
Instantons and four manifolds

Preparation for minor topic in orals exam

Introduction/Glossary.

In the category of topological manifolds, we can consider the question of obtaining piecewise-linear
(PL) structures, and perhaps even smooth structures on a given manifold.

Denote the group of homeomorphisms, PL isomorphisms, and diffeomorphisms of Rn by Topn, PLn,
and Diffn respectively. Taking their limits we obtain the groups we call Top, PL, Diff, which have
classifying spaces. For a topological manifold X we obtain a map X → BTop. A smooth structure
implies PL implies topological structure, and for dimension n ≥ 5, lifts (up to homotopy) of this clas-
sifying map to BPL and BDiff correspond to isotopy classes of PL and smooth structures, respectively.
The homotopy fibers of the maps BO ∼ BDiff → BPL→ BTop are

• PL/O, whose homotopy groups are the groups Γk of diffeomorphism classes of Sk. These groups
are 0 for k ≤ 6.

• Top/PL, which is a K(Z2, 3). The obstruction to lifting obtained here is the Kirby-Siebenmann
invariant in H4(−,Z2).

For n = 3 the categories are equivalent: every topological manifold has a PL structure, and every PL
manifold has a smooth structure. For n = 4, PL coincides with Diff. The obstructions to obtaining a
smooth structure are, among other things, the Kirby-Siebenmann invariant, the signature divided by
8 (mod 16) if the manifold is spin, the form of the intersection form (by Donaldson’s theorem), etc.
For n = 5, the three categories are distinct. Lifting from Top to PL has a single obstruction, which
is the Kirby-Siebenmann invariant. Lifting from PL to Top has obstructions with coefficients in the
groups Γk.

It should be emphasized that BO is homotopy equivalent to BDiff. If we are interested in almost
complex structures, we consider the map BU→ BO, which has homotopy fiber O/U , which turns out
be homotopy equivalent to ΩO (whose homotopy groups we know by Bott periodicity).

Chapter 1. Fake R4.

As we will see, using Donaldson’s theorem we can conclude that there is no smooth four-manifold
with intersection form E8 ⊕ E8. However, there is a smooth four-manifold with intersection form
E8 ⊕ E8 ⊕ 3H, namely the K3 complex surface (unique up to diffeomorphism). By doing surgery on
the K3 to remove the homology corresponding to 3H, we will obtain an exotic R4. The procedure is
as follows:

Denote the homology generated by the spheres in the K3 by a1, a2, a3, b1, b2, b3. We use the following
result.

Result 1. The homology generated by these spheres is represented by a collared topological embedding
ofX = 3(S2×S2)−D4 inK3, which is smoothly equivalent to an embedding ofX in 3(S2×S2). Denote
the embedded X along in 3(S2×S2) by j(X). We see that 3(S2×S2)− j(X) has a single end, due to
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the collar around the boundary of j(X), homeomorphic to S3×[0,∞) and H2(3(S2×S2)−j(X),Z) = 0
since all the H2 was in the collar. Also, 3(S2 × S2) − j(X) is simply connected. Now we apply the
following result to conclude that 3(S2 × S2)− j(X) is homeomorphic to R4

Result 2. A non-compact four-manifold V without boundary, which is simply connected and has zero
second homology, and has a single end homeomorphic to S3 × [0,∞), is homeomorphic to R4.

Now consider the embedding of X in K3. Denote that by i(X). Suppose there was a smoothly
embedded S3 between the borders of the collar around i(X), surrounding X. Then we could do surgery
to K3 to remove this second homology generated by X, and we would obtain a smooth manifold with
intersection form E8 ⊕ E8. That cannot be. On the 3(S2 × S2) side, since the embeddings of X are
smoothly equivalent, we conclude that there is no S3 smoothly embedded so as to lie within the borders
of the collar j(X). But then we conclude that the compact set 3(S2 × S2) − (collar around j(X)),
living inside the homeomorphic-to-R4 space 3(S2 × S2) − j(X), is not surrounded by any smoothly
embedded three-sphere (since otherwise we would obtain the contradictory three-sphere on the K3
side). Standard R4 has the property that any compact subset is surrounded by a smoothly embedded
three-sphere, so we conclude that what we have here is a fake (i.e. “exotic”) R4.

Chapter 2. The Yang-Mills equation.

Connections, curvature, and gauge transformations

A principal G-bundle P over a manifold X is assigned with a covering Oα of X and transition
maps sβα : Oα ∩ Oβ → G such that the cocycle condition is satisfied. We can associate to P a
vector bundle η = P ×G V by choosing a vector space V on which G acts (preferrably freely), and
forming the disjoint union Oα × V/ ∼, where (x, v) ∼ (y, w) if x = y and w = sβαv. Denoting the

representation by G
ρ→ Aut(V ), this vector bundle is obtained by pulling back the universal bundle

via X → BG
Bρ→ BAut(V ).

Now we define an object that allows us to identify the fibers across a principal or associated bundle
intrinsically. We will work with associated vector bundles most of the time, and so only define the
following notions in their case. A covariant derivative (or connection) is an operator

D : Γ(η)→ Γ(η ⊗ T ∗(X)) = Ω1(η).

Our bundles will have metrics on them, and we require that D satisfies the Leibniz rule.

Locally, on Oα, covariant derivatives look like d+Aα, where

Aα : Oα → T ∗(Oα)⊗ g.

Here we can start thinking of our associated vector bundle right away as P ×G g, where G acts on g
via the adjoint action. That is, (p, V ) ∼ (p, Lg−1∗Rg∗V ). On overlaps we have the transformation law

Aα = s−1
βαdsβα + s−1

βαAβsβα.

This tells us that the difference of two connections transforms via the adjoint action of G, i.e. it is
a section of Ω1(adη). So, the space of all connections, denote it A, is an affine space. Note it is
contractible, in particular.

A connection can also be thought of as a g-valued 1-form on the tangent bundle of the total space P (as
in Spin Geometry). This connection 1-form defines a projection onto the tangent space g of the fibers
G, and so its kernel gives a horizontal distribution of tangent subspaces, projecting isomorphically
down to the tangent space of the base manifold X. Such a connection 1-form on a principal SO(n)
bundle gives a covariant derivative D on X as defined above via the following result.
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Proposition 4.4 in Spin Geometry. Let ω be a connection 1-form on the principal SO(n) bundle of
frames PSO(E), where E is a vector bundle over X. Then ω determines a unique covariant derivative
D on E via

Dei =
∑
j

E∗ωij ⊗ ej ,

where E = (e1, . . . , en) : X → PSO(E) is a local frame.

We can consider the complex

Ω0(η)
D→ Ω1(η)

D→ Ω2(η)
D→ · · ·

obtained by tensoring the de Rham complex Ωi d→ Ωi+1 with the bundle η. To make sense of D for
i ≥ 1, define D(σ ⊗ θ) = Dσ ∧ θ + σ ⊗ dθ for a section σ of η and θ ∈ Ωi. Now we can consider the
composition D2 : Ω0(η) → Ω2(η). Locally, this operator looks like dA + A ∧ A, and, denoting it Fα,
transforms as Fα = s−1

βαFβsβα. So we can consider it a section of Λ2T ∗X ⊗ η transforming under the

adjoint action, i.e. we obtain an element F ∈ Ω2(adη) which we call the textitcurvature of D.

Now we consider the Hodge star operator ∗ : Ω2 → Ω2 on a four manifold M with given metric, defined
by
∫
M α ∧ ∗β =

∫
M g(α, β). Since ∗2 = 1, it is in particular a normal operator and Ω2 decomposes

into a sum of its eigenspaces +1 and −1, denoted Ω2
+ and Ω2

−. This decomposition extends to Ω2(ξ)
for any vector bundle ξ. In particular, the curvature F of a given connection D decomposes into its
self-dual and anti-self-dual pieces, F = F+ + F−.

We define the gauge transformations of a principal G bundle P to be bundle maps s that are G-
equivariant, i.e. s(p.g) = s(p).g (the action is from the right).

Lemma 4.1.2 in Morgan’s Gauge Theory and the Topology of Four-Manifolds Lectures.
The group of gauge transformations is naturally isomorphic to the group of sections of the bundle
Ad(P ) = P ×G G.

Proof. Given a gauge transformation P
s→ P , observe that for every p there is an element, call it

ψ(p) ∈ G, such that s(p) = p.ψ(p). Define a section P → P ×G G by x 7→ [(p, ψ(p)]for any p in the
fiber above x. Observe that

pg.ψ(pg) = s(pg) = s(p).g = p.ψ(p)g,

and so by freeness of the action we conclude ψ(pg) = g−1ψ(p)g, and so the section is indeed well
defined. �

So, the space of gauge transformations, denote it G, has a natural group structure, when thinking of
it as the sections of Adη. This is an infinite-dimensional Lie group with Lie algebra Lie(G) = Γ(adη).

Gauge transformations act on covariant derivatives and curvature. Indeed, for s ∈ G, define s.D =
s∗(D) = s−1 ◦D ◦ s, which on sections σ ∈ Γ(η) is (s.D)σ = s−1(D(sσ)). We have

s∗(Aα) = s−1ds+ s−1Aαs.

On curvature, s∗F = s−1Fs, where s only moves around the section part and acts trivially on the
form part.

Chern classes of SU(2) bundles

We are actually only interested in principal U(1) and SU(2) bundles. The corresponding Lie algebras
are iR (abelian) and su(2) = traceless skew-hermitian 2x2 matrices. The first Chern class c1(η)
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classifies the U(1) bundle η, and, over four-manifolds, the second Chern class c2(η) classifies the
SU(2) bundle η. These classifications follow since U(1) bundles are classified by maps to CP∞ which
classifies H2(X,Z), and SU(2) bundles are classified by maps to BSU(2) which is a K(Z, 4) from the
perspective of four-manifolds, and so such maps correspond to H4(X,Z).

Chern-Weil theory tells us c(η) = [det(1 + i
2πF )] ∈ H∗(X,Z), where F is the curvature of any (!)

connection D on η. Consider the case of η a U(1) bundle. The curvature, recall, is a section of
Λ2T ∗X ⊗ iR = Λ2T ∗X, so it is just an ordinary global 2-form α. Then the above Chern-Weil formula
gives us c(η) = 1 + i

2πα, so c1(η) = i
2π [α], and this classifies η topologically.

If η is an SU(2) bundle, then its curvature F is an su(2)-valued 2-form, i.e. it has the form

F =

(
a b
c d

)
,

where a, b, c, d are ordinary 2-forms. Since this matrix is traceless, being in su(2), we have a+ d = 0.
Chern-Weil tells us

c(η) = det(1 +
1

2π
F )

= 1− (trace(F ))
i

2π
+ (det(F ))(

i

2π
)2,

and so c1(η) = 0 and c2(η) = − 1
4π2 (ad − bc) = 1

4π2 (a2 + bc). Note that all forms are 2-forms here, so
they commute. Observe that

trace(F ∧ F ) = trace(( a bc d ) ∧ ( a bc d ))

= trace( a
2+bc ab+bd
ac+dc bc+d2

)

= a2 + d2 + 2bc = 2(a2 + bc),

and so

c2(η) =
1

8π2
trace(F ∧ F ).

The number k = − 1
8π2

∫
M trace(F ∧ F ) is called the topological charge of the bundle. In the proof of

Donaldson’s theorem, we will be considering SU(2) bundles with topological charge +1.

Let us consider now consider how an SU(2) bundle η might split into complex line bundles. These
splittings will correspond to singularities in the moduli space of anti-self-dual connections we will
construct over a given simply connected smooth four-manifold M . Suppose η = L1 ⊕ L2. Then on
Chern classes we have c1(η) = 0 = c1(L1) + c1(L2), and so c1(L1) = −c1(L2), and hence by the
classification of line bundles via first Chern class, L2 = L−1

1 . Let us write from now on L instead of
L1. On second Chern classes we have c2(η) = c2(L) + c2(L−1) + c1(L)c1(L−1) = 0 + 0 − c1(L)2. So,
the topological charge k is equal to c1(L)2, i.e. it is equal to ω(α, α), where ω is the intersection form
of the manifold, and α = ±c1(L). From here we obtain the following result.

Proposition 2.11 Freed-Uhlenbeck. The SU(2) bundle η with topological charge k splits iff ω(α, α) = k
holds for some α. The number of such splittings η = L ⊕ L−1, corresponding to line bundles L with
c1(L) = α, is equal to half the number of solutions α (since α and −α give the same splitting).

The Yang-Mills functional

Given an SU(2) bundle η over a four manifold M with metric, we can define an inner product
on all Ωi(η) by combining the one on the manifold with the ad-invariant inner product (A,B) =
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trace(AB∗) = −trace(AB) on su(2). Define the Yang-Mills functional evaluated on a connection D
on η to be

YM(D) =

∫
M

(FD, FD).

Let us consider extremal points of the functional. Note

FD+tAσ = (D + tA)(D + tA)σ = (DD)σ + tA(Dσ) +A(Dσ) + t2(A ∧A)σ

= FDσ + t(DA)σ + t2(A ∧A)σ

and so

YM(D + tA)′(0) = (

∫
M

(FD+tA, FD+tA))′(0)

= (

∫
M

(F + t(DA) + t2(A ∧A), FD + t(DA) + t2(A ∧A))′(0)

= (

∫
M

(F, F ) + 2t(DA,F ) + (higher order terms in t))′(0)

= 2

∫
M

(DA,FD)

= 2

∫
M

(A,D∗FD).

Here we define D∗ : Ω2(η) → Ω1(η) as the formal adjoint to D. It turns out D∗ = − ∗ D∗. So, a
critical point D of the Yang-Mills functional satisfies D∗FD = 0 = D ∗F . By the Bianchi identity, it is
always true that DFD = 0. Call these critical points D Yang-Mills connections and their curvatures
FD Yang-Mills fields. Note the analogy with Hodge theory and the definition of harmonic forms
(dh = d∗h = 0).

Let us find the absolute minimum and maximum values that YM could possibly achieve. Take a
connection D and decompose its curvature F = F+ + F−. The spaces Ω2

+ and Ω2
− are orthogonal,

so we have YM(D) =
∫
M (F, F ) =

∫
M (F+, F+) +

∫
M (F−, F−). Similarly we have trace(F ∧ F ) =

trace(F+ ∧ F+) + trace(F− ∧ F−). For any F we have |F |2 = −
∫
M trace(F ∧ ∗F ) by combination of

the inner products. Now trace(F+ ∧F+) = trace(F+ ∧ ∗F+) and trace(F− ∧F−) = −trace(F− ∧ ∗F−),
and so by integrating we obtain

−8π2k =

∫
trace(F, F ) = −|F+|2 + |F−|2,

that is,

8π2k =

∫
M
|F+|2 − |F−|2.

In our case, k = 1. So, YM(D) =
∫
|F+|2 + |F−|2 and

∫
|F+|2 − |F−|2 = 8π2. So, YM(D) ≥ 8π2 with

equality when F− = 0, i.e. at self-dual connections.

So, if D is an absolute minimum point of YM , D is self-dual. Minima of the Yang-Mills functional
do not have to be absolute minima, but when they are, the solutions of the second order equation
DFD = D ∗ FD = 0 are solutions of the first order self-dual Yang-Mills equations F = ∗F .

We are interested in self-dual Yang-Mills fields, or instantons. The space of instantons is gauge-
invariant, and we consider the moduli space M = {D ∈ A, FD = ∗FD}/G.

Line bundles

We consider the case of U(1) bundles λ, which we should understand since splittings of SU(2) bundles
will be important. Note that the Lie algebra of U(1) is abelian, and so the adjoint bundle adλ =
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L ×U(1) iR is just M × iR, and so the curvature f of any connection d is an ordinary 2-form. The
Yang-Mills equations become df = d∗f = 0, which are the equations for harmonic 2-forms. Since
c1(λ) = i

2πf by Chern-Weil, we get the following result.

Theorem 2.20 Freed-Uhlenbeck. If λ is a line bundle, then the curvature of any Yang-Mills connection
d is the unique harmonic 2-form f such that [f ] = −2πic1(λ).

Example. Consider a line bundle L over S2 × S2. By the previous theorem, the curvature of any
Yang-Mills connection on L should be a harmonic 2-form representing some multiple of c1. But now
suppose we want instantons, i.e. self-dual Yang-Mills connections. The curvature of such a connection
would be a self-dual harmonic two-form. The space of harmonic forms H = H2(S2 × S2,C) splits
into H+ ⊕H−, self-dual and anti-self-dual, where the dimensions of these spaces are b+ and b−, the
numbers of positive/negative eigenvalues of the intersection forms. Note that for S2 × S2 we have
that H+ is a line in a two dimensional space. As we vary the metric on the base, this lines moves
around the two dimensional ambient space. So, for a generic metric, this line will miss the integral
cohomology lattice, and so no self-dual harmonic form can represent the first Chern class of the line
bundle. Therefore, for a generic metric on S2 × S2, there are no instantons (or anti-instantons, since
b+ > 0).

However, there are always Yang-Mills connections (i.e. solutions to the Yang-Mills equations) on a
line bundle. First observe that for any connection dA on a line bundle, locally dA = d + a for some
a ∈ Ω1(adL). We think of dA as an operator Ω1(adL)→ Ω2(adL) and show that it has the same effect
as d. Indeed, for σ ⊗ V ∈ Ω1(adL), we have (d + a).σ ⊗ V = dσ ⊗ V ± sigma ⊗ a.V . Now, a acts
on V via the derivative of the adjoint action of G on g (for general group G and Lie algebra g now).
The derivative of the adjoint action Ad : G → GL(g) is ad : g → gl(g) given by ad(X).V = [X,V ].
Bracketing in iR is trivial (in our case g = iR), and so this action is trivial, so we have σ ⊗ a.V = 0
and we obtain that dA = d+ a acts the same as d. Consequently, d∗A acts the same as d∗. So solving
the Yang-Mills equation means finding a connection satisfying d∗FA = 0, since that is the same as
d∗AFA = 0. Now choose a base connection A0. Any other connection on the line bundle is of form
A = A0 + a for some a ∈ Ω1(adL). We want to solve d∗FA = 0, that is, d∗FA0+a = 0. Observe

FA0+a = dA0+a(A0 + a) = d(A0 + a)

= dA0 + da = dA0A0 + da

= FA0 + da.

Now, d∗FA0+a = d∗(FA0 + da) = d∗FA0 + d∗da. By the Hodge decomposition, we have FA0 =
dη + d∗ω + h, where h is harmonic. It follows that d∗FA0 = d∗dη, and so a = −η solves the desired
equations, giving a Yang-Mills connection. So, any line bundle on S2×S2 with any metric on the base
has solutions to the Yang-Mills equations (minima of the Yang-Mills functional), but by perturbing
the metric we can guarantee that there are no instantons.

Example. Now we consider the moduli space of Yang-Mills connections on a line bundle L over a
simply-connected four manifold M . Fix a Yang-Mills connection d0 which exists by the above example.
Any other connection (and so any other Yang-Mills connection) will be of the form d0 + a for some
a ∈ Ω1(adL). Since U(1) is abelian, we have adL = M × iR, and so any Yang-Mills connection will
have the form d0 +ia for some ordinary 1-form a ∈ Ω1. Computing the curvature and using uniqueness
from Theorem 2.20 gives us that a is a closed form. Namely, (d + ia)(d + ia) = dd + 2ida − a ∧ a,
and since a is an ordinary 1-form, a ∧ a = 0, and since dd = (d + ia)(d + ia) (by uniqueness of
curvature), we conclude da = 0. Since M is simply connected, H1(M,Z) = 0, and so a = dv for some
function v. Now let us consider the action of gauge transformations on our base connection d0. Note
that gauge transformations are sections of the bundle AdL = L ×U(1) U(1) = M × U(1). So, gauge
transformations are functions of M to the circle. Since [M,S1] = H1(M,Z) = 0, every such map has
a logarithm, and so any gauge transformation s is of the form s = eiu for some real valued function u.
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Consider now how s acts on d0,

s.d0 = s−1ds+ s−1d0s

= ie−iuueiu + e−iud0e
iu

= d0 + iu.

So, any other Yang-Mills connection is in the gauge orbit of d0, i.e. the moduli space is a point. Note
by the previous example that instantons (self-dual Yang-Mills connections) might not exist at all.

Now let us return to the case of an SU(2) bundle η over the four manifold M . This bundle possibly
has multiple splittings of the form η = L⊕L−1. We look at connections that respect a given splitting
and the corresponding gauge orbits. To do this we need a preliminary lemma.

Lemma 2.21 Freed-Uhlenbeck. The intersection form ω of M is positive definite (write ω > 0) iff there
are no asd harmonic 2-forms on M .

Proof. Decompose a given harmonic 2-form f into its self-dual and anti-self-dual parts, f = f+ + f−.
Then we have

||f ||2 = (f, f) =

∫
f ∧ ∗f

=

∫
(f+ + f−) ∧ ∗(f+ + f−) =

∫
f+ ∧ f+ −

∫
f− ∧ f−

= ω(f+, f+)− ω(f−, f−).

So, if f were an asd harmonic 2-form while ω > 0, we would have ||f ||2 = −ω(f−, f−) < 0, and
conversely if there are no asd harmonic 2-forms, then ω(f, f) = ω(f+, f+) = ||f ||2 > 0 �

Now suppose we consider a splitting η = L ⊕ L−1. Yang-Mills connections on L and L−1 induce a
Yang-Mills connection on η, and if we assume ω > 0, we have that these connections are self-dual
(since they are represented by harmonic 2-forms). A split self-dual connection on η is self-dual and
hence Yang-Mills when restricted to L and L−1. If M is simply connected, then these split connections
are all gauge equivalent by the example above. Therefore we have the following result.

Proposition 2.22 Freed-Uhlenbeck. Suppose M is a simply connected manifold with ω(M) > 0. Then
for a splitting η = L⊕ L−1 of an SU(2) bundle, there is a unique (up to gauge) self-dual Yang-Mills
field F = ( f 0

0 −f ) respecting the splitting.

Donaldson’s theorem

Take a smooth, simply connected, closed four manifold M with ω(M) > 0 and consider the SU(2)
bundle over it with topological charge k = 1. The following properties of the topology of the moduli
space M of self-dual connections modulo gauge equivalence are proved throughout the book:

• Denote by m half the number of solutions to ω(α, α) = 1. Then for a generic metric on M there
are m points such that the moduli space with these points removed is a smooth five-manifold.
These points correspond to topological splittings η = L⊕ L−1.

• Small neighborhoods of these m points are homeomorphic (diffeomorphic away from the point
itself) to a cone on CP2.

• The moduli space M is orientable.

• The moduli space is non-empty after removing the m singular points. In fact, there is a collar
(0, ε) ×M inside M, and M∪M , away from the singular points, is a smooth manifold with
boundary.
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• The moduli space with the end of the collar attached, M̄ =M∪M is compact.

Cutting off the tips of the cones by the singular points, we obtain an oriented cobordism, via M̄,

between M and a disjoint union, that is a connect sum (equal in cobordism), of CP2’s and CP2
’s.

From the proof it will follow that all the singular points are in the same connected component as the
collar, and so they will all share the same orientation as M inherited from the connected component.
So we have the cobordism M ∼ mCP2.

Now, consider the intersection form ω > 0 of our simply connected smooth closed four-manifold M .
Its signature is equal to its rank (since it is positive definite), and its signature is equal to m, since
signature is an oriented cobordism invariant, and σ(mCP2) = σ((1) ⊕ · · · ⊕ (1)) = m. But note also
that the number of CP2’s is half the number of solutions to ω(α, α) = 1. Such a solution (mod ±) gives
a splitting over the integers (!) of ω into ω = Z〈α〉 ⊕ α⊥. Splitting off m times (which is the rank),
gives us a diagonalization of the matrix to the identity matrix (where the i, i slot is ω(α, α) = 1). This
argument (assuming all those properties of the moduli space of instantons mod gauge) gives us the
main result.

Donaldson’s diagonalization theorem. A smooth closed simply connected four-manifold with positive
intersection form is such that its intersection form is diagonalizable over the integers to the identity
matrix.

The assumption of being simply connected can be relaxed to demanding that there are no nontrivial
homomorphisms from the fundamental group to SU(2), since then every flat SU(2) bundle over M
is trivial (and this is all that is necessary in the collar/analytic part of the proof). For example,
finite simple non-abelian groups are covered by this assumption. Groups like Z2 are excluded, though.
Donaldson’s result has been subsequently extended to include arbitrary fundamental groups.

Donaldson’s result can be combined with Freedman’s theorem and the classification of indefinite
forms, along with Rochlin’s theorem, to conclude the non-smoothability of many topological manifolds,
and to conclude that two given smooth four-manifolds (everything is simply connected again) are
homeomorphic. Freedman’s theorem states that given any unimodular symmetric bilinear form over
the integers, there is a simply connected four-manifold with that intersection form. (The intersection
form determines the homotopy type of the four-manifold, by Whitehead. A simply connected four
manifold is obtained by gluing on a four-disk to a wedge of two-spheres. The gluing is determined up
to homotopy by a map from S3 to the wedge of S2’s, and this map is the sum of Whitehead products
corresponding to the intersection form.) Back to Freedman’s theorem, if the intersection form is even,
then there is only one homeomorphism class of such manifolds, and some manifolds inside a given class
may be smoothable while others may not. If the intersection form is odd, then the manifolds fall into
two distinct homeomorphism classes, at most one of which may contain smoothable manifolds. So, for
any odd intersection form we obtain a least one homeomorphism class of non-smoothable manifolds.
Other results we can use to think about intersection forms are:

• van der Blij’s lemma. An even intersection form has signature divisible by 8.

• Rochlin’s theorem. The intersection form of a smooth closed spin four-manifold is divisible by
16. (Being spin implies the intersection form is even. The converse is true if H1(M,Z) has no
2-torsion. In particular, the converse is true if the manifold is simply connected. An example
of a closed smooth four-manifold with even intersection form which is not spin is the Enriques
surface obtained by quotienting a smooth K3 by a free Z2 action (H1(Enriques,Z) = Z2).

• Serre’s classification of unimodular forms. Indefinite odd forms diagonalize (over Z, as always)
to a diagonal matrix with +1’s and −1’s on the diagonal. Indefinite even forms are equivalent
to mE8 ⊕ nH, where H is the intersection form of S2 × S2 (Rank and signature of E8 are both
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8, while rank of H is 2 and signature of H is 0.) Definite odd forms diagonalize to positive or
negative the identity matrix.

Now we can combine these results to obtain some corrolaries:

• The intersection form E8 does not correspond to a smooth simply connected manifold. This
follows from Rochlin’s theorem since the signature of such a manifold would be 8, which is not
divisible by 16.

• The intersection form 2E8 does not correspond to a smooth manifold. This is not excluded by
Rochlin but by Donaldson, since it is positive definite and even. Donaldson’s theorem implies
that if a smooth manifold has positive definite intersection form, it must be odd.

• Combining Freedman and Donaldson we get that every smooth simply connected four-manifold
is homeomorphic to mE8⊕nH (with some restrictions on m and n, for ex. n > 0 by Donaldson)

or mCP2#nCP2
, in the case of indefinite forms, or mCP2 or mCP2

, in the case of definite forms.

• Two smooth simply connected four-manifolds are homeomorphic iff their intersection forms have
the same rank, parity, and signature.

The dimension of the moduli space is computed abstractly by the Atiyah-Singer index theorem. For a
principal G bundle η over a closed four-manifold M , we have that the dimension of the moduli space
of instantons mod gauge is

dim(MP ) = p1((adP )⊗ C)[M ]− dim(G)(1− b1 + b−2 ).

In our case of G = SU(2), we have the following computation for the Pontryagin class involved.
Denote by f the map X → BSU(2) that classifies our bundle η. Then the classifying map for adη is
obtained by composing this with the map on classifying spaces obtained by applying the classifying
space functor to the map SU(2)

ρ→ Aut(su(2)) = SO(3). This map just turns out to be the 2-to-1

cover SU(2)→ SO(3). So on classifying spaces, BSU(2)
Bρ→ BSO(3), the induced map on cohomology

is multiplication by 2. Now, adη is classified by Bρ ◦ f from M to BSO(3). We have the following:

p1(adη ⊗ C) = −c2((adη ⊗ C)⊗ C)

= −c2((adη ⊗ C)⊕ (adη ⊗ C))

= −2c2(adη ⊗ C) + c2
1(adη ⊗ C)

= 2p1(adη).

The class c2
1(adη⊗C) is zero since it is a torsion class in the top cohomology of M . Now, pulling back

to BSU(2), we have:

p1(adη ⊗ C) = 2p1(adη)

= 4p1(η) = 4(c2
1 − 2c2)(η)

= −8c2(η) = 8k.

So, in our case of the SU(2) bundle with topological charge 1, and assuming ω(M) > 0 (so b−2 = 0),
and π1(M) = 0 (so b1 = 0), we have that the dimension of the moduli space of instantons mod gauge
is 8− 3(1− 0 + 0) = 5.
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Chapter 3. Manifolds of connections.

Here we show that the moduli spaceM is a smooth manifold (of dimension 5) away from the singular
points for a generic metric on the base manifold M . The idea of the proof is to construct a slice to
the G-action on the space of connections away from the reducible connections. This will show that
X̂ = Â/G is a manifold. However, it will not be true that M̂ ⊂ X̂ is a manifold for any choice of metric
on M . So, to get around this problem, we parametrize the space of metrics, call this parametrized
space C, and look at the product Â×C. Now, consider the pairs (D, g) ∈ Â×C such that ∗gFD = FD,

i.e. D is self-dual with respect to the metric g. Denote this space ŜD ⊂ Â × C. We will exhibit
ŜD as the preimage of a regular value of some smooth function, so it will be a manifold. The slices
constructed on X̂g also exist on all of ŜD, and thus we obtain a manifold ŜD/G. Now, we can look at

ŜD/G as a union of its slices ŜD/G =
⋃
g∈CMg. Applying the Smale-Sard theorem to the projection

onto the metric coordinate, we will conclude that Mg is a smooth manifold for a generic metric. We
will compute the dimensions of these smooth manifolds Mg to be five.

Sobolev spaces

In demonstrating these results, we will want elliptic operators to be invertible on the spaces involved.
Spaces of class C∞ are not good for this, since they are not Banach and elliptic operators do not invert
on them. So we replace C∞ spaces with Ck or Sobolev spaces, and argue that the results proved there
carry over to the smooth case.

For any bundle ξ over our base manifold, we define the Sobolev space Hl(ξ) as the space of sec-
tions whose (weak) derivatives of order ≤ l are integrable. That is, Hl(ξ) is the Hilbert space com-
pletion of Γ(ξ), the space of smooth sections, with respect to the inner product given by (a, b) =∫
M

∑
i≤l(D

ia,Dib). By the Sobolev embedding theorem, Hl(ξ) ⊂ Ck(ξ) as soon as l > dimM
2 + k,

so in our case, Hl(ξ) is contained in the continuous sections if l > 2. By Rellich, Hl(ξ) is compactly
contained in Hk(ξ) for any l > k.

We define analogous objects to the ones we’ve been considering, in this Sobolev context. We set
Gl = Hl(Adη),Al = D0 +Hl(adη ⊗ T ∗M) = Ω1(adη)l (where D0 is any base connection in A). Then
Gl acts smoothly on Al−1.

Curvature is here an operator F : Ω1(adη)l → Ω2(adη)l−1, where F (D) = FD. Let us compute the
differential of F at a point D. Take a curve γ(t) in A such that γ(0) = D, and γ′(0) = A. For example,
we can take γ(t) = D + tA (since A is just a linear space). Then the differential ∂F evaluated at
A ∈ TDA = A is equal to F (γ(t))′(0), which satisfies

F (γ(t))′(0)(σ) = F (D + tA)′(0)(σ) = (D + tA)(D + tA)′(0)(σ)

= (DD + t(A(D−) +D(A−)) + t2A ∧A)′(0)(σ) = DA(σ).

So, ∂F (D)(A) = DA, meaning ∂F at D is the linear map Ω1(adη)l → Ω2(adη)l−1 defined by A 7→ DA.

It can be shown by elliptic regularity arguments that the topology of M̂ ⊂ Âl−1/Gl is independent of
l as long as l > 2. (This should follow from the fact that is FD is self-dual, then there an s ∈ Gl such
that s∗(D) is a smooth connection.)

Reducible connections

We say a connection D is reducible if D = d1 ⊕ d2 corresponding to connections on some splitting
η = L⊕L−1 of the bundle. The following result lets us understand how to detect reducible connections.
(We will drop the Sobolev subscripts everywhere from now on.)

Theorem 3.1 Freed-Uhlenbeck. Assume D is not a flat connection. (This is the case for all connections
on a k = 1 bundle since c2 6= 0, and by Chern-Weil a flat bundle would have vanishing Chern class.)
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Denote by GD the stabilizer of G in D. Then the following are equivalent:

(a) D is reducible

(b) GD/Z2 6= 1

(c) GD/Z2 = U(1)

(d) D : Ω0(adη)→ Ω1(adη) has kernel

Proof.

• (a) implies (b). For a reducible connection, the circle ( e
iθ 0
0 e−iθ

) stabilizes D. These gauge
transformations are just sections (along with their inverse) of the adjoint bundle to a principal
circle bundle, which is trivial. This circle contained in the stabilizer of D is the circle of constant
sections of this adjoint bundle.

• (b) implies (c). Analagously to the (d) implies (a) case, we can show that any s ∈ GD, thought
of as a section of η ×SU(2) SU(2), has unequal constant eigenvalues and so defines a splitting
η = λ1⊕λ2, from where we see that s lies in a circle of GD. So, GD is at least U(1). If it is larger
than a circle, then the holonomy of the connection D would be smaller than U(1), since it is
contained in SU(2) and centralized by a circle. Then the holonomy would have to be discrete,
but any connection with discrete holonomy is flat (look at small loops at any point), contrary
to the assumption (c2 6= 0).

• (c) implies (d). Take a path γ(t) in the stabilizer of D such that γ(0) = +1 and denote
u = γ′(0). The vector u is in the Lie algebra to G, which is Ω0(adη). Differentiating the
equation γ(t).D = D, that is γ(t)−1 ◦D ◦ γ(t) = D leads us to Dγ′(0) = 0, i.e. Du = 0.

• (d) implies (a). Take an element u ∈ kerD. Pointwise, u is an element of the Lie algebra to
SU(2), i.e. it is a pointwise skew-hermitian traceless matrix. So, take its purely imaginary
eigenvalues (as functions of the point) ±iλ, a consider a neighborhood where λ > 0. Take a
smoothly varying unit length eigenvector e for +iλ on this neighborhood. So, we have ue = iλe
and (e, e) = 1. Differentiating ue = iλe we obtain

D(ue) = (Du)e+ uDe = uDe

= iD(λe) = i(dλe+ λDe)

= idλe+ iλDe,

and taking inner product with e we obtain (uDe, e) = idλ(e, e) + iλ(De, e). Observe that
by differentiating the equation (e, e) = 1 we obtain Re(De, e) = 0, and so by taking the
imaginary part in the previous equation we conclude Imaginary((uDe, e)) = Imaginary(idλ) +
Imaginary(iλ(De, e)), i.e. dλ = Imaginary((uDe, e)) = −Imaginary((De, ue)) = λRe((De, e)) =
0 since u∗ = −u. So λ is a constant function, and so e is defined everywhere. For each of +iλ
and −iλ we get a globally defined eigenvector and so obtain a splitting η = λ1 ⊕ λ2. From the
previous equations we can also conclude De = 0, so D splits as D = d1⊕d2 for some connections
di on the λi. That is, D is a reducible connection. �

Corollary. G/Z2 acts freely on the irreducible connections A.

A slice theorem

To approach proving that our moduli space is a manifold, we note some useful sufficient conditions for
the quotient of a manifold by a free group action to be a manifold. Say M is some smooth (possibly
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infinite dimensional) manifold, and G a (possibly infinite dimensional group) acting freely on M .
Then, if through each point in M we can find a slice of the action, the quotient M/G is a manifold. A
slice of an action at a point x ∈ M is an open submanifold N ⊂ M “orthogonal” to the action at all
its points, that is, for each y ∈ N we have TyM = TyN ⊕ Ty(G.y). We also require that G identifies
no two points in N (i.e. the projection to M/G is injective).

In our case, let us first take M = Â and G = G̃, where G̃ = G/Z2 is the group of gauge transformations
modulo its center (so G̃ acts freely on Â, by the previous corollary). At a point D ∈ A we want to
see what the slice should look like. Luckily the space Â has an inner product inherited from the base
manifold and su(2). We look at the local orbit G̃.D and note that the derivative of the action, for a
u in Ω0(adη), i.e. the Lie algebra of G̃, is given by D → Du. Locally any other connection is of the
form D + A for A ∈ Ω1(adη), and we want the slice to consist of A such that (Du,A) = 0 for all u,
i.e. (D∗A, u) = 0 for all u ∈ Ω0(adη). So, our slice at D ∈ Â, which we will think of as the tangent
space at D in the quotient X̂ (by virtue of the following theorem) look like

XD = {A ∈ Ω1(adη)|D∗A = 0}.

Theorem 3.2. Freed-Uhlenbeck, “slice theorem”. At each D ∈ Â, there is a neighborhood diffeomorphic
to kerD∗ × G̃. That is, there is a neighborhood U of D and a map s : U → G̃ such that s(D′)∗D′ ∈
D + XD for all D′ ∈ U (s pulls D′ back to the slice at the origin connection D). Furthermore, the
map Φ : U → XD × G̃ maps U diffeomorphically to a neighborhood of (0, id), and it is G̃-equivariant.
The neighborhood U can also be chosen to be G̃-invariant.

The parametrized moduli space

The moduli space will not always be a manifold – a perturbation of the metric might be necessary.
We parametrize the space of metrics in a tractable way by choosing a base metric g on M , and setting
C to be the space of Ck automorphisms (remember the assumption of being in Hilbert spaces) of the
tangent bundles, C = Ck(GL(TM)). For ϕ ∈ C, we obtain the corresponding metric by taking ϕ∗g.
All metrics can be obtained in this way since the space of metrics is the space of sections of a bundle
with fiber GL(4)/O(4). Every metric will in fact be obtained multiple times, but this will not affect
the genericity conclusions that follow in this chapter.

Now consider the map P− that projects a 2-form onto its anti-self-dual part, i.e. P−(θ) = 1
2(θ −

∗θ). This, of course, depends on the underlying metric g. Projection onto the anti-self-dual with
respect to the metric ϕ∗g is given by ϕ∗P−(ϕ−1)∗. Consider now this map, which detects whether
a given connection is self-dual with respect to a metric, P : Â × C → Ω2

−(adη), given by P(D,ϕ) =
P−((ϕ−1)∗FD). Note that, as desired, P(D,ϕ) = 0 iff FD is self-dual with respect to the metric ϕ∗g.
We have the following crucial result.

Theorem 3.4 Freed-Uhlenbeck. The map P is smooth and 0 is a regular value (that is, the differential

∂P is surjective at points which are mapped to 0). Therefore ŜD = P−1(0) is a smooth manifold.

A word on the proof. Since P is quadratic in D and ϕ, it is smooth. Now let us look at what ∂P looks
like at a point (D,ϕ). Note that the Lie algebra of C, denote it Lie(C), is equal to Ck(End(TM)).
Now, the differential ∂P(D,ϕ) : TD(Â)⊕ Tϕ(C)→ Ω2

−(adη) can be written as

∂1P(D,ϕ) ⊕ ∂2P(D,ϕ) : Ω1(adη)⊕ Lie(C)→ Ω2
−(adη),

since the tangent space to a connection is Ω1(adη) and Ω2
−(adη) is a linear space. A quick computation

shows that ∂1P : Ω1(adη) → Ω2
−(adη) is given by ∂1P(A) = P−((ϕ−1)∗DA), and also ∂2P(r) =

P−((ϕ−1)∗(r∗FD)) for r ∈ Lie(C). If (D,ϕ) is mapped to zero under P, then ∂1P fits into the elliptic
complex

0 −→ Ω0(adη)
D−→ Ω1(adη)

∂1P−→ Ω2
−(adη) −→ 0,
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which will feature heavily in what’s to come.

For now, ŜD is a manifold. To obtained our desired parametrized moduli space, we have to mod out
by gauge.

Theorem 3.16 Freed-Uhlenbeck. The parametrized moduli space ŜD/G is manifold.

Proof. We consider the behavior of the map P restricted to a slice at a point (D,ϕ) ∈ P−1(0) = ŜD.
This restriction P has domain {D+A,D∗A = 0} × C (and D∗ is the adjoint of D with respect to the
metric ϕ∗g). Recall the elliptic complex

0 −→ Ω0(adη)
D−→ Ω1(adη)

∂1P−→ Ω2
−(adη) −→ 0,

and observe that kerD∗ ⊥ imageD (in fact, Ω1(adη) = kerD∗ ⊕ imageD), ∂1P(D,ϕ) = ∂1P(D,ϕ)|kerD∗

by domain consideration, ∂2P(D,ϕ) = ∂2P(D,ϕ), and ∂P(D,ϕ) is onto. It follows that ∂P(D,ϕ) is onto as

well. Surjectivity is an open condition, so ∂P(−,−) is surjective in a neighborhood U of (D,ϕ). So,

(P)−1(0) ∩ U is a manifold, and by the slice theorem we can identify this with a neighborhood of the

image of (D,ϕ) in the quotient space X̂ . We conclude that ŜD/G is a manifold (a submanifold of
X̂ × C (we could have previously shown that X̂ is a manifold itself). �

The moduli space

Now we consider our parametrized moduli manifold ŜD/G = ∪ϕ∈CMϕ∗g and the projection π onto
the C coordinate. We need the following generalization of Sard’s theorem.

Sard-Smale theorem. Let E
π→ C be a Fredholm map between Banach manifolds. Then the set of

regular values of π is a countable intersection of open dense sets.

The preimage of any regular value is a manifold of dimension equal to the index of the map π (i.e. the
index of the linear map ∂π at any point). We will take any self-dual connectionD (existence guaranteed
by the existence of a neighborhood around singular points in the case of reducible connections existing,
and by Taubes’ result otherwise), and declare the base metric to be the metric which D is self-dual
with respect to. We will compute the index of π at the orbit of this point (D, id), where id is the base
metric, to be 5. The index is constant along paths, so we will conclude the following desired result.

Theorem 3.17 Freed-Uhlenbeck “Transversality theorem”. For a generic metric g, the moduli space
M̂g is a five-manifold.

Proof. We compute the index of π at (D, id) (the gauge orbit of (D, id)). The tangent space of ŜD
at the point (D, id) ∈ ŜD can be obtained by taking a curve γ(t) = (γ1(t), γ2(t)) contained in ŜD, so

P(γ(t)) = 0, and concluding T(D,id)ŜD = {(A, r) ∈ Ω1(adη)⊕Lie(C)|∂1P(A) +∂2P(r) = 0}. Now, the

tangent space at (D, id) in the quotient is obtained by looking at the slice of connections annihilated
by D∗,

T
(D,id)

ŜD/G = {(A, r)|∂1P(A) + ∂2P(r) = 0 and D∗A = 0}.

Since ∂π(A, r) = r, we have ker ∂π = {(A, r)}∂1P(A) = 0, D∗A = 0, r = 0} since the sum of the
partial derivatives is 0 and in the kernel there is no movement in the metric direction. We also have
image ∂π = (∂2P)−1(image ∂1P|D∗A=0). Consider the elliptic complex

0 −→ Ω0(adη)
D−→ Ω1(adη)

∂1P−→ Ω2
−(adη) −→ 0,

and recall that ∂1P = P−D. So, ∂1P|imageD = 0, so the restriction of ∂1P to the kernel of D∗ is the
full first partial derivative. Therefore image ∂π = (∂2P)−1(image ∂1P). Denote the dimensions of the
homology of the elliptic complex by h0, h1, h2. The cokernel of ∂1P has dimension h2 by definition, and
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it is straightforward to see that image ∂π has the same codimension. Taking h1 to be the dimension
of the harmonic forms in Ω1(adη) (i.e. forms such that D∗− = D− = 0), we see that the dimension
of the kernel of ∂π, which is the space of these harmonic forms, is h1. Since we are calculating at an
irreducible connection D, we have from a previous theorem that D has no kernel, and hence h0 = 0.
So, the index of ∂π is equal to h1 − h2. By the Atiyah-Singer index theorem, the Euler characteristic
of this complex, h0 − h1 + h2, is 3(1− b1 + b−2 )− 8k = −5, and so we conclude that the index of π is
5. �

To do away with all the Sobolev subscripts in our conclusions about the topology of the moduli space,
the following result helps.

Proposition 3.20. Freed-Uhlenbeck. The set of Ck metrics for which M is a manifold is open and
dense, and therefore contains smooth and analytic metrics.

Corollary 3.21. Freed-Uhlenbeck. If the intersection form ω is indefinite, then for a generic (i.e. an
open dense set of) metrics, there are no line bundle solutions to the self-dual or anti-self-dual equations.

Proof. We saw a proof of this in one of the examples in Chapter 2, using the fact that a codimension
1 subspace of the space of harmonic forms generically misses the integral cohomology lattice where
the Chern classes live. Alternatively, we can consider here the (simpler) elliptic complex

0 −→ Ω0 d−→ Ω1 d−−→ Ω2 −→ 0,

which is of this form since the bundle adη is trivial. Now, the formula for the Euler characteristic of
this complex by Atiyah-Singer is 1(1 − b1 + b−2 ) − p1(adη ⊗ C) = 1 + b−2 , since the adjoint bundle is
trivial and the manifold is assumed simply connected. As before, the dimension of the moduli space
is the index of the projection map, which turns out to be h1 − h2. Since h0 is the dimension of the
vector space of constants here, and h0−h1 +h2 = 1 + b−2 , we obtain that the dimension of the moduli
space is −b−2 . So, there are no self-dual connections generically. By reversing the orientation of the
manifold and switching the roles of b−2 and b+2 we conclude that there are generically no anti-self-dual
connections either.

Chapter 4. Cones on CP2.

Slices revisited

Now we consider a reducible connection D. The Lie algebra of GD is the one-dimensional kernel of the
operator D : Ω0(adη)→ Ω1(adη). So, GD = {eiθu}, for u ∈ kerD. Consider again the elliptic complex

0 −→ Ω0(adη)
D−→ Ω1(adη)

P−D−→ Ω2
−(adη) −→ 0,

and observe that, since the complex is GD-equivariant, the group GD acts on the cohomology groups
H0, H1, H2 of this complex. The action on H0 is trivial since GD fixes D, and we will consider the
action on H1 and H2 later. We equate H1 and H2 with the respective spaces of harmonic forms.

The slices XD = {A ∈ Ω1(adη), D∗A = 0} give local charts near irreducible connections, while for
reducible connections we also have to consider the stabilizing circle GD. The action of an s ∈ GD on
A ∈ XD is given by g.A = g−1(D +A)g = g−1Ag since Dg = 0.

Theorem 4.4. Freed-Uhlenbeck. Let D be a reducible connection and D its gauge orbit. Then any
small neighborhood U of D is homeomorphic to XD/GD and smooth away from D.

Structure of the singular point

Locally the moduli space is the quotient by gauge orbits of the kernel of the map P restricted to a

14



metric, call it P−F , which maps A ∈ XD to P−(DA + A ∧ A). The same is true around singular
points. The linearization (i.e., differential) of P−F is the map P−D, which is Fredholm. So, P−F is a
nonlinear Fredholm map. To understand it, we have the following lemma (which is crucial to proving
the Smale-Sard theorem).

Lemma 4.7. Freed-Uhlenbeck. Suppose Ψ : X → Y is a nonlinear Fredholm map between Hilbert
spaces mapping 0 to 0. Then Ψ is locally (around the origin) equivalent to the sum of its differential
at the origin and a nonlinear map with finite dimensional range. That is, there is a splitting X =
ker dΨ0 ⊕X ′, Y = image dΨ0 ⊕ Y ′ (where ker Ψ0 and Y ′ are finite-dimensional since Ψ is Fredholm)
and a map φ : X → Y ′ such that there is an origin-preserving diffeomorphism identifying Ψ with
dΨ0 + φ. Furthermore, if a group G acts orthogonally on X and Y , and Ψ is G-equivariant, then X ′

and Y ′ are G-invariant and φ is G-equivariant as well.

We apply this to the map P−F : kerD∗ → Ω2(adη), where we split the domain and codomain as
P−F : kerP−D|kerD∗ ⊕ X ′ → imageP−D ⊕ (imageP−D)⊥. Note by elementary linear algebra that
(imageP−D)⊥ = ker(P−D)∗. The linearization at 0 of P−F is P−D|kerD∗ , and since GD acts by
rotation (and thus orthogonally), we have that the conditions of the lemma are satisfied. So, the
moduli space locally near a reducible D is of the form (P−D + φ)−1(0)/GD for some GD-equivariant
map φ : kerD∗ → ker(P−D)∗. Restricting to the kernel of P−D gives us the following result.

Corollary 4.8. Freed-Uhlenbeck. Near a reducible connection D, the moduli space is homeomorphic
to φ−1(0)/GD for some GD-equivariant local map φ : H1 → H2.

Since from P−F = P−D+φ (up to diffeomorphism) it follows that dφ0 = 0, and so in order to conclude
that the moduli space is a manifold, we need H2 = 0.

Proposition 4.9. Freed-Uhlenbeck. For a reducible connection D there are real isomorphisms H1 = Cq
and H2 = Cp ⊕ P−H

2
de Rham(M), under which S1/Z2 acts via the standard action (as S1) on the

complex vector spaces, and trivially on P−H
2
de Rham(M). If P−H

2
de Rham(M) = 0, then q = p+ 3.

Proof. First let us determine the fixed points of the S1(= S1/Z2) action on H1. Take A ∈ H1, and
a generator u of the one-dimensional kernel of D. Then taking a path γ(t) in the circle GD, we can
set it so that γ′(0) = u. Differentiating γ(t).A = γ(t)−1Aγ(t) gives us [A, u] = 0. From here it should
follow that A = θ ⊗ u for an ordinary 1-form θ. We should also be able to conclude that d∗θ = 0 and
that dθ is self-dual. Then we would have∫

M
|dθ|2 =

∫
M
dθ ∧ ∗dθ =

∫
M
dθ ∧ dθ =

∫
M
d(θ ∧ dθ) = 0.

Therefore dθ = 0, and so θ is harmonic, and since H1(M,R) = 0, we have θ = 0 and so A = 0. So,
the S1 action on H1 of the elliptic complex has no fixed points. Similarly, a fixed point in H2 has the
form α ⊗ u for some self-dual ordinary two form α. In our scenario, a lemma from Chapter 2 shows
that this space is trivial. In any case, all the fixed points of the S1 action of H2 lie in P−H

2(M,R).

Now, some general representation theory tells us that any representation of S1 on a vector space V
can be decomposed into VC ⊕ VR, where the action on the real part is trivial and the action on the
complex part is a sum of actions on C. Furthermore, the only irreducibile representation of a circle
which is free away from 0 is the standard rotation on C. Therefore, H1 = Cq ⊕ {fixed-points VR} and
H2 = Cp ⊕ {fixed-points VR}. By the previous discussion on fixed points, we conclude the statement
of the theorem. The fact that q = p + 3 follows h0 = 1 and the Euler characteristic of the elliptic
complex being -5 by Atiyah-Singer. �

Now we can discern what the moduli space looks like at reducible connections where H2 = 0 (and so
H1 = C3.
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Corollary 4.10. Freed-Uhlenbeck. If H2
D = 0, then near the origin φ−1(0)/GD is homeomorphic to a

cone on CP2 (and diffeomorphic off the vertex).

Now, in case H2 6= 0, we can apply the following result, where we do a slight perturbation of M to
make φ surjective.

Theorem 4.11. Freed-Uhlenbeck. There exists a perturbation of M so that locally around a self-dual
connection, M is homeomorphic (diffeomorphic away from the vertex) to a cone on CP2.

Chapter 5. Orientability.

Index bundles

Here we prove that the moduli space M is orientable, meaning, the manifold part M̂ is orientable.
(Here we are assuming we have put a nice metric on the base manifold M already. In this chapter ŜD
will refer to the self-dual connections with respect to this fixed nice metric.) Recall the total space

of irreducible connections modulo gauge equivalence, X̂ . We show that M̂ is orientable, i.e. TM̂ is
orientable, by producing an orientable bundle ξ over X̂ ⊃ M̂ extending TM̂.

This bundle ξ will be the equivariant index bundle of the elliptic complex (D∗, P−F ) considered
heavily in Chapters 3 and 4. We will prove that it is orientable by showing that its base X̂ is simply
connected. The bundle ξ will only be a virtual bundle, i.e. an element of the real K-theory of
compact submanifolds of X̂ . To determine orientability of a bundle it is enough to restrict attention
to compact subsets, and by doing so we have the following nice isomorphism for K-theory: Take any
infinite dimensional separable Hilbert space H. Consider the map

[X,Fredholm(H)]
ind−→ KO(X)

(where X is any compact manifold) defined by ind(ψ)x = kerψx − cokerψx, where the right hand side
is the fiber of a virtual bundle at a point. These fibers kerψ and cokerψ might not glue together well to
form two vector bundles whose difference will be our virtual bundle, but by perturbing ψ slightly (and
remaining in the same homotopy class), we indeed do obtain a well-defined virtual bundle ind(ψ).

For a virtual bundle E −E′, define its Stiefel-Whitney classes by wi(E)−wi(E′). We say the virtual
bundle is orientable if w1 is 0. This is equivalent to requiring that w1 of the ordinary vector bundle
E ⊕ E′⊥ is zero (the orthogonal bundle exists if we assume the base to be compact).

Now we construct this bundle over X̂ extending TM̂. Take a point D ∈ M̂. The tangent space of M̂
at this point is

ED = ker(D∗ ⊕ P−D) : Ω1(adη)→ Ω0(adη)⊕ Ω2
−(adη),

where D ∈ ŜD is any lift of D. Thus we can consider the vector bundle EŜD with fibers these kernels.

This is a 5-dimensional real bundle over ŜD, and the gauge group G acts as transition data, and this
action on the total space of the bundle covers the action of G on ŜD. So, we have TM̂ = EŜD/G. Now

we extend this construction to all of X̂ = Â/G. First, on the upstairs ambient space Â containing

ŜD, we define
L(D) = D∗ ⊕ P−D : Ω1(adη)→ Ω0(adη)⊕ Ω2

−(adη)

for any D ∈ Â. This operator L(D) is elliptic and therefore Fredholm. (Note that, if we go over to
Sobolev spaces of sections instead of smooth sections, the domain and codomain of L(D) are Hilbert
spaces.) We can thus consider the parametrized family of elliptic operators (where the parametrization
is over Â),

L : Â × Ω1(adη)→ Â × Ω0(adη)⊕ Ω2
−(adη).
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The gauge group acts on the Hilbert spaces involved via conjugation, and the operator L is equivariant
with respect to this action, so we have a well defined operator on the quotient,

L : (Â× Ω1(adη)/G → (Â× Ω0(adη)⊕ Ω2
−(adη))/G.

Note that (Â×Ω1(adη)/G fibers over X̂ = Â/G with fiber Ω1(adη), and (Â×Ω0(adη)⊕Ω2
−(adη))/G

fibers over X̂ with fiber Ω0(adη) ⊕ Ω2
−(adη). Since the Fredholm operator above each point of Â

in L was of index 5, the same is true for L. We thus define the virtual bundle ξ over X̂ given by
ξx = kerLx − cokerLx. At points x ∈ M̂, the cokernel is trivial and so this bundle is just the kernel
bundle considered above, hence an extension of TM̂.

Components of G

In order to show that X̂ is simply connected (which will imply that ξ and thus TM̂ is orientable, as
wanted), we consider the space of gauge transformations. We do this because of the existence of a
principal fibration G/Z2 → Â → X̂ giving by modding out the action of G/Z2 on Â, which will give
us a long exact sequence in homotopy relating π1(X̂ ) to π0(G/Z2). We consider G̃ = G/Z2 instead
of G, since G has an ineffective Z2 action on the connections, corresponding to elements {+1,−1}
which constitute the center of SU(2). These elements, thought of as trivial sections of the bundle
η ×SU(2) SU(2), act trivially on connections since s.A = s−1Ds+ s−1As = 0 +A since Ds = 0 (s is a
constant section) and the element corresponding to s in SU(2) is in the center, so its adjoint action on
su(2) is trivial. The action of fiber on total space should be effective to consider a principal fibration.
Compare Z acting ineffectively on Sn extending the effective Z2 action.

Let us make the preliminary observation that Â has trivial homotopy groups, since it is obtained from
the contractible space A by removing sets of infinite codimension (compare S∞ − {pt} = R∞ both
being contractible). So, from the long exact in homotopy for the fibration G̃ → Â → X̂ we conclude
π1(X̂ ) = π0(G̃).

To compute π0(G̃), we first consider π0(G). When we start considering gauge transformations in a
moment, we will think of them as sections of an SU(2) bundle over the base manifold M . Observe
that if we puncture M , what we obtain is homotopy equivalent to a 3-complex, and the classifying
map of an SU(2) bundle to BSU(2) is homotopically trivial, since BSU(2) is 3-connected. Therefore
the considered SU(2) bundle is obtained by patching together two trivializations: one over a small
neighborhood of the point we chose to puncture, and the other away from a smaller neighborhood of
this point. Call the neighborhood near the point M+, and the other M−. Suppose we chose them so
that M+ ∩M− = S3 × (0, 1). So, our principal SU(2) bundle η is obtained as η = M+ × SU(2) t
M− × SU(2) where (m+, g) ∼ (m−, g′) iff m+ = m− and g′ = h(m+)g. Since c2(η) = −1, the map h
on each slice of S3 along (0, 1) is a degree -1 map, so we can take it to be h(x, t) = x−1.

Suppose further that we chose M+ and M− so that M+ −M− is a 4-ball. We show that the space
of gauge transformations G has the same number of connected components as the space G0 of those

which are constantly +1 on this four-ball B4. Consider the inclusion G0
i
↪→ G. First we show the

inclusion is surjective on connected components. Take a g ∈ G, and show there is an element of G
that is constantly +1 on B4 homotopic to it. This element is easy to obtain, just move g along the
connected SU(2) fibers over to +1. Now we show the map is injective. Suppose two elements of the
gauge group which are +1 on B4 are homotopic via a path in G. We show that this path can be
deformed to one in G0. Indeed, at each fiber SU(2) above points in B4, this given path gives us a
loop based at +1. Since SU(2) is simply connected, we can contract these loops and obtain a path of
gauge transformations contained in G0.

The space G0 is easier to deal with. Note that any s ∈ G0 consists of two maps, s− and s+ from M−

and M+ respectively to SU(2), where on the overlap s−(x, t) = h(x, t).s+(x, t). The action here is
conjugation (since these are sections of Adη, not η), so we have s−(x, t) = x−1s+(x, t)x. Here t = 0
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corresponds to the boundary of B4, and t = 1 corresponds to the outer boundary of M+. For t = 0,
note s+(x, 0) = +1 by definition of G0, and so s−(x, 0) = +1. The map s− contains all the information
of s, in fact, since the only part of M outside of the domain of s− is B4 over which s is constantly
+1. Observe that we have s− ∈ [(M−, ∂M−), (SU(2),+1)] = [(M,pt), (S3, pt)] = [M,S3].

So, π0(G) = π0(G0) = [M,S3]. Observe that [M,S3] is at most Z2. Indeed, by crushing the complement
of a small disk in M (call this map σ), we obtain a factoring through S4 of any map M → S3. Since
π4(S3) = Z2, this tells us that [M,S3] is surjected onto by Z2. A result of Steenrod tells us that
[M,S3] = 0 if the intersection form ω(M) is odd, and Z2 if it is even (with the bijection to [S4, S3]
provided by σ∗).

The element −1

There is another, much simpler, fibration at play here, Z2 → G → G̃. The long exact sequence in
homotopy terminates with π0(Z2) → π0(G) → π0(G̃) → 0. If the intersection form ω(M) is odd,
then by Steenrod we have [M,S3] = 0, and as we saw, [M,S3] = π0(G0) = π0(G). So, we obtain
π1(X̂ ) = π0(G̃) = 0 in the case of odd intersection form, and we are done with our proof of orientability

of M̂. In the case of even intersection form, we have the exact sequence Z2
j∗→ Z2 → π0(G̃) → 0. To

show that π0(G̃) = 0 as desired, we have to show that j∗ is surjective. That is, the gauge transformation
−1 (when thought of as a section of the bundle Adη) is not homotopic to +1 in G0.

First we push −1 to an element of G0 in the following way. Choose a vector in su(2), apply the
exponential map, and obtain a circle subgroup S1 = {eiΛθ} in SU(2). Define γ(t) to be the path
from +1 to −1 in this circle. Push −1 to an element s ∈ G0 defined by s+ = +1 on B4, s+ = γ(t)
on S3 × (0, 1), s− = x−1γ(t)x on S3 × (0, 1), s− = −1 on M+ − M−. This element s is in the
same path component as −1 in G, as wanted. In π0(G0), the element s is represented by s−. We
show that this is obtained by pulling back a generator for [S4, S3] via a degree one collapsing map
M → S4. Indeed, define σ to be the map that crushes B4 to the north pole of S4, and everything
outside M+ to the south pole. Then s− factors as s− = uσ, where u : S4 → S3 is defined by
u(x, ϕ) = x−1eiϕΛx. Here we think of S4 as given by an S3-coordinate x and a polar angle ϕ (ϕ = 0
is the north pole, ϕ = π is the south pole). Then u factors as the inverse of the suspension of the
Hopf map S3 → S2 followed by a diffeomorphism of S3, hence it is a generator of π4(S3). Explicitly,
u factors as (x, ϕ) 7→ (hopf(x−1), ϕ) 7→ x−1eiϕΛx. Therefore s− = σ∗(u) is nontrivial, and so j∗ is

surjective, so π0(G̃) = π1(X̂ ) = 0, and thus M̂ is orientable.

Chapter 10. The technique of Fintushel and Stern.

Suppose we consider SO(3) bundles over a smooth four-manifold M as opposed to SU(2) bundles.
Principal SO(3) bundles over four-manifolds are classified by p1 and w2. Informally, this is true since
two SO(3) bundles E and F with coinciding p1 and w2 are such that w2(E − F ) = 0, and so E − F
lifts to an SU(2) bundle, classified by c2 which is some multiple of p1(E − F ) = 0, hence trivial. (A
formal proof is in Appendix E.)

Let us consider the moduli space of connections on an SO(3) bundle ξ over M . In order to obtain a
moduli space that isn’t already covered by the SU(2) case, we suppose w2(ξ) 6= 0. Recall the formula
for the dimension of the moduli space, given by p1(adη ⊗C)− dim(G)(1− b1 + b−2 ). Observe that for
SO(3) bundles, adη = η, so we have

p1(adη ⊗ C) = p1(η ⊗ C) = p1(η ⊕ η) = 2p1(η).

Here we used that η ⊗ C is real-isomorphic to η ⊕ η, and the fact that 2p(E ⊕ F ) = 2p(E)p(F ),
but since we are in H4 of a four-manifold there is no torsion, so we have p(E ⊕ E) = 2p(E). So,
assuming as in Donaldson’s theorem that our manifold has H1(M,Z) = 0 and ω(M) > 0, the formula
for the dimension of the moduli space becomes 2p1(ξ)[M ] − 3. Let us consider SO(3) bundles ξ
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with p1(ξ)[M ] = 2 then, so we have a particularly simple, one-dimensional moduli space of self-dual
connections modulo gauge equivalence.

This moduli space over a closed smooth four-manifold with vanishing first Betti number and positive
definite intersection form has the following properties analogous to those of the space considered in
Donaldson’s theorem. Namely:

Let ξ be an SO(3) bundle over such an M with p1(ξ)[M ] = 2. Then we have the following properties
of the moduli space of self-dual on ξ modulo gauge:

• Let m be half the number of solutions to ω(α, α) = 2 with α mod 2 = w2. Then for a generic
metric on M , there exist m “singular” points such that the moduli space with these points
removed is a smooth one dimensional manifold.

• For a generic metric on M , there are neighborhoods of the singular points that are homeomorphic
(diffeomorphic away from the points themselves) to an open real interval (which is a cone on a
point, i.e. C/S1).

• The moduli space is compact.

Observe that the description of the neighborhoods of singular points guarantees that these points are
not isolated.

Now we prove a special case of a result of Fintushel and Stern, addressing non-smoothability.

Fintushel and Stern’s theorem on non-smoothability; a special case. Let M be a closed oriented
topological four-manifold with ω(M) > 0 and H1(M,Z) = 0. If there exists an α ∈ H2(M,Z) such
that ω(α, α) = 2 and α 6= β + γ for any β, γ ∈ H2(M,Z) with ω(β, β) = ω(γ, γ) = 1, then M is not
smoothable.

Proof. We assume H1(M,Z) = 0 since then H2(M,Z) has no torsion, so statements like ω(x, x) = 0
will let us conclude that x itself is 0 (which we will need). Conclusions like that cannot be made in
the presence of torsion, since ω(x, x) = 0 for any torsion class in H2(M,Z).

Now, take an SO(2) = U(1) bundle over M , call it λ, with c1(λ) = α. Define ξ = λ ⊕ ε1
R. Note

that p1(ξ) = p1(λ ⊕ ε1) = p1(λ) = c1(λ)2 − 2c2(λ) = c1(λ)2 = α2, so p1(ξ)[M ] = ω(α, α) = 2. (Also
observe that ±α = w2 mod 2.) Now we are in the conditions of the bullet points above, if M was
smooth. In particular, the number of solutions to ω(x, x) = 2 with x mod 2 = w2(ξ) is divisible by
4, since half of the number of such solutions is equal to the number of boundary points of a smooth
one-manifold, which thus must be an even number itself. We will show that the assumed ±α are in
fact the only solutions under the given assumptions, so the number of solutions is not divisible by 4,
giving a contradiction with smoothability.

Take any other solution to the pair of equations ω(x, x) = 2 and x mod 2 = w2(ξ). Since there is no
torsion, it is of the form α+ 2β for some β. First of all, note that we have

2 = ω(α+ 2β, α+ 2β) = ω(α, α) + 4ω(α, β) + 4ω(β, β)

= 2 + 4(ω(α, β) + ω(β, β)),

from which we conclude that ω(α, β) = −ω(β, β). Now, note that

ω(α+ β, α+ β) = ω(α, α) + ω(β, β) + 2ω(α, β)

= 2 + ω(β, β)− 2ω(β, β)

= 2− ω(β, β),
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and since ω ≥ 0, we have ω(β, β) ≤ 2. Now we consider the three possible cases of ω(β, β).

• If ω(β, β) = 0, then β = 0 and the putative alternate solution is just α.

• If ω(β, β) = 1, then consider ω(α + β, α + β) = 2 + ω(β, β) + 2ω(α, β) = 2− ω(β, β) = 1. Now
note that −β satisfies ω(−β,−β) = 1, and we have a decomposition α = −β + (α + β) of the
type forbidden by hypothesis. So this case cannot happen.

• If ω(β, β) = 2, then ω(α + β, α + β) = 2 + 2 − 2 · 2 = 0, and so α + β = 0, thus the putative
alternate solution α+ 2β is just −α.

�

As an application, the topological manifold corresponding to the intersection form E8 ⊕ E8 is not
smoothable.
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