosov elements of the mapping class group of S
whose axes have pairwise disjoint endpoints in Thurston’s compactificiation
of Teichmiiller space, then for all sufficiently large positive integers aq, ..., a,
the mapping classes ¢7',..., g% freely generate a Schottky subgroup G. In
particular, if these pseudo-Anosovs are generic, then there exists R > 0 and
we can choose ay, ..., a, such that H™ Uy H~ satisfies the hypothesis of our
theorems for every f € G.

In [NS], we also used our description of the negatively curved metric on
H" Ug H™ to obtain a variety of topological results about the manifolds.
Since, all we used was the classification of the geometric limits of these hy-
perbolic structures and we have a similar classification here, we can prove
the same results here.



Theorem 1.4. If T' C m(H™") is a finitely generated subgroup of infinite
index, then if M = H" Ug H™ has R-bounded combinatorics and sufficiently
large handlebody distance, the map T' — m (M) induced by the inclusion
H* < M is injective.

Every minimal generating set for m(H™) or m(H~) gives a generating
set for m (M) where M = H" Ug H~ and we call these standard.

Theorem 1.5. The fundamental group of M = H™ Ug H™ has rank g if the
Heegaard splitting has R-bounded combinatorics and large handlebody dis-
tance. Moreover, every minimal generating set of m (M) is Nielsen equivalent
to a standard generating set.

For a definition of Nielsen equivalence see [NS].

Theorem 1.6. For a Heegaard splitting M = H™ Ug H~ with R-bounded
combinatorics and large handlebody distance, every proper subgroup I' C
m1 (M) with rank < 2g — 2 is free.

Theorem 1.7. If M = H" Us H~ has R-bounded combinatorics and large
handlebody distance then the Heegaard genus of M s g and every minimal
Heegaard surface is isotopic to S.



2 Preliminaries

2.1 Coarse geometry

A metric space is geodesic if for any x,y there is a rectifiable path p from =
to y whose length is equal to d(z,y).

Let X and Y be metric spaces. A map f : X — Y is (K, ¢)-quasi-
isometric embedding if

1

?dX(xax,) —C S dY(f(-'E), f(.’L’,)) S KdX(ZL',.'L’,) +c
for z,z' € X. We say f is uniformly proper with respect to a proper, mono-
tonic function p : [0,00) — [0,00) and constants K and c if

p(dx(z,2")) < dy(f(x), f(z") < Kdx(z,2") +c¢ for =z,2" € X.

The function p is called a properness gauge for f. The map f is c-coarsely
surjective if for all y € Y, there exists x € X such that dy (f(z),y) < c. The
map f is a (K, ¢)-quasi-isometry if it is a c-coarsely surjective, (K, ¢)-quasi-
isometric embedding.

Fact 2.1. Suppose X and Y are geodesic metric spaces. Any coarsely sur-
jective, uniformly proper map f : X —'Y s a quasi-isometry with constants
depending only on the constants in the hypothesis.

Given a geodesic metric space X, a (A, ¢)-quasigeodesic in X is a (), ¢)-
quasi-isometric embedding v : I — X, where [ is a closed connected subset
of R. When [ is a compact interval we have a quasigeodesic segment, when
I is a half-line we have a quasigeodesic ray, and when I = R we have a
quasigeodesic line.

Recall that the Hausdorff distance between two subsets A, B C X is the
infimum of r € Ry U {400} such that A is contained in the r-neighborhood
of B, and B is contained in the r-neighborhood of A.

Two paths v : I — X,~' : I' — X are asynchronous fellow travellers with
respect to a (K, c)-quasi-isometry ¢ : I — I’ if there is a constant A such
that d(+'(¢(t)),~(t)) < Afort e I.

Two paths v : I — X,v : I' — X where v is a quasigeodesic are
asynchronous fellow travellers if and only if 7' is a quasigeodesic and the
sets ¥([),'(I") have finite Hausdorff distance in X with constants that are
uniformly related.



2.2 Laminations and Masur domain

Let S be a closed surface of genus g > 1. Let Diff(S) be the group of
diffeomorphisms of S and let Diffy(.S) be the normal subgroup of homeomor-
phisms isotopic to the identity. The mapping class group of S is MCG(S) =
Diff(S) /Diffy(S).

Suppose S is equipped with a hyperbolic metric 5. A geodesic lamination
on S is a closed subset of S which is a disjoint union of simple geodesics.
We denote the space of all these by GL(S). A measured lamination is a
geodesic lamination A together with an invariant (with respect to projection
along \) measure on arcs transversal to A and supported on A. ML(S) is
the space of all measured laminations on S and the projective lamination
space PML(S) is (ML(S)\{0})/R*. We identify PML(S) with the set of
measured laminations which have unit length.

We also use the set UML(S) which is a quotient of PML(S) obtained
by forgetting the measure. We say a geodesic lamination is filling or fills S
if it intersects every essential non-peripheral simple closed curve on S. By
a mazimal lamination we mean an element of GL(S) whose complementary
components are ideal triangles.

It is a standard that the different spaces of laminations defined above do
not depend on the hyperbolic metric 75. This means that there is a natural
homeomorphism from the spaces associated to o to the ones associated to
o', if o and ¢’ are different hyperbolic metrics on S. This homeomorphism
is naturally induced from the identification of the circles at infinity of the
universal covers ¢ and o', via the Gromov boundary of the group m(S).
For more on the spaces of laminations and more see Casson-Bleiler [CB] or
Fathi-Laundenbach-Poénorou [FLP].

Also notice that if Cy represents the set of homotopy classes of essential
simple closed curves on S, then there is an embedding Cy — ML, where
image of o € Cy(S) is a measured lamination whose single leaf is « with total
transverse measure 1. This also induces a natural embedding Cy — PML
and an embedding R, x Cy — ML whose images are dense. Using the
embedding R, xCy — ML, we can extend the geometric intersection number
for simple closed curves to a continuous intersection number

ML x ML = [0, 00),

denoted (1, p2), p11, 2 € ML. Notice that for elemnts p, u' € PML, it
makes sense to say i(p, ') is zero or nonzero. In particular, we say p and g/
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are transverse if i(u, p') # 0.

Now assume H is a handlebody of genus g and S its boundary. We de-
note the group of (isotopy classes of) homeomorphisms of S which extend to
homeomorphisms of H, homotopic to identity by Mody(H). In studying, the
hyperbolic structures on H a subset of ML(S) called Masur Domain O(H)
appears frequently. Recall that by a meridian for H, we mean an essential
simple closed curve on OH that bounds a disk in H. Let’s denote the set
of projective measured laminations that are supported on a finite union of
meridians by M C PML(S) and its closure by M’'. A measured lamina-
tion p belongs to O(H) iff it has nonzero intersection with every element of
M'. We say a (geodesic) lamination is in Masur domain if every measured
lamination supported on that does. The Masur domain has been studied by
Masur [Mas86] and Otal [Ota88] and Masur proved the following:

Theorem 2.2. The Masur domain O is open and invariant under the action
of Modo(H) on PML. Moreover, the action of Mody(H) on O is properly
discontinuous.

Kerckhoff [Ker90] proved that O(H) has full measure in PML(S). Also,
Otal [Ota88| proved that

Lemma 2.3. The complement of a Masur domain multi-curve is incompress-
wble and acylindrical in H.

2.3 The complex of curves

For a finite type surface S = S, the surface of genus g with b boundary
components, the complez of curves was originally defined by Harvey [Ha81].
Here we usually use the definitions and description used by Masur-Minsky
[MM99, MMO00]. The definition is slightly different for an annulus S = S
but the complex of curves, which we denote by C(S) is a locally infinite
simplicial complex with a path metric on its 1-skeleton when it is nonempty.

If 3¢+ b > 4, we consider the vertices of C(S) to be the set of homotopy
classes of essential non-peripheral simple closed curves and essential properly
embedded arcs relative to 0S. Here, non-peripheral curves are those which
are not boundary parallel and essential arcs which are not homotopic (rel.
0S) to subarcs of 0S. A (k + 1)-tuple of different vertices makes a k-simplex
if they have mutually disjoint representatives on the surface.
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Notice that Cy = Cy(S) is the set of vertices of C(S) and when S is a
closed surface it will be the set of homotopy classes of essential simple closed
curves on S which is the same as our previous defintion for C,.

When S = Sp» is a compact annulus, we consider the set of vertices
of C(S) to be the homotopy classes of arcs that connect the two boundary
components of S relative to their endpoints. This of course will be an un-
countable set of vertices; we connect two vertices with an edge when they
have representatives with disjoint interiors. For all other surfaces, we define
C(S) to be empty.

To define the metric, we make every edge isometric to the interval [0, 1]
and define d¢(x,y) of points  and y in the 1-skeleton of C(S) to be length
of the shortest path in the 1-skeleton that connects them.

Remark 2.1. We should note that what we defined as the curve complex
is slightly different from what Masur-Minsky define as the curve complex.
(They only allow simple closed curves in the vertices and they call what we
define above as the arc complex.) Yet it is not hard to see that their complex
quasi-isometrically embeds in our complex. Because of this we can translate
most of their results about the curve complex to here with possibly different
constants.

From now on, by a surface we mean an orientable finite type surface
which is an annulus or has negative Euler characteristic. We also assume
that every subsurface Y C S that we take is essential: the map induced on
the fundamental groups from the inclusion Y < §'is injective and if Y is an
annulus, its core is not peripheral.

Masur-Minsky [MM99] proved that C(S), when nonempty, has infinite
diameter and is hyperbolic in sense of Gromov. In particular, we can define
its boundary at infinity in sense of Gromov, which we denote by 9C(S).

E. Klarreich [Kla] gave a description of the boundary of C(S). In this
description, JC(S) consists of filling laminations in UML(S). Then, she
proved that a sequence (a;,) C Co(S) converges to p € 9C(S) in sense of
Gromov, iff the corresponding sequence in U ML(S) converges to fu.

Following Masur-Minsky [MMO00], we also define a projection 7y from
Co(S) UUML(S) (where Cy(S) denotes the 0-skeleton of C(S)) to subsets of
Co(Y) with diameter at most one, where ¥ C S is an essential subsurface.

We assume S is equipped with a finite area hyperbolic metric. If a €
Co(S)UUML(S) does not intersect Y essentially or Y is a three-holed sphere,
we define my () = 0. If not we have two cases:
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e Y s non-annular. Consider a NY’; this is a set of disjoint curves and
arcs. At least one of the components is an essential curve or arc in Y
since we assumed « intersects Y essentially. Therefore a NY gives a
subset of diameter at most one in C(Y"), which we define to be 7y («).

e Y is an annulus. We can identify the universal cover of S with H? and
we know that the universal cover has a compactification as a closed
disk and the action of 7 (S) on its universal cover extends to this com-
pactification. Take the annular cover Y = H2/m (V) of S to which Y
lifts homeomorphically. The group 7 (Y) is a cyclic subgroup of isome-
tries of H? with two fixed points at infinity. The _quotient of the closed
disk minus these two points is a closed annulus Y that compactifies Y
naturally. We identify C(Y) with C(Y) and define 7y as a map from
Co(S) to set of subsets of Co(Y) with diameter at most one. All lifts of
the geodesic representative of « to Y naturally give properly embedded
arcs in the closed annulus Y. We define my () to be the set of those
which connect the two boundary components. Again this cannot be
empty since « intersects Y essentially and has diameter at most one.

We also denote the distance between projections of @ and 5 in C(Y') by
dy (o, 8) and when Y is an annular neighborhood of the simple closed curve
7, we sometimes use the notations C(v), 7, and d, instead of C(Y"), my and
dy.

Masur-Minsky [MMO00] also proved the following theorem:

Theorem 2.4. (Bounded geodesic image) Let Y be a proper subsurface of
S which is not a three punctured sphere and let g be a geodesic segment, ray
or biinfinite line in C(S) such that wy(v) # 0 for every vertex of g.
There is a constant M only depending on the Euler characteristic of Y,
so that
diamy (g) < M.

2.4 Handlebody distance

Suppose H is a handlebody of genus > 1. The set of meridians of H is a
subset of the 0-skeleton of C(0H) which we denote by A(H). Masur-Minsky
[MMO03] proved that this subset is K-quasi-convex for a constant K that
depends only on x(0H).
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When M = H™ Ug H™ is a Heegaard splitting, since we have identified
boundaries of H* and H~ with S, we can consider A(H") and A(H™) as
subsets of Cy(S). Following Hempel [HeO1], we define the handlebody distance
for the splitting to be de(A(H™), A(H™)).

2.5 Pants decompositions and markings

For a surface S, a multi-curve is a subset of Cy(S) whose elements are simple
closed curves with pairwise distance 1. In particular, a pants decomposition
P is a maximal multi-curve on S. Each component of S\ P is called a pair
of pants. We sometimes consider a multi-curve or a pants decomposition
« as an element of ML or PMJL; in this case we assume it is a measured
lamination or a projectivized measured lamination supported on « where
all the components are equipped with equal transverse measure 1 or is the
projection of such element in PML.

Suppose ay, . .., g are components of a pants decomposition P. One can
see that the component of

S\ (g U---Uay)

that contains a; is either a 1-holed torus or a 4-holed sphere Y. If we replace
«; with an essential simple closed curve § in Y that i(ay,5) = 1 when Y
is a 1-holed torus and i(ay,8) = 2 when Y is a 4-holed torus, we obtain
another pants decomposition @) = S U as U ---a,. We say @ is obtained
by an elementary move on P and we denote this move by P — (). By an
elementary move sequence

P1—>P2—>"'—>Pk

we mean a sequence of pants decomposition, where P, is obtained from P,
by an elementary move for every ¢ =1,...,k — 1.
The following lemma is easy and we will be using it in section 5.

Lemma 2.5. Given a path ag, vy, ..., in C(S), we can extend it to an
elementary-move sequence of pants decompositions Py, Py, ..., Py for which:

every pants decomposition P, 0 < 1 < m, contains an element «; for
some 0 < j < n and Py and P, are arbitrary pants decompositions that
contain oy and a, respectively.
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Following Masur-Minsky [MMO00], we define a marking on a surface S as
follows. A marking o on S is a pants decomposition P, denoted by base(«),
together with a transversal for every component of P. For every component y
of P, a transversal is a simple closed curve ¢ such that a regular neighborhood
of yU{ is either an essential 1-holed torus or an essential 4-holed sphere and
0 does not intersect any other component of P.

Notice that what we have defined above are actually complete clean mark-
ings in [MMO00].

By support of a marking «, we mean the union of all the components of
base() and the transversals. When we consider a marking in Cy(S) we are
in fact considering its support.

We can also extend our definition of 7y in a way that it includes markings:
If Y is an annulus whose core is some 7 € base(«) and ¢ is the transversal
associated to vy, we define my () = my(d). In all other cases, my(a) =
7y (base(a)). This also defines dy («, 3) where (3 is a multi-curve, a geodesic
lamination or another marking.

Note that support of a marking binds the surface, i.e. interesects every
essential simple closed curve. The following follows from work of Kerckhoff
[Ker80].

Lemma 2.6. If « is a marking on a surface S, there exists a unique point
T =71(a) € T(S), where length of support of « is minimized in 7. Moreover
T(ev) is €y-thick, where €y is a constant that depends only on x(S).

If H is a handlebody, by a handlebody pants decomposition, we mean
a pants decomposition on 0H, whose elements are all in A(H). Also by a
handlebody marking, we mean a marking « such that base(«) is a handlebody
pants decomposition.

Proposition 2.7. For a handlebody H, there exists a finite set of handlebody
markings my(H) such that every other handlebody marking is obtained by
action of Modo(H) on an element of mg(H)

2.6 Bounded combinatorics

Suppose « and 3 are multi-curves, geodesic laminations on S or markings;
we say they have R-bounded combinatorics for a constant R > 0 if for every
proper essential subsurface Y C S either dy(«, () is undefined or dy (a, f) <
R.
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When H is a handlebody and « is either a subset of Cy(.S) or a geodesic
lamination, we say « has R-bounded combinatorics respecto to H if there
exists a handlebody pants decomposition P C A(H) such that o and P have
R-bounded combinatorics and when « is a subset of Cy(S), we have

de(a, A(H)) = de(, P).

Finally, when M = H' Ug H ™ is a Heegaard splitting, we say two han-
dlebody pants decompositions P C A(HT) and P~ C A(H ™) realize the
handlebody distance if de(P*, P~) = dc(A(H"), A(H~)). We say this Hee-
gaard splitting has R-bounded combinatorics if there exists handlebody pants
decompositions P C A(H") and P~ C A(H~) which realize the handle-
body distance and have R-bounded combinatorics.

We can easily see that in the above definition we could replace handlebody
pants decompositions with handlebody markings:

Lemma 2.8. Suppose M = H"UgH ~ is a Heegaard splitting with R-bounded
combinatorics and suppose Pt and P~ are the handlebody pants decompo-
sitions used in the definition of the R-bounded combinatorics. Then we can
extend P* and P~ to handlebody markings o™ and o~ which have R-bounded
combinatorics.

Proof. For every v € P* consider if 7,(P~) is empty choose an arbitrary
transversal for 7; otherwise choose a transversal that belongs to m,(P~).
Repeat the same process for every component of P* and then do the same
for components of P~ by using projections of P*. O

2.7 Teichmiiller space and Thurston’s boundary

Like before, assume S is a fixed surface of genus > 2. The Teichmiiller space
of S, denoted T(S5), is the set of hyperbolic structures on S modulo isotopy,
or equivalently the set of conformal structures modulo isotopy. There is a
natural actions of MCG(S) on T(S).

The length pairing T x Cy — R, assigns to each 0 € T and a € Cy(S5)
the length of the unique closed geodesic on the hyperbolic surfac ¢ in the
isotopy class of . This induces a MCG-equivariant embedding T — [0, c0)®
and gives T the MCG-equivariant structure of a smooth manifold of dimen-
sion 6g — 6 diffeomorphic to R®¢. The action of MCG on ¥ is properly
discontinuous and noncocompact, and so the moduli space M = T/ MCG is
a smooth, noncompact orbifold of dimension 6g — 6.
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The length pairing can be extended to a continuous function:

T x ML — (0, 0)
(o, 1) = 1o ()

We also have a MCG-equivariant embedding i : ML — [0,00) by
considering i(u, «) for p € ML and every a € Cy. This induces an embedding
PML — P[0, 00)°, whose image is homeomorphic to a sphere of dimension
6g — 5. The composed map

T — 10, oo)c0 — PI0, oo)c0

is an embedding, the closure of whose image is a closed ball of dimension
6g — 6 with interior ¥ and boundary sphere PML called the Thurston com-
pactification.

2.8 Quadratic differentials and Teichmiiller geodesics

Suppose S with a conformal structure is given. A quadratic differential asso-
ciates to each conformal coordinate z an expression ¢(z)dz? with ¢ holomor-
phic, such that whenever z, w are two overlapping conformal coordinates we
have ¢(z) = g(w)(%2)2. For such a quadratic differential, we have the area
form expressed in the conformal coordinate z = x + iy as |¢(2)| |dz| |dy|, and
the integral of this form is a positive number ||¢|| called the area. We say ¢
is normalized if ||q|| = 1.

Away from zeros of ¢, there is a canonical conformal coordinate ( =
x + 1y, defined locally up to translation and sign, such that ¢ = d¢? in this
coordinate. The lines {y = x} and {x = ¢} are thus consistently defined and
form what are known as the horizontal and vertical foliations, respectively
or g, and g,. The metric |g| = |d(|* = dz? + dy? is also canonically defined,
and is Euclidean with isolated singularities at the zeros of ¢ where there is
concentrated negative curvature.

Now for every ¢ € R consider a new conformal structure obtained by
taking the singular Euclidean metric e*dz? + e ?'dy? and let ¢(t) be the
associated point of ¥(S). This gives path in T which we call a Teichmdiller
geodesic. Teichmiiller’s theorem states that any two points o # ¢’ € ¥ lie
on a Teichmiiller line g, and that line is unique up to an isometry of the
parameter lin R. Moreover, if 0 = g(s) and o' = g(t), then dz(0,0') = |s — |
defines a proper, geodesic metric on ¥, called the Teichmiiller metric.
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For a Teichmiiller geodesic constructed as above, the horizontal and ver-
tical foliations of ¢ correspond to two tansverse elements of PML(S), called
the negative and positive ending laminations or ideal endpoints of ¢g. It turns
out that the image of ¢ is completely determined by this pair. Also given
o € T and p € PML, there is a unique geodesic ray with finite endpoint
o and given by the above description in a way that p is associated to the
vertical foliation and we call i the ideal endpoint of the ray.

The group MCG acts isometrically on ¥, and so the Teichmiiller metric
descends to a proper geodesic metric on the moduli space M. A subset
A C ¥ is said to be cobounded if its projection to M has bounded image.
When K a bounded subset of M is given, we say A is K-cobounded if the
projection of A to M is contained in K.

Mumford’s theorem provides a criterion for coboundedness. Given € > 0,
let €, be the set of hyperbolic structures o whose shortest closed geodesic has
length > € (we sometimes say o is e-thick) and define M, to be the projcted
image of T.. Mumford’s theorem says that the sets M, are all compact and
their union is evidently all of M. It follows that a subset A C ¥ is cobounded
if and only if it is contained in some ¥..

2.9 Canonical bundles over Teichmiiller space

For the closed surface S of genus > 2, there is a smooth fiber bundle § —
T(S) whose fiber S, over 0 € T is a hyperbolic surface representing the
point 0 € €. More precisely, as a smooth fiber bundle we identify & with
S x €, and we impose smoothly varying hyperbolic structures on the fiberes
S, =S x 0,0 €%, such that under the canonical homeomorphism S, — S
the hyperbolic structure on S, represents the point o € ¥. The action of
MCG on T lifts to an fiberwise isometric action of MCG on S. Each fiber S,
is a marked hyperbolic surface, i.e. it comes equipped with an isotopy class
of homeomorphisms to S. The bundle § — ¥ is called the canonical marked
hyperbolic surface bundle over X.

The canonical hyperbolic plane bundle H — ¥ is defined as the composi-
tion X - & — T where ‘H — § is the universal covering map. Each fiber
H,, 0 € T, is isometric to the hyperbolic plane, with hyperbolic structures
varying smoothly in o. The group 7(S) acts as deck transformations of the
covering map H — &S and this action preserves each fiber H, with quotient
S;. The action of m1(S) on H extends to a fiberwise isometric action of
MCG(S,p) on H, such that the covering map H — S is equivariant with
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respect to the group homomorphism MCG(S,p) — MCG(S). Bers [Be73|
proved that H can be identified with the Teichmiiller space of the once-
punctured surface (S,p), and the action of MCG(S,p) on H is identified
with the natural action of the mapping class group on Teichmiiller space.

Suppose T'S denotes the tangent bundle of § and 7,8 denotes the ver-
tical subbundle of T'S, i.e. the kernel of the derivative of the fiber bundle
projection § — T. It follows from standard methods that there exists an
MCG-equivariant connection on §. Choose a locally finite, equivariant open
cover of ¥, and an equivariant partition of unity dominated by this cover.
For each MCG-orbit of this cover, choose a representative U C ¥ and choose
a linear retraction TSy — T,Sy. Use the action of MCG to define this re-
traction on all elements of orbit of U and take a linear combination using
the partition of unity to obtain an equivariant linear retraction 7S — T1,S.
The kernel of this retraction is one such connection. Also by lifting to H we
obtain a connection on the bundle H — ¥, equivariant with respect to the
action of the group MCG(S,p). We fix a choice of such a connection once
and forever.

The connection obtains a smooth sub-bundle 7,,S of T'S which is comple-
mentary to 7,,S: T'S = T,8 & T,S. Lifting to H we also have a sub-bundle
T, H of the bundle TH.

By a closed interval, we mean a closed connected subset of R. Given a
closed interval I C R, a path v : I — ¥ is affine if it satisfies dg(y(s),v(t)) =
K|s — t| for some constant K > 0, and v is piecwise affine if v is affine
restricted to pieces of a decomposition of I into subintervals. In particular ~y
is Z-piecewise affine if it is affine restricted to [n,n + 1] N I for every integer
n.

Given an affine path v : I — ¥, by pulling back the canonical marked
hyperbolic surface bundle § — ¥ and its connection 7},S, we obtain a marked
hyperbolic surface bundle S, — I and a connection 7},S,. This connection
cannonically determines a Riemannian metric on S, as follows. Without loss
of generality, assume K = 1 in the defintion of the affine path 7. Since
T}, S, is 1-dimensional, there is a unique vector field V on S, parallel to 7,8,
such that the derivative of the map &, — I C R takes each vector in V' to
the positive unit vector in R. The fiberwise Riemannian metric on &, now
extends uniquely to a Riemannian metric on S, such that V' is everywhere
orthogonal to the fibration and has unit length.

Even when + is piecewise affine, the above construction gives a Rieman-
nian metric over each affine subpath, and at any point ¢t € I where two
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such subpaths meet, the metrics agree along the fibers, thereby producing a
piecewise Riemannian metric on §,.

We can lift the above construction to H, to produce an MCG-equivariant
(piecewise affine) Riemannian metric such that the covering map H, — S,
is local isometry. One can see that these path metrics are proper geodesic
metrics.

A connection line in either of the bundles &, — I, H, — I is a piecewise
smooth section of the projection map which is everywhere tangent to the
connection. By construction, given s,t € I, a path p from a point in the
fiber over s to a point in the fiber over ¢ has length > |s — ¢|, with equality
only if p is a connection path. It follows that the min distance and the
Hausdorff distance between these fibers are both equal to |s — t|. By moving
points along connection paths, for each s,¢ € I we have well-defined maps
S; — S, Hs — Hy, both denoted hg. By a result of Farb-Mosher [FM02,
Lem. 4.1], for a bounded set K C M and p > 1 there exists K such that if
v: I — T is a K-cobounded, p-Lipschitz, piecewise affine path, then for each
s,t € I the connection map hy, is K/*~-bi-Lipschitz.

2.10 Singular SOLV spaces

When v : I — ¥ is a geodesic there is another pair of natural geometries,
the singular SOLV space S5°™ and its universal cover H5?'V. Recall that
a Teichmiiller geodesic 7(t) (parametrized by length) is given by a quadratic
differential ¢ and a family of singular Euclidean metrics

dsg(t) = e®|dx|* + e |dyl|?
where |dy| and |dz| are associated to the horizontal and vertical measured

foliations of ¢ and the conformal class of ds. ) represents v(t) = S;.
We can use the above to define the singular SOLV metric on S, by

ds* = e”'|dx|” + e |dy|* + dt?

and we denote this metric space by S,?OLV. The lift of this metric to the
universal cover ch, produces a metric space denoted by HEOLV.
Farb-Mosher [FM02, Porp. 4.2] proved the following:

Proposition 2.9. For any p > 1, any bounded subset I C M, and any
A > 0 there exists K > 1,¢ > 0 such that the following holds. If v,7' : I — %
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are two p-Lipschitz, K-cobounded, piecewise affine paths defined on a closed
interval I, and if d(v(s),7'(s)) < A for all s € I, then there exists a map
S, — 8y taking each fiber S,y to the fiber Syiyy by a homeomorphism in the
correct isotopy class, such that any lifted map H, — H is a (K, c)-quasi-
1sometry.

If o' is a geodesic, the same is true with Sy, H.» replaced by the singular
SOLV spaces S5O, HIPW.

2.11 Hyperbolic Manifolds

By a hyperbolic manifold, we always mean a Riemannian 3-manifold with
finitely generated fundamental group and constant sectional curvature —1. A
hyperbolic manifold N is also recognized by the conjugacy class of a discrete
and faithful representation

m1(N) = PSLy(C).

We recall the definition of the injectivity radius of N at a point x, de-
noted by inj(z), is half the length of shortest (homotopically nontrivial) loop
through . By Margulis lemma, there exists a universal constant e;; > 0,
such that for any € < €;7, every component of the e-thin part of N

N<¢:={x € N| inj(z) < €}
is either
1. a torus cusp: a horoball in H? modulo a parabolic action of Z ® Z,
2. a rank one cusp: a horoball in H? modulo a parabolic action of Z, or

3. a solid torus neighborhood of a geodesic

(see Thurston [Thu79] or Benedetti and Petronio [BP].) We also denote the
complement of N<¢ by N2¢ that is the e-thick part of N and the complement
of all cuspidal parts of the thin part by Ne¢. We call the components of type
(1) and (2), e-cusps or simply cusps of N and we call the components of type
(3), e-Margulis-tubes or simply Margulis-tubes.

Suppose N is a hyperbolic manifold and

p:m(N)— PSLy(C)
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is the associated representation which gives a discrete subgroup I' = p(7; (V))
of the group of isometries of H*. We can consider the limit set A(T') and its
convex hull CH(T'); the projection of this set gives a subset CH(N) C N,
which we call the convez core of N. We say N is convex cocompact if CH(N))
is comapct.

The following lemma is an easy observation using hyperbolic geometry.

Lemma 2.10. Let N be a hyperbolic manifold and o a homotopically non-
trivial closed curve in N and o its geodesic representative. Then

coshdn (o, ) < lIy(a)/ln(a"),

where Iy () is length of a as a curve in N.

2.12 Geometrically finite and infinite

A hyperbolic manifold N is geometrically finite if its convex core has finite
volume; otherwise it is geometrically infinite. Works of Bers, Maskit [Mas71],
Kra [Kr72] and Sullivan give a description of the space of geometrically finite
structures on a 3-manifold in terms of the Teichmiiller space of its boundary.

Even when N is geometrically infinite, there exists a compact submani-
fold C' of NG, called the relative compact core such that the inclusion of C
into N is a homotopy equivalence, C intersects each component of ON. in an
annulus, if the corresponding component is a rank one cusp, or in a torus,
if the corresponding component is a torus cusps (see Feighn-McCullough
[FMc87]). The ends of N¢ are in one-to-one correspondence with compo-
nents of 0C'\ P, where P := ON¢ N C is the parabolic locus. In general Ne
can have several ends. Each end is either a geometrically finite end when it
intersects the convex core in a bounded set or a geometrically infinite end
otherwise. Canary [Can89], [Can93b] proved that if the manifold is topologi-
cally tame, (it is homeomorphic to the interior of a compact manifold), then
each geometrically infinite end is simply degenerate: it has a neighborhood
U homeomorphic to R x [0,00) (where R is a compact surface) and there
exists a sequence of simplicial hyperbolic surfaces {h, : R — U} leaving every
compact set such that for each n, h,(R) is homotopic to R x {0} within U.
(We will define simplicial hyperbolic surfaces in 2.14.) A (geodesic) current
on a hyperbolic manifold M (in any dimension) is a (positive) transverse
invariant measure on the geodesic flow of M whose support is contained
within the projective tangent bundle of the convezr core. (The convex core
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of a hyperbolic manifold is the smallest convex submanifold such that the
inclusion is a homotopy equivalence.) Equivalently, if M = H"/T", we may
think of a current as a I'-invariant measure on Lp X Lp\A, where Ly is the
limit set of ' and A is the diagonal. We denote the space of currents on M
by €(M). When the support of a current c is a closed geodesic, we define its
length, {5/(c), to be the length of its support times the transverse measure
of ¢. This extends to a continuous map Il : €(M) — R, U {0}, which is
continuous when M is convexr cocompact: it has a compact convex core. If
S is a hyperbolic surface and a and 8 two closed geodesics, we define their
geometric intersection number i(c, 3) to be the number of points in o N 3.
This extends to a symmetric, bilinear map

i1 C(S) x €(S) - R, U{0}

which is again continuous if S is convex cocompact. Note that ML(S) is
naturally a subset of %'(S) consisting of the currents ¢ such that i(c, ¢) = 0.
(See Bonahon [Bo86] for a discussion of currents and for the above definitions
and facts.)

Canary [Can93b, Thm. 10.1] proved that if E' is a simply degenerate end
of N¢ with a neighborhood homeomorphic to R x [0, 00), there exists a unique
geodesic lamination u(E) called the ending lamination. The main properties
of the ending lamination ;(E) are the following (let R be the interior of R):

1. u(E) is supported on R and fills R,

2. if {7} is a collection of closed geodesics exiting £ which are homotopic
(within U) to curves v; on R, then every limit of the sequence (loz;))
in the space of currents is a measured lamination supported on p(FE).

Here, ly(7;) is its length in a fixed finite area hyperbolic metric on R.

2.13 Hyperbolic structures on handlebodies

A hyperbolic structure on the handlebody H (or simply a structure) is a
complete hyperbolic manifold N with a homeomorphism ¢ : H — N. Two
structures (N, ¢1) and (Na, ¢2) are equivalent if there exists an isometry
f: Ny — Ny such that ¢;' o f o ¢ is homotopic to identity. Equivalently, a
hyperbolic structure on H is given by the conjugacy class of a representation
p : m(H) — PSLy(C). (The equivalence, in fact, follows from the recent
proof of the Tameness Conjecture (Agol [Ag] and Calegari-Gabai [CG].) If
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we choose a base frame (a base point together with a basis for the tangent
space at the base point), this uniquely determines a representation of 7y (H).
By a hyperbolic structure with a base frame, we mean a hyperbolic structure
with a choice of a base frame.

A marked hyperbolic structure on the handlebody H (or simply a marked
structure) is a complete hyperbolic manifold N and an embedding j : 0H —
N, called marking, such that j can be extended to an embedding j : H — N
and N \ j(H) is homeomorphic to 0H x R. Two marked structures (Ny, j;)
and (Ny, j2) are equivalent if there exists an isometry f : Ny — Ny such that
f o 71 and j, are isotopic. We can think of a marked hyperbolic structure
on H as a complete hyperbolic metric on the interior of H defined up to
deformations induced by self-homeomorphisms of H isotopic to identity. In
this case, the marking j is simply any embedding of 0H into the interior of
H isotopic to the inclusion 0H — H. When we speak of a marked structure
N, always a choice of a marking j : 0H — N is implicit. Also when we
have a compact core C' C N, we can isotope the marking 7 and assume that
J(OH) does not intersect C' and the component of N \ j(OH) that gives a
neighborhood of the end of N does not intersect C' either. Notice that the
class of embeddings that are homotopic to j in N\ C' is included in the class
of maps that are isotopic to j.

Remark 2.2. In the literature, usually a marked hyperbolic structure is a
hyperbolic manifold with a marking for the fundamental group (a choice of
an isomorphism from a fixed group to the fundamental group of the man-
ifold). Here our markings not only mark the fundamental group but mark
the isotopy class of identification of the manifold with a fixed copy of the
manifold.

We say a sequence of hyperbolic structures with base frame converge alge-
braically to a hyperbolic manifold N, if the associated representations do. A
sequence of hyperbolic structures converge algebraically if by choosing a base
frame for each of the elements of the sequence, they converge algebraically
(equivalenty if the associated representations converge algebraically up to
conjugation). Also a sequence of hyperbolic structures (N;) converge geo-
metrically to a hyperbolic manifold N if with an appropriate choice of base
points p; € N; and p € N, the pointed manifolds (N;, p;) converge to (N, p)
in the Gromov-Hausdorff topology. In other terms, there exists a sequence
of maps

ki © (Ni(p),p) = (Niypi) >0,
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called the approzimating maps, where N;(p) is the ball of radius 7 about p,
such that on every compact subset of N the maps k; converge to an isometry
in the C"° topology as i — oo.

We use the geometric topology and the approximating maps in many
places of our arguments; in order to shorten the arguments we are usually
careless and consider the approximating maps by

Kk; : N = Nj.

It should be understood that the approximating maps do not have to be
defined on all of N and by the above notation we simply mean that x; is
defined on larger and larges neighborhoods of the base point as ¢ — oo.

We say a sequence of hyperbolic structures convege strongly to N if for
an appropriate choice of base frames, they converge both algebraically and
geometrically to N. For a sequence (N;) of marked structures on H, we say
(N;) converge strongly, if there exists a marked hyperbolic structure N and
basepoints p; € N; and p € N such that (N;,p;) — (N,p) strongly as a
sequence of hyperbolic manifolds and if

ki o (N, p) = (Ni pi)

are the approximating maps, then k; o j is isotopic to j;, where j; is the
marking of N; and j is the marking of .

When a (marked) hyperbolic structure N on H is convex cocompact,
the associated representation and subgroup of PSLy(C) is called a Schottky
group. Suppose N = H? /T is a convex cocompact hyperbolic structure on H
and j : 0H — N is a marking. If € is the domain of discontinuity for the
action of T on the boundary at infinity, then we know that (H* U Q)/T is
homeomorphic to H and gives a compactification for N. Also we know that
/T has a conformal structure which is induced by the Poncaré metric on (2.
The marking j can be used to obtain a marking for /T" and this together with
the conformal structure uniquely determines a point 7 of T(0H ), which we
call the conformal structure at infinity. It follows from works of Bers, Maskit
[Mas71], Kra [Kr72] and Sullivan that this map gives a parametrization of the
space of marked convex cocompact hyperbolic structures on H by T(0H),
the Teichmiiller space of 9H. (This also can be used to show that the space of
unmarked convex cocompact hyperbolic structures on H is parametrized by
T(0H)/Mody(H).) We sometimes say 7 is associated to the marked structure
N.
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In this case, also recall that dCH(N), the boundary of the convex core of
N, is equipped with a hyperbolic metric induced by /N and there is a natural
nearest point retraction from the conformal structure at infinity to OCH(N).
The following follows from a theorem of Bridgeman and Canary [BCO03]:

Theorem 2.11. Given €y there exists J > 0 such that if N is a conver
cocompact hyperbolic structure on handlebody H associated to the conformal
structure at infinity T and the injectivity radius of the hyperbolic metric cor-
respondent to 7 is bounded below by €y, then the nearest point retraction

r:(0H,7) — OCH(N)
15 J-Lipschitz and has a J-Lipschitz homotopy inverse.

On the other hand, when a marked hyperbolic structure N on H is ge-
ometrically infinite, we can choose a relative compact core C C N which
is homeomorophic to H and N \ C is homeomorphic to 0H x R and is a
neighborhood of the end of N. The marking 7 : 9H — N determines a ho-
motopy equivalence from 0H to N\ C' and gives an identification of 0C' with
OH up to isotopy. By Canary’s theorem [Can93b] all geometrically infinite
ends of NV are simply degenerate. In this case P, the parabolic locus, can be
represented by a set of disjoint non-parallel essential simple closed curves on
OH, which we still call the parabolic locus. The ends of N¢ correspond to
the components of the complement of the parabolic locus in 0H.

In particular, when N is geometrically infinite without parabolics, Ne
has exactly one end with a neighborhood N \ C. Since we have an iden-
tificiation of 0C with OH (using the marking j), this uniquely determines
an ending lamination on OH, which we call the ending lamination for the
marked structure N. (Notice that for unmarked structures, the ending lam-
ination is defined only up to actions of Mody.) Even more, Canary [Can93b,
Cor. 10.2] proved that in this case, the ending lamination is in the Masur
domain of H and fills 0H.

2.14 Hyperbolic surfaces in 3-manifolds

Following Thurston [Thu79] (cf. Canary-Epstein-Green [CEG87]), we define
a pleated surface in a hyperbolic 3-manifold N to be a map f : S — N
together with a hyperbolic metric oy on S, called the induced metric, and
a os-geodesic lamination A on S, so that the following holds: f is length-
preserving on paths, maps leaves of A to geodesics and is totally geodesic on
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the complement of \. We say f realizes A’ if ' is a sublamination of A. With
an abuse of notation, when we consider a pleated surface f : S — N, we
usually assume that S is equipped with the induced metric already.

When N is a hyperbolic structure on H, by pleat, we denote the set
of pleated surfaces f : 0H — N which induce the same map as 0H — H
on the level of fundamental groups. If u is a geodesic lamination on 0H, by
pleat, (1) we denote the subset of pleat, whose elements realize p.

Similar to Bonahon [Bo86] and Canary [Can96], we define simplicial hy-
perbolic surfaces and recall some facts about them.

First recall a generalized definition of a triangulation for a surface (cf.
Harer [Ha86] and Hatcher [Ha91]). Let S be a closed surface and Let V
denote a finite collection of points in S. (We often restrict to the case where
V is a single point.) A curve system {1, ..., an,} is a collection of arcs with
disjoint interiors and endpoints in V, no two of which are ambient isotopic (rel
V), and none of which is homotopic to a point (rel V). A triangulation T of
(S,V) is simply a maximal curve system for (S,)). We say two triangulations
are equivalent if they are ambient isotopic (rel V).

Suppose N is a hyperbolic 3-manifold. A continuous map f : .S — N from
a closed surface S into N is said to be a simplicial pre-hyperbolic surface if
there exists a triangulation 7 of S such that image of each face of T is an
immersed, totally geodesic, non-degenerate triangle. The map f induces a
piecewise Riemannian metric on S, and f is said to be a simplicial hyperbolic
surface if the angle about each vertex of T is at least 2r. We say a simplicial
hyperbolic surface realizes a multi-curve v on S if there exists a subset of
the 1-skeleton of 7 homotopic to «, and f maps each component of ' to a
closed geodesic in N..

Here, we only use a special class of simplicial hyperbolic surfaces where all
the vertices of 7 are contained on a subset of the 1-skeleton that is homotopic
to a multi-curve and that multi-curve is realized by the simplicial hyperbolic
surface.

We say a complete Riemannian 3-manifold has pinched negative curva-
ture if there exist nonzero constants —a? and —b? such that the sectional
curvatures of NV lie between the two constants. When N has pinched neg-
ative curvature, instead of simplicial hyperbolic surfaces, we use simplicial
ruled surfaces. Recall that a ruled triangle is constructed by taking 3 totally
geodesic arcs e, e; and ez which form a triangle in N and taking the col-
lection of geodesics (in the appropriate homotopy class) with one endpoint
v12, the mutual endpoint of e; and e, and the other endpoint on e3. A map
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f S — N is called a simplicial ruled surface if there exists a triangulation
T of S, such that each face of the triangulation is taken to a non-degenerate
ruled triangle and the total angle about each vertex is at least 2. We say a
simplicial ruled surface f realizes a simple closed « if there is a closed loop
in the 1-skeleton of the triangulation associated to f which is homotopic to
« and is mapped to a closed geodesic in N.

Suppose an incompressible map f : S — N and a multi-curve . on S are
given such that f(«) is freely homotopic to a a set of closed geodesics. Then
it follows from work of Bonahon [Bo86] that there exists a simplicial ruled
surface which realizes «.

For N hyperbolic or with pinched negative curvature by N<¢ we mean the
set of points of N where the injectivity radius is less than € and N2¢ denotes
its complement. Also, for subsets X,Y C N, by dz°(X,Y) we denote the
infimum of length of P N N2¢ among all paths that connect X to Y and by
diamz(X), we denote the supremum of dx(x, y) for points z, y € X. Various
versions of the next theorem have been proved by Thurston, Bonahon [Bo86|
and Canary [Can93b, Can96.

Lemma 2.12. (Bounded diameter lemma) Let f : S — N be a pleated
surface or a simplicial hyperbolic surface or a simplicial ruled surface, where
in the last case we assume N has pinched negative curvature for constants
—a? and —b* and otherwise N is hyperbolic. Also assume f(7) has length at
least € if v is a compressible curve on S. Then

diamy*(f(S)) < D,

where D depends only on € and x(S) and the pinching constants in case N
has pinched negative curvature.
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3 Uniform injectivity for handlebodies

Our purpose in this section is to obtain a parallel version of Thurston’s
uniform injectivity theorem and the efficiency of pleated surfaces for hyper-
bolic structures on a handlebody H. All we are doing is assuming that our
pleated surfaces are incompressible in a nice neighborhood of the end and
then once they are far from a compact core, we can argue similar to Thurston
[Thu86, Thu9s].

Suppose N is a hyperbolic structure on H. Here in this section we assume
that a compact core C C N is already chosen. Following Canary-Minsky
[CM96], we say a continuous map f : 0H — N is end-homotopic, if there
exists a neighborhood of the end homeomorphic to 0H x (0,00) and f(0H)
is homotopic to dH x {0} within N \ C. We concentrate on end-homotopic
pleated surfaces in N. In fact, our proofs work in a more general setting.
It is enough to have a closed subset C' of any hyperbolic manifold N and
consider pleated surfaces which are acylindrical in N\ C. Then once we are
far from C' the conclusions of our theorems hold.

Fact 3.1. Suppose N s a hyperbolic structure on a handlebody H and C' C N
is a compact core. Then H \ C is acylindrical. In particular, if

f:0H — N\C
18 end-homotopic, we have

(a) every disk in N whose boundary is the f-image of an essential curve of
OH intersects C,

(b) every homotopy in N between f(a) and f(/3), where o and B are non-
homotopic closed curves on OH hits C' and

(c) every homotopy between f(a) and a non-trivial power in N intersects
C, if « is primitive in OH.

By N, (C) we denote the set of points of N which have distance at most
a from C.

Lemma 3.2. Suppose N s a hyperbolic structure on H with a compact core
C and f : OH — N is an end-homotopic pleated or simplicial hyperbolic
surface such that f(OH) C N \ N,(C). Then every compressible curve on
f(OH) has length at least a.
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Proof. The proof is similar to Canary-Minsky [CM96, Lem. 4.1]. Suppose
f(a) bounds a disk in N and « is an essential closed curve on 0H. Suppose
OH is equipped with the metric induced by f. By subdividing « into its
intersections with faces of the triangulation and straightening, we may replace
it by a homotopic curve o/ such that f(«') is a polygonal curve with length at
most that of f(«). Obviously f(«/) is compressible and bounds an immersed
disk D, which we may assume is triangulated by totally geodesic triangles
whose vertices lie on f(a/). Thus D inherits a hyperbolic metric. Becuase
of fact 3.1, D must intersect C' in some point x. This shows that D is a
hyperbolic disk such that every point on the boundary has distance at least
a from x. This implies that f(«') has length at least 27 sinha > a. O

The next lemma is a variation of an observation of Thurston about pleated
surfaces.

Lemma 3.3. Suppose N is a hyperbolic structure on the handlebody H and
C 1s a compact core of N. There exists Dy such that the following holds:
for any € there exists 6 = (e, x(0H)) < € with

FI(OH)<) C N<°, f((0H)>) ¢ N=*
for every end-homotopic f € pleaty that f(OH) C N \ Np,(C).
Proof. Using lemma 3.2, the first statement
f(OH)=) C N=*

is immediate once f(0H) has distance € or more from C because the f-image
of a curve of length < € will be an essential curve of length < e.

Suppose, x is a point in the ey-thick part of 0H then it has two loops
through it of length not exceeding some constant a/4, depending only on
X(0H), such that the two loops generate a free subgroup of rank 2 in 7 (0H).
The commutator of these two loops also will have length at most a. But by
what we said above, if f(OH) does not intersect N,(C)and « is a closed
curve of length at most a on 0H, then f(«) is essential in N by lemma 3.2.
Therefore the loops that we considered on 0H and their commutator map
to nontrivial loops in N. This provides two loops of length at most a based
at f(x) whose representatives do not commute. Because of Margulis lemma,
this immediately implies that the injectivity radius of N at f(x) is greater
than some ¢y > 0 which depends on a.
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Now if z is in the e-thick part of OH for any e, its distance from the
€o-thick part of OH is bounded depending only on e¢. Hence the distance of
f(z) from the dp-thick part of N is bounded with the same bound as well.
From this, one can easily see that f(x) has to be in the d-thick part of NV for
some 0 depending only on € and x(0H). O

If f:S5 — N is a pleated surface with pleating locus A, it naturally lifts
to a map Pf of ) into the tangent line bundle PN of the target hyperbolic
manifold.

Theorem 3.4. (Uniform injectivity) Let H be a handlebody and €y a given
constant. For every hyperbolic structure N on H, a compact core C C N
and an end-homotopic pleated surface f : OH — N, that realizes a geodesic
lamination X\, the map

Pf: A\ - PN

is uniformly injective on the €y-thick part of OH, provided that dy(f(0H),C)
is large. That is, for every € > 0, there is D and 6 > 0 such that for any N,
C C N, X and an end-homotopic f € pleat, with dy(f(0H),C) > D, if x
and y € \ are given whose injectivity radii are greater than e,

do,(z,y) > € = dpn(Pf(x), P(y)) > 6.

Proof. Suppose we are given a sequence of hyperbolic structures NV; on H, and
for every i, we have a compact core C; C N; and an end-homotopic pleated
surfaces f; : 0H — N; realizing a geodesic laminations \;. Also assume
for every i, there are points x; and y; € A; with inj(z;),inj(y;) > € and
dpx, (Pfi(xi), Pfi(yi)) — 0 and dy, (f;(0H),C;) — co. Theorem 3.4 (Uniform
injectivity) will follow when we show that d,,(z;,y;) — 0, where o; is the
metric induced by f;.

By lemma 3.3, we know that inj(fi(z;)) and inj(f;(v;)) are bigger than
do = 0(eg, x(0H)) for i > 0. We take z; and f;(z;) to be base points for
(0H,0;) and N;. Therefore these pleated surfaces and the domain and tar-
get manifolds converge in the geometric topology (after passing to a subse-
quence). Suppose X, N and f : ¥ — N are limits of (0H,0;), N; and f;
respectively. Notice that ¥ and N are not necessarily hyperbolic structures
on O0H and H anymore, but we know that x(X) > x(0H). By taking a
further subsequence, we can also assume that the laminations )\; converge in
the Hausdorff topology and A is the limit lamination on X.
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Recall Thurston’s [Thu86] notion of weakly doubly incompressible surfaces:
if ¥ is a hyperbolic surface of finite area and if f : ¥ — N is a map to a
hyperbolic 3-manifold which takes cusps to cusps, then f is weakly doubly
incompressible if

(a) fi:m(X) — m (V) is injective,

(b) homotopy classes of maps (I,0I) — (X, cusps(X)) relative to cusps
map injectively to homotopy classes of maps (I,9I) — (N, cusps(NV)),

(c) for any cylinder ¢ : S' x I — N with a factorization of its boundary
dc = focy: O(S" x I) — X through X, if 7(c) is injective then
either the image of 7 (¢y) consists of parabolic elements of 71 (%), or ¢y
extends to a map of S* x I into ¥ and

(d) Each maximal cyclic subgroup of 7 (S) is mapped to a maximal cyclic
subgroup of 7 (V).

Lemma 3.5. The limit pleated surface f : ¥ — N is weakly doubly incom-
pressible.

Proof. The proof is very similar to Thurston’s proof [Thu86, Lem. 5.10],
where he proves that limits of doubly incompressible pleated surfaces are
weakly doubly incompressible. The main difference is that here we do not
have doubly incompressibility of the maps f;, but instead using fact 3.1 and
the fact that image of f; is a closed surface, we know that f; is doubly
incompressible in N; \ C; and its distance from C; tends to infinity as i — oo.

Suppose f is not m-injective. Then there exists a closed geodesic a on X
such that f(a) bounds a disk D in N. Since arbitrary large compact subsets
of N are approximately isometric to subsets of N; for large ¢, we obtain
similar disks D; in N;. But since D; has bounded diameter for every i, we
conclude that D; does not intersect C; for ¢ > 0. Then fact 3.1 shows that,
there is a disk D} C 0H, whose f;-image has the the same boundary as D;.
Because 0D; has bounded length, we can assume D] has bounded diameter
in o; and therefore they converge to a disk D' C ¥ with boundary « and we
have a contradiction.

To check condition (c¢), suppose we have an incompressible cylinder A :
S1xI — N in the limit manifold, with a factorization of its boundary through
f. Again by using the approximating maps, we can push this cylinder to
obtain similar cylinders A; in N; with bounded diameter. By fact 3.1 (for
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i > 0) there is a cylinder A, in OH, whose f;-image has the same boundary
as A;. The core curve of these cylinders cannot be inessential in V;, otherwise
we can take a sequence of bounded diameter compressing disks for A; and in
the limit we get a compressing disk for A, which contradicts incompressibility
of A. If the lengths of the core curves of these cylinders tend to 0, then the
boundary components of A are parabolics and (c) is satisfied. Otherwise
since length of JA; is bounded, there is a bounded diameter homotopy in
(0H, ;) between boundaries of A; and in the limit we will have a homotopy
in ¥ between boundaries of A and (c) is satisfied.

For condition (d), suppose « is a non-trivial element of 71 (X), and f,(«) =
B for some 3 € m(N). If we take representatives a C ¥ and b C N for «
and /3 respectively, together with a cylinder C' giving the homotopy from b*
to f(a), we can push this configuration to approximates NV;. Again by fact
3.1, it follows that we can push the homotopy to f;(OH). Therefore, if a; is
the approximation to a on (0H,0;), there is a loop ¢; on OH such that cF
is homotopic to a;. In fact, we can assume that ¢; is contained in a small
neighborhood of a; independently of i and the homotopy between cf and a;
does not leave this neighborhood either. Then in the limit a will be a kth
power in ¥ and this proves (d).

To prove (b), let v and § be two arcs on X with ends in cusps(X) which
represent different homotopy classes of maps

(I1,0I) — (X, cusps(X))

relative to cusps. Suppose that they are mapped to the same element of the
homotopy classes of maps (I,0I) — (IV,cusps(IV)) relative to cusps. This
means that there are arcs g and v in cusps(NV) such that

fla)xvxf(B7) xp
is null-homotopic in N. Note that if we push a, 5, f(a) and f(f) to the
approximates, we get arcs
Oéi,ﬁi : (I, 8[) — (8H, thin(ai))
and
filew), fi(Bi) = (1,01) — (Nj, thin(N;)).

Even more, we can push p and v to p; and v; C thin(N;) in the approximates
and

filoa) vy x fi( B i
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bounds a disk with bounded diameter in N;.

Suppose P is the component of cusps(N) which contains «(0) and 5(0)
and P; is the corresponding component of thin(JV;) in an approximate and
note that P is either a rank 1 cusp or a rank 2 cusp and for every ¢, P; is
either a rank 1 cusp or a Margulis tube. Now we have two different cases:

Case 1: P is a rank 2 cusp. Then 0P has bounded diameter and in the
approximates 0F; has bounded diameter as well and therefore P; is a Margulis
tube in NN; whose distance to I'; tends to infinity as ¢ — oco. Because the
thin components of (0H,o;) corresponding to «;(0) and (;(0) map to P,
some power of their cores are homotopic within P;. Because of fact 3.1 and
lemma 3.3, it is possible only when these cores are homotopic in 0H and
they represent the same component of thin(c;). In addition, it easily follows
that we can connect a;(0) and (3;(0) with an arc p} such that f(u}) and p;
are homotopic relative their endpoints with a homotopy that stays in P; and
therefore does not intersect Cj.

Case 2: P is a rank 1 cusp. The components of cusps(X) corresponding
to a(0) and B(0) map to the same component of cusps(N): P. Hence by
condition (d), the images of their cores are homotopic to the core of P and
there is a cylinder A C P that gives the homotopy. One can easily assume
that p is in A. Now if we push A to the approximates N;, we get cylinders A;
whose boundaries are on f;(0H) and because they have bounded diameter
they stay in IV; \ C; for i > 0. Also note that p; C A;. Again fact 3.1 implies
that there is a homotopy within NV; \ C;, which fixes 0A; and pushes A; to
fi(thin(o;)). In particular, u; is homotopic (rel. endpoints) to an arc f;(u})
with a homotopy that does not intersect Cj;, where p; C thin(o;).

In both these cases, we could find an arc u; C thin(o;) such that f;(p;)
is homotopic to p; (rel. endpoints) within N; \ C; for ¢ > 0. We can do the
same for v; and find and arc v/ C thin(o;) such that f;(v}) is homotopic to
v; (rel. endpoints) within N; \ C;. Then fi(ay * v} * 3; ' % ui!) bounds a disk
in V; \ C; and by fact 3.1, oy; and ; are homotopic as maps from (7,0I) to
(0H, thin(o;)).

We claim that we can assume g and v] have bounded length. We cer-
tainly can assume that p and v] are geodesics (since thin(o;) is convex).
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Also consider geodesics o} and 3! homotopic to «; and f; (rel. endpoints)
respectively. Lengths of o and ! are bounded uniformly. If x! and v] had
very long length then because of hyperbolicity of o; they have to get arbi-
trary close and this means that the two components of thin(o;) get arbitrary
close using an arc in the homotopy class (rel. cusps) of @ and f. Which is
impossible since we always assume that components of the thin part have
distance at least 1 from each other.

Using the above claim, we can assume that the homotopy between «;
and ; has bounded diameter in thick(o;) and therefore in the limit it gives a
homotopy between « and £ relative to cusps(X) and we have a contradiction.

]

Thurston proved [Thu86, Thm. 5.6] that for a weakly doubly incompress-
ible map f : ¥ — N which takes each leaf of A\, a geodesic lamination on X,
to a geodesic in IV, the canonical lifting Pf: A — PN is an embedding. Once
we know this and the above lemma, we can conclude that the limit points
x = lim; z; and y = lim; y; must be equal, since their images in PN are equal.
Therefore, d,,(z;,y;) — 0 and we have proved theorem 3.4. O

If X\ is a lamination in S, a bridge arc for A is an arc in S with end
points on A, which is not deformable rel endpoints into A\. A primitive bridge
arc is a bridge arc whose interior is disjoint from A. If o is a hyperbolic
metric on S and 7 is a bridge arc for A, let [7] denote the homotopy class
of 7 with endpoints fixed, and let [, ([7]) denote the length of the minimal
representative of [7].

For a lamination A\ and two homotopic maps f, f' that realize A\ in a
hyperbolic manifold N, we say that f and f’ are homotopic relative to \ if
there is a homotopy between them fixing A point-wise. One can see that after
precomposing f’ by a homeomorphism isotopic to identity, we can obtain a
map that is homotopic to f relative to A. (Cf Minsky [Min00, Lem. 3.3].)

Similar to Minsky [Min92, Min00], we can strengthen uniform injectivity
as follows:

Corollary 3.6. (Short bridge arcs) Fiz the handlebody H and €. Given
01 > 0 there exists 03 > 0 and D such that the following holds: Let N be a
hyperbolic structure on H and C C N a compact core. Also let g € pleat

be an end-homotopic map with dy(g(0H),C) > D that realizes a lamination
A
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Suppose that T a bridge arc for )\ is either primitive or contained in the
€o-thick part of o,. Then

len(Pg(7)) < 0; = 1o, ([7]) < o1

Moreover if f is another map that realizes A, chosen so it is homotopic to f

relative to A\, then
lgf([T]) < by = 1y, ([7]) < 01

We can use our uniform injectivity theorem and similar to Thurston we
can prove a version of efficiency of pleated surfaces. Recall the notion of
alternation number a(\,~) where X is a lamination with finitely many leaves
and 7 is a simple closed curve. This is defined carefully in Thurston [Thu98|
and Canary [Can93a]. For our purpose, we need only to know that if  does
not intersect the recurrent part of A then a(A, ) is bounded by the number
of intersection points of A and ~.

Theorem 3.7. (Efficiency of pleated surfaces) Given € > 0 smaller than the
Margulis constant, there exists constants ¢ > 0 and D > 0 depending only on
X(0H) and €y such that the following holds. Let N be a hyperbolic structure
on H with a compact core C' C N and f € pleaty is end-homotopic realizing
a mazimal finite leaved lamination A such that image of every component of
A that is a closed curve has length at least € and dy(f(0H),C) > D. Also
suppose v is a simple closed curve on OH. Then

In(y) <oy (7) < In(y) + caly, A). (3.1)

Sketch of proof. The proof follows Thurston’s idea in his original proof. No-
tice that here we are not assuming - to be incompressible in V.

Similar to Thurston, we can find a plygonal representative 7' of v on
OH, equipped with o, by concatentating segments of leaves of A and short
segments between pairs of leaves of A. we alse now that the number of sides of
this polygon is bounded proportional to a(y, A). We can construct a closed
curve 7" in N by taking f(9') and replacing image of every jump by its
geodesic representative (rel. endpoints). The lengths of f(7') and ~" differ
by a small numbed dpending on € and a(7y, \).

Now we have two cases depending on whether f() is essential or inessen-
tial in N. If f(v) is essential then it has a geodesic representative v* and
there exists a pleated annulus A which represents the free homotopy between
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7" and 7*. The area of A is bounded by a multiple of a(y,\) (in fact we
can assume it is bounded by 2ma(7y, A)). If there is a significant difference
between lengths of 4" and ~+* then one can see that there has to be two sides
of 4" coming from f(\) which are close to each other for a long time. Using
the Uniform injectivity theorem, we can see that this cannot be the case and
we are done.

When f(v) is inessential, we can use a similar argument. Choose a plygo-
nal closed curve 7/ that rperesents v on 0H and construct 4" in N as before.
In this case, we know that +” bounds a pleated disk and again by using
Gauss-Bonnet theorem, we know that the area of this disk is bounded pro-
portional to a(y, ). As before, if 4 has very long length, two of its sides
come close and spend a long time close to each other which contradicts the
uniform injectivity as in the previous case. O
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4 Pleated surfaces in handlebodies

For handlebodies, Canary [Can89, Can93b] proved the following:

Proposition 4.1. Let H be a handlebody. There is a collection I of disjoint
simple closed curves on OH with the following properties:

1. T intersects at least three times every essential simple closed compress-
wble curve on OH,

2. T intersects the boundary of every essential and properly embedded an-
nulus (A,0A) C (H,0H) and

3. 0= € Hi(H;Z).

For a hyperbolic structure N on H, by a diskbusting geodesic in N, we
mean the geodesic representative of a collection of curves which satisfy the
conclusion of the above. In fact, Canary proved that we can always choose
[' such that none of its components represent parabolic elements of N and
therefore there always exist a diskbusting geodesic.

Let N be a marked hyperbolic structure on H and I' a diskbusting
geodesic in N which we assume is fixed. Suppose we have chosen a com-
pact core C' C N which contains a diskbusting geodesic and as always, we
assume that image of the marking 7 does not intersect C' and the component
of N\ j(0H) that is a neighborhood of the end of N does not intersect C
either. We call such a compact core a useful compact core for N. If « is a
multi-curve on 0H, by a geodesic representative of « in N \ C, we mean a
closed geodesic which is freely homotopic to j(«) with a homotopy that stays
in N\ C.

Lemma 4.2. Givene > 0 and d > 0 there exists a constant D1 > 0 depending
only on €,d and x(0H) such that if N is a marked hyperbolic structure on H
with a useful compact core C' and if a is a simple closed curve on OH which
has a geodesic representative o in N \ C' with

d%f(a*,C') Z Dl)
then there ezists f € pleat(u) that is homotopic to j within N \ C' and
dx (f(0H),C) > d,

for every finite leaved lamination p that contains o.
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Proof. Suppose p is a finite leaved maximal lamination that contains o and
let v be the recurrent part of . Consider a diskbusting geodesic I' C C'. The
idea is to lift to the 2-fold branched cover of N, branched along I', which
we call N. Similar to Canary [Can93b], one can see that N has a compact
core C' with incompressible boundary which is lift of C. We also know that
we can put a Riemannian metric with pinched negative curvature on N ,
which is hyperbolic and is lift of the metric of N outside C'. By construction,
there is a component of N\ C' which is isometric to N \ C' and we can lift
j and o* to j and &*. Notice that j is incompressible. (Note that there
is a minor problem, when I' has self intersection, but as Canary [Can93b)]
showed, we can get around this problem by perturbing the metric of N in a
small neighborhood of I without affecting the metric in N \ C' and pursue
as before.)

As we mentioned in 2.14, it follows from work of Bonahon [Bo86] and
Canary [Can93b] that there exists a simplicial ruled surface § : 0H — N
homotopic to ; that realizes v. Note that @* has to be in the image of this
surface. Since the covering map is an isometry when restricted to N \ C’, we
have

dZ(6",C) = d5 (", C) > D.

But d1am525( (0H)) is bounded from above depending only on € and x(0H)
because of lemma 2.12 (Bounded diameter lemma). Therefore if we assume
D, is large enough depending only on € and x(0H), the image of g has to be
contalned in N\C’ Even more, we can see that there is a homotopy between
¢ and j that stays within N\C. (Note that in our statement of the bounded
diameter lemma, D depended on the curvature bounds; but here since N is
hyperbolic outside C, it is enough to assume Dy > D + 1 where D is the
upper-bound for the hyperbolic case.)

Then we can project g down to N\C to obtain a simplicial ruled surface g :
OH — N which is homotopic to j within N\ C' and realizes . Replace ruled
triangles of g(0H) with totally geodesic triangles and similar to Thurston’s
construction of pleated surfaces [Thu79], spiral vertices of the associated
triangulation about components of v in a way that it approximates p. In the
limit, we get a pleated surface that realizes ;1 and one can see that during
this process, we stay in a small neighborhood of g(0H) and the obtained
pleated surface has all the required properties of our statement. O

For f € pleaty, we define short(f, B) to be the set of essential simple
closed curves on JH whose length in the induced metric does not exceed B.
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Theorem 4.3. Given € > 0 and d there exists Dy > d and A > 0 depending
only on d, R and x(0H) such that the following holds. Let N be a marked
hyperbolic structure on H and C C N a useful compact core. If o has a
geodesic representative o in N \ C with dx‘(a*,C) > Ds, then for every
5 S CO(S) with dc(a,ﬁ) S 1:

(a) there exists f € pleaty(3) homotopic to j within N \ C

(b) there exists f € pleaty(a) N pleaty () homotopic to j within N \ C
(c) every f € pleaty(B3) has dx*(f(0H),C) > d
)

(d) for every end-homotopic f and g € pleaty(5), the set
short(f, B) Ushort(g, B)

has diameter bounded by A in C(OH).

Proof. Using lemma 4.2, we know that for every d > 0 if we assume D, is
bigger than the constant obtained there and «, 5 and N as in the hypothesis,
there exists f € pleat, (o« U ) homotopic to j within N\ C' and with

d5'(f(0H),C) > d.

This already proves (a) and (b). In particular, this implies that § has a
geodesic representative §* in N\ C' with

d=*(8*,C) > d.

By assuming that d is larger than the constant in lemma 2.12 (Bounded
diameter lemma) for €, this implies (¢) too. In fact, given d > 0, we can
choose Dy large such that for every f € pleat, (/)

dy (f(0H),C) = d.

For part (d), the idea is to use an argument similar to Minsky’s [Min01,
Lem. 3.2]. There, the pleated surfaces are doubly incompressible and in
particular 7 -injective; but here we use theorem 3.4 and lemma 3.3 instead.
Before explaining the proof, note that

diam¢(short(f, B)) < B’ (4.1)
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for every pleated surface f, where B’ depends only on x(0H) and B.

Suppose f and g are as in the statement and oy and o, are the hyper-
bolic metrics induced on OH. After possibly precomposing g with a self-
homeomorphism of OH homotopic to identity, we can assume that f and
g are homotopic via a homotopy that fixes image of S point-wise. As we
showed in proving part (c), by assuming d > Dy we can make sure that both
f(0H) and ¢g(0H) have distance more than Dy from ['y, where Dy is the
constant in lemma 3.3.

Let €' be a constant smaller than the Margulis constant and the injectivity
radii within distance Dy of I'y and let § = §(¢’, x(0H)) be the constant chosen
in lemma 3.3. Suppose 8 meets the J-thin part of either oy or oy, say oy.
Then its f-image meets the d-thin part of N and so does its g-image (since
they agree). But then because of our choice of the constant § from lemma
3.3, the pleated surface g(OH) intersects this component of the thin part of
N in a component of its €¢’-thin part. The images of the cores of the thin
part components of o and o, are homotopic (up to taking a power) within
N\ C. By fact 3.1 these have to be homotopic in 0H and therefore there is
a simple closed curve v that is short in both o; and oy; hence

v € short(f, B) Nshort(g, B).
Together with (4.1), this implies a bound on
diam¢ (short(f, B) U short(g, B)).

Hence we can assume that 3 stays in the J-thick part of o and o,. By
the second part of corollary 3.6, there exists a do > 0 and D such that if
dn(9(0H),I'y) > D and 7 is a bridge arc for /5 in the é-thick part of oy and
whose o¢-length is at most d,, then 7 is homotopic rel endpoints to an arc of
og-length €.

Given this dy, we may construct a simple closed curve s, in the €-thick
part of oy, whose o length is at most a constant L depending only on d,
and x(0H), and which is composed of at most two arcs of  and at most two
bridge arcs of length d, or less (Cf. Minsky [Min01, Lem. 8.5]).

The bridge arcs can be homotoped to have o,-length at most €', and hence
s, can be realized in o, with length at most L + 2¢’. In each surface, this
bounds its C-distance from the curves of length B, and together with (4.1)
we again obtain a bound on

diam¢ (short(f, B) U short(g, B)).
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Hence by simply assuming d > D and choosing D, accordingly, we will be
done. =

For a choice of a useful compact core C' C N, following Canary-Minsky;,
we say a continuous map f : 0H — N is end-homotopic if f is homotopic
to j o ¢ within N \ C for a homeomorphism ¢ : 0H — 0H. We relax our
definition of realization of a multi-curve P by considering

good,y(P; A)
to denote the set of end-homotopic pleated maps f € pleat, such that
l(,f(a) <lIn(a)+ A

for all components « of P, where [y () is length of the geodesic representative
of « if there exists one and is zero otherwise.

Also if o is a hyperbolic metric on 0H and o € Cy(0H), we define
collar(a, o) to be the set of points which have distance < w(l,(«)) from
the geodesic representative of a on o, where

w = max(wp/2,wy — 1)

and
wo(t) := sinhfl(#
o sinh(t/2)"
It is well known that this set is always an embedded annulus, and f «ay, ..., ay

are disjoint and homotopically distinct then collar(q;) are pairwise disjoint
with a definite distance between every pair. (C.f. Minsky [Min01, Sec. 8] or
Buser [Buser, Chap. 4].)

Let f,g € pleat, and let P be a curve system. We say f and g admit
a (K, €)-good homotopy with respect to P if there is a homotopy F : 0H X
[0,1] — N such that

(a) Fy and Fy are respectively the same as f and g up to precomposing
with a homeomorphism of 0H isotopic to identity.

(b) collar(P,0y) = collar(P,o;) where o; denotes the metric induced by
F, fori=0,1.

(¢) The metrics oy and o, are locally K-bi-Lipschitz outside collar (P, o).
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(d) Suppose Py denotes the subset of P consisting of curves o with Iy (a) <
€. The tracks F(p x [0,1]) are bounded in length by K when p ¢
collar(FPp, o).

1. For each a € Py, the image F(collar(«, 0y) x [0, 1]) is contained in a
K-neighborhood of the Margulis tube T, (€).

Similar to Minsky [Min01, Lem. 4.1], we have:

Lemma 4.4. (Homotopy bound) Given A and € > 0, there exists K =
K(A,€) and D > 0 so that for any marked hyperbolic structure N on the
handlebody H, a useful compact core C C N and a mazimal curve system P
on OH, if

f,9 € goody (P; A)

and f(OH)NNp(C) = g(0H)NNp(C) =0 then f and g admit a (K, €)-good
homotopy with respect to P that stays outside of C'.

Sketch of proof. Suppose « is a component of P and f(«) is compressible in
N. Then Iy () = 0 and therefore [,,(a) < A. Then using lemma 3.2, we can
see that f(c) is not compressible by assuming that f(0H) NN 1(C) = 0.

Once we know that components of f(P) are all incompressible and also by
assuming that K is sufficiently large such that we have uniform injectivity for
f and g by using theorem 3.4, then we can argue similar to Minsky [Min01,
Lem. 4.1].

First, we can replace g with g o h, where h : 0H — 0H is a homeomor-
phism isotopic to identity, such that collar(P, o) = collar(P,o,) (which
from now on we call it just collar(P)), and oy and o, are locally K-bi-
Lipschitz off collar(P), and have bounded additive length distortion on
Jcollar(P), with K depending only on A.

Then define F' : 0H x [0,1] — N to be the homotopy between f and ¢
whose tracks F' |{I}X[0,1] are geodesics parametrized at constant speed and we
will bound tracks of F' on successively larger parts of the surface.

Let Y be a component of 9H \ P and let Y, =Y\ [(collar(dY’)). Note
that length of any boundary component of Y, is at most 2 more than its
corresponding geodesic in H and we have

lo(7) <In(y) +A+2

for 0 = oy or o,.
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Lemma 4.5. (Halfway surface) Given ¢, there exists constants A; and D
such that given pants decompositions P and () on OH which differ by an
elementary move and a hyperbolic structure N on H with a useful compact
core C' then

good (P, A;) Ngoody (Q, A2) # )
if there exists an end-homotopic f € pleaty(P) with

dx(f(0H),C) > D).

Proof. In [Min01, Lem. 4.2] Minsky considers a finite leaved lamination px
whose recurrent part is P N Q. To be able to use lemma 4.2, assume we have
changed the marking of NV to one which is homotopic to f within N \ C. If
dz(f(0H), C) is bigger than the constant in lemma 4.2, since f(PNQ) is a
geodesic representative of PN Q) it follows that there exists a pleated surface
h € pleat, that realizes . Because f and h have the same image restricted
to PN Q, and diamz (h(dH)) is bounded depending only on ¢ and x(0H),
by assuming that D is large, we can guarantee that dy(h(0H),C) is bigger
than the constant in theorem 3.7 (Efficiency of pleated surfaces).

Suppose ay € P and «a; € Q) are curves that are exchanged by the ele-
mentary move. Similar to Minsky, we can see that

CL(/,L, al) S 4
for 2+ = 0,1. Hence by using theorem 3.7, we have
lgh (Oéz) S lN(OéZ') + A

for i = 0,1 and a uniform A. Thus h € goody (P, A) N goody(Q, A) and
the lemma is proved. O

Using the above lemmas, we can prove the following corollary.

Corollary 4.6. For given € there exists D > 0 and K > 0 such that for
a hyperbolic structure N on H and a useful compact core C the following
holds. Let Py — P, — -+ — P, be an elementary-move sequence of pants
decompositions on OH and let fy € pleaty(Fy) be end-homotopic and with

dlz\fe(fo(aH)v O) Z D

then either
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1. there exists F': OH x [0,n] — N \ C' such that
b FO = f07
o F; = Flouxyiy € pleaty(F;),
o Fi 12 = Fouxyi-1/2) € pleaty(P_;) N pleaty (F;) and
o Fis a (K, €)-good homotopy restrictd to OH x [i — 1,i — 3] and

OH x [i — 3,1]
for everyi=1,...,n or

2. there exists F': OH x [0,k] — N \ C for some 0 < k < n such that
o Fy= fO;
o [, = Flomxyi) € pleaty(F;),

o Fi 1/ = Fopxii—1/2y € pleaty(FP;_;) N pleaty(F),

o Fis a (K, €)-good homotopy restrictd to OH x [i — 1,i — 3] and
O0H x [i — 3,1 and

1
29
e dx°(FL(0H),C) < D

for everyi=1,...,k.
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5 Non-realizability and ending laminations

Assume H is a handlebody and let N be a hyperbolic structure on H. Sup-
pose C' C N is a relative compact core homeomorphic to H, choose a marking
j:0H — N\ C and as usual we assume that the component of N\ J(0H)
that is a neighborhood of the end does not intersect C'.

As we explained in 2.12, Canary [Can93b] proved that if N is geometri-
cally infinite then there exists an ending lamination which is not realizable
in N. Recall that a geodesic lamination A on 0H is realizable, if there exists
a pleated surface f : 0H — N homotopic to j such that f is totally geodesic
restricted to leaves of A. He also proved that when N has no prabolics, the
ending lamination is filling and in the Masur domain.

One can ask the converse question:

Question. Suppose A is a filling lamination in the Masur domain of 0H and
A is nonrealizable in N, is A or some ¢(A) the ending lamination of N, where
¢ S MOdO(H)7

Recall that the ending lamination for hyperbolic structures on H is de-
fined only up to actions of Modo(H) and for marked structures where we
have a well-defined and uniqe ending lamination, the translates of the ending
lamination are unrealizable too. This is why we have to state our conclusion
up to actions of Mody(H).

Aside from being an interesting problem, to prove that given a Masur
domain filling lamination A, there exists a hyperbolic structure with ending
lamination A one needs to know a solution to the above question or a variation
of that. In fact, this is what we will prove and use in section 6. Work of
Kleineidam-Souto [KS03] answers a similar question for hyperbolic structures
on a compression body that is not a handlebody.

In case of handlebodies, we think this problem was not noticed before.
Here we give an affirmative answer to the above question in case of handle-
bodies and as we explained in the introduction, the proof is a joint work with
Juan Souto. We should also point out that Ohshika [Oh] has also recently
claimed an answer to the above question when N is the strong limit of a
sequence of convex cocompact structures on H.

Theorem 1.3 Suppose A is a filling Masur domain lamination on OH and
A is not realized in N, where N is a hyperbolic structure on H. Then ¢(\)
is the ending lamination of N for some ¢ € Mody(H ).
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The main issue that makes the treatment of the above theorem different
from the other cases, where N is a hyperbolic structure on a manifold with
incompressible boundary or on a compression body, is that general pleated
surfaces in handlebodies are not end-homotopic and it is hard to distinguish
the ones that are end-homotopic from the ones which are not. So simply
having a sequence of pleated surfaces that exit the end of N does not show
much about the geometry of the end of N and the position of the pleated
surfaces.

Here our idea is to use the fact that A is a Masur domain filling lamination
and seek a contradiction using topological arguments.

Let (o) be a sequence of essential simple closed curves on 0H that con-
verges to A in PML(OH). The following is an easy consequence of work of
Otal [Ota88] (cf. Kleineidam-Souto [KS03]).

Fact 5.1. For n sufficiently large, «, s realized in N.

Suppose f, : 0H — N realizes «,, for n. Since limit of the sequence (a,)
is a non-realizable Masur domain lamination, it follows from Kleineidam and
Souto [KS03] that the sequence of maps (f,) exits the end of N, i.e. every
compact subset of NV intersects at most a finite number of pleated surfaces

fn(OH).

Claim 5.1. We can assume, perhaps after considering sufficiently large in-
dexes, that f,, and f,, are homotopic in N \ C for every m and n.

Proof. Using Klarreich’s work [Kla], we know that A represents a point on
the Gromov boundary of the curve complex of 0H and «,, converges to this
point in sense of Gromov. Also we can assume that the sequence () is an
infinite path in the curve complex, i.e. dc(ay,,41) = 1 for every n. Then
we can extend it to an elementary-move sequence of pants decompositions
(P,) as in lemma 2.5. Notice that still every limit of the sequence (P,) in
PML is supported on .

Now for n > 0 choose a maximal lamination pu, that contains P, as a
sublamination and such that all noncompact leaves of pu, that approach a
component 7y of P, (from either side) spiral about 7 in the same direction.
It is not hard to see that such a lamination exists. Then as above by using
Otal’s work [Ota88], we can realize p, for n > 0 and conclude that the
sequence of realizations exits the end of N. Suppose f, realizes u,, and f,11
realizes fi, 1. It will be enough to prove that for n sufficiently large, there
exists a homotopy between f, and f,; that stays away from C.
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Suppose a, a, . .., and 3, aq, . . ., oy are components of P, and P, re-
spectively and let Y C 0H be the closure of a component of 0H \{a, ..., a;}
that contains o and 3. We know that Y is either a 4-holed sphere or a 1-holed
torus.

First we construct a triangulation 7 on 0H as follows. Restricted to Y,
we assume that 7 is one of the triangulations in figure (1). Then extend
this to a triangulation for the entire 0H in a way that all the vertices are on
components of P, N Pp1.

Figure 1: The triangulation on Y.

What is important for us about this triangulation is that P, and P,
are homotopic to subgraphs of the 1-skeleton of 7 and every triangle on Y
has at least one vertex on QY.

For any choice for images of vertices of 7 on geodesic representative of
P, (resp. P,;1) that preserves their ordering, we can construct a simplicial
hyperbolic surface with associated triangulation 7 that realizes P, (resp.
P,y1). The construction is standard, simply make the map identical to f,
(resp. fni1) restricted on P, (reps. P,y1). Change the triangulation by an
ambient isotopy such that the vertices get mapped to the chosen points on
the image of P, (resp. P,y1). Extend this to the 1-skeleton of 7 by sending
each edge to a geodesic in the homotopy class of its f,, (resp. f,41) image
(rel. endpoints). Finally extend the map to the entire surface by maping the
2-simplices totally geodesically.

Using an idea of Thurston, we can construct a continuous family g, (resp.
gl of simplicial hyperbolic surfaces as above that converge to f, (resp.
fn+1) in Hausdorff topology. This is possible by starting from one such map
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g0 (resp. ¢2.,) and for each component v of P, (resp. P,;;) continuously
twist the images of vertices on v about the geodesic representative of v in
the direction that noncompact leaves of p, (resp. p,41) spiral about v when
approching v and then construct the simplicial hyperbolic surface g’ (resp.
gh.,) as above. (Here we are assuming that the image of P, (resp. P,1) is
fixed and we are twisting the vertices of the triangulation about the compo-
nents. )

Notice that a maximal lamination containing P, (resp. P,1) is identified
by the direction that its noncompact leaves spiral about components of P,
(resp. P,41) on each side. Hence the limit of the simplicial hyperbolic sur-
faces gl (resp. gl ;) has to be a pleated surface that realizes i, and since p,
is maximal it has to be identical with f,, (resp. f,.1) up to precomposition
with a self-homeomorphism of 0H isotopic to the identity. From here we
can see that when ¢ is large there is a homtopy with bounded length tracks
between f, and g, (resp. fy41 and g}, ). Fix ¢ large such that this homotopy
stays away from C' and denote h = g4, h' =g},

It will be enough to show the existance of a homotopy between h and A’
whose image is contained in a uniformly bounded neighborhood of h(0H) U
h'(OH). First of all, we precompose h or h' with a self-homeomorphism of
OH isotopic to identity to make h and ' identical restricted to P,N P, 1. We
know that there is a homotopy between h and A’ and we can consider this as
a map from 0H x [0,1] — N, where restricted to 0H x {0} and 0H x {1} the
map induces h and h'. The simplicial structure of h and h' makes 0H x {0, 1}
triangulated with two triangulations which are isotopic to 7 on 0H. Extend
this to a triangulation of 0H x [0, 1] first connecting every vertex on 0H x {0}
to the corresponding vertex on 0H x {1}. Then add faces homeomrophic to
rectangles where two opposite sides of the rectangle are corresponding edges
of the triangulations on 0H x {0} and 0H x {1}. Finally we are left with
regions that are homeomrophic to a triangle times an interval, we call them
prisons, and simply divide each of these to 3 tetrahedra arbitrarily. Now
we can assume that the homotopy is totally geodesic restricted to the 1-
skeleton and 2-skeleton of the constructed triangulation and extend it to the
3-skeleton (the prisons) by coning of from a vertex of each tetrahedra and
map every line segment geodesically.

It will be enough to show that image of every prison stays in a bounded
diameter neighborhood of h(0H) U h'(0H). In fact it is enough to do this
for faces of the prison. Every prison ) has two triangular faces D and D’
which we call them horizontal and we call the other faces and edges that
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connect these horizontal faces vertical. The image of horizontal faces are
contained in h(0H) U W' (0H). In our construction of the triangulation 7T,
each triangle has at least one vertex on a component of P, N P,y; and the
image of the vertical edge e associated to this vertex will be a single point v
on the geodesic representative of P, N P, ;. The picture of image of a prison
is suggested in (2).

D1

q o)

h(D)

Figure 2: The image of a prison.

Every point on the image of a face of the prison is contained in a rectangle
with two sides on D and D’ and from this and hyperbolicity of N we can
see that it has to have bounded distance from D U D" and therefore from
h(0H) U K (0OH) and we are done.

O

Note that every o := f,(«,) is homotopic to a closed curve j(/3,) in
N\ C, because j : 0H — N \ C is a homotopy equivalence. Then because
the sequence o, exits the end and the homotopy stays outside of the compact
core C, the sequence of closed curves (3,) has to converge in the space of
projectivized currents to p: an ending lamination for some end of N. (See
2.13.) On the other hand, because maps (f,,) are homotopic outside of C
and they are homotopic to the inclusion 0H — H in H, there exists a single
map g : 0H — OH that extends to a map g : H — H homotopic to identity
and ¢(ay,) is homotopic to 3, in OH for every n.
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Remark 5.2. Note that if g is homotopic to a homeomorphism then we
are done. This is because g extends to the handlebody and therefore g €
Modgy(H) and p = g(A) is the ending lamination. Therefore it will be enough
to prove that ¢ is homotopic to a homeomorphism on 0H.

Without loss of generality, we can assume that the sequence () con-
verges to a lamination ) in the Hausdorff topology. Note that A contains \
as a sublamination.

Fix a marked convex cocompact structure Ny on H with a marking j, :
OH — Np. By a theorem of Otal [Ota88], A is realized in Ny by a map
fo : 0H — Ny homotopic to jy and for € > 0 arbitrary, we can construct
a train track 7 in OH that fully carries A and all its routes are (1 + ¢, ¢)-
quasigeodesics in oy, the metric induced by fy. In fact, we are free to split
the train track as much as we want and make the branches of the train track
long in 0. Obviously, 7 carries «, for n sufficiently large and we assume from
now on that OH is equipped with the hyperbolic metric induced by fy. Also
notice that fy and fyo g are homotopic in Ny. Suppose F': 0H x [0, 1] — Ny
is this homotopy.

Claim 5.3. The image of every route of 7 by ¢ is a (K, ¢)-quasigeodesic in
oo for constants K, c.

Proof. Consider a simple closed curve S which is carried by 7 and spends a
long time on a route of 7. Then fy(3) is nearly geodesic and therefore its
length is nearly the smallest among the closed curves in its free homotopy
class in Ny. In particular since fy(g(f5)) is freely homotopic to fo(5) in Ny,
its length has to be bigger than [y(/5) — ¢ where € is small depending on ¢
and [y denotes the length in gy. On the other hand ¢ has bounded Lipschitz
constants and increases the length in bounded proportion.

This shows that g() is a quasigeodesic with constants that depend on .
Using this we can see that images of longer and longer subroutes of a given
route are quasigeodesic with the same constants and an easy observation
shows that image of the entire route has to be a quasigeodesic. O

Now consider § : H2 — H? the lift of ¢ and assume A is the lift of . The
above claim shows that g(l) is a quasigeodesic for every leaf [ of A\. Hence
g(1) uniquely determines a geodesic in H?. We consider g to be the map from
leaves of [ to geodesics in H? induced by g.
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Lemma 5.2. Ifl; and I, are leaves of X then §(l;) and §(l5) do not intersect.
Also if Iy and ly are asymptotic leaves of X then their g-images are asymptotic
geodesics. (In fact, the same is true about rays which are subsets of leaves of

X.)

Proof. Suppose they intersect. By going back to the train track 7 and split-
ting it, we can assume that there are two branches b; and b, whose images
by g intersect. We can assume these branches are as long as we want and
the intersection point is far from the endpoints of b; and b,. Since ¢ takes
every route to a K-quasigeodesic, it is not hard to see that images of every
two routes of 7 that contain b; and b,, intersect essentially. Now assume n
is sufficiently large, so that «, is carried by 7 and assume b (v,) and bs(cvy,)
denote the number of times that «, passes through b; and by respectively.
Note that by what we just said, we can see that

Z(ﬂna ﬂn) > by (O!n) : bg(an)

for n > 0.
Because the sequence (a,) converges in PML to A and A passes through

b1 and bg,

b1 (cn) and by (cvn)

lo(cvn) lo ()
converge to positive numbers (the measure deposited on b; and by by \) and
are bigger than some ¢ > 0 for n > 0. On the other hand, like in the proof of
the previous claim, because g has bounded Lipschitz constants, there exists
¢’ > 0 such that

lo(Bn) < lo(ay).
Hence
i(Bns Bn) > 1 bi(an) - by(a) > c?
lo(Bn) ~lo(Bn) — (¢)? lo(an) - lo(an) — (¢)?
But this implies that every limit of the sequence (3,) has to have self-
intersection and cannot be a lamination, which is a contradiction.

The second statement is obvious, because two sub-rays of A are asymp-
totic iff they have bounded Hausdorff distance from each other and again
since ¢ is Lipschitz, their g-images will have bounded Hausdorff distance as
well and have to be asymptotic.

> 0.

O
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Lemma 5.3. Even more, § is continuous as a map from leaves ofx to the
set of geodesics of H? with Hausdorff topology.

Sketch of proof. The idea of the proof is similar to the proof of the first
statement of lemma 5.2. Notice that A is closed in the Hausdorff topology.
Also note that every leaf of A gives a biinfinite route of 7 and if [ is a leaf
of A, the train track routes of other leaves that are close to [ (in Hausdorff
topology) will share a long segment with the route associated to [. This
shows that in the image also images of these leaves are close to image of [
on a long subsegment. Then using the fact that images of all these leaves
are (K, c¢)-quasigeodesic implies that their endpoints cannot be far from each
other and they are close in the image with Hausdorff topology. O

Lemma 5.4. If l; and Iy are leaves of X and g(l}) = g(ls), then there exists
some h € Ker(j, : m (0H) — m(H)) such that h(ly) = ls.

Sketch of the proof. 1f distinct leaves, [, and [, of A project to the same leaf
I' of X in OH, then there exists an element h € 7 (0H) such that h(l;) = s.
In this case, we claim that h € Ker(g,) and since j o g is homotopic to j, we
have to have h € Ker(j,). Suppose g.h is nontrivial. Since g is induced from
lifting g we have
9(l2) = g(h(lh)) = g.h(g(lh))

and our assumption implies that g.h preserves g(l;). Since g.h is non-trivial,
it has to be a hyperbolic isometry of H?* with axis g(/;). This implies that
g(l") fellow travels the closed curve that represents g.h. Since fy o g and
fo are homotopic in Ny, this implies that fo(I') fellow travels a closed curve
that represents g.h in Np, but fy(I') is a geodesic and this shows that it is a
closed geodesic. We knew that A has no isolated leaves and because of this
I' is noncampact. Otal [Ota88] proved that if a pleated surface fj realizes a
Masur domain lamination A, then

Pfy: A - PN

is a homeomorphism to its image. (Recall that PN is the projective tangent
bundle of N.) This contradicts the possibility that f, takes a noncompact
leaf of A\ to a closed geodesic.

On the other hand, suppose [; and [, project to distinct leaves of A: I} and
l,. Since g(l;) = g(ls), the images ¢(l}) and g¢(l}) are asymptotic in OH (they
have bounded Hausdorff distance) and we have a homotopy with bounded
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tracks between them. If we concatenate this homotopy with F |y1 x[0,1] and
Fl <j0,1, we get a homotopy with bounded tracks in Ny between fo(l}) and
fo(l5). Since fy(1}) and fo(l) are geodesics, this is impossible unless fy(1}) =
fo(l%). This again contradicts Otal’s theorem which we mentioned above and
we are done.

U

We know that every complementary component of X is an ideal polygon.

Lemma 5.5. If P is a complementary component ofX then g is injective on
sides of P.

Proof. Suppose 1,1y, ...,l; are sides of P. We want to show that g(l;) #
g(l;) for i # j. If this is not the case then lemma 5.4 shows that there
exists h € ker j, such that h(l;) = ;. But then if we consider h(P), it is a

complementary component of A too and it cannot be P, since h is not elliptic.
The complementary components P and h(P) share a side: [;. This shows

that [; is an isolated leaf of X which is impossible, since A has no isolated
leaf. O

The above lemma and lemma 5.2 show that g takes complementary do-
mains to complementary domains. Let 7\ be the dual tree to A and also
consider T to be the dual tree for the g-image of \. We have, in fact, shown
that ¢ induces a m(0H )-equivariant morphism G : T, — 7.

Claim 5.4. The map G : T, — T is locally injective.

First assume that x is correspondent to a component of S \ A. This
component is an ideal polygon P with sides [y, lo, ... and ;. It will be enough
to show that g(l;) # g(l;) for i # j. Because once we know the injectivity
of g on the sides of P, it follows from the continuity of ¢ that the image
of P is an ideal polygon P’. Also we know that leaves which are very close
to I; will be mapped to leaves close to g(l;) and therefore they all stay on a
side of g(l;) which is opposite to P’. Now suppose a,, # b, are leaves of A
which approach [; as n — oo and g(a,) = g(b,) for every n. Because of the
above lemma for every n there exists some h,, € keri, such that h,(a,) = b,.
One can see that the axis of h, also approaches [; as n — oo and this will
contradict the fact that A is in the Masur domain.

Now we want to show that g is injective on sides of P. In fact, if we have
g(l;) = g(l;), again by above lemma it implies that there exists h € keri,
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such that h(l;) = [;. But then if we look at h(P) it will be a polygon on the
other side of [; (it is because h is not elliptic) and therefore /; is an isolated
leaf, which is impossible.

Claim 5.5. The map 7, : T\ — T is locally injective.

Proof. We will need the following lemma for the proof:

Lemma 5.6. Suppose | is a leaf ofX then g(l1) # g(ly) for distinct leaves
l1,ls of X which have very small Hausdorff distance from [.

Proof. Suppose a,, # b, are pairs of leaves of \ that converge to [ in Hausdorff
topology as n — oo and g(a,) = g(b,). Lemma 5.4 shows that there exists
h, € kerj, such that h,(a,) = b,. Because of discreteness of action of
m1(0H), we can see that length of h, goes to infinity as n — oo and from
this one can see that the axis of h,, converges to [ in the Hausdorff topology.
In other terms, we have a sequence of closed curves (f3,) on OH, which are
null-homotopic in H and their Hausdorff limit has zero intersection with A.
We want to show that this contradicts the fact that A is in the Masur domain.

We need to find an “efficient disk system” for A. Here, a disk system is a
set of disjoint disks in H which cut H into a ball. A wave for a disk system
D is an essential arc k C OH (essential on 0H relative to D), that does not
intersect D in its interior and both its end point are on the boundary of a
single component D of D and finally £ is homotopic in H to a subarc of 0D
relative to its end points. Note that one can easily see that if we orient k,
it intersects D in opposite directions at its end points. For a lamination A,
we say a disk system D is efficient, if all its waves and components intersect
A. The following is a version of Starr’s theorem [Sta] for Masur domain
measured laminations. (For a similar proof for Starr’s theorem see [Wu96].)

Lemma 5.7. If \ is a Masur domain lamination, then there exists a disk
system D such that X intersects every wave for D. Equivalently, D is efficient
for A.

Proof. Take a non-zero measured lamination supported on A, which we still
denote by A. We also consider M, the set of meridians, and its closure M’ (in
PML) as subsets of the set of measured laminations that have total measure
1. We know that A has nonzero intersection with every element of M'. Since
M’ is a compact set, this means that there exists ¢ > 0 such that i(\, D) > ¢
for every meridian D. Now take an arbitrary disk system D. If A\ intersect

54



all the meridians of D, then we are done. Otherwise we show that we can
replace D with another disk system D’ such that i(\,D’) < i(A,D) —c. (By
i(\, D), we mean the sum Xpepi(A, D).) Therefore continuing this a finite
number of times we should get to a disk system that satisfies the conclusion.

Suppose there exists an arc k£ which is a wave for D and it does not
intersect \. The end points of k£ are on the boundary of the same disk
D € D and divide it into two arcs aw and 3. D; = kU« and Dy = kU [ are
both meridians and since k£ does not intersect A\, we have

i(\, D) = i(\, Dy) + i(\, Dy).

On the boundary of the three ball obtained by cutting the handlebody along
D, there are two copies of D. Either D; or D, say Dy, separates these two.
Now if we take D’ := D\{D} U {D,}, it will be a new disk system. But
because

i\, Dy) = i(\, D) —i(\, D) < i(\, D) — ¢,

this new disk system has the desired property and we can pursue as we
explained. O

On the other hand, if § is an essential closed curve on OH which is null-
homotopic in H, then for every disk system D, there exists a subarc of /3
which is a wave for D. (Cf. Masur [Mas86].)

Now let D be a disk system that satisfies the above lemma for \. What
we just said, shows that every (3, contains a wave for D. From this one can
see that every Hausdorff limit of 3, has to contain a subarc which is a wave
for D and therefore it cannot be disjoint from A, which is a contradiction. [

Now every z € 7T, either corresponds to a complementary component of
X or to a leaf of )\ which is a limit of leaves of A from both sides. We have
to prove local injectivity in small neighborhood of z in both cases.

Suppose z corresponds to a component of H? \ A which is an ideal polygon
P with sides [y, [y, ..., ;. Using lemma 5.5, we know that g(/;) # g(/;) when
i # j. Using cont1nu1ty of g from lemma 5.3, we know that leaves which
are very close to [;, will be mapped to leaves which are very close to g(l;).
Therefore, images of leaves that are close to [; cannot be identified with
images of those that are close to [; for 7 # j. Finally, using lemma 5.6, we
know that g is injective in a very small Hausdorff neighborhood of each leaf
[; and this proves the claim in this case.
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On the other hand if x corresponds to a leaf [ of A that is a limit from both
sides, lemma 5.6 immediately implies that g is injective in a small Hausdorff
neighborhood of [ and we have finished proof of the claim. O

The following lemma shows that G : Ty — 7T is in fact injective:

Lemma 5.8. A morphism ¢ : T; — T between R-trees Ty and Ts is injective
if and only if it is locally injective.

Proof. Obviously injectivity implies local injectivity. On the other hand,
assume ¢ is locally injective but it is not injective. Suppose ¢(x) = ¢(z') for
distinct points x,2" € T;. Consider the unique geodesic [ : [0,1] — 77 in T;
that connects x and z': [(0) = z and [(1) = 2’. The path ¢ol:[0,1] = T is
a closed path in 75 and it is enough to show that ¢ ol is not locally injective
(because [ is injective). If ¢ ol is locally injective, then there exists a non-
degenerate interval [a, b] C [0, 1] such that ¢pol(a) = ¢ol(b) but ¢pol does not
identify any other two points of [a,b]. But then we obtain two paths with
disjoint interiors between ¢ o {(a) and ¢ o [(“t2) which contradicts the fact
that 7, is an R-tree. O

We use the injectivity of G to show that g, : m (0H) — m(0H) is an
injective map. Otherwise, assume h € ker g, is nontrivial. If [ is a leaf
of A\, then h(l) # [; otherwise | would project to a closed curve, but this
contradicts our assumption about A. Since h is in ker g,, we can see that
lift of ¢ to the universal covers takes [ and h(l) to the same geodesic and
we have g(I) = g(h(l)). Let z,z’ € T, be the points that correspond to the
leaves [ and h(l). We know that = 2’ if and only if [ and Ah(l) are sides of a
complementary component of X but then we have a contradiction with lemma
5.5. Hence = # 2’ and we have G(z) = G(2') which contradicts injectivity of
G. Therefore g, is injective.

It is a standard fact that every proper subgroup of a surface group is free,
there fore g.(7m(0H)) cannot be a proper subgroup of 7;(0H ) and therefore
g, is surjective also and in fact ¢ is a mi-isomorphism. But again, it is
a standard fact about surfaces that every homotopy equivalence from 0H
to itself is homotopic to a homeomorphism. Hence ¢ is homotopic to a
homeomorphism and we are done by remark 5.2.
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6 Hyperbolic structures with bounded com-
binatorics

Lemma 6.1. Let H be a handlebody and A C C(OH) its handlebody sub-
complex. There exists dy only depending on x(0H) that if « C C(OH) is
a multi-curve with distance bigger than dy from A then « is in the Masur
domain. In fact, we can consider dy = d + 2 where d is the quasi-convezity
constant of A in theorem 7.11.

Proof. 1If « is not in the Masur domain, then it has zero intersection with g,
an element of A. (As usual the closure is taken in PAML.) The lamination
i cannot be filling, since it has zero intersection with a simple closed curve.
Therefore, Y = supp(u) is a proper subsurface of 0H. Of course 0Y has
zero intersection with « too: de(a, 0Y) < 1. We claim that 0Y has distance
at most d + 1 from A and this together with what we said before shows
that de(a, A) < d+ 2 which contradicts our hypothesis. To prove the claim,
consider a sequence (f;) C A that converges to 4 C Y in PML. One
can see that the sequence (my(f3;)) also has to converge to p in PML(Y)
and therefore in C(Y) U dC(Y'). Hence dy (B, f;) — oo as i — oo. Then
theorem 2.4 (Bounded image theorem), implies that for i sufficiently large,
any geodesic connecting (; and (3 intersects the one-neighborhood of 0Y. On
the other hand because of quasi-convexity of A, theorem 7.11, this geodesic
is in the d-neighborhood of A and this proves the claim. O

Let R > 0 be given and let A(R) be the set of full markings with R-
bounded combinatorics respect to H and distance at least dy from A(H),
where dj is the constant obtained in lemma 6.1. Recall that when we consider
a marking in the curve complex, we take its support instead. We also consider
the subset Ayg(R) C A(R) to be the subset of A(R) whose elements have R-
bounded combinatorics with respect to an element of my(H). Notice that
every element of A(R) can be translated to Ay(R) by an action of Mody(H).

Proposition 6.2. (Ay(R) is compact in C(0H) U OC(0H).) Let (ay,) C
Ao(R) be a sequence of elements of Ag(R). Then there exists a subsequence
(e, ) that either all its elements are the same or their supports converge to
a lamination p € OC(S) which has (R + 1)-bounded combinatorics respect to
an element of my(H).

Proof. Let () C Ag(R) be given and suppose P, is the pants decomposition
associated to «,, for every n. After passing to a subsequence, we can assume

57



that all elements of (a,) have R-bounded combinatorics with respect to an
element /3, € my(H).

Consider the sequence (P,) as a sequence in PML by putting equal
measures on components of P, for every n. If there is a subsequence of
(P,) whose elements are all equal to a single pants decomposition Py, then
we claim that there is a subsequence of (a;,) whose elements are all the
same. This is because for every «,,, once we know the pants decomposition
P, = P, we only have the freedom to choose the transversals. But for each
v € Py, we have only a finite number of choices for the transversal to v, since
dy (o, By) < R and the claim follows.

Now suppose we have extracted a subsequence such that (P,) converges
to a lamination p in PML. Using Klarreich’s description of 0C(0H) it will
be enough to show that p is filling. Let Y C 0H be the smallest essential
subsurface that contains support of .

Case 1. Y has a non-annular component Y’ C 0H. Let p' be the
component of p that is contained in Y’ and notice that g fills Y. We
know that the sequence my(P,) also converges to the point associated to p/
in OC(Y"). In particular, dy(Fp, P,) — oo which contradicts the fact that
dy (o, ap) < 2R.

Case 2. All components of Y are annuli. Either infinitely many ele-
ments P, are contained in Y or there exists a subsequence of (P,) whose
elements all intersect a component Y’ C Y. If the former happens, Y is the
union of annular neighborhoods of components of a pants decomposition P,
and by what we explained earlier there is subsequence of (a;,) whose elements
are all equal. If the latter happens, similar to the first case, we can see that
dy+(Py, P,) — 00 as n — oo and after passing to a subsequence. This is again
a contradiction to the fact that o, has R-bounded combinatorics respect to
By for every n.

The fact that every such limit has R-bounded combinatorics respect to
o is easy by observing that if «,, converges to u € C(OH) then dy (u, ) < 1
for n > 0. O

With an abuse of notation, we denote the subset of OC(S) whose elements
are limits of sequences of Ay(R) by 0A,(R). For every o« € A(R), we can take
an element o/ € PML(S), supported on the pants decomposition associated
to « and equal measures on the components of this pants decomposition.
The set of all such points provides a subset A'(R) C PML(S) associated
to A(R) and we can also consider the set Aj(R) C A'(R) the subset that
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corresponds to Ay (R).

Proposition 6.3. The set Ay(R) has compact closure inside the Masur do-
main and the accumulation points are projectivized measure laminations sup-
ported on elements of 0A(R).

Proof. Suppose (P;) C Aj(R) converges to p in PML. Using proposition
6.2, one can see that either the elements P; are all equal for i > 0 or u is
filling. If the first case happens, there is nothing more to do since we already
know that each P; is in the Masur domain. Therefore, we can assume that
1 is filling and we need to prove that p is in the Masur domain.

If 1+ is not in the Masur domain then it has zero intersection with an
element A € A. Since p is filling it has to have the same support as \
and A is also filling and they represent the same point in OC(0H ) which we
call A\. For each P; choose a component a; € Co(0H) and notice that the
sequence (a;) also converges to u in OC(0H). Also let (b;) C A be a sequence
that converges to A in sense of Gromov. Klarreich’s theorem [Kla] shows
that the geodesic segments [ay, §;] connecting «; and 3; in C(0H) get further
and further from xy, where x; is a fixed element point in C(0H). Consider
the geodesic triangle with vertices {a;, b;, 2o }; this triangle is J-thin, where
d is the hyperbolicity constant in theorem 12.3. Since the segment |[a;, b;]
is far from xq, the other two sides [y, a;] and [z, b;] have to be d-close on
subsegment of length D; of their initial part. The length D; is comparable to
the distance between xy and the segment [a;, b;] and in particular D; — oo as
i — 00. Because of quasi-convexity of A, theorem 7.11, the segment [z, b;]
is in the d-neighborhood of A. Therefor

de(ai, A) < de(ai, [bs, xo]) +d (6.1)
<dc(aj,x0) — D; +6+d

is much shorter than d¢(xg,a;) for i > 0. Therefore for i > 0, d¢(a;, A) is
shorter than the distance between a; and every element of my(R) as well. But
this contradicts our choice of a; € Ayg(R) whose distance from A is realized
between a; and an element of my(H). O

Every element o« € Ay(R) gives a hyperbolic metric 7(a) € T(S) and
we can consider 7(Ag(R)) to be the set of all such points. In parallel to
propositions 6.2 and 6.3 we have:
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Proposition 6.4. The set 7(Ao(R)) has compact closure in Thurston’s com-
pactification of Teichmiiller space of OH and the limit points on the boundary
are supported on elements of 0Ayg(R) and are in the Masur domain.

We can take By(R) to be the set of marked convex cocompact hyperbolic
structures on H, which are associated to elements of 7(Ay(R)). Notice that,
we could start with A(R) and construct the associated convex cocompact
structures; but those would be the same as the structures in By(R) up to
changing the marking.

Theorem 6.5. The set Byo(R) with an appropriate choice of base points
15 precompact in the set of marked hyperbolic structures on H with strong
topology. The accumulation points are degenerate hyperbolic structures on
H, whose ending laminations are in 0Ay(R).

Proof. Let (N;) C By(R) be a sequence of marked structures on H, where
each N; is obtained from 7, = 7(a;) € T(A(R)). Using proposition 6.4,
we know that either the sequence (7;) stabilizes up to taking a subsequence,
where there is nothing to prove, or after taking a subsequence we can assume
that (7;) converges to A in Thurston’s compactification of Teichmiiller space,
which we assume is the case. Let p; : m (H) — PSLy(C) be the representation
associated to N;: N; is isometric to H?/p;(m (H)). Then using Kleineidam
and Souto’s work [KS02|, we know that up to passing to a subsequence
and conjugation the sequence (p;) converges algebraically to a representation
p:m(H) — PSLy(C).

The recent proof of the Tameness Conjecture (Agol [Ag], Calegari-Gabai
[CG] and Brock-Souto [BS]), we know that N = H?/p(m(H)) is tame and
is homeomorphic to the interior of a compact 3-manifold. An elementary
argument shows that N has to be homeomorphic to the interior of H (cf.
Hempel [He86]).

Claim 6.1. The lamination A\ is not realized in N.

Proof. Let a; be a component of the support of ;. We know that [, (a;) < By,
where By is the Bers’ constant. Since the sequence (a;) converges to a Masur
domain lamination in PML, for all A > 0 there is, by the continuity of
the intersection form, some i4 such that [, (m) > A for all i > i, and all
meridians m. Then by a theorem due to Canary [Can9l], there is K > 0
such that for all ¢ > iy,
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where [y, (a;) is the length of the geodesic freely homotopic to a; in N;.

Let A be the Hausdorff-limit of the sequence (a;). The geodesic lamination
A contains A as a sublamination and A\ A consists of a finite number of
biinfinite geodesics. Seeking a contradiction, assume A is realized in N. Then
) is also realized in N by work of Otal [Ota88] (cf. [KS03, Lem. 4.2]). This
implies that there is a compact set K C N such that for all 7 the curve qa;
is freely homotopic in NV to a geodesic a; contained in K. In particular we
have Iy(a;) < Iy, (a;), i.e. there is a constant ¢ > 1 with

¢ My (a;) < lng(ai) < ely(a)

for all s.

Since (p;) converges to p algebraically, on the level of manifolds there are
smooth homotopy equivalences h; : N — N;, compatible with p; and p, such
that on any compact subset of N, h; tends C'® to a local isometry for all
i > 0. (Cf. McMullen [McM].)

For large 7, the curves h;(a}) have small geodesic curvature and we have

lNi(ai) = lN(ai) = lNO(ai).

But Iy,(a;) — oo as i — oo since \ is realized in Ny and similar to the
arguments of Canary [Can93al, we can see that [x,(a;) is comparable to the
length of a; on this pleated surface and has to go to infinity. This contradicts
(6.3) and we have proved the claim. O

Once we know that A is not realized in N, we can use theorem 1.3 and
see that ¢(A) is the ending lamination for N, where ¢ € Mody(H).

Next, we want to prove that the convergence N; — N is geometric too.
We know that we can conjugate the representations p, so that they converge
to p; we assume from now on that this is the case. Choosing once and forever a
point pgs in H, let p; and p be their projections of pgz to N; = H? /p; (71 (H))
and N = /p(m,(H)).

The Margulis lemma implies that the injectivity radius of the manifold NV;
at the points p; is uniformly bounded from below. In particular, we obtain
from Gromov’s compactness theorem that every subsequence of (p;) contains
a subsequence (p;;) such that the pointed manifolds (V;;, p;;); converge geo-
metrically to a pointed manifold (Ng, pg). The relation between geometric
convergence of hyperbolic manifolds and convergence in the Chabauty topol-
ogy of discrete groups of PSLy(C) [BP] implies that Ng = H? /T where T'g
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is the group formed by all elements v € PSLy(C) such that there is a se-
quence (y;) in 7 (H) with v = lim; p;; (7;). In particular p(r(H)) C I'¢ and
hence the manifold N is a Riemannian cover of N¢g. Thurston and Canary’s
Covering Theorem [Can96] implies that the cover

N — Ng

is finitely sheeted. We claim that this covering is trivial, or equivalently that
g = p(m(H)).

The proof is based on an idea of Thurston. Suppose 3 € I'¢; then 3% €
p(m(H)) for some k£ > 1 and is equal to p(v) for some v € 7y (H). Since § €
' there exists a sequence of elements ; € m (H) such that 8 = lim; p;; ().
So

lim p, (o¥) = B* = p(7) = lim p, (7).

Because of discreteness and faithfulness of the representations, af = ~ for all
j > 0. But in a free group we have at most one k-th root for every element
and therefore a; = « for some fixed o € m(H) and j > 0. Hence 8 =
lim; p;; (o) € p(m1(H)) and we have proved that every subsequence of (Nj, p;)
has a subsequence that converges to (NN, p) geometrically. Therefore the
entire sequence (IN;, p;) converges to (IV, p) geometrically and the convergence
N; — N is strong.

Now it only remains to choose a marking j : 0H — N for N such that A
is the ending lamination for the marked structure (V,j) and N; — N as a
sequence of marked structures.

Let j : 0H — N be a marking such that A is the ending lamination
for the marked structure (JV, 7). (This is always possible by precomposing
an arbitrary marking with an element of Mody(H).) Also let C' be a useful
compact core of N and choose a sequence (@) of pants decompositions that
converges to a lamination supported on A in PML. Since A is the ending
lamination, for n sufficiently large, @), has a geodesic representative in N\ C
and these representatives exit the end of NV as n — oco. Hence by using lemma
4.2, we know that for n > 0, there exists a pleated surface f, : 0H — N
that realizes @, and is homotopic to j within N \ C. This sequence of
pleated surfaces has to exit the end of N because of lemma 2.12 (Bounded
diameter lemma). (Notice that in both these, we are using the fact that
the function dx*(-,p) is proper.) We assume n is sufficiently large such that
d~*(fo(0H),C) > D +1 where D is the constant obtained in corollary 4.6.
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Fix n large and let ; : (N,p) — (N;,p;) be the approximating maps for
the geometric convergence N; — N. It is not hard to see that C; = k;(C) is
a useful marking for V; for i > 0. Let j; : 90H — N; \ C; be a representative
of the marking of N;. We know that x; approaches an isometry on every
compact subset of N. Using this we can show that for i sufficiently large
depending on n, there exists h;, € pleaty. that realizes b, in N;, is e-close
to Kk; o f, and

dy:(hin(0H),C;) > D. (6.4)

It will be enough to show that ;07 or equivalently x;o f,, = h;,, is homotopic
to j; in V; \ k;(C) for i sufficiently large.

Suppose g; : 0H — N; parametrizes OCH(N;), the boundary of the com-
pact core of N;, and g¢; is homotopic to j; in N; \ C;. Let P; be the pants
decomposition associated to «;. By our construction, we know that P; has
length bounded by By in 7; and we know that the injectivity radius of 7; is
bounded from below by ¢;. Hence, we can use Bridgeman-Canary’s theorm
2.11 and conclude that P; has length at most JBj on o,,, where J depends
only on €.

We obviously know that dy,(OCH(N;),C;) — oo as i — oo. Therefore for
i > 0, if there exists g’ € pleaty. that is end-homotopic, realizes FP; in N;
and

g’(@H) OND(CZ) = @

where D is the constant obtained in lemma 4.4 (Homotopy bound) for A =
JBy and € small, then it follows that there is a (K, €) good homotopy with
respect to P; between ¢; and ¢' that stays away from C;.

Consider the geodesic that connects (), and P; in C(OH). As in lemma
2.5, we can extend this to an elementary-move sequence

Qu=P,—P —--— P, =P,

Using corollary 4.6, since h;,, is end-homotopic realizes @, and satisfies (6.4),
we know that either

(1) there exists g’ € pleaty. that realizes P; and is homotopic to h;, within
N;\ C; or

(2) there exists a pleated surface g"” € pleat,. homotopic to h;, within
N; \ C; realizing P} for some 0 < k < m; and with

dy:(¢"(0H),C;) < D.
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If case (1) happens, by what we said earlier, ¢’ is homotopic to g; within
N; \ C; and therefore h;, is homotopic to g; within N \ C; and finally h;,, is
homotopic to j; within N \ C;. This is what we wanted and if this happens
for all sufficiently large 7 then we are done. So, we seek a contradiction if this
is not the case for every n. Therefore suppose there exists i(n) > n such that
the case (2) happens. Then we get a pleated surface g/ € pleatNi(n) that
realizes an element v, on the C(0H)-geodesic path between @, and Py, is
homotopic to hj), and equivalently to ;) o j within N; \ C; and

If K is a compact subset of N and ¢ sufficiently large,
dy (z,C) — 1 < df (ki(2),Cy) < dyf(w,C) + 1.

Using this together with lemma 2.12 (Bounded diameter lemma), we can
see that g, (0H) is contained in a bounded neighborhood of p;u) in Njn)
independently of n. Therefore, Hi_(:b) ogr is € close to a pleated surface f, that
realizes 7, in N and intersects a compact subset of V.

When n — oo by definition i(n) — oo. Therefore the sequences (@)
and Pj,) both converge to elements supported on A in PML. Since A is
in 0C(0H) and 7, is on the geodesic connecting @, and Py, it follows
from Klareich’s theorem that the sequence (,) converges to A as well. But
since f; realizes v, and intersects a compact subset of N, it follows from
Kleineidam-Souto [KS03, Prop. 7] that A is realized in N and we have a
contradiction with claim 6.1.

0

Remark 6.2. Notice that in the above statement, we have chosen appro-
priate base point py for every N € By(N) and from now on, whenever we
speak of N we consider it as a pointed manifold (N, p,,).

Again, with an abuse of notation, we denote the set of all degenerate
hyperbeolic structures, which are limits of sequences in By(R) to be 0By (R).
Apparently 0By (R) is also compact in the set of marked structures on H with
strong topology. To simplify our notations we denote the set By(R)U0JBy(R)
by By(R) and the set Ag(R) U dAy(R) bu Ay(R).

Since elements of By(R) are marked structures on H, the conformal struc-
ture at infinity or the ending lamination are defined uniquely on T(0H) or
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OC(0H). Hence we have a map
€ By(R) — Ap(R),

and we call £(N) the end invariant of N.
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7 Quasiconvexity

Let H be a handlebody as before and By(R) the set of marked hyperbolic
structures on H introduced in the last section. In our discussions, we usually
consider an element N € By(R) to be the interior of H equipped with a
complete hyperbolic metric and we assume the marking 7 : 0H — N is
simply an embedding isotopic to the inclusion 0H < H. Therefore, we use
the same marking j for all structures in By(R); yet, because j is defined up
to isotopy, we feel free to isotope j whenever is needed. In particular, when
we make a choice of a compact core, we always assume that j(0H) and the
isotopy between 5 and 0H — H stays away the compact core.

We also assume that we have fixed a choice of I' in H that satisfies
proposition 4.1. Then for every N € By(R), we take 'y to be the geodesic
representative of j(I') in V. (We are using the fact that elements of By(R)
have no parabolics.) From now on, when we speak of the diskbusting geodesic
for N € By(R), we are referring to I'y. The next proposition follows easily
from compactness of By(R) in the strong topology.

Proposition 7.1. (Uniform compact core) There exists a constant dy > 1
such that for every N € By(R).

(1) the diskbusting geodesic Iy has total length at most dy and is contained
in the dy-neighborhood of the base point pn and

(2) there exists a compact core C C N homeomorphic to H that contains
a 1-neighborhood of T'y and is contained in the (dy — 1)-neighborhood

OfFN.

For now on, we fix a choice of dy that satisfies the above proposition and
is bigger than the constant Dy in lemma 3.3 and for N € By(R) we always
assume that a useful compact core is one that satisfies the second part of the
above proposition and in particular has uniformly bounded diameter. We
also define the set pleat, to be the set of pleated surfaces f : 0H — N
homotopic to j within N \ C for some useful compact core C' C N and
with dy(f(0H),I'y) > dy. Notice that these pleated surfaces satisfy the
conclusion of lemma 3.3 by our assumption about dg:

f((OH)>¢) ¢ N> (7.1)

for every f € pleat, and where 6 = d(e, x(0H)).
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If v is a multi-curve on 0H and N € By(R), by a (geodesic) representative
for a in N \ T'y, we mean a closed (geodesic) curve freely homotopic within
N\ C to j(«) for some compact core C' that contains I'y.

The purpose of this section is prove a result in parallel to Minsky’s [Min01,
Thm. 3.1] that shows for every N € By(R) and B bigger than the Bers’
constant, the set

C(B,N):= | short(f,B)
fepleaty
is L-quasiconvex for some constant L that depends only on R and x(0H).

When N is geometrically infinite, it follows from the definition and de-
scription of the ending lamination of NV in Canary’s work [Can93b] that there
exists a subsequence of C(B, N) which converges to £(N) € 0C(0H).

By pleat (1), we denote the set of pleated surfaces in pleat (u) whose
pleating locus contains p. If f € pleat, (i) is given, we say f realizes p in

N\ I'y. Similar to our definition in section 3, we define pleatij to be the
subset of pleat, whose elements have distance less than D from ['y.

Lemma 7.2. There exists a monotonic function p : [0,00) — [0,00) such
that dy (z,pn) < p(dx(z, pN)) for every N € By(R) and € < €.

Proof. 1t will be enough to show that for every a > 0 there exists b > 0 such
that if dx*(z,py) < a then dy(z,py) < b for every N € By(N), 2 € N and
€ < €p. Also note that it is enough to prove it for € = .

Suppose, this is not the case and we have a sequence of counter examples
(N;, z;) such that N; € By(R) and d%,:(azi,pNi) < a but dy,(x;,py,) — 00.
We can assume that the sequence (N;) converges strongly to N € By(R) and
suppose

kit (N,pn) = (N3, p;)

are the approximating maps. In N, the function d%f(-,pN) is proper. This is
because each component of N<¢is compact and they are uniformly separated.
Therefore, there exists a compact set K C N such that for every = ¢ K,
dx*(z,py) > a+1. When i is sufficiently large &; is very close to an isometry
and therefore the injectivity radius of z € K and k;(x) are extremely close.
Take z € 0K and a path P; between k;(x) and py,. Then except for a
subset of very small length which is contained in a small neighborhood of
boundary of e-thin components every point y € NZ¢ N «; *(P) maps to N7
and therefore length of P N N7 is > a + 1/2. This shows that

djzvf(x,pNi) >a+1/2

67



for every x ¢ k;(K) and we have a contradiction. O

Note that p(x) > x for every = € [0,00). This result helps us to get an
actual diameter bound for elements of pleat, close to I'y.

Lemma 7.3. (Uniform bounded diameter lemma) For every D > 0, there

exists L(D) > 0 such that diamy(f(0H)) < L(D) for every f € pleat;D
and N € By(R).

Proof. The result is immediate by knowing lemma 2.12 (Bounded diameter
lemma), lemma 7.2 and noticing that length of compressible curves in oy is
at least dy because of lemma 3.2.

O

We can also translate our results in lemmas 4.2 and 4.3 by replacing the
distance in the thick part of manifolds to the actual distance. Note that we
also use the fact that we have a bounded diameter useful compact core for
every element of By(R).

Lemma 7.4. Given d > 0 there exists a constant D, > 0 depending only on
d, R and x(0H) such that if N € By(R) and if « is a simple closed curve on
OH with a geodesic representative o in N \ 'y that

dy(a*,T'y) > Dy,
then pleat () is nonempty and

for every f € pleaty (i), where p is any finite leaved lamination that contains
a.

Theorem 7.5. Given d there exists Dy > d and A > 0 depending only on
d, R and x(0H) such that the following holds. If N € By(R) and o has a
geodesic representative o in N \ I'y with dy(a*,T'y) > Dy, then for every
B € Co(S) with de(ar, B) < 1:

(a) pleaty(5) # 0,
(b) pleaty(a) N pleaty () # 0

(c) every f € pleaty(3) has dgvf(ﬁH),C') >d
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(d) f and g € pleaty (), the set
short(f, B) Ushort(g, B)
has diameter bounded by A in C(OH).

Next, we need to have some control over the pleated maps that are nearby
the diskbusting geodesic.

Lemma 7.6. For every D there exists K such that for every two pleated
surfaces

RS pleat;D and g € pleat;[D

the induced metrics oy and o, on OH are K-bi-Lipschitz up to isotopy for
every M, N € By(R).

Proof. Suppose we have a sequence of counter examples (N;, M;, fi, gi)i>1
that satisfy the hypothesis. We can assume that the sequences (N;) and
(M;) converge in the geometric topology to N and M € By(R) respectively.
Because of lemma 7.3, the pleated surfaces f;(0H) and g;(0H) are contained
in a bounded neighborhood of the base points and therefore they also con-
verge to pleated surfaces f and g in N and M.

Suppose k; : N — N; are the approximating maps for the convergent
sequence (IV;). We claim that the sequence (f;) is convergent as a sequence
of marked pleated surfaces. (For a description of different types of convergence
for pleated surfaces, see Canary-Epstein-Green [CEG87].) In our situation
it means that in addition to the fact that f;(0H) converges to f(0H) in the
geometrically, k; o f is very close to f; o ¢; as a map for ¢ > 0, where ¢; is a
self-homeomorphism of 0H whose isotopy class does not depend on .

Let C be a useful compact core for N. Then it easily follows that f is
mi-injective into N \ C. Otherwise image of a compressing disk would give
a compressing disk for f;(0H) in N; \ I'y,. Hence there exists a homotopy
between f o1 and j within N \ C for some ¢ a self-homeomorphism of 0H.
By applying x; on these, we get a homotopy between x;0 fo and ;07 within
N;\I'y,. We know that ;07 is isotopic to j and therefore they are homotopic
outside a useful compact core and in the complement of I'y, (the convergence
N; — N was in the strong topology for marked structures). On the other
hand, x;0 f(0H) is extremely close to f;(0H) and they have distance at least
1 from I'y for ¢ > 0. Therefore, there is a homotopy between f; o ¢; and
k;o f for a self-homeomorphism ¢; of 0H (within N;\ I'y,). These show that

J~Ki0j, K;oj~nK;ofor, Kofoyp~ fiop;o,
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where ~ denotes homotopy and all the above homotopies take place in N; \
I'y,. But j and f; were homotopic and 7 -injective therefore ¢; 0 is isotopic
to identity and we have proved the claim. We assume that we have replaced
f with f o and then the sequence (f;) converges as a sequence of marked
pleated surfaces to f. Once this is the case, one can easily see that the
metrics induced by f and f; are very close up to isotopy for ¢ > 0. This
is because k; o f and f; o ¢; are very close as maps, where ¢; is isotopic to
identity and also that x; is very close to an isometry for ¢ > 0.

The same argument shows that after possibly precomposing ¢ with a
homeomorphism of 0H, g; — ¢ as a sequence of marked pleated surfaces.
Then, we know that the metrics induced by ¢; and g are 1-bi-Lipschitz up
to isotopy for ¢ > 0. But the metrics induced by f and g are bi-Lipschitz
and this shows that the metrics induced by f; and g; (up to isotopy) are
bi-Lipschitz with a bounded bi-Lipschitz constant. O

Corollary 7.7. Suppose By(R) is as before. For every D and B > 0 there
erists a finite set App C Co(OH) such that if o € short(f, B) for some

N € By(R) and some f € pleathD, then o € Ap p.

Proof. This is immediate after lemma 7.6. Choose a fixed pleated surface

g€ pleatZD for some M € By(R). Now if f and « are as in the hypothesis,
since the metrics induced by f and ¢ are K-bi-Lipschitz, we know that

lo, () < KB.

But for fixed g, there is only a finite set of closed curves whose length do not
exceed KB and we are done. O

In the next lemma, we show that there are pleated surfaces in pleat,
within a uniformly bounded distance from ['y. As a matter of fact, if
dy(OCH(N), ') is small, it is false. But in such a case CH(N) will have
bounded diameter and most of the things that we need become trivial. In
particular, using the above corollary, we can see that C(B, N) is finite depend-
ing on the diameter of CH(/N) and theorem 7.11 (Quasiconvexity) is obvious.
Hence, in all our discussions, we assume dy(OCH(N),T'y) is uniformly large,
when appropriate.

Lemma 7.8. If D is large enough independently of N, then pleatva S
nonempty for every N € By(R). Even more, suppose d > 0 is given then if
D is sufficiently large, there exists one whose distance from 'y is at least d.
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Proof. Again the idea of the proof is taking a geometric limit. Suppose
(N;) C By(R) is a sequence such that for every i, every f € pleat, has
distance at least i from Iy, or dy(f(0H),I'y) < d. After extracting a
subsequence, which we still call (N;), we can assume (N;) converges strongly
to N € By(R). In N, take a pleated surface f € pleat, that has distance at
least d+1 from I'y. If we use the approximating maps to push f(0H) to N;,
the image has to be close to a pleated surface for ¢ > 0 with distance more
than d from I'y,. The obtained pleated surface has to be in pleat, and we
have a contradiction. O

Fix a constant D; that satisfies lemma 7.4 for d = dy and let Dy be the
constant obtained in theorem 7.5 for d = D; and let n > 0 be a lower bound
for the injectivity radius in the D;-neighborhood of ['y for every N. Finally
fix D3 to be large enough to satisfy the conclusion of the above lemma and
be bigger than

B
max{ Dy, cosh™" (=) + B + D, }.
n

Now we define a projection from C(0H) to C(B, N) as follows:

My(e,B):= | J short(f,B),
fepleat y (a)

if o has a geodesic representative o* in N \ I'y with dy(o*,T'y) > D; and
HN(O[, B) = AD3,B N C(B, N),

otherwise.

The first part of the above definition always gives nonempty projections,
since pleaty(a) is nonempty by lemma 4.2 and B is bigger than the Bers’
constant. Also because of lemma 7.8 and our assumption about Dj, the
second part gives nonempty projections as well.

Similar to Minsky [Min0O1], we can prove that II is a coarse Lipschitz
projection:

Proposition 7.9. (Coarse Projection) There exists ¢ > 0 depending only on
X(0H), R and B such that

(i) (Coarse idempotence) If a € C(B, N) then « € IIy(a, B).
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(ii) (Coarse Lipschitz) For a and € Co(0H) with de(a, f) < 1,
diame(Ily (e, B) UTIN (B, B)) < c.

Proof. Proof of part (i) is easy. Notice that there is always a useful compact
core within distance dy of I'y. If a has a geodesic representative o* with
dn(Cn,a*) > Dy, by lemma 7.4 there exists f € pleat, that realizes « and
then

a € short(f, B) C IIy(«, B).

If not assume I'y € short(f, B), then either f(«) is compressible and by
lemma 3.2 f(0H) has distance at most B < D3 from I'y or f(«) is incom-
pressible and «o*, the geodesic representative of «, has distance < D; from
[I'y. Then by lemma 2.10,

dn(f(0H),Ty) < dy(f(a),a”) + B+ D,
l(,f(a)
n(a¥)

< cosh '(=) + B+ D,
Ui

< cosh™!(

)+ B+ D,

mN

< Ds.
In either case, dy(f(0H),I'y) < D3 and therefore
o€ ShOI‘t(f, B) C AD3,B == HN(O[, B)

For part (ii), first suppose that either o or f3, say «, has a geodesic
representative with distance > Dy of I'y. By theorem 7.5 and our assumption
that d = Dy, we know that  has a geodesic representative with distance more
than D; from I'y. Therefore we have used the first definition for projection
of both a and /3. Statements (b) and (d) of theorem 7.5 imply that

short(f, B) Ushort(g, B)

has diameter bounded by 2A in C(0H) for every f € pleaty(«) and g €
pleat, (). Hence

diamC(HN(a, B) U HN(B,B)) S 2A.

On the other hand suppose neither « nor 5 have geodesic representatives
with distance > Dy of I'y. We claim that [Ty («) and Iy () are both included
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in Ap, p and therefore their union has diameter bounded by diameter of
AD3,B-

If o does not have a geodesic representative with distance > D; of 'y
then the claim for « follows by definition of Iy (a, B). If not then « has a
geodesic representative o with

Dy <dy(a*,Ty) < Ds.

In particular, every f € pleat,(«) has distance < D, from I'y. Then

short(f,B) C Ap, 5 C Ap, B
by corollary 7.7 and therefore

HN(CY,B) C AD3,B;

and we have proved our claim for a. The same argument proves the claim
for # and finishes proof of part (ii) by setting

Cc = max{diamc (AD&B), 2A}

O

Lemma 7.10. (Minsky [MinO1, Lem. 3.3]) Let X be a §-hyperbolic geodesic
metric space and Y C X a subset admitting a map 11 : X — Y which is

coarse-Lipschitz and coarse-idempotent. That is, there exists C' > 0 such
that

o Ifd(z,2") <1 then d(Il(z),II(z")) < C’, and
e IfyeY thend(y,I(y)) < C'". ThenY is K-quasi-convex, and further-
more if g s a geodesic in X whose endpoints are within distance a of

Y then
d(z,II(z)) < b
for some b = b(a,0,C"), and every x € g.
Similar to Minsky’s [Min01], this proves:
Theorem 7.11. (Quasi-convexity Theorem) There ezists L depending only
on R and x(0OH) such that for every B bigger than the Bers’ constant By
and N € By(R), the set
C(B,N) := U short(f, B),
fepleaty

is L-quasi-convexr. Moreover, if 5 is a geodesic in C(OH) with endpoints in

C(B,N) then dc(z,lx(x, B)) < L for each x € [5.
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8 Bounded geometry

Here in this section, we prove the following theorem:

Theorem 8.1. (Bounded geometry) There exists n > 0 depending only on
R and x(0H) such that the injectivity radius of every hyperbolic structure in
By(R) is bounded below by n.

The proof is the same as Minsky’s proof of the main theorem in [Min01].
We will discuss the differences in our setting. We can use lemma 7.2 and
translate lemmas 4.4 (Homotopy bound) and 4.5 (Halfway surface) and corol-
lary 4.6 (Interpolation) into our setting and in particular we have:

Corollary 8.2. (Interpolation) Given € > 0 there exists D > 0 and K > 0

depending on €, R and x(OH) such that for a hyperbolic structure N € By(R)

and a useful compact core C' the following holds. Let Py — P, — --- — P,

be an elementary-move sequence of pants decompositions on OH and let fy €
dn(fo(0H),I'n) = D

then either

1. there exists F : 0H x [0,n] — N \ C' such that
b FO = f07
o [, = Flomxyi) € pleaty(F;),
[ F1i71/2 = F8H><{i71/2} S pleatN(Pi,l) N pleatN(Pi) and
o Fis a (K, €)-good homotopy restricted to OH x [i — 1,7 — %] and

OH x [i — 3,1]
for everyi=1,...,n or

2. there exists F: OH x [0,k] = N for some 0 < k < n such that
o Fy= fO;
o F; = Flomxyiy € pleaty(F;),
o Fi 172 = Fyuxii-1/2) € pleaty(P;_;) N pleaty (F;),
o Fis a (K, €)-good homotopy restricted to OH x [i — 1,7 — %] and

OH x [i — 1,4] and

o dy(F,(0H),Ty) < D

for everyi=1,...,k.
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8.1 The resolution sequence

Let Py — P — --- — P, be an elementary-move sequence and € Cy(0H),
we denote

Jsg:={i€[0,n]: 5 € P}
Note that if Jg is an interval [k,!], then the elementary move Py, — P
exchanges some « for § and P, — P,; exchanges [ for some o, and we call

them predecessor and successor of 3, respectively.
We also use the notation

t
J[S,t} = U J,Bw
=5

where [y, ..., Bn is a sequence of vertices in C(OH). The following theorem
is a consequence of work of Masur-Minsky [MMO0].

Theorem 8.3. (Controlled Resolution Sequences) [Min01, Thm. 5.1] Let P
and @) be pants decompositions in OH. There exists a geodesic in C;(0H) with
vertex sequence By, ..., Bm, and an elementary move sequence Py — --- —
P,, with the following properties:

1. poe Ph=P and B,, € P, = Q.

2. Each P; contains some [3;.

3. Js, if nonempty, is always an interval, and if [s,t] C [0,m] then
| Jis] < b(t — 5) sgp dy (P, Q)%

where the suprimum s over only those non-annular subsurfaces Y
whose boundary curves are components of some Py with k € Jj, 4.

4. If B 1s a curve with non-empty Jg, then its predecessor and successor
curves « and o satisfy

|dg(a, a') = dg(P, Q)| < 0.
The constants a,b,d depend only on x(0H). The expression |J| for an inter-
val J denotes its diameter.

Let v be a closed curve on 0H such that [y (7) is very small. We will try
to bound the diameter of the Margulis tube T, (¢) depending only on R and
X(0H) and if we are successful, we have proved theorem 8.1.
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8.2 Initial pants

We know that N € By(R) is associated to some a € Ay(R) and there exists
some ( € my(H) such that o and § have (R + 1)-bounded combinatorics
respect to each other. Let P_ be the pants decomposition of 3. Using lemma
7.6, we can immediately conclude that

Fact 8.4. Given D there exists By > 0 such that l(,f(P_) < B, whenever
e pleat;D.

If N is convex cocompact (equivalently « is a marking), let Py be the
pants decomposition of cv. Then by using theorem 2.11, we know that

I, (Py) < JB,

for some J depending only on ¢y, where g € pleat, parametrizes 0CH(N).
By assuming dy (OCH(N),T'x) is large, we can make sure that pleat (P, ) #
(). Choose some f, € pleaty(P,); we have

f+7g € gOOdN(P+7 JBO)

Then because of lemma 4.4 (Homotopy bound), there is a (K, €)-good ho-
motopy between f, and g which stays away from a useful compact core of
N. This is in fact a (K, 0)-good homotopy since oy is ey-thick. Therefore
the region enclosed between f, and g has uniform bounded diameter and
the intersection of T (€p) and this region will have uniformly bounded diam-
eter too. (Notice that again in all this we assume OCH(N) is uniformly far
from I'y whenever appropriate; otherwise CH(N) will have bounded diam-
eter and since we have a compact family of structures the lower bound for
the injectivity radius of these cases is obvious.)

If N is geometrically infinite, let 01, @2, ... be a sequence of pants decom-
positions which converge to a measured lamination supported on «. If 7 is suf-
ficiently large pleat y (Q;) will be nonempty and every element of pleat y(Q;)
will be far into the end of N. Choose P, = Q; and f, € pleaty P, that
f+(0H) encloses a compact subset of N that contains T, (e).

8.3 The interpolation

We fix ¢ = (€9, x(OH)) to be the constant obtained in lemma 3.3 and in
particular
f((OH)7®) C N=“ (8.1)
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whenever f € pleat, because of our assumption that dy(f(0H),T'x) > Dy
for every f € pleat,.

Now join P, and P_ with a resolution sequence P, = Py = -+ — P, =
P_ as in theorem 8.3. Then we can use corollary 8.2 for ¢; and obtain a
continuous family

F:0H —[0,k] = N

such that the second possibility in that corollary occurs. Notice that the first
possibility cannot happen here, because P_ consists of a set of meridians and
they cannot be realized in N.

Therefore there exists £ > 0 such that

i F0:f+,

o [, = Flouxqy € pleaty (),
o Fi_1/2 = Floux{i-1/2y € pleaty(P,_1) Npleat, (F),

o Flopxii—1,i—1/2] and F|gp «ji—1/2, are (K, €)-good homotopies within N\
I'y and

o dy(F,(0H),Ty) <D

for every + = 1,..., k, where constants K and D depend only on €¢;, R and
X(0H).
By fact 8.4, we know that

le (P*) < B

for a constant B; that is independent of choice of N € By(R). Also note
that Fj,(0H) encloses a compact set of bounded diameter independent of our
choice of N or the resolution sequence; therefore image of F' covers T, (¢p)
with degree 1 except for a set of uniformly bounded diameter and it is enough
to show that T, (e) N F(0H x [0, k]) has bounded diameter.

Fix B = max{B;, JBy} and let €5 be such that a K-neighborhood of any
eo-Margulis tube is still contained in an e;-Margulis tube.

Claim 8.1. There is a subinterval I, C [0, k] of diameter at most 2L, so that
F(OH x [i,i + 1]) can meet T, (e2), where L is the quasi-convexity constant
of theorem 7.11 and depends only on R and x(0H).
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Proof. Suppose j; is a component of P,. If F; = F(0H x {i}) meets T, (¢;)
then because of (8.1), l,,(7) < € where 0; = o, and in particular

S ShOI‘t(E, B) C HN(BzaB)
It follows from theorem 7.11 (Quasiconvexity) that

de(Bi,v) < L

where L depends only on R and x(0H). Then because {fy, ..., [} are the
vertices of a geodesic, the possible values of 7 lie in an interval of diameter
at most 2L, which we call I, and we have i € I,.

Now notice that because of our choice of e; and since F|3HX[Z~,Z~+H is a
(K, €1)-good homotopy, if any track of a block F(0H x [i,i+1]) meets T, (e2)
then one of the boundaries must meet T (e;) and hence i or i+1isin J; . O

Let us restrict our elementary move sequence to
Py — - — Py

where [s,t] = J;, and notice that this subsequence must still encase T (e2),
since we have thrown away the blocks which avoid T, (e;). Let M =t —s =
|JI'y | .

Using part (3) of Theorem 8.3, tells us that

M < b(2L)supdy(Py, P_)*,
%

where the suprimum is over subsurfaces Y whose boundaries appear among
the P; in our subsequence. Such P; must lie in a L 4+ 1 neighborhood of v, in
the dc; metric.

It follows from our assumption about R-bounded combinatorics of a and
[ respect to each other that

dy(P;,P_) < R+ 2u

where u depends only on x(0H) and Y C 0H is any subsurface. (This is
obvious for convex cocompact case and for the geometrically infinite case,
we can use Klarreich’s theorem in the same way as in Minsky [Min01, Lem.
7.3].) This gives a uniform bound on M.
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Suppose 7 is not a component of any P;. Then each block F'|gzx[;,i+1] has
track lengths of at most 2K within T, (ey). There are only M + 2 blocks in
our restricted sequence and they cover all of T (e3), so

diamT, (e2) < 2K (M + 2)

. This bounds Iy () from below, and we are done.

When ~ does not appear among the {F;}, the argument is exactly the
same as Minsky’s [Min01] that argument finishes the proof of theorem 8.1
(Bounded geometry).
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9 The sweep-out

Here by using the bounded geometry result and similar to our constructions
in the last section, we want to give an interpolation that covers almost all of
the convex core of N € By(R) and is more efficient.

Note that, the bounded geometry theorem tells us that length of all in-
compressible curves is at least 27. By definition, the pleated surfaces in
pleat, have distance at least 1 from I'y and therefore by lemma 3.2, the
length of image of compressible curves by elements of pleat, is at least 1.
We always assume 7 is smaller than 1 and therefore the metric induced by
any element of pleat, is n-thick.

Lemma 9.1. There exists a constant kg > 0 such that if N € By(R) and
f,g € pleaty are given with dy(f(0H),g(0H)) > ko, then the Teichmiller
distance between the induced metrics is at least 1.

Proof. If the distance between f(0H) and g(0H) is more than 2By + 2dy
then we know that at least one of them, say f(0H), has distance more than
By + dy from I'y. Now let o be the shortest simple closed curve on oy.
Bers’ observation shows that the oy-length of o is at most B,. Therefore
f(a) has length at most By and by lemma 3.2, since its distance from a
useful compact core of NV is more than By, o cannot be a meridian and has
a geodesic representative a* in V.
Let D = dg(oy, 0,); then similar to Minsky [Min93], we can see that

where ¢ depends only on x(0H) and 7. Therefore I, () < ce” By. Suppose
a* is the geodesic representative of v in /N then by lemma 2.10 and using

the fact that length of o* is at least 7, we have

dn(f(a),a) < cosh 1(22)

n
and 5
B
dn(g(a), a*) < cosh™ (22,
n
Since length of a* is at most By, this gives an upper bound for the distance
between f(0H) and g(0H) and we are done. O
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We fix the constant ky > 1 such that it satisfies the above lemma.

Lemma 9.2. Giwen D > 0, there exists K > 0 such that for every f and
g € pleaty, N € By(R) and a useful compact core C, if

dn(f(0H),g(0H)) < D

then there is a (K, 0)-good homotopy between f and g within N\ C: a home-
omorphism ¢ : OH — OH and a homotopy with tracks length bounded by
K between f and g o ¢ within N \ C. Also, the identity map on OH is
K-bi-Lipschitz from the metric induced by f to the metric induced by g o ¢.

Proof. Suppose we have a sequence of counterexamples (N, fi, g;) which sat-
isfy the hypothesis but fail the conclusion for bigger and bigger constants
K5. There are two cases, which we argue separately. Suppose there is a
subsequence, say (N, fi, ¢;) itself, such that f;(0H) stays within a bounded
distance from I'y, independently of ¢. Then we can assume the sequence
(N;, pn,) converges strongly to (N, py) € By(R) as marked hyperbolic struc-
tures. Since f;(0H) and therefore g;(0H) have bounded distance from Ty
by using lemma 7.3 (Uniform bounded diameter lemma), we know that they
stay in the Dj-neighborhood of ['y for some constant D; independent of ¢
and they are n-thick; therefore the surfaces (f;(0H)) and (g;(0H)) converge
to two pleated surfaces in N. Let C' be a useful compact core in N and
assume the marking j : 0H — N is isotopic to 0H — H outside of C'. Also
let
ki : N — N;

be the approximating maps. For i sufficiently large, C; = k;(C) is also a
useful compact core in /N; and since the convergence N; — N is as marked
structures, we can assume j; = k; o j is the marking for N;. The region
between JC and j(0H) is homeomorphic to 0H x [0,1] and we call it M.
There exists a deformation retract r : M x [0,1] — M such that r(-,0) is
identity, r(-,t)|jom) is identity for every ¢ € [0,1] and image of r(M,1) is
contained in j(OH). For i sufficiently large M; = k;(M) is homeomorphic
to OH x [0, 1] too and r induces a deformation retract r; : M; x [0, 1] — M;
to j;(OH) with the same properties and with tracks r;({x} x [0,1]) which
have bounded length independently of : and « € M;. The maps f; and g;
are my-isomorphisms into M; and therefore by using the deformation retract
r; we get a homotopy with bounded tracks between f; o ¢;, ¢; o ¢; and j;
within M;, where ¢; and v; are self-homeomorphisms of OH homotopic to
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identity. This immediately show that the sequences (f; o ¢;) and (g; o 1)
converge (as marked pleated surfaces) to f and g € pleat, respectively and
the bi-Lipschitz constant for id : (0H,o;) — (0H, 0,) gives an upper-bound
for the bi-Lipschitz constant of id : (0H, 0f,0¢;) — (0H, 04,0p;) and we have
a contradiction after precomposing with ¢; ' o ;.

On the other hand assume dy,(f;(0H),I'y,) — o0 as i — 0o. Choose a
new base point for N; to be a point z; € f;(0H) C N;. Then because the
manifolds and surfaces are all n-thick, we can assume that the sequence of
pointed manifolds (N;, ;) converges to a hyperbolic 3-manifold (N, Zo) in
the geometric topology and the sequence of pleated surfaces (f;(0H)) and
(9:(0H)) converge to pleated surfaces fo(0H) and ¢goo(0H) in Nu.

It is not hard to see that f,(OH) and g.(0H) are incompressible in
Ny. Using methods of Freedman-Hass-Scott [FHS83] (cf. Canary-Minsky
[CM96]), we can choose embedded surfaces ¥; and X, which are homotopic
t0 foo(OH) and go(0H) and are contained in a small neighborhood of those
respectiely. Suppose

K © (Noo,ib'oo) — (Nz,a:l)
are the approximating maps. For i sufficiently large, x;(Xf) (resp. k;(3,)) is
embedded and is contained in a small neighborhood of f;(0H) (resp. g;(0H))
and is homotopic to f;(0H) (resp. g;(0H)) within N;\C;, where C; is a useful
compact core of N;. Hence k;(Xy) and &;(2,) enclose a subset M; C N; \ C;
homeomorphic to H x [0, 1] and with bounded diameter independently of
i. (This is because f;(0H) and g;(0H) have bounded diameter and bounded
distance from each other independently of i.) Hence in the limit ¥ and
¥, are homotopic and therefore fo(0H) and g (0H) are homotopic. After
precomposing ¢, with a self-homeomorphism of 0H, we get a homotopy
between f,, and g.. The k;-image of this homotopy is close to a homotopy
between f; and g; o ¢; with tracks length bounded independently of ¢, for a
homeomorphism ¢; : 9H — 0H. Since this homotopy stays within N;\ C; for
i > 0, ¢; has to be isotopic to the identity. Also note that the bi-Lipschitz
constant for
id:op, — 0,

is close to the bi-Lipschitz constant of
id: o — 0gog

for ¢ > 0 and therefore it is bounded independently of ¢ and we have a
contradiction. O
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Definition 9.1. Given a useful commpact core C' C N, amap G : 0H xI —
N for N € By(R) is a K-sweep-out, if G maps into CH(N) \ C' and has the
following properties:

(a) I = [0,n] for some integer n > 0 when N is convex cocompact and
I =[0,00) if N is geometrically infinite,
(b) for each integer i € I
G; = G|8H><{z} € pleatN,

(c) the block G|ypx[i—1, has tracks G({x} x [i —1,i]) with length bounded
by K for every x € 0H and integer 0 < i € I,

(d) G covers every point in the convex core of N except a set of diameter
bounded by K with degree 1,

(e) Gy has distance at most K from py and when N is convex cocompact
and I = [0,n], G, gives a parametrization of the boundary of the
convex core,

(f) dn(Gi-1(0H),G;(0H)) > ky for every positive integer ¢ € I,
(g) G;(0H) separates G;_1(0H) from the end of N and

(h) the identity map on 0H is K-bi-Lipschitz from the metric induced by
G;_1 to the metric induced by G; and the Teichmiiller distance between
these metrics is bounded by K for every positive integer ¢ € I.

In this section, we want to prove the following:

Proposition 9.3. There exists K > 0 depending only on R and x(0H)
such that every N € By(R) with any useful compact core C C N admits a
K -sweep-out.

Proof. We fix a useful compact core C for N. First, we show how to construct
a map G' : 0H x I' — N that has prperties (a), (b), (c), (d) and (e) for a
constant K.

When N is convex cocompact, consider pants decompositions P_ and P,
introduced in 8.2. Similar to our construction there, this time with € = 7,
we obtain an interpolation

F:0H x [0,k] = N
such that

83



o [y realizes P,
° E and .Fz',l/g S pleatN

[ F|8H><[i—1,i—1/2} and F|8H><[i—1/2,i] are (Kl,’l'])—gOOd homotopies within
N\ C and

o dy(Fy(0H),Ty) <D

for every ¢ = 1,...k and constants K; and D depending only on 7, R and
x(0H). As we explained there, since P has bounded length in o,, where
g € pleat, parametrizes 0CH(N), we can assume that there is a (Ks,0)-
good homotopy between Fy and g, where K, depends only on x(0H). Also
note that since 7 is smaller than the injectivity radii of the pleated surfaces
and N, we can replace (K7, n)-good homotopies with (K7, 0)-good homotopy.
Now define G’ : 0H x[0,k] — N to be G'(z,t) = F(x,k—t) for every x € 0H
and ¢ € [0, k] and concatenate this with the (K3, 0)-good homotopy between
Fy = G}, and ¢ to have

G':0H x [0,k+1] = N\ C

that satisfies properties (a), (b), (c), (d) and (e) for I' = [0,k + 1] and the
constant
maX{QKl, KQ, D}

When N is geometrically infinite, suppose P. = Py — P, — --- is any
elementary-move sequence of pants decompositions such that P, — £(N)
(the ending lamination of N) in OC(0H) as n — co. We construct an inter-
polatin associated to this sequence as follows:

Choose a fixed element f € pleatval, which is possible for a uniform D,
depending only on R and x(0H) by lemma 7.8. For every ¢ > 0, let f; be
an element of pleat, (P;) if nonempty otherwise define it to be equal to f.
Using lemmas 4.4 (Homotopy bound) and 4.5 (Halfway surface), we know
that there exists Dy, which we can assume is > D, and K3 depending only
on R and x(0H) such that for i > 0 if

dN(fz(aH)JO) Z D2

then pleaty(P;;1) is nonempty and there is a (K3, 0)-good homotopy be-
tween f; and every element of pleat, (P;;;) within N\ C. We are using the
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fact that because N is n-thick, we have (Kj3,0)-good homotopy instead of
(K3, n)-good homotopy and d5"(-,-) = dy(-,-). Hence, fi;, € pleaty (P ;)
and there is a (K3,0)-good homotopy between f; and f;;; and in particular

dn(fir (DH), C) > dy(f;(0H), C) — K.

On the other hand, if
dy(fi(0H),C) < Do,

the same argument shows that
dn(fir1(0H),C) < Dy + K3

and by using lemma 9.2, we know that there is a (K4, 0)-good homotopy
between f; and f;1;. We can concatenate these homotopies with possibly
precomposing each f; with a self-homeomorphism of 0H isotopic to identity,

to obtain a map
G':0H x [0,00) — N,

where G'|om iy = fi fori > 0and G'|sg«jiji1) is a (K5, 0)-good homotopy for
a constant K5 that depends only on R and X(@H ). As in the geometrically
finite case, we get G’ that satisfies properties (a), (b), (¢), (d) and (e) for
I' =10, 00) and the constant

maX{K5, DQ}

Next, we will try to modify this map to get another one which is a K-
sweep-out. First we choose an increasing subset (k;) C I’ of nonnegative
integers inductively. Define ky = 0 and suppose we have chosen k;. Consider
the pleated surfaces G} , Gy ,,,... and define k;;, to be the smallest index
bigger than k;, if there exists one, such that G, = separates G}, from the end
of N and

An(GY(OH), Gy (OH)) > h.

If N is geometrically infinite, then this process never stops, since the sequence
of pleated surfaces (G}) exits the end of N; in this case define I = [0, c0). But
if N is convex cocompact and we couldn’t choose k; 1 as above, then simply
replace k; with the last index in I’ and stop; in this case define I = [0, 1],
where k; is the last chosen index. It should be obvious that

Ay (G, Gh) <K'+ k. (9.1)
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Now we define G inductively. Define Gy = G,/ and assume G| [0, has
been defined such that G; and G, are the same after precomposing with a
self-homeomorphism of OH isotopic to identity. Then by using lemma 9.2
and because of (9.1), there exists ¢; : 0H — OH isotopic to identity such
that there is a (K, 0)-good homotopy between G; and G = G, ;1 © ¢
within N \ C' and

id : (8H, UGi) — (8H, UGi+1)

is Kg-bi-Lipschitz. The constant K4 depends only on R and x(0H) and we
define G|3Hx[i,i+1} to be the homotopy described above.

Note that if two hyperbolic metrics on 0H are n-thick and the identity
is Kg-bi-Lipschitz between them, then the Teichmiiller distance between the
metrics is bounded by some K7, where K; depends only on x(0H), n and
K¢ (cf. Minsky [Min92]). Let K = max{K’, K¢, K7} and the claim follows.

O
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10 The Model Manifold

In this section, we want to use the sweep-out constructed in the last section
to construct a bi-Lipschitz model for the geometry of every N € By(R), which
is determined by £(N) and the bi-Lipschitz constant depends only on R and
x(0H).

The models are similar to Minsky’s models in [Min94]. But we use the
description of the model in a way similar to Mosher [Mo03]. Mosher’s work is
set up to give a model for the degenerate hyperbolic structures with bounded
geometry on interval bundles over a surface. But the same construction gives
a uniform model for the convex cocompact case as well. Here, we use this to
get a uniform model for both convex cocompact and geometrically infinite
structures in By(R).

Theorem 10.1. (The model manifold) Suppose the handlebody H of genus
> 1 is given. Given R, there exists constants L and ¢, for which the following
holds. Let N € By(R) be a hyperbolic structure on H. For a choice of a useful
compact core C' C N, there exists a cobounded geodesic ray or segment g in
T(0H), such that:

(1) There is a map @ : SgSOLV — N,, properly homotopic to a home-
omorphism and in the homotopy class determined by j, which lifts
to a (L,c)-quasi-isometry of universal covers Hzow — N., where
N.=CH(N)\C.

(2) The initial point of g is a fized point Ty € T and the “terminal” point is
T(E(N)). (The “terminal” point is a finite endpoint that corresponds to
the conformal structure at infinity, in case N is convex cocompact and
an ideal endpoint in Thurston’s compactification of Teichmiiller space,
that corresponds to the ending lamination of N, when N is geometri-
cally infinite.)

Suppose G : OH x I — N is the K-sweep-out constructed in proposition
9.3 and let 0, = o0¢, be the metric induced by the pleated surface G; for
every integer ¢ € I. We know that the Teichmiiller distance between o; and
o;+1 1s at most K. Hence, there is a Z-piecewise affine, K-Lipschitz path
v : I — % with y(n) = o0,. Since inj(o,) is at most 7, it follows that the
path ~ is KC-cobounded, where K depends only on n and K.

Now consider the canonical hyperbolic surface bundle S, — I and its
universal cover, the canonical hyperbolic plane bundle H, — I. Note that
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S, = o0, for every integer n € I. We can identify 0H x I with S, and from
now on we consider the sweep-out as a map

G:S, —+ N.

Note that the restriction of G to §,, is length preserving for every integer
n € I and because of the property (c) of the sweep-out, the restriction of G
to any = X [n,n+ 1] is a K-Lipschitz map. Also note that property (f) of the
sweep-out and lemma 9.1 show that the distance between o, and o0, is at
least 1 and therefore the Hausdorff distance between §,, and S,,, is between
1 and K.

We know that image of the sweep-out is contained inside CH(N) \ C.
Let N, = CH(N) \ C, which is homeomorphic to 0H X [0,00) or 0H x [0, 1]
depending on whether N is geometrically infinite or convex cocompact.

Proposition 10.2. The map G : S, — N, lifts to a quasi-isometry of uni-
versal covers G : H., — N,, with constants depending only on R and x(0H).

Proof. First we show that G is coarse surjective. By property (e) of the
sweep-out, we actually know that G is surjective to N, except possibly for
a neighborhood of bounded diameter about 0C. But we know that G is
a pleated surface contained in a bounded neighborhood of I'y. Therefore
by lemma 9.2, there is a homotopy with bounded tracks between 0C and
G (0H). This homotopy covers every point in the complement of G(S,) in
Ne. Therefore, by lifting it to the universal cover, one can conclude that
every point has bounded distance from image of G.

Using fact 2.1, it is enough to show that G is uniformly proper with
constants and properness gauge independent of N. We know that G|y, is
lift of a pleated surface and is distance non-increasing. On the other hand,
length of a connection line x x [n,n + 1] is at least 1 in A, and its image
G(z x [n,n + 1]) has length at most K and therefore G is Lipschitz along
the connection lines as well and these two easily prove that it is Lipschitz
everywhere. B

Now let’s prove that GG is uniformly proper along H,, for an integer n.

Lemma 10.3. (Pleated surfaces are proper) Given R there exists a proper-
ness gauge p : [0,00) — [0,00), such that if N € By(R) and f € pleaty are
given then the lift to the universal covers f : OH — N, is p-uniformly proper.

88



Proof. First note that fis distance non-increasing and therefore fis actually
1-Lipschitz. Hence, it is enough to show that given a > 0 there exists b > 0
such that if [ : I — N, is an arc of length at most a and [(0) C f(OH) then
[ is homotopic relative to the endpoints and within N, to an arc of length at
most b contained in f(0H).

The idea of proof is by taking geometric limits and very similar to the
proof of lemma 9.2. Assume (N, f;,[;) are a sequence of counter examples.
Take a base point z; € N; to be on f;(0H) and assume the sequence of
pointed manifolds (V;, ;) converges in the geometric topology to (Nuo, Zoo)-
The sequence of pleated surfaces (f;) also converge to a pleated image of 0H
in N (because f;(0H) is n-thick for every 7).

If dy,(x;,y,) stays bounded then the limit Ny, is in By(R). Similar
to lemmas 7.6 and 9.2, one can see that the pleated surfaces (f;) converge
to an element f,, of pleaty . We can replace each /; with another arc [
homotopic to /; relative endpoints and with length bounded depending on «
and distance more than dy from I'y,. Then the arcs [; converge to an arc
I with bounded length which has distance more than dy from I'y_ and has
endpoints on f(0H).

Let C'», be a useful compact core for N,,. Since f,, is a homotopy equiv-
alence between 0H and N \ Cw, there exists an arc in fo (0H) which is
homotopic to I relative to endpoints and within N, \ Cw. If we map this
arc and the homotopy between these two arcs to the approximates, we get a
bounded length arc in f;(0H) homotopic relative to endpoints and outside of
a useful compact core to [. This contradiction proves the claim in this case.

On the other hand, if dy,(x;,I'y;) — 00 as i — oo then we can see that
limit of the pleated surfaces and the arcs is contained in a subset M C N4
that is homeomorphic to 0H x [0,1] and ¥ the limit of pleated surfaces
gives a homotopy equivalence to M. Therefore, there is a homotopy fixing
the endpoints that takes limit of (/;) to an arc in X. Again by using the
approximating maps and mapping this homotopy to the approximates we
get a contradiction. Notice that in this case, the distance between the image
of this homotopy by the approximating maps and every useful compact core
goes to infinity and everything stays outside this compact core for ¢ > 0. O

Once we have the above lemma, we can argue similar to Mosher [Mo03,
Claim 4.7]. Using property (f) of the sweep-out, it follows that if x € H; and
y € H, are given then

dy, (G(2),G(Y)) = kols —t], (10.1)
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where |x] is the greatest integer < x. This fact together with the above
lemma prove that G is uniformly proper with constants and properness gauge
independent of NV and we are done. O

Lemma 10.4. (H, is hyperbolic) The space H., or equivalently N,, is a
hyperbolic metric space in sense of Gromov with constants depending only on

R and x(0H).

Proof. In the proof of the above lemma, we use an idea which was briefly
described in Mosher [Mo03, Sec. 4.4] and was partly based on Farb-Mosher
[FMO02]. The proof is similar to Farb-Mosher’s proof of [FM02, Lem. 5.2]
with some modifications in our situation and a part which was missing in
their proof.

Given k > 1, an integer n > 1 and A > 0, we say that a sequence of
nonnegative integers (r;);c; indexed by a subinterval J C Z satisfies the
(k,n, A)-flaring property if, whenever the three intergers i —n,i,i+ n are all
in J, we have:

ri>A = max{ri_,,rin} > KT

The number A is called the flaring threshold and notice that by making n
larger, we can make x as large as we want.

Let H, be given for a Z-piecewise affine, K-Lipschitz, K-cobounded path
v: 1 — %. We say H, satisfies the horizontal flaring property if there exists
k > 1, an interger n > 1, and a function A(A) : [1,00) — (0,00), such that
if a, B : I" = H, are two A-quasihorizontal paths with the same domain I’,
then setting J = I’ N Z the sequence

di((2), B(i)), 1€ J

satisfies the (k,n, A()\)) flaring property, where d; is the distance function on
H;, 1€ 1.

Farb-Mosher [FM02, Lem. 5.4] used Bestvina-Feighn Combination Theo-
rem [BF92] to prove that if ., for a K-cobounded, K-Lipschitz Z-piecewise
affine path v, satisfies (x,n, A()))-horizontal flaring then H., is d-hyperbolic
in sense of Gromov, where ¢ depends on K, K and the flaring data &, n, A()).
Therefore it will be enough to show that H, satisfies (k,n, A(\)) horizontal
flaring. B B

Let ¥; = G;(S;) for every integer ¢ € I and let ¥; be its lift in V.. Recall
that it follows from properties of the sweep-out that the Hausdorff distance
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between ¥; and ;. (or between ., and iiﬂ) is at least ky and at most K.
Also recall that G; : S; — X; and its lift él H; — iz are length preserving
and we denote the distance in f)z by d; and the distance in Ne by d.

Notice that é—image of a M'-quasihorizontal path in #, is a A-Lipschitz
path a: I' = N,, I' C I, such that a(i) € 3; for every integer i € I' and A
depends on A" and K. By abuse, we call these A-quasihorizontal in Ne.

It follows that it is enough to show the existance of flaring data x, n, A(\)
such that every two A-quasihorizontal paths o, : I' — Ne, I' C I, the

sequence
di(a(i),B(i)) i€I'NZ

satisfies (k,n, A(\)) flaring.

Fix a number \g > K; first we obtain constants kg, ng, Ag such that the
above sequence satisfies (kg, ng, Ag)-flaring for \g-quasihorizontal paths «, f.
Then we use this and prove the existance of uniform flaring data &, n, A(\).

Suppose a, 3 : I' — ]ve, I' — I, are \g-quasihorizontal. Let J =I'NZ =

{i_,...,i.} and assume i, —i_ is even and iq = “*= € J. Also define

2
D, = (o). 3(i). ) o

The lift of G(OH x [i,j]) to N, gives a map h;; : ¥; — X; which is
Ki=3l-bi-Lipschitz for every pair of integers 7, j € I. This is the image of the
connection map in .. For each i € J, let p; : [0, D;] — X; be a 3;-geodesic
with endpoints a(z) and £(i). Similar to [FM02, Claim 5.3], we have:

Claim 10.1. there is a family of quasihorizontal paths v described as follows:

e For each i € J and each t € [0, D;] the family contains a unique quasi-
horizontal path vy : [i_,i,] — N, that passes through the point p;(t).
If we fix 7 € J, we thus obtain a parametrization of the family v; by
points t € [0, D;].

e The ordering of the family v; induced by the order on ¢ € [0, D;] is
independent of 7. The first path v;y in the family is identified with «,
and the last path v;p, is identified with 3.

e Each v; is Aj-quasihorizontal, where \j depends only on Ay and K.

It is easy to see that a Aj-quasihorizontal path in N, is a (A§, a) quasi-
geodesic for constants A\j and a depending on A\, K and k;. We already know
that it is Lipschitz and on the other hand using property (f) of the sweep-out,
we know that d(a(i), a(j)) > ko|i — j| for integers 4, j in the domain of .. In
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fact, the same argument shows that its images in N and its universal cover
N = H? are also ()], a)-quasigeodesic. In H?, there exists a constant d; de-
pending only on A and a such that for any rectangle of the form v o *w %o’
where 0,0’ are geodesics and v, w are (\j, a)-quasigeodesics, any point on v
is within distance 6; of c Uw U o

By lemma 10.3 (Pleated surfaces are proper), there exists a constant 0,
such that: B

forallie J, x,y € ¥, if d(x,y) < A\j(61 + 1) + 61 then d;(z,y) < 0.
Now consider the flaring parameters ', n’, A" defined below:

, 3
K = =
2
7’1,,: L51+352J+1
AI:52

First, we show that if all the indexes in J are bigger than 6, then the
sequence {D;};es has k', n'; A" flaring property. Suppose i+ = iy + ng, we
must prove that

o if Dio > A’ then m&X{DZ’_, DH—} > HIDZ'O.

Case 1. max{D; ,D;;} < 6J,. We claim that we can take geodesics o
in the interior of Ne with the same endpoints as p;+ and length < 64,. The
reason why o, will be in the interior of IV, is that all the indexes are bigger
than 645, therefore the endpoints of p;+ have distance at least 66 from ¥y and
ON,. Therefore the geodesic representative of these arcs (relative endpoints)
is inside Ne. _

Notice that a geodesic in the interior of N, projects to a geodesic in V.
This shows that the rectangle o * o * 3 x o projects to a homotopically
trivial rectangle in N, and its lift to N = H® is a rectangle o' x 0’ x ' x o/,
where ¢/, are geodesics and o/ and 3" are (\j, a)-quasigeodesics. Hence every
point of o' has distance at most d; from o’ U 3" U o’,. This rectangle lifts

isometrically to ]Ve and therefore, every point of o has distance at most d;
from o_ U fUo,. Consider now the point «(ip) and suppose it has distance
at most d; from z € o_ U U0y

If z€ 0, or o_, say oy then it follows that

~ 66
d(a(io), Yiy) < 01 + 72 <n
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which implies that d(;,,%;4) < n’ but we know that the distance between
these two is at least ny - kp > ny and we have a contradiction. Therefore
z = f(s) € B. B

By (10.1), we know that the distance from 3(s) to X;, is at least ko||s —
io|| > |s —io| — 1 and therefore

|S—i0|—1<61 = |S—i0| <61+1 = d(ﬁ(S),ﬂ(Zo))<)\g(61+1)
Hence

d(alio), Blio)) < d(alio), B(s)) +d(B(s), Bin)) < d1 + Ag(d1 + 1),
and this implies that D;, = d;,(«(ip), B(ig)) < A'.
Case 2. max{D; ,D; } > 3d, Suppose v is the family of quasihorizontals
constructed in claim 10.1 and assume we consider the parametrization at
i = 19p. We can see that there is a discrete subfamily o = vy, vy,, ..., v, = 3,
with g < t; < --- < tg, such that the following is satisfied: for each [ =

1,...,k, letting
A = dig(vy,_, (i£), vy (i)

then we have
max{Al,, AH»} € [352, 652]

The proof is exactly the same as in [FM02], which we do not repeat. Since
max{A;, , A, } <64,
the argument in Case 1 shows that
Ayp = dig(vy,_, (o), vy, (i) < 02
foralll=1,...,k. Hence

k
D;, = ZAZO < kdy
-1

k k
Di_ + Di-l— = Z Al_ + AH— Z Zmax{Al_, AH—}
=1 =1

> k- 305.
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Then

3 3
max{Di,,DH} Z 5/{)62 Z iDiO.

This proves that the sequence (D;) has k', n’, A’ flaring when we restrict
it to indexes bigger than 60s.

Lemma 10.5. There exists a constant b > 0 depending on K, Ay and the
properness quage p in lemma 10.3 such that the sequence (D;) satifies a
(K, b)-coarse Lipschitz growth condition: D; < KD; +b given i,j € J with
i—j=1.

Proof. First recall that the map h;; : ¥; — ¥; is K"~/I-bi-Lipschitz. Given
i,j € J with |i — j| = 1, let a = h;j((i)) and b = h;;(3(¢)). The points
a and «(j) are connected by a path of length at most Ky 4+ K, consisting
of a segment of « from «(j) to a(i) and a path of length at most K from
a(7) to a, and similarly the distance between b and () is at most KA+ K.
Suppose b = 2p(K )y + K) where p is the properness gauge in lemma 10.3.
Then

This finishes the proof of the lemma. O

From the above, we can easily see that there exists &' depending only on
K, b and d, such that if 7,7 € J and i — j < 6J5 then

D; > K™D, —Vf (10.2)

where m = |60, + 1.

We knew that the sequence (D;) has (x',n', A’)-flaring property when
restricted to the indexes > 6d,. By choosing n” to be a multiple of n’, we
can assume that the sequence (D;);>m also has (x",n", A") flaring, where
k" > 4K™. Now consider

I€0:3
n
ng=mn +m

Ay = max{A", '}
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and we claim that the entire sequence (D;);cs has (ko, ng, Ap)-flaring. Sup-
pose ¢ = ng and ¢ are in J. If i — ny > m then it is obvious. Suppose
D; > Ag > A’; we already know that

maX{Dz?n”a Di+n”} > K”Dia

since indexes 7 + n” and i are bigger than 605. Suppose D; ,» > k" D;, then
by (10.2)

Di-i—ng > K_mDi—l—n” -V
Z Kme;IIDi _ bl

>4D; — b
> 3D; + (Dz — b,)
> 3D;.

The same argument works in the other case and we have proved that the
sequence (D; = d;(a(i), 5(7)))ies has (kg,no, Aog)-flaring property for every

pair of A\g-quasihorizontals o, 3 : I' — N,, I' C I.
Using the above, we want to prove that for arbitrary A > 0 and A-
quasihorizontals a, 8 : I' — N,, I' C I, the sequence

di(a(i),8(7) ieJ=1I'NZL
has (k,n, A(\)) property, where

K=2
n="ny

A(N) = max{Ay,2p(K + K - \)}

and p is the properness gauge in lemma 10.3 (Pleated surfaces are proper).
Suppose 7y and ig + ng are in J and we define i+ = iy & ny,

D() = dio(a(ig), B(’Lo)) and D:I: = dzi(a(zi), 5(Z:t))
We want to prove that
max{D,,D_} > 3D, if Dy > A(\).

If A < Ap then the statement easily follows since A(\) > Ay; therefore we
can assume A > )y > K.
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Let _ _
o = G|{x}><[i—,i+] : [i—, i—i—] — N,

such that o/(ip) = a(ip). In the same way define ' : [i—, i+] — N,. We
know that o/ and 3’ are K-quasihorizontals and since K < )

max{d;_(o/(i—), 5'(i—)), dis (o (i+), 5'(i+))} = 3di (@ (io), F'(i0)) = 3Dy

whenever Dy > Ay. Similar to proof of lemma 10.5 there is a path of length
at most K + K - A connecting a(i£) and o/(it) obtained by moving along «
from a(it) to a(ip) and then by moving along o from o'(iy) to o/(i£). By
lemma 10.3 (Pleated surfaces are proper), we have

diz(a(it),d (i£)) < p(K+ K- )\) < %

The same argument shows that

and we have

> dix (0 (i%),
Hence
max{ D, D_} > max{d;_(a'(i—), 8'(i—)), di+ (o' (i+), B'(i4)) } — A(N)
> 3Dy — A(N)
= 2Dy + (Dy — A(N))
> 2Dy

whenever Dy > A(A) and this finishes our proof.
U

Once we know that H, is hyperbolic, it follows from work of Mosher
[Mo03, Thm 1.1, Prop. 2.3] that v fellow travels a cobounded geodesic seg-
ment or ray ¢ in ¥ with y(0) = ¢’(0) and we obtain 7 (0H )-equivariant
quasi-isometries

é ~
HOW 5, G K,
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with constants independent of V.

Going back to the steps of our construction, we notice that the initial
point 7(0) was the metric induced by a pleated surface in pleat . with
uniformly bounded distance from the useful compact core C' independently
of N. An immediate, application of lemmas 7.3 and 7.6 will be that such
initial points are all contained in a compact subset of T(0H) and therefore
they have bounded distance from the base point 74 € T(0H).

On the other hand, when NN is convex cocompact, the terminal point of
~v was the metric induced by the boundary of the convex core, in the homo-
topy class represented by j. Then since the conformal structure at infinity
T(E(N)) is €p-thick, we can use Bridgeman-Canary’s result, theorem 2.11,
and conclude that this terminal point has bounded distance from 7(E€(N))
independently of N.

Finally, when N is geometrically infinite, we know that the sequence
(7(7)) represents the metrics induced by a sequence of elements of pleat,
which exit the end of N. Then it follows from Canary’s [Can93b] description
of the ending laminations for these structures that every limit of the sequence
(7(7)) in Thurston’s compactification of the Teichmiiller space, is an element
of PML supported on £(N), the ending lamination of N. Since ¢’ has
bounded Hausdorff distance from v and they are cobounded, one can see
that the ideal endpoint of g in PML is the ending lamination of N as well.
(Cf. Minsky [Min96].)

Then it follows from the above that if g is a geodesic ray or segment with
g(0) = 7 and in case N is convex cocompact, the terminal point of g is
the metric induced by the conformal structure at infinity and in case N is
geometrically infinite, its ideal end point in PMJL is the same as the ideal
end point of ¢’ and supported on the ending lamination of N, then g has
bounded Hausdorff distance from ¢’ independently of N (cf. [FMO02]). This
finishes the proof of theorem 10.1 (The model manifold).
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11  Gluing

Now suppose a Heegaard splitting H" Ug H~ with R-bounded combinatorics
is given. Let P* C A(H*) be the pants decompositions which realize the
curve complex distance between A(H™) and A(H~) and have R-bounded
combinatorics. One can easily extend each P* to a full marking o such
that o™ and o~ still have R-bounded combinatorics.

Now use a homeomorphism ¢+ : H*¥ — H to identify H+ with H and S
with 0H. With an abuse of notation, we denote the induced maps on the
corresponding complex of curves, marking spaces and Teichmiiller spaces by
¢ as well. After possibly postcomposing ¢ with an element of Mody(H ), we
assume that ¢ (o) is in my(H). Then ¢+ (a~) has R-bounded combinatorics
respect to H and in fact belongs to Ay(R).

In section 6, we see that ¢*(a~) corresponds to a marked hyperbolic
structure N € By(R). Let g be a Teichmuller geodesic segment that connects
70 to (¢ (a™)). Then theorem 10.1 (The model manifold), proves that there
is a map

®: 8" — N,

that lifts to an (L, ¢)-quasi-isometry H°™ — N,, where N, = CH(N) \ C
for a useful compact core C' C N and also that ¢ is K-cobounded, where IC
depends only on R and x(0H). In other terms, ® and SgSOLV give a model
description of the convex core of N, outside of a small compact core.

Now use ¢ and pull back all these structures to H. We get a hyperbolic
structure N* on H*, a geodesic segment g* C T(S) and a map

+ . QSOLV +
TS = N,

which lifts to an (L, ¢)-quasi-isometry and is in the homotopy class deter-
mined by S < HT. The set N is CH(NT)\ (¢*)~*(C) the complement of
a small compact core of N*.

Obviously the end point of gt is 7(«™); we claim that the initial point is
uniformly close to 7(a™). We know that the initial point is (¢*) ™! (7). Now
it is enough to notice that the upper-bound for the total length of elements of
my(H) in 7 gives an upper bound for the total length of o™ in (¢*) ™' (7).
But support of a™ is a binding collection of curves (every essential closed
curve intersects at least one element of this collection), and a standard fact
(cf. Minsky [Min92, Lem. 4.7]) shows that diameter of a set of points of
T (S) where a binding collection has bounded length is bounded depending

98



only on x(S) and the upper-bound for the length of the binding collection.
This immediately implies that (¢*) ™' (7g) and 7(a™) are uniformly close.

Thus, if we let h to be a geodesic segment in ¥(S) whose initial and termi-
nal endpoints are 7(a") and 7(a"), then g™ and h have bounded Hausdorff
distance and they both are cobounded. From here, a standard argument (cf.
Farb-Mosher [FMO02, Prop. 4.2]) proves that there is a map S, — S,+ tak-
ing fibers to fibers that lifts to a quasi-isometry H; — H,+ with constants
depending on the Hausdorff distance of h and ¢ and the set K and x(0H).
Hence, we can replace ¢g* with h and the map ®* with

Ut SO — NS

which satisfies all the properties of ®* except possibly with bigger quasi-
isometry constants (Li, ¢q).

We can do the same construction for H~. This gives a a convex cocompact
structure N~ on H~ and N, = CH(N )\ C~, where C~ is a small compact
core. We also have a map

U SOW N

in the homotopy class determined by S < H~ that lifts to an (L1, ¢1)-quasi-
isometry. Notice that by considering the direction of h to be pointing from
7(a1) to 7(aw) and use the orientation of S, that corresponds to the product
of this orientation on A and the orientation of S, then W™ is orientation
preserving but WU~ is orientation reversing and this is because the orientation
of S'in 0H* (0H ) matches (does not match) with the orientation induced
by orientation of H* (H™).

Also recall that the Teichmiiller distance between 7(a) and 7(a™) (or
equivalently length of h) tends to infinity as the curve complex distance
between o™ and o™, or equivalently the handlebody distance for the Heegaard
splitting, goes to infinity. This is because, as it is shown for example in
Minsky [Min92], when two points 71 and 75 of the Teichmuller space are K-
cobounded and have distance at most D, then there exists a K-bi-Lipschitz
map isotopic to identity from (0H, ;) to (0H, 73), where K depends only on
IC, D and x(0H). In particular, length of o in 75 is bounded depending on
length of & in 7, and D and K. As a result, the shortest marking on 7 and
the shortest marking on 75 have bounded C-distance depending on D and K.

Therefore, by assuming that the handlebody distance is large, we can
make sure that the Teichmiiller distance between 7(a™) and 7(a™) is large
and equivalently the diameter of the convex cores of N* and N~ is large.
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Proposition 11.1. Given € > 0 and D > 0 there exists a number d such
that the following holds. Suppose H™ Ug H™ is a Heegaard splitting with
handlebody distance at least d, o are handlebody markings for H* which
have R-bounded combinatorics and realize the handlebody distance and N*
are hyperbolic structures on H* that correspond to T(a¥).

Then there exists a doubly degenerate surface group p : m(S) — PSLy(C)
and maps

T*:N,— NF

which are €' -close to an isometry on the ball of radius D about py in the
C®>-topology and T* is in the homotopy class determined by S — H*, where
N, = B /p(m1(S)) has inj(N,) > n, po € N, is the image of 0 € H? and
NZ is the complement of a useful compact core in the conver core of N* as
usual.

Proof. We can prove this by means of taking a geometric limit. As described
above, if we have a sequence of R-bounded Heegaard splittings whose handle-
body distance goes to infinity, these give a sequence of Teichmiiller geodesic
segments h,, : [-n,n] — T(S) whose length goes to infinity. We also have
the corresponding hyperbolic structures N on the handlebodies H* and
uniform approximations of neighborhoods of their end by

U S, — NF\CF,

which lift to (L, ¢;)-quasi-isometries of the universal covers and C are useful
compact cores of N=.

Notice that actions of mapping class group of S on the Teichmiiller
space and the geodesic h, corresponds to precompositions of the embed-
ding S — H* Ug H~ with self-homeomorphisms of S. Therefore, these give
the same Heegaard splittings and we consider them equivalent. The geodesic
segments (h,) are all uniformly cobounded and therefore up to actions of
MCG(S), we can assume that they converge in the Hausdorff topology to
a cobounded biinfinite geodesic hy, : (—00,00) — T(S) in a way that the
points h,(0) converge to he(0) and the convergence preserves the orienta-
tion of the geodesics h,. Take a point ws, € Sp () and let w, € Sy, ) be
the point obtained by moving along the connection lines between S, (o) and
Sh,0)- Then let zf = U (w,) be the base point of Nf. The sequence of
pointed manifolds (N, 2F) converges in the geometric topology to a hyper-

no’vn

bolic manifold (NZ, zE) with inj(NZ) > 7. In fact, it is not hard to see that
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this limit is a doubly degenerate hyperbolic structure on S x R. Let
ki NI — NE

be the approximating maps; we claim that there is a map
UE S, — NI

that lifts to a quasi-isometry and the map x o ¥Z is in the homotopy class
of S < H* for every n.
Using Sullivan’s rigidity theorem, we can see that the map

\I/goollf;

is homotopic to an isometry. Even more, NI and N_ both represent a doubly
degenerate surface group p : m(S) — PSL2(C) whose ending laminations are
determined by the ideal endpoints of h.

Therefore, we can consider the approximating maps k- as maps defined on
N, =1 /p(m1(S)) and for n sufficiently large, they will satisfy the required
properties for 7'F and this proves our claim. O

It is not hard to prove the next lemma, using a geometric limit argument.

Lemma 11.2. There exists a constant D depending only on n and x(S) such
that the ball of radius D about any point in the convex core of a doubly de-
generate hyperbolic structure N, on S xR with inj(N,) > 1 contains a subset
V' C N, homeomorphic to S x [0,1] with V' — N, a homotopy equivalence
and the distance at least 1 between the boundary components of V. In addi-
tion, there is a smooth bump function 6 : V- — [0,1] where 0|5 v = 0 and
0)o,v =1, where 0_V and 0,V are the boundary components of V', and there
s an upper-bound for all the first and second derivatives of 0 depending only
on n and x(95).

Suppose the handlebody distance for M = H* Ug H~ is larger than d in
the statement of proposition 11.1 for D obtained in the above lemma and
¢ > 0 small which will be determined soon. Suppose N, is the associated
doubly degenerate hyperbolic structure on S x R and

T*:N,— N*
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are the maps described in proposition 11.1. Choose a subset V' C N, con-
tained in the D-neighborhood of the ball about py and a bump function

6:V —0,1]

that satisfy lemma 11.2.

We consider 7% restricted to V and the idea is to use these and construct
a nearly hyperbolic metric on M. We know that T : V — NI gives
a homotopy equivalence in the homotopy class determined by S < NZ.
Without loss of generality, we can assume that 7t (0,V') separates T (0, V)
from the end of N*. Notice that from this it follows that in N=, T~ (V)
separates T~ (0,V') from the end and this is because the map T is orientation
preserving, whereas 7'~ is orientation reversing.

The complement of 7%(V) in N* has two components; one is a bounded
diameter set homeomorphic to the interior H* and the other one which we
call Y* is homeomorphic to S x R and gives a neighborhood of the end of
N#*. Observe that

(N+ \ Y+) Ur+o(r-)-1 (N_ \ Y_)

is homeomorphic to M = H"Ug H~. We denote the image of the collar V' by
V' and the two components of M \ V by X and X~ which are respectively
contained in N*\ Y+ and N~ \ Y~. The hyperbolic metric of N* induces
a hyperbolic metric v on M \ XF. These metrics do not coincide but they
are 2¢'-close in the C'™ topology.

Now we can define the metric v on M to be

v(z) =0(x) v (z)+ (1-0()) v (2),

for any x € M. This metric is smooth and of course hyperbolic on M \ V.
Moreover on V, the metrics v* are ¢-close to the metric induced by N, which
we call v,. In particular we have

+ +
vt =v,+§,

where £F is a 2-tensors which is C?-close to zero. This implies that on V', we
have
v=u,+05" +(1-0)¢.

Since the first and second derivatives of 6 are bounded from above indepen-
dently of the Heegaard splitting, by making the handlebody distance large,
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we can make sure that v and v, are as C?-close as we want. The sectional
curvatures of v depend only on the first and second derivatives of the metric
and therefore all sectional curvatures of v stay in the interval [—1 —¢, —1 +¢]
if the handlebody distance is large.

In addition to this, it is obvious that the injectivity radius of v at every
point is at least /2 and we have proved our main theorem.

In fact, our construction immediately shows the following:

Theorem 11.3. There are constants K, Ly, ¢; and n depending only on
X(S) and R such that the following holds.

Let M = HY Uy H™ be an R-bounded Heegaard splitting and o is a han-
dlebody marking for H* such that ot and o~ realize the handlebody distance
of the splitting and have R-bounded combinatorics. Then there exists a Rie-
mannian metric v on M and an n-cobounded geodesic segment g connecting
7(1) and T(ag) such that there is a map

TS, » M\ (CTuUC)

which lifts to an (Ly, ¢1)-quasi-isometry of the universal covers, where C* C
H* is a compact core of HT with v-diameter bounded by K.
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12 Tian’s theorem and hyperbolicity

In [Ti90], Tian claims the following theorem:

Theorem 12.1. Let (M, v) be a negatively curved Riemannian three mani-
fold and n a Margulis number for negatively curved three manifolds. Denote
by M, the n-thin piece of M. Then, there is a universal constant € such that
if M satisfies

1. M, is a disjoint union of convex neighborhoods {C,} of closed geodesics
Yo with length < 2n such that the normal injectivity radius of v, in Cy
15 greater than 1.

2. let P, be a smooth function such that P, is equal to n near the boundary
of Cy and P,(y) is equal to the injectivity radius at y whenever this is
less than n/2 (such P, always exists). We require that for some choice

Of POé;
1
/ —|Ric(v) +2v|2 dV, <€ for each a.
co b

3. all sectional curvatures of M lie between —1 — € and —1 + €.
4. [, IRic(v) +2v[2dV, < (€)?

then M admits an Einstein metric which is close to v up to third deriva-
tives.

Here Ric(v) 4 2v is the trace-free Ricci curvature of M. in fact Tian’s
result is stronger than this and allows dimensions other than 3 and norms
other than L? norm. However this is more than enough for our application.
Note that in dimension three, Einstein manifolds have constant sectional
curvature.

Therefore, Tian’s theorem implies the following:

Corollary 12.2. Suppose (M,v) is a Riemannian three manifold with n-
bounded geometry. Also assume (M,v) is hyperbolic outside a set of volume
bounded by some d' and everywhere else the sectional curvatures are between
—1—e€ and —1+€ for € sufficiently small. Then M admits a hyperbolic metric
V' which is close to v up to third derivatives.
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Proof. To apply Tian’s theorem, we need to verify that (M, v) satisfies the
assumptions. We know that (M, r) has n-bounded geometry, therefore the
n-thin part of the manifold is empty and the first and second assumptions
are vacuous. The third assumption is satisfied by the hypothesis too when
e < ¢. For the last one, note that relative to an orthonormal frame, the
entries in the 3 x 3 matrix for Ric(v) + 2v are all between —4¢ and 4e if all
sectional curvatures are pinched between —1 — € and —1 + €. This follows
from the fact that the Ricci tensor may be recovered by polarization from
its associated quadratic form Q(u) = Ric(u,u) and that Ric(u,u) is simply
< u,u > multiplied by the sum of the sectional curvatures of any 2 orthogonal
planes containing u. Therefore, the function in the integral is zero outside a
set of volume bound by d' and is small when ¢ is small inside that set. So
by making sure that € is small enough, we also have the last assumption and
the Tian’s theorem proves the claim. O

In particular, putting our main theorem 1 and the last corollary together
we have:

Theorem 12.3. If M = H* Ug H™ is a Heegaard splitting with R-bounded
combinatorics and suficiently large handlebody distance then M admits a hy-
perbolic metric V'. Also similar to theorem 11.3, there is geodesic segment g
in T(S) determined by combinatorics of the splitting and a map

v Sg — (M\(ClUCQ),VI)

that lifts to an (L', c))-quasi-isometry of the universal covers, where C* C
H?* is a compact core with V'-diameter bounded by K' and constants L', c}
and K' depend only on R and x(S5).
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