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Abstract. We answer a question of Oprea–Tralle on the realizability of sym-
plectic algebras by symplectic manifolds in dimensions divisible by four, along
with a question of Lupton–Oprea in all even dimensions. This will also al-
low us to address, in all even dimensions six and higher, another question of
Oprea–Tralle on the possibility of algebraic conditions on the rational homo-
topy minimal model of a closed smooth manifold implying the existence of a
symplectic structure on the manifold.

1. Introduction

At the end of his famous two-page paper providing an example of a symplectic
non-Kähler compact 4–manifold, Thurston [Th76] posed the following conjecture:

Conjecture 1.1. ([Th76]) Every closed 2k–manifold which has an almost complex
structure τ and a degree two real cohomology class α such that αk 6= 0 has a
symplectic structure realizing τ and α.

Due to foundational results of Taubes and Witten in Seiberg–Witten theory,
one can find counterexamples to this conjecture in dimension 4 (the argument
to follow is well-known, see e.g. [Gom01, Example p.49]). Indeed, the oriented
connected sum #2`+1

i=1 CP2 for any ` ≥ 1 contains elements in H2 not squaring
to zero and admits an almost complex structure compatible with the orienta-
tion, but does not admit a compatible symplectic structure. By a classical re-
sult of Wu, one knows that a closed oriented four–manifold M admits an almost
complex structure if and only if there is a class c ∈ H2(M ;Z) such that its re-
duction mod 2 is the second Stiefel–Whitney class w2 and

∫
M
c2 = 2χ + 3σ,

where χ is the Euler characteristic and σ is the signature. Since w2(#
2`+1
i=1 CP2) =

(1, 1, . . . , 1) ∈ Z⊕2`+1
2

∼= H2(#2`+1
i=1 CP2;Z2) and 2χ + 3σ = 10` + 9, we see that

c = (3, 1, 3, 1, . . . , 1, 3) ∈ H2(#2`+1
i=1 CP2;Z) satisfies these conditions. Now, if

#2`+1
i=1 CP2 were to admit a symplectic structure realizing this almost complex

structure, then by a theorem of Taubes, since b+2 > 1 (here b+2 is the dimension
of the positive-definite subspace of the intersection form), it would have a non-
vanishing Seiberg–Witten invariant. However, due to Witten, if a manifold is a
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connected sum of manifolds each with b+2 ≥ 1 , then the Seiberg–Witten map is
identically zero (see [Ko95, Corollary 4.1(2)]).

In dimensions ≥ 6, these arguments from Seiberg–Witten theory do not directly
apply, and Conjecture 1.1 remains open.

In this note we will address the following variations of this conjecture:

Conjecture 1.2. ([OT06, §6.5 Conjecture 3], [HT08], [Tr00]) For every symplectic
algebra H over R, there is a closed symplectic manifold M such that H∗(M ;R) ∼=
H.

A Poincaré duality algebra (over the field k = Q or R) of dimension n is a
finite-dimensional graded-commutative algebra H over k such that Hn ∼= k and
the pairing H∗ ⊗Hn−∗ → k given by α ⊗ β 7→ µ(αβ) is non-degenerate for some
(and hence any) choice of non-zero element µ ∈ (Hn)∗. By a symplectic algebra we
mean a Poincaré duality algebra of dimension 2k for which there exists an element
α ∈ H2 such that αk 6= 0. Hence, for simplicity, the adjectives "Poincaré duality"
and "symplectic" will indicate properties of an algebra, not additional structure;
H∗(M ;R) ∼= H in the above conjecture will mean isomorphism of algebras. In
dimensions n = 4k, a choice of orientation class µ lets one consider the signature
of the induced pairing on H2k. The pairing with respect to aµ will have the same
signature for a > 0, and the opposite signature for a < 0; thus the signature of a
4k–dimensional Poincaré duality algebra is well-defined up to sign.

Question 1.3. ([LO94, Remark 2.11]) Does a manifold that has rational coho-
mology algebra a symplectic algebra admit a symplectic structure?

In line with our previous definition, by a manifold we mean a connected ori-
entable closed smooth manifold without a choice of orientation; hence admitting
a symplectic (or almost complex) structure means possessing a symplectic form
(or almost complex structure) inducing one of the two possible orientations on
the manifold. Manifolds with symplectic rational cohomology algebras are also
known as cohomologically symplectic (or c–symplectic) [Tr00].

Question 1.4. ([OT06, §6.5 Problem 4], [Tr00]) Are there algebraic conditions
on the minimal model (MM , d) of a compact manifold M implying the existence
of a symplectic structure on M?

To answer Conjecture 1.2 in dimensions that are multiplies of four, we will use a
restriction on the topology of closed almost complex manifolds due to Hirzebruch.
For Question 1.3, we will employ simply connected rational homology spheres not
admitting spinc structures in dimensions greater than five. This will immediately
imply a negative answer to Question 1.4, in dimensions six and greater, when
restricted to simply connected manifolds. In the non-simply connected (or more
generally, non-nilpotent) case, one must first decide on what is meant by a minimal
model in the sense of rational homotopy. However, we observe that any such
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notion which is invariant under weak homotopy equivalence of rationalizations in
the sense of Bousfield–Kan cannot detect the existence of a symplectic form on a
given manifold.

2. Some symplectic algebras not realized by closed symplectic
manifolds

We provide counterexamples to Conjecture 1.2 in dimensions of the form 4k.
Consider for example

H = H∗
(
(S2)2k##

j

i=1(S
1 × S4k−1);R

)
for odd j. Taking α to be the sum of the images of generators of H2(S2;R) under
the inclusion

H2(S2;R) ↪→ H2((S2)2k;R) ↪→ H,

we see that α2k 6= 0, and so H is a symplectic algebra. Note that the signature σ
of the realizing oriented manifold

(S2)2k##
j

i=1(S
1 × S4k−1)

is 0, and so the signature of any oriented manifoldM with H∗(M ;R) ∼= H is 0, as
the signature of a Poincaré duality algebra (with respect to any orientation class)
is invariant up to sign under algebra isomorphisms of Poincaré duality algebras.
On the other hand, the Euler characteristic satisfies χ = 22k − 2j ≡ 2 mod 4
as j is odd. By [Hir87, p.777], a closed almost complex 4k–manifold with the
induced orientation satisfies the congruence χ ≡ (−1)kσ mod 4, so we conclude
that H cannot be realized by an almost complex manifold; in particular it cannot
be realized by a symplectic manifold. We emphasize that this conclusion depends
only on the algebra H, and so we have the following:

Theorem 2.1. There are symplectic algebras H over R in every dimension 4k,
k ≥ 1, such that there is no closed symplectic manifold M with H∗(M ;R) ∼= H.

Note that the above examples (i.e. the manifolds realizing them), by taking
coefficients in Q instead of R, provide an answer in the negative to Question 1.3
in dimensions that are multiples of four.

Alternatively, we can answer Question 1.3 negatively in all even dimensions ≥ 6
as follows: consider the Wu manifold W = SU(3)/SO(3) of dimension 5; this is a
simply connected rational homology sphere which does not admit a spinc structure
(see e.g. [Fr00, Example, p.50]). We consider the product S1×W and the result of
performing surgery on the S1 embedded in this product, i.e. removing an S1×D5

from S1 ×W and attaching a D2 × S4 along the common boundary S1 × S5 by
the identity map. This procedure is known as spinning the manifold W [Suc90].

The result of spinning a simply connected rational homology sphere of dimen-
sion n is a simply connected manifold [Brow72, Theorem IV.1.5], and it is also
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a rational homology sphere, of dimension n + 1 [Suc90, Lemma 2.1]. The re-
sult of spinning a manifold admits a spinc structure if and only if the original
manifold does [AM19, Proposition 2.4]. The latter two statements follow by a
Mayer–Vietoris consideration, along with the characterization of manifolds ad-
mitting spinc structures as those for which the second Stiefel–Whitney class w2 is
the mod 2 reduction of an integral class.

By iterating the spinning procedure applied to the non–spinc Wu manifold W ,
we can thus produce a simply connected rational homology sphere Mn of any
dimension n ≥ 5 not admitting a spinc structure. For even n we can then take the
connected sum Mn#CPn/2 of this rational homology sphere with CPn/2 to obtain
a cohomologically symplectic but not symplectic manifold:

Theorem 2.2. There are cohomologically symplectic manifolds in all dimensions
2k, k ≥ 2, that do not admit a symplectic structure.

Proof. The tangent bundle of the connected sum of oriented smooth n–manifolds
X#Y is stably isomorphic to the bundle π∗

XTX ⊕ π∗
Y TY , where X#Y

πX−→ and
X#Y

πY−→ Y are the collapse maps. The manifolds are orientable, and therefore
w2(X#Y ) = π∗

Xw2(X) + π∗
Yw2(Y ). Since the dimension is greater than two, we

likewise have H2(X#Y ;R) ∼= π∗
XH

2(X;R)⊕π∗
YH

2(Y ;R) for any coefficient group
R.

A manifold admits a spinc structure if and only if its second Stiefel–Whitney
class w2 is the mod 2 reduction of an integral class, and so from the above we see
that X#Y is spinc if and only if X and Y are spinc. (Note that the condition
of admitting a spinc structure does not depend on the choice of orientation.)
An almost complex manifold (more generally, a stably almost complex manifold)
admits a spinc structure as the first Chern class of the stable almost complex
structure reduces mod 2 to w2.

Now, in dimensions n = 2k ≥ 6, taking the rational homology spheres Mn pre-
viously constructed, which do not admit spinc structures, we see that Mn#CPn/2
is a cohomologically symplectic manifold which does not admit a spinc structure,
and hence does not admit an almost complex structure; in particular it does not
admit a symplectic structure. Together with the discussion in the introduction,
this covers all dimensions ≥ 4. �

As far as Question 1.3 is concerned, we could have replaced Mn above with
any non–spinc orientable closed manifold (we remark that the smallest dimension
in which these exist is 5). However, having non–spinc simply connected rational
homology spheres in hand will let us immediately turn to Question 1.4 in the
following section.
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3. The existence of a symplectic structure cannot be detected
from the rational homotopy model

We now address Question 1.4. For any simply connected symplectic manifold
X of dimension at least six, consider the connected sum M#X (to form the
connected sum we choose any orientation on M and X), where M is a non-
spinc simply connected rational homology sphere as in the previous section. The
collapse map M#X → X is a rational homotopy equivalence as it is a rational
homology equivalence of simply connected spaces, and so the minimal models
of these manifolds are isomorphic while only one of them admits a symplectic
structure (with respect to some orientation), as M#X does not admit a spinc
structure. Since X was an arbitrary simply connected symplectic manifold, we
conclude that there can be no algebraic condition on minimal models of simply
connected manifolds which implies the manifold admits a symplectic structure.

In the non-simply connected case, the classical theory for simply connected
spaces of finite type due to Sullivan extends immediately to spaces with nilpotent
fundamental group which acts nilpotently on the higher homotopy groups, and
the algebraic information encoded in the minimal model directly corresponds to
geometric information. Bousfield and Kan extended the procedure of rationalizing
spaces to all path-connected spaces in two ways [BoKa71]: the Q–completion and
the fiberwise Q–completion, both restricting to the classical rationalization on
nilpotent spaces (see [RWZ19] for an overview). A map X → Y induces a weak
homotopy equivalence of Q–completions if it induces an isomorphism on ratio-
nal homology [BoKa71], and it induces a weak homotopy equivalence of fiberwise
Q–completions if it induces an isomorphism on fundamental groups and on ratio-
nalized higher homotopy groups (see [RWZ19, Theorem 3]). Substantial progress
has been made in algebraically encoding spaces up to these notions of equivalence,
extending the classical theory of rational homotopy minimal models; see [GHT00],
[BFMT18].

We now observe that for any (not necessarily simply connected) symplectic man-
ifold X of dimension ≥ 6, there is another manifold, not admitting a symplectic
structure, which is equivalent to X under either of the above notions. Consider
again the collapse map M#X → X, where M is a non-spinc simply connected
rational homology sphere; this map induces an isomorphism on rational homology
and hence a weak homotopy equivalence of Q–completions.

The collapse map likewise induces an isomorphism of fundamental groups, and
to verify it induces an isomorphism on π≥2 ⊗ Q, we proceed as follows: pick
basepoints and consider the induced map

M̃#X → X̃

on universal covers. Since M is simply connected, the space M̃#X can be visu-
alized as the universal cover of X, with a small disk Di around each preimage b̃i
of the basepoint of X (chosen to coincide with the center of the disk at which the
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M̃#X X̃

M#D1
M#D2

D1

D2

Figure 1. The map between universal covers.

connected sum with M is performed) replaced by M#Di. The map on universal
covers M̃#X → X̃ is then the collapse map M#Di → Di applied at each of these
disks, and the identity elsewhere; see Figure 1.

Consider the open cover of M̃#X given by a small neighborhood of
⋃
i(M#Di)

and the complement of
⋃
i(M#Di), along with the open cover of X̃ given by a

small neighborhood of
⋃
iDi and the complement of

⋃
iDi.

Applying the naturality of the Mayer–Vietoris sequence in homology to these
open covers, by the five lemma we see that the map M̃#X → X̃ induces an
isomorphism on rational homology. Indeed, M#Di has the homotopy type of M
with a point removed, and so has the rational homology groups of a point; thus
the map

⋃
i(M#Di) →

⋃
iDi induces an isomorphism on rational homology. On

the complement and the intersection the map is the identity.
Thus, since M̃#X and X̃ are simply connected, this map between universal

covers induces an isomorphism on rational homotopy groups. Now, from the map
of long exact sequences of homotopy groups associated to the map of fibrations

M̃#X X̃

M#X X

and the five lemma again, we conclude that M#X → X induces an isomorphism
on π≥2⊗Q. Therefore the fiberwise Q–completions of these spaces are also equiv-
alent. In conclusion, we have:

Theorem 3.1. There are no algebraic conditions on the minimal model (MX , d)
of a manifold X implying the existence of a symplectic structure on X, in dimen-
sions six or greater.

Here by a minimal model we mean any object (in particular, the classical min-
imal models in the case of finite-type nilpotent spaces) which is invariant up to
isomorphism under weak homotopy equivalence of rationalizations in either sense
of Bousfield–Kan.
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We note that the same argument, using non-spinc simply connected rational
homology spheres, shows that the existence of a (stable almost) complex structure
cannot be implied by algebraic conditions on the minimal model:

Corollary 3.2. There are no algebraic conditions on the minimal model of a
manifold X implying the existence of a complex structure (or more generally a
stable almost complex structure) on X, in dimensions six or greater.

4. Another variation of Thurston’s conjecture

It seems that the following question, another variation of Conjecture 1.1, is still
unanswered in all dimensions ≥ 4:

Question 4.1. Is there a symplectic algebra which is realized by a closed almost
complex manifold but not realized by a closed symplectic manifold?

Currently there are no known topological obstructions to a closed smooth man-
ifold admitting a symplectic structure beyond those of admitting an almost com-
plex structure and having a symplectic cohomology algebra. A possible direction
presents itself as it seems that for all known examples of closed symplectic 2n–
manifolds, the Betti numbers bi for i ≤ n satisfy the non-decreasing property
b0 ≤ b2 ≤ b4 ≤ · · · and b1 ≤ b3 ≤ · · · [Cho16, Question 1.1]. A proof that
this property holds for all closed symplectic manifolds would immediately enable
one to provide counterexamples to Conjectures 1.1 and 1.2, along with the above
question.

Acknowledgments. The author would like to thank Scott Wilson for his numer-
ous helpful suggestions, and John Morgan for a relevant discussion on a separate
problem.
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