
SYMPLECTIC NON–KÄHLER MANIFOLDS

ALEKSANDAR MILIVOJEVIĆ

Abstract. These are notes for a talk given in the Symplectic Geometry student sem-
inar at Stony Brook on August 30, 2018. We give an example of a closed symplectic
manifold not admitting a Kähler structure, published by Thurston in [1]. We then
discuss the family of manifolds this example fits into, namely nilmanifolds. Determin-
ing whether a nilmanifold admits a symplectic structure is quite easy, and determining
whether it admits a Kähler structure is even easier, once some results are in place. We
end with an example of a nilmanifold that is complex and symplectic, all of whose odd
Betti numbers are even, yet does not admit a Kähler structure.

1. Thurston’s example

We present Thurston’s example in [1] of a symplectic four–manifold with b1 = 3.
Recall that on a Kähler manifold X, we have H1

dR(X)⊗ C ∼= H1,0

∂̄
(X)⊕H0,1

∂̄
(X) along

with H1,0

∂̄
(X) ∼= H0,1

∂̄
(X). From here we conclude that the first Betti number b1 of a

compact Kähler manifold is even. Similarly, all odd Betti numbers b2i+1 are even as well.
We start with the four–dimensional real Lie group G of matrices of the form

1 x z 0 0
0 1 y 0 0
0 0 1 0 0
0 0 0 1 w
0 0 0 0 1

 ,

where x, y, z, w ∈ R, and multiplication in the group is matrix multiplication. Note that
this is a simply connected nilpotent Lie group (diffeomorphic to R4). We read off the
left-invariant one-forms on G as the entries of

A−1dA =


1 −x xy − z 0 0
0 1 −y 0 0
0 0 1 0 0
0 0 0 1 −w
0 0 0 0 1




0 dx z 0 0
0 0 dy 0 0
0 0 0 0 0
0 0 0 0 dw
0 0 0 0 0



=


0 dx dz − xdy 0 0
0 0 dy 0 0
0 0 0 0 0
0 0 0 0 dw
0 0 0 0 0

 .

So, a basis of left-invariant forms on G is given by {dx, dz − xdy, dy, dw}. Now, if
we consider the subgroup Γ of G consisting of integer matrices, the quotient of G by
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left-multiplication by Γ, let us denote it G/Γ, is a closed manifold of dimension four.
The one-forms we mentioned are left-invariant, and so they descend to one-forms on the
quotient G/Γ. We have d(dx) = d(dy) = d(dw) = 0 and d(dz − xdy) = −dxdy, and so
denoting by α, β, γ, δ the descended one-forms, we have (after renaming γ to −γ)

dα = 0, dβ = 0, dγ = αβ, dδ = 0.

Now consider the two-form αγ + βδ. We have

d(αγ + βδ) = ααβ = 0

and
(αγ + βδ)2 = 2αγβδ.

Since dxdydzdw 6= 0 at every point of G, we have that 2αγβδ vanishes nowhere. There-
fore αγ + βδ is a symplectic form on G/Γ.

To calculate b1, we use of result of Nomizu (which we will formally state later) that
tells us that we can calculate the de Rham cohomology of G/Γ by calculating the co-
homology of the graded-commutative differential graded algebra of left-invariant forms
on G, namely Λ(α̃, β̃, γ̃, δ̃; d), where α̃ = dx, β̃ = dy, γ̃ = dz − xdy, δ̃ = dxdy. We see
that H1(Λ(α̃, β̃, γ̃, δ̃; d)) = span(dx, dy, dw) and so b1(G/Γ) = 3. Therefore G/Γ cannot
admit a Kähler metric.

Remark 1.1. Topologically, this four–manifold (known now in the literature as the
Kodaira–Thurston manifold), is obtained in the following way. Start with a two-torus
S1 × S1, and consider the principal S1 fiber bundle over S1 × S1 classified by αβ ∈
H2(S1×S1;Z), where α, β correspond to the volume forms on the factor circles. Denote
the volume form of the fiber S1 by γ. Over the total space E of this fiber bundle, consider
the trivial S1 principal fiber bundle (classified by 0 ∈ H2(E;Z)), i.e. E×S1. Denote the
volume form of the fiber S1 in this iteration by δ. This space is the Kodaira–Thurston
manifold described above.

2. Nilmanifolds

The Kodaira–Thurston manifold we just considered fits into a class of easy-to-study
closed manifolds called nilmanifolds, obtained in the following way: Take a simply con-
nected nilpotent real Lie group G (think upper-triangular matrices). Consider the com-
plex

C(G) = ⊕p≥0C
p(G),

where Cp(G) is the vector space of left-invariant p-forms on G.

Remark 2.1. The differential d of degree +1 on this complex (which we encountered
before) is in fact dual to the Lie bracket [−.−] on left-invariant vector fields, in the
following sense. If α is a left-invariant one-form, and X, Y are left-invariant vector fields,
then

dα(X, Y ) = X(α(Y ))− Y (α(X))− α([X, Y ]) = −α([X, Y ]).

(The terms α(Y ) and α(X) are constant functions since α,X, Y are left-invariant, and so
the corresponding terms vanish.) Denoting by g the Lie algebra to G and identifying its
dual g∗ with C1(G), we see that Cp(G) can be identified with Λpg∗, and so the differential
on C(G) is determined by what it does on C1(G) upon being extended to all of C(G)
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by the Leibniz rule. The fact that d2 = 0 follows from "dualizing" the Jacobi identity
on left-invariant vector fields.

Now, suppose we have a discrete subgroup Γ of G such that G/Γ is a closed manifold
(where G/Γ denotes the quotient by the action of left multiplication). Then we have the
following theorem:

Theorem 2.2. (Nomizu) The map of graded-commutative differential graded algebras
(C(G), d)→ (ΩdeRham(G/Γ), d) obtained by projection induces an isomorphism on coho-
mology.

This theorem justifies the calculation of b1 = 3 for the Kodaira–Thurston manifold
done in the previous section.

The question is now: when can we find such a discrete subgroup Γ? If our group G
really is a matrix group, then we can take those matrices with integer entries to be Γ.
However, in general the existence of such a Γ in a simply connected nilpotent real Lie
group is a somewhat delicate issue. We have the following useful result:

Theorem 2.3. (Malcev) The simply connected real Lie group G admits a discrete sub-
group Γ such that G/Γ is a closed manifold is and only if a basis of the Lie algebra g of
G can be chosen in which the structure coefficients are rational numbers.

Recall, the structure coefficients of a basis {X1, . . . , Xn} for a Lie algebra g are the
coefficients in the expressions [Xi, Xj] =

∑
k c

k
ijXk. The same coefficients show up in the

expression dxi = −
∑

k c
k
ijxjxk, where xi ∈ g∗ is dual to Xi.

A nilpotent Lie group is one for which we can choose a basis {x1, . . . , xn} of g∗ such
that dxi is a linear combination of dxjdxk such that j, k < i. Combining this with
Malcev’s theorem, we obtain the following simple recipe for producing a nilmanifold:

Corollary 2.4. To assign a nilmanifold, one writes down a graded-commutative differ-
ential graded algebra generated by degree 1 variables xi, Λ(xi), equipped with a differential
d satisfying dxi =

∑
j,k<i c

k
ijxjxk, with all ckij rational. That is, for such a differential

algebra, there exists a simply connected nilpotent real Lie group whose complex of left-
invariant forms is given by the algebra, and the Lie group admits a discrete subgroup
such that the quotient by left multiplication is a nilmanifold whose de Rham complex is
quasi-isomorphic to the given algebra (tensored with the reals).

Remark 2.5. The above usage of "assign" is a bit vague. The rational homotopy type of
a nilmanifold is determined by the isomorphism type of (Λ(xi), d) as a rational differential
graded algebra. A given rational homotopy type can contain multiple homotopy types
of nilmanifolds within it, but we will not let that concern us right now, since all the
properties we will want of our examples will depend only on their rational homotopy
type.

Example 2.6. The Kodaira–Thurston nilmanifold is given by Λ(x, y, z, w; d), where
dx = dy = dw = 0, dz = xy. Another famous example of a nilmanifold is the Heisenberg
nilmanifold, given by Λ(x, y, z; d), where dx = dy = 0, dz = xy. Note that the Kodaira–
Thurston manifold is the Heisenberg manifold crossed with a circle.
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Remark 2.7. If we have an operator d on Λ(x1, . . . , xn) taking linear expressions to
quadratic expressions, and we extend it by the Leibniz rule to act on all elements of
the algebra, then in order to satisfy d2 = 0, the operator only has to satisfy d2 on the
generators xi. For example, on quadratic expressions we have

d2(xixj) = d((dxi)xj − xidxj)
= (d2xi)xj + (dxi)(dxj)− (dxi)(dxj) + xid

2(xj) = 0.

On higher order expressions we check that d2 = 0 by induction on wordlength.

3. Symplectic nilmanifolds

Now that we have a handy description of nilmanifolds in terms of differential graded
algebras Λ(x1, . . . , xn) generated in degree 1, we can ask if the algebra can tell us whether
the manifold admits a symplectic form. We have the following simple criterion found in
[2]:

Proposition 3.1. Let G/Γ be a nilmanifold, and consider the quasi-isomorphism of
differential graded algebras

(C(G), d)
φ−→ (ΩdR(G/Γ), d).

The nilmanifold G/Γ admits a symplectic structure if and only if there is a closed el-
ement ω ∈ C2(G) such that ωn 6= 0 (where 2n is the dimension of the Lie group and
corresponding nilmanifold).

Proof. If ω ∈ C2(G) satisfies dω = 0 and ωn 6= 0, then φ(ω) satisfies dφ(ω) = φ(dω) = 0.
Denoting by x1, . . . , xn a basis of C1(G), we have ωn = ax1x2 . . . xn with a 6= 0, and so
(φ(ω))n = φ(ωn) = aφ(x1) · · · · · φ(xn) which is nowhere zero as we saw on the example
of the Kodaira–Thurston manifold.

Conversely, if ω is a symplectic form on G/Γ, then there is a class [ω̃] ∈ H2(C(G), d)
such that φ∗([ω̃]) = [ω]. (Note that φ is not necessarily invertible as a differential graded
algebra map, so we cannot directly apply the same reasoning as in the previous paragraph
for the converse.) Then [ω̃]n 6= 0 since φ∗([ω̃]n) = [ωn] 6= 0, so in particular ω̃n 6= 0. �

Example 3.2. Writing the Kodaira–Thurston manifold as Λ(x, y, z, w; dx = dy = dw =
0, dz = xy), we see that the manifold is symplectic since the element xz + yw satisfies
d(xz + yw) = 0 and (xz + yw)2 = 2xzyw 6= 0.

4. Kähler nilmanifolds and formality

To conclude that a (nil)manifold does not admit a Kähler metric, it suffices to show
that some odd Betti number b2i+1 is odd. But more is true in the case of nilmanifolds;
nilmanifolds are almost never Kähler:

Theorem 4.1. If a nilmanifold G/Γ admits a Kähler metric, then G is abelian and G/Γ
is (diffeomorphic to) a torus.

The argument will pass through Sullivan–Quillen rational homotopy theory. In ratio-
nal homotopy theory (let us in fact restrict to the real homotopy theory of manifolds for
simplicity), one takes the de Rham complex of a manifold (ΩdR, d) and wishes to find a
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nilpotent differential graded algebra (Λ, d) with a quasi-isomorphism, i.e. a differential
graded algebra map inducing an isomorphism on cohomology, from (Λ, d) to (ΩdR, d).
By nilpotent we mean that (Λ, d) is free as an algebra, and we can place an ordering on
the generators in each degree such that dx is in the subalgebra generated by generators
preceding x in the ordering, without linear terms. We call (Λ, d) the minimal model of
the manifold. Any two minimal models are isomorphic as differential graded algebras,
and contain a good deal of information about the manifold.

The story of nilmanifolds is catered to rational homotopy theory: by Nomizu’s theo-
rem, (C(G), d) is a minimal model of the nilmanifold G/Γ.

A popular question in rational homotopy theory is whether the minimal model of a
manifold can be obtained from the cohomology ring of the manifold. That is, given
a manifold M with minimal model (Λ, d), we can ask whether there exists a quasi-
isomorphism (Λ, d)

∼−→ (H∗(M), 0), where the cohomology ring is interpreted as a dif-
ferential graded algebra with trivial differential 0. If such a quasi-isomorphism exists,
we say the manifold is formal. (Note that the algebra H∗(M) is isomorphic to H∗(Λ, d),
and so we could replace H∗(M) by H∗(Λ, d) in the definition of formality.)

Example 4.2. We show that the Kodaira–Thurston manifold is not formal. Indeed, sup-
pose there were a quasi-isomorphism Λ(x, y, z, w; dz = xy)

f→ H∗(Λ(x, y, z, w; dz = xy).
Then, since f induces an isomorphism on H1, and [x], [y], [w] span H1(Λ(x, y, z, w), d),
we have

f(x) = α1[x] + α2[y] + α3[w],

f(y) = β1[x] + β2[y] + β3[w],

f(z) = γ1[x] + γ2[y] + γ3[w],

where not all of the αi are 0, and likewise for the βi. Consider now the equation f(dz) =
df(z). On the one hand,

f(dz) = f(xy) = f(x)f(y)

= α1β3[x][w] + α2β3[y][w]− β1α3[x][w]− β2α3[y][w]

= α1β3[xw] + α2β3[yw]− β1α3[xw]− β2α3[yw].

We used the fact that [x][y] = 0 since xy = dz. On the other hand, df(z) = 0 since
the differential in H∗ is trivial. From here we conclude that (α1, α2, α3) and (β1, β2, β3)
are linearly dependent. It follows that the induced map f ∗ on H1 is at most rank 2, a
contradiction.

The above direct argument to show non-formality can be generalized to obtain the
following result:

Theorem 4.3. (Hasegawa) A nilmanifold G/Γ is formal if and only if the differential d
in Λ(x1, . . . , xn; d) is trivial, i.e. G is abelian, i.e. G/Γ is a torus.

Remark 4.4. We can think of formality of manifolds as the following: If a manifold
is formal, then no cohomology class is represented by a form in the ideal of non-closed
forms. (For the formal statement and converse, see [3]). Then we can immediately see
that the Kodaira–Thurston nilmanifold Λ(x, y, z, w; dz = xy) is not formal, since the
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cohomology class [xz] is represented by xz, a form in the ideal of non-closed forms, i.e.
the ideal generated by z. Similarly all nilmanifolds with d 6= 0 are not formal.

The connection between formality and admitting a Kähler metric is given by the
following famous theorem [3]:

Theorem 4.5. (Deligne–Griffiths–Morgan–Sullivan) Compact Kähler manifolds are for-
mal.

Example 4.6. Using all of this, we now give an example of a six–dimensional nilmanifold
G/Γ which is symplectic, complex, has b1, b3, b5 even, yet does not admit a Kähler metric.
Consider the nilmanifold given by Λ(x1, x2, y1, y2, z, w; d) with dx1 = dx2 = dy1 = dy2 =
0, dz = x1y1, and dw = x2y2. The form ω = x1z + x2w + y1y2 satisfies dω = 0 and
ω3 6= 0, and so we have a symplectic form on G/Γ.

To define a complex structure on G/Γ, note that the left-invariant vector fields X1, X2,
Y1, Y2, Z,W on G dual to the left-invariant one-forms corresponding to x1, x2, y1, y2, z, w
descend to G/Γ to give a trivialization of the tangent bundle. (Denote the descended
vector fields by the same letters.) We can thus define an almost complex structure J
on these global basis vectors, and check that the Nijenhuis bracket vanishes at a point
to conclude that it vanishes everywhere and hence the almost complex structure J is
integrable.

Dualizing the differential d, we see that

[X1, Y1] = −Z, [X2, Y2] = −W,
and all other brackets are 0. Define an almost complex structure J on G/Γ by setting
JX1 = Y1, JX2 = Y2, JY1 = −X1, JY2 = −X2, JZ = W,JW = −Z. Furthermore, this
almost complex structure is integrable, since we can immediately see that the Nijenhuis
tensor

N(A,B) = [A,B] + J [JA,B] + J [A, JB]− [JA, JB]

vanishes identically.
As for the Betti numbers, b1 = 4 since H1(Λ(x1, x2, y1, y2, z, w; d)) is spanned by

[x1], [x2], [y1], [y2], and so by duality b5 = 4. Direct calculation in the minimal model
gives us that H3 is spanned by

[x1y1z], [x1x2z], [x1x2w], [x1y2z], [x1y2w], [y1x2z], [y1x2w], [y1y2z], [y1y2w], [x2y2w],

and so b3 = 10.
This nilmanifold does not admit a Kähler structure since the differential in its minimal

model is non-trivial.

Example 4.7. The Kodaira–Thurston nilmanifold Λ(x, y, z, w; dz = −xy) admits a
complex structure as well. Denoting the vector fields dual to x, y, z, w by X, Y, Z,W we
can set JX = Y and JZ = W . A direct check of the Nijenhuis tensor confirms that this
almost complex structure is integrable.
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