Automorphisms of complexes of curves and of
Teichmiller spaces

Nikolai V. Ivanov

To every compact orientable surface one can associate, following Harvey
[Hal], [Ha2], a combinatorial object, the so-called complez of curves, which
is analogous to Tits buildings associated to semisimple Lie groups. The basic
result of the present paper is an analogue of a fundamental theorem of Tits for
these complexes. It asserts that every automorphism of the complex of curves
of a surface is induced by some element of the Teichmiiller modular group of
this surface, or, what is the same, by some diffeomorphism of the surface in
question. This theorem allows us to give a completely new proof of a famous
theorem of Royden [R] about isometries of the Teichmiiller space. In contrast
with Royden’s proof, which is local and analytic, this new proof is a global
and geometric one and reveals a deep analogy between Royden’s theorem
and the Mostow’s rigidity theorem [Mol], [Mo2]. Another application of our
basic theorem is a complete description of isomorphisms between subgroups
of finite index of a Teichmiiller modular group. This result, in its turn, has
some further applications to modular groups.
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1. Statement of the main results.

Let S be a compact orientable surface, possibly with non-empty boundary.
The complex of curves C(S) of S is a simplicial complex in the sense given to
this term in [S], Chapter 3, for example. Thus, it consists of a set of vertices
and a set of simplexes, which are non-empty sets of vertices. The vertices of
C'(S) are isotopy classes (C') of simple closed curves (also called circles) C' on
S, which are nontrivial, i.e. are not contractible in S to a point or to 9S. A
set of vertices is declared to be a simplex if and only if these vertices can be
represented by (pairwise) disjoint circles. Every diffeomorphism S — S takes
nontrivial circles to nontrivial circles and obviously preserves the disjointness
of circles. Thus it defines an automorphism C(S) — C(S). Clearly, this
automorphism depends only on the isotopy class of the diffeomorphism S —
S. Hence we get an action of the group of isotopy classes of diffeomorphisms
of S on C(S). This group is known as the mapping class group of S or as
the Teichmiller modular group of S. We denote this group by Modg. Note
that we include the isotopy classes of orientation-reversing diffeomorphisms
in Modg. (Often this version of the mapping class group is called the extended
mapping class group.)

Theorem 1. If the genus of S is at least 2, then all automorphisms of
C(S) are given by elements of Modg. That is, Aut (C(S)) = Modg.

If S is either a sphere with four holes, or a torus, or a torus with one hole,
then C'(S) is an (infinite) set of vertices without any edges (i.e. dim C'(S) = 0)
and the conclusion of this theorem is obviously false. If S is a sphere with
at most tree holes, then C(S) is empty and the conclusion of the theorem is
vacuous. In the remaining cases of genus 0 or 1 surfaces the question about
validity of the conclusion of the theorem was open till recently. Cf. Section
5 for further details.

The role of the complexes of curves in the theory of Teichmiiller spaces
is similar to the role of Tits buildings in the theory of symmetric spaces



of non-compact type. Originally only cohomological aspects of this analogy
were discovered; cf., for example, [Ha2], [H] or [I3]. Theorem 1 together with
other results of this paper exhibits new sides of this analogy. It is similar to
a well-known theorem of Tits [T] asserting that all automorphisms of Tits
buildings stem from automorphisms of corresponding algebraic groups. In
its turn this theorem of Tits extends the “basic theorem of projective geom-
etry”, according to which all maps of a projective space to itself preserving
lines, planes, etc. are (projectively) linear.

Theorem 2. Let 'y, 'y be subgroups of finite index of Modg. If the genus
of S is at least 2 and S is not closed surface of genus 2, then all isomorphisms
I'y — 'y have the form x — grg™', g € Modg. If ' is a subgroup of finite
indez in Modg and if the genus of S is at least 2, then the group of outer
automorphisms Out (') is finite.

The second assertion of this theorem obviously follows from the first one,
except when S is a closed surface of genus 2. In the case of a closed surface
of genus 2 some additional automorphisms can appear, exactly as in [McC],
[I4]. This theorem extends the author’s theorem [I1], [I4] (cf. also [McC])
to the effect that all automorphisms of Modg are inner (except when S is
closed surface of genus 2). The assertion about finiteness of Out (I') proves
a conjecture stated in [I2] in connection with this theorem. It is analogous
to the Mostow’s theorem about finiteness of outer automorphisms groups of
lattices in semisimple Lie groups [Mo2].

Theorem 2 is a simple corollary of Theorem 1 given some ideas and results
of [I4]. Another application of Theorem 1 is concerned with the Teichmiiller
space Ts of the surface S. We define the Teichmiiller space Ts as the space
of isotopy classes of conformal structures on S\0S without ideal boundary
curves (only with punctures) and consider T together with its Teichmiiller
metric. The modular group Modg naturally acts on T as a group of isome-
tries.

Theorem 3. If the genus of S is at least 2, then all isometries of Ts belong
to the group Modg.



This theorem is due to Royden [R] for closed surfaces S and to Earle and
Kra [EK] for surfaces with non-empty boundary. Theorem 1 allows us to give
a completely new proof of this theorem. This new proof follows the same
general outline as Mostow’s proof [Mo2] of the rigidity theorem for symmetric
spaces of rank at least 2. In particular, Theorem 1 plays a role similar to
the role of the above mentioned theorem of Tits about automorphisms of
buildings in Mostow’s proof. The analogy between Royden’s theorem and
the Mostow rigidity theorem is quite unexpected and was not anticipated
before. Some recent remarks by Kra (cf. [Kr], p. 268, footnote ) suggest
that this new proof may be in some sense the right one.

Note that the conclusion of Theorem 3 is also true for almost all surfaces
of genus 0 and 1 and the proof of Earle and Kra [EK] works uniformly well
in all cases. Since Theorem 1 was recently extended to most of these surfaces
(cf. Section 5), our proof applies to most of the surfaces of genus 0 and 1
also.

Further results along these lines are discussed in Section 5.

2. Sketch of the proof of Theorem 1.

The starting point of the proof is Fig. 1.

Figure 1.

Lemma 1. Let aq, as be isotopy classes of two nontrivial circles on S. The
geometric intersection number (in Thurston’s sense) i(oy, ag) is equal to 1 if
and only if there exist isotopy classes as, a4, as of nontrivial circles having



the following two properties:

(i) i(ou, a;) = 0 if and only if i-th and j-th circles on Fig. 1 are disjoint;
(ii) if ay is the isotopy class of a circle Cy, then Cy divides S into two parts
and one of these parts is a torus with one hole containing some representa-
tives of the isotopy classes aq, «s.

L " ‘al

Note that i(cy, ;) = 0 if and only if the vertices «;, a; are connected
by an edge in the complex C(S). It follows that the property (i) can be
recognized in C'(S) and, hence, is preserved by all automorphisms of C'(5).
It turns out that the property (ii) also can be recognized in C(S). To see
this, start with a vertex o = (C) of C(S). Let L, be the link of a in C(S).
Let us consider the graph L} having the same vertices as L, and having as
edges exactly that pairs of vertices that are not connected by an edge in L,
(or, what is the same, in C'(S)). It is clear that the connected components
of L? correspond to the connected components of the result S¢ of cutting S
along C'. After recognizing the components, we can return to the structure
of the complex of curves on corresponding sets of vertices. If it is known
beforehand that the boundary of a surface R is nonempty, one can recognize
the topological type of R using only the structure of a simplicial complex of
C(R) in the following way: it is sufficient to use the fact that if OR # 0,
then dim C(R) = 3g — 4 + b and C'(R) is homotopy equivalent to a wedge of

spheres of dimension 2g — 3 + b, where g is the genus and b is the number
of boundary components of R (at least if ¢ > 1). The latter result is due

Figure 2.
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to Harer [H]; cf. [I3] for an alternative proof. By applying this remark to
R = S¢, we see that the property (ii) also can be recognized in C'(S) and
is preserved by automorphisms of C'(S). Hence Lemma 1 implies that the
property of two isotopy classes to have the geometric intersection number 1
can be recognized in C'(S) and so is preserved by all automorphisms of C'(5).

Lemma 1 immediately implies that some useful geometric configurations
such as chains v, v2, ..., 7, With i(7;, viy1) =1, i(vi,v5) =0for [i—j [> 1
are mapped by automorphisms of C(S) into similar configurations. More
precisely, every automorphisms of C'(S) agrees on the set {vi,v2,...,Vn}
with some element of Modg. Especially important are the configuration of
circles presented in Fig. 2 in the case of 2 boundary components and similar
configurations for other surfaces. Lemma 1 implies that every automorphism
of C'(S) agrees on the set of the isotopy classes of circles in Fig. 2 with some
element of Modg.

For surfaces R with nonempty boundary we consider in addition to C'(R)
another complex B(R). Its vertices are the isotopy classes (I) of arcs I
properly embedded in R (i.e., such that 0I C OR and I is transversal to
OR); it is allowed to move the ends of I during an isotopy, but they are
required to remain in the boundary. As in the definition of complexes of
curves, a set of vertices is declared to be a simplex if these vertices can be
represented by disjoint arcs. It is easy to see that every codimension 1 simplex
of B(R) is a face of one or two codimension 0 simplices. Moreover, every two
top dimensional simplices A, A’ of B(R) can be connected by a chain of
simplices A = Aq,...,A,, = A’ such that any two consecutive simplices A;,
A;y1 have a common codimension 1 face. This follows from a well-known
theorem about ideal triangulations of Teichmiiller spaces (cf., for example,
[H]). Apparently, the idea of this theorem is due to Thurston; Mumford,
Harer, Penner, Bowditch and Epstein contributed to various proofs of it.
A more elementary approach to the existence of such chains was suggested
by Hatcher [Hat]. This chain-connectedness property of B(R) immediately
implies the following lemma.

Lemma 2. If an automorphism of B(R) agrees with an element of Modg
(note that Mod g obviously acts on B(R)) on some simplex of codimension 0,
then this automorphism agrees with this element of Modg on the whole B(R).



The vertices of B(R) can be encoded by vertices or pairs of vertices of
C(R). For example, let us consider an arc I in R connecting two different
components D; and Dy of OR. Then the vertex (I) is encoded by (C),
where C' is the boundary of some regular neighborhood of D; U I U Dy in
R. If I connects a boundary component D of R with itself, then in the
most cases (I) is encoded by the pair {(C}),(C5)}, where Cy,Cy are two
components of the boundary of a regular neighborhood of DU in R. In the
exceptional cases one of these components is trivial in R and is omitted from
the pair, but we keep a record of this in order to be always able to distinguish
arcs connecting two different boundary components from arcs connecting a
component with itself. This coding allows us to assign an automorphism of
B(R) to every automorphism of C'(R) preserving the property of having the
geometric intersection number 1 (as we saw, every automorphism has this
property if the genus > 2).

~—_/)(

Figure 3.

Suppose now that R has 2 boundary components, as in Fig. 2. The
case of surfaces with > 2 boundary is similar, but requires more compli-
cated pictures; the case of surfaces with < 2 boundary components requires
additional arguments outlined in the next paragraph. Let us consider an
automorphism G : C(R) — C(R). As we noticed above, it agrees with some
element ¢ € Modg on the set of the isotopy classes of circles in Fig. 2. After
replacing G by ¢ ! o G we may assume that G fixes all these isotopy classes.



Let us consider the arcs in Fig. 3. The codings of the isotopy classes of
all these arcs consist of two isotopy classes of circles. Some of these isotopy
classes coincide with the isotopy classes of some circles on Fig. 2. Others
are determined by knowing which of their geometric intersection numbers
with the isotopy classes of circles on Fig. 2 are equal to 0, 1, or are > 2. It
follows that G, fixes the isotopy classes of all arcs in Fig. 3. Now we need to
complete the set of these isotopy classes to a simplex of maximal dimension
in B(R). Let us cut R along all arcs in Fig. 3. We get a polygon (with
vertices coming from the endpoints of arcs) with one hole. Among the sides
of this polygon, 4¢ sides, where g is the genus of R, arise from the boundary
component of R containing the endpoints of the arcs. Let us connect the
hole in this polygon with these 4¢ sides by disjoint arcs. These arcs obvi-
ously define 4¢ arcs in R, and the isotopy classes of these arcs together with
the isotopy classes of arcs in Fig. 3 form a simplex of maximal dimension in
B(R). It is easy to see that G, fixes the isotopy classes of the additional 4¢
arcs, and hence fixes a simplex of maximal dimension in B(R). By Lemma 2
G. is equal to the identity. It follows easily that the original automorphism
G : C(R) — C(R) is also equal to the identity.

This proves Theorem 1 for surfaces with at least two boundary com-
ponents. The cases of closed surfaces and of surfaces with one boundary
component can be reduced to that of surfaces with at least two boundary
components by the following arguments. First, if the number of boundary
components is < 1, then a circle C' is nonseparating if and only if the dual
graph L7 is connected, where v = (C). It follows that if the number of
boundary components is < 1, then every automorphism takes the isotopy
classes of nonseparating circles to the isotopy classes of nonseparating circles
(this is true for an arbitrary number of boundary components, but the gen-
eral case is more complicated). Since all nonseparating circles on S are in
the same orbit of the group of diffeomorphisms of S, we can assume that our
automorphism of C(S) fixes some vertex 7 represented by a nonseparating
circle C. Such an automorphisms induces an automorphism of the link L.,
and hence of the complex C'(S¢), where S¢ is, as above, the result of cutting
S along C'. This automorphism preserves the property of having the geomet-
ric intersection number 1, even if the genus of S¢ is less than 2, because this
automorphism is equal to the restriction of an automorphism of C'(S). Since
Sc has at least two boundary components, one can apply previous results
to this automorphism of C'(S¢) and conclude that it is equal to an element
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of Modg,. Considering different nonseparating circles C' (in fact, all such
circles), one can deduce that the original automorphism of C'(S) agrees with
some element of Modg.

3. Sketch of the proof of Theorem 2.

Using the technique of [I4], it is not difficult to prove that every isomorphism
v : 'y = T'y takes sufficiently high powers of Dehn twists to powers of Dehn
twists. Taking into account the fact that powers of Dehn twists commute if
and only if the corresponding circles have the geometric intersection number
0 (i.e., their isotopy classes are connected by an edge in C'(S)), we see that
every isomorphism ¢ : I'j — I'y induces an automorphism C'(S) — C(S). By
Theorem 1 this automorphism is induced by some element g € Modg. This
means that for some sufficiently high N we have

Ny _ 1My
()O(ta ) - tg(a)

for some M, # 0, for all vertices a of C(S). The potential dependence of
M, on « is irrelevant in what follows, and we write simply M for M,.
Now, let f € I'y. Then, for any vertex «,

([t f71) = o(ta) = totfa)-
On the other hand,
([t f7H) = oD o)™ = o(Nglmye ()™ = 135y 0e)):

Comparing the results of these two computations, we conclude that

P(Nlg(@)) = g(f(a))

for all @ and (after putting o = g~ (3)) that ¢(f)(8) = go fog () for all
vertices § of C'(S). If S is not a closed surface of genus 2, this implies that
©(f) =go fog™, ie. ¢ has the required form. If S is a closed surface of
genus 2, then o(f) can differ from go f o g~! by the hyperelliptic involution.



4. Sketch of a geometric proof of Theorem 3.

Let x € Ts. Consider the set R, of all geodesic rays in Ts starting at the point
x. Let M be a Riemann surface with the underlying topological surface S
representing the point x. By results of Teichmiiller R, is in a natural bijective
correspondence with the set of straight rays starting at 0 in the space )y
of quadratic differentials on M. By results of Hubbard and Masur [HM] (see
also Kerckhoff’s paper [K]) the set of rays in @/ is, in its turn, in a natural
bijective correspondence with the space PFls of projective equivalence classes
of measured foliations on S. We denote by r,, or simply by r, the ray in
Ts starting at = and corresponding to the projective class [u] of a foliation
p # 0. We consider 7, as an isometric embedding R>o — Ts. By i(x,v)
we denote the geometric intersection number (in Thurston’s sense) of two
foliations p, v.

Lemma 3. Let x,y € Ts. If i(p,v) # 0, then two rays r,z, 1., are
divergent, i.e. limy_o d(r,4(t),7,,4(t)) = 00, where d( -, -) denotes the Te-
wchmdller distance.

The proof of this lemma is based on the technique of Kerckhoff [K]. Ac-
cording to Kerckhoff [K], the Teichmiiller distance d(m',m") between two
points m',m" € Ts is given by the formula

' m") = 5 1og(5up (B (V) Enir V),

where E, (), Env () are the extremal lengths of the foliation A with respect
to the conformal structures representing m’, m”, and where A\ ranges over all
non-zero measured foliations. It turns out that the extremal length of 1 tends
to 0 along the ray r, ., and to co along the ray r,, if i(y, v) # 0. Therefore,
the lemma follows from the Kerckhoff’s formula.

Let us introduce a relation <t on the space M Fs of (Whitehead equiva-
lence classes of) measured foliations. By the definition, p > v if and only
if there exist two sequences {j;}i—12,., {Vi}iz12,. of measured foliations on
S such that lim; ,o p; = p, lim; v, = v and for every ¢ two rays r,, 4,
Ty« are not divergent. Note that b< is not an equivalence relation. Since the
intersection number i( -, -) is continuous, Lemma 3 implies that i(u, ) = 0
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if poa v, Weset A(p) = {v: v p}tand A(p) = {v :i(v,u) = 0} for a
foliation u € M Fs. Clearly, A(u) C A(u).

Recall that any nontrivial circle on S (more precisely, its isotopy class,
which is a vertex of C'(S)) gives rise to a measured foliation on S, constructed
by the thickening of this circle (of course, this foliation is defined only up to
the Whitehead equivalence); cf. [FLP].

Lemma 4. If p is defined by a circle, then i(u,v) = 0 implies p > v.
Hence, A(p) = A(u) in this case.

Clearly, to prove this lemma one needs be able to construct non-divergent
pairs of rays. This can be done by adapting some ideas of Masur [Ma2]
(actually Masur had solved a more subtle problem of constructing asymptotic
rays starting at different points).

Lemma 5. A foliation p is defined by a circle if and only if codim A(u) =
1. (The codimension is understood to be the codimension in the space M Fg
of measured foliations.)

The proof of this lemma is based on the following ideas. First, one can
prove by purely topological arguments that y is defined by a circle if and only
if codim A(p) = 1. In addition, if y is defined by a circle, then A(u) = A(p)
by Lemma 4, and hence codim A(px) = 1. On the other side, if codim A(u) =
1, then codim A(u) < 1, because A(u) C A(u), and hence codim A(u) = 1
(the codimension cannot be equal to 0). It follows that u is defined by a
circle.

Consider now an isometry F': T — Ts. Take an arbitrary point z € Tg.
The isometry F' maps the set of rays in T starting at x into the set of
rays in T starting at F'(z). Since both these sets are in a natural bijective
correspondence with PFs, we get a map F, : PFg — PSg. Obviously, F is
a homeomorphism, and, in particular, takes the sets of codimension 1 into
sets of codimension 1. In addition, F,(A(u)) = A(F.(u)) (because A(-) is
defined in terms of the geometry of rays). By combining these remarks with
Lemma 5, we see that F, preserves the set V(S) = {[u] : p is defined by
a circle} C PFg. Now notice that V(S) is essentially the set of vertices of
C(S) and that the induced map Fi, : V(S) — V(S) takes pairs of vertices
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connected by an edge to pairs of vertices connected by an edge. Indeed, two
vertices [u], [v] are connected by an edge if and only if i(y, ) = 0 and by
Lemma 4 this condition is equivalent to p > v. The last condition p > v is
defined in terms of the geometry of rays and hence is preserved by isometries.
It follows that Fi, is an automorphism of the complex of curves C(S) (it is
well known that a set of vertices is a simplex of C'(S) if and only if every two
vertices from this set are connected by an edge). Now Theorem 1 implies that
F.. acts on C'(S) as an element f of the modular group Modg. Replacing F
by f~'o F, we can assume that F,, = id. It remains to prove that in this
case F' =id.

Let 71, 72 be two circles on S such that the pair {~;, 72} fills S (this means
that there is no nontrivial circle y on S such that i(y,v1) = i(y,72) = 0). Such
circles can be thickened to a pair p, po of transverse foliations. Together
these two foliations define a conformal structure and a quadratic differential
on S (cf. [FLP], Exp. 13 and [Ma3]). In its turn, this quadratic differential
defines a geodesic g in T, passing through the point x corresponding to this
conformal structure. The point = divides ¢ into two rays and these rays,
by the construction, correspond to the foliations juy, pe (i.e., they are the
TayS Ty, oy Tpsyw)- OlINCE, as we now assuming, F,, = id, the isometry F
takes ¢ to another geodesic F'(g) such that F'(z) divides F'(g) into two rays
corresponding also to 1, po. Such a geodesic is necessarily equal to g (cf.,
for example, the description of the geodesic flow on T given in [Ma3]).

Let us consider now one more circle v5, filling S together with ;. One
can choose 7} in such a way that i(v4, 72) # 0. In addition to g let us consider
the geodesic ¢’ defined by 7, 75. By the previous paragraph F'(g) = g and
F(g') = ¢'. Clearly F acts on each of these geodesics as a translation. Since
these geodesics are not divergent in one direction (the direction corresponding
to 71; this is an easy application of the ideas of Masur [Mal], [Ma2]) and are
divergent in the other direction (corresponding to s, 75; this follows from
Lemma 3), the translation distances are both equal to 0. It follows that F'
is equal to the identity on g.

Since the union of all such geodesics is dense (in fact, the set of all such
geodesics is dense in the space of all geodesic), it follows that F' = id. This
completes the proof.
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5. Further results.

Recently, M. Korkmaz [Ko| extended Theorem 1 to all surfaces of genus 0
and 1 with the exception of spheres with < 4 holes and tori with < 2 holes.
Since the conclusion of Theorem 1 is obviously false for spheres with < 4
holes and for tori with < 1 holes, his work left open the question about
the computation of Aut (C(S)) only in one case, namely, in the case of a
torus with 2 holes. His results allow to extend Theorem 2 and the geometric
proof of the Royden-Earle-Kra theorem (Theorem 1 is sufficient to prove the
Royden’s result, concerned only with closed surfaces) to all surfaces with
the exception of spheres with < 4 holes and tori with < 2 holes (note that
Teichmuller spaces of spheres with 4 holes and of tori with < 1 holes are
isometric to the hyperbolic plane, and hence have a continuous group of
isometries much bigger than the modular group).

The key point of the Korkmaz’s work is an analogue of Lemma 1 for genus
0 and 1 surfaces. Given such an analogue, the rest of the proof generalizes
fairly straightforwardly. Note that there is no circles with the geometric
intersection number 1 on genus 0 surfaces. They are replaced by the simplest
possible pairs of intersecting circles; such circles bound discs with two holes
in the surface and have the geometric intersection number 2. It turns out
that both the pairs of circles with the geometric intersection number 1 on
surfaces of genus 1 and the simplest possible pairs of intersecting circles on
surfaces of genus 0 admit a characterization parallel to the characterization
of Lemma 1. Amazingly, in all cases a configuration of five circles forming a
pentagon in C'(S) appears. We refer to [Ko| for further details.

Very recently, F. Luo [L2] suggested a different proof of Theorem 1, still
based on the ideas outlined in Section 2 and also on a multiplicative structure
on the set of vertices of C'(S) introduced in [L1]. His approach allows also to
deal with the genus 0 and 1 cases (giving another proof of the results of M.
Korkmaz). Also, he observed that Aut (C(S)) is not equal to Modg if S is a
torus with 2 holes. The reason is very simple: If S, is a torus with 2 holes,
and Sy is a sphere with 5 holes, then C(S; ) is isomorphic to C(Sy5), but
Modsg, , is not isomorphic to Modsg, ,. Note that the torus with 2 holes is an
exceptional case in the Royden-Earle-Kra theorem also, by a similar reason:
Ty, , is isometric to T, ; (cf. [EK], for example).

The following corollary of Theorem 2 is motivated by a conjecture of
of Gromov about hyperbolic groups (cf. [G], Section 0.3 (C)). Note that
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Teichmiiller modular groups are far from being hyperbolic, but often exhibit
a hyperbolic behavior.

Theorem 4. Let I' be a subgroup of finite index in Modg and let I be
a torsionless group containing I' as a subgroup of finite index. Then I is
naturally contained in Modg.

In the proof, we may assume that I' is normal in I and centerless, re-
placing, if necessary, I" by a smaller subgroup. Then the action of I'' on I’
by conjugation induces a map I — Aut (I'). The facts that I is torsionless,
I is of finite index in [, and T is centerless, imply that this map is injec-
tive. On the other hand, it follows from Theorem 2 that Aut (I') is naturally
contained in Modg.

Another nice application of Theorem 2 is a computation of the abstract
commensurators of Teichmiiller modular groups. It leads a new proof of
the non-arithmeticity of the latter (the question about arithmeticity of Te-
ichmiiller modular groups was posed by Harvey [Hal| and first answered in
[I1]). Before stating the results, let us recall the definition of the abstract
commensurator.

Let I' be a group. Let us consider all possible isomorphisms ¢ : I'y — I’y
between subgroups [';, I's of finite index of I'. Let us identify two such
isomorphisms ¢, ¢’ defined on I'y, I'] respectively, if they agree on a subgroup
of finite index in the intersection I'y NI"}. We can compose them in an obvious
manner; the composition ¢’op of ¢ : I'y — I'y with ¢’ : I'] — I, is defined on
¢ 1(PoNTY). Under this composition, the classes of such isomorphisms form
a group, which is called the abstract commensurator of I' and is denoted by
Comm (I'). There is a natural map i : ' — Comm (I'), sending an element
v of T' to the (class of the) inner automorphism g +— vgy~'. This map is
injective if the centralizers of subgroups of finite index in I' are trivial, as
is the case for arithmetic groups and for Teichmiiller modular groups. As a
good example, let us mention that Comm (Z") = SL,(Q).

Theorem 5. The natural map i : Mods — Comm (Modg) is an isomor-
phism if S is not a sphere with < 4 holes or a torus with < 2 holes.

This theorem follows easily from Theorem 2 (and its extension based on
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the results of Korkmaz [Ko)).

Theorem 6. If if S is not a sphere with < 4 holes or a torus with < 2
holes, then Modg is not arithmetic.

In fact, if [ is an arithmetic group, then i(I') is of infinite index in
Comm (I'). Cf. [Z], Chapter 6 for a proof. A converse to the latter the-
orem is also true: if I is a laftice in a semisimple Lie group G (i.e. if G/’
has finite invariant volume) and if i(I") is of infinite index in Comm (I'), then
[' is arithmetic. This result is an immediate corollary of an arithmeticity
theorem of Margulis (cf. [M] and also [Z], Chapter 6) and Mostow’s rigid-
ity theorem [Mol]|, [Mo2]. This converse is much more deep and difficult
than the result we are using. While it is not needed to prove Theorem 6, it
served as a motivation for the present proof of Theorem 6. In contrast with
all previous proofs of the non-arithmeticity of Modg, which were based on
deep properties of arithmetic groups, this new proof is based only on some
(relatively) elementary properties of them.

Our new proof of Theorem 3 leads to an extension of it to the so-called
almost isometries. A map f : X — Y between two metric spaces X, Y
with metrics dx(-,-), dy(-,+) respectively is called an almost isometry if for
all z,y € X we have

dx(.l“,y) -C < dY(f(x)a f(y)) < dX(xay) + C,

and if , in addition, the distance of every point of Y from f(X) is < C, where
C' is some constant depending only on f. Note that an almost isometry does
not have to be even continuous.

Theorem 7. Suppose that S is not a sphere with < 4 punctures and not
a torus with < 2 punctures. Then for any almost isometry f : Ts — Ts of
the Teichmiiller metric dy there exist an isometry (induced by an element of
Modgs) g : Ts — Ts such that for all x € Ts the distance

dr(f (), g(x)) < C,

where C' is some constant depending only on f.
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In contrast with the Royden’s theorem itself, this result is purely global:
under the assumptions of the theorem, we don’t have any local information
about f whatsoever. A first result of this sort, for almost isometries of
Hilbert spaces, was proved by Hyers and Ulam in the forties [HU]. The key
new ingredient in the proof of Theorem 7, compared with the proof of Section
4, is the fact that the image of any geodesic ray under an almost-isometry
converges to a set of points in the Thurston’s boundary PFy of T pairwise
related by <. Note that in view of recent results of Minsky [Mi], a direct
extension of Theorem 7 to the more wide class of quasi-isometries seems to
be unlikely.
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