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Abstract. The space of orientation-compatible almost complex structures on S6 naturally contains

a copy of RP7. We show that the inclusion induces an isomorphism on fundamental groups and
rational homotopy groups. We also compute the homotopy fiber of the inclusion and the homotopy

groups of the space of almost complex structures in terms of the homotopy groups of S7. Our

approach lends itself to generalization to components of almost complex structures with c1 = 0 on
six–manifolds.

1. Introduction

In this note we consider the topology of the space of almost complex structures J (S6) on the six–
dimensional sphere S6. By an almost complex structure we will mean one which induces a fixed
orientation and which is orthogonal with respect to some fixed metric on S6; swapping the orientation,
varying the metric, or removing the metric compatibility condition altogether results in a homotopy
equivalent space via the appropriate natural map. For this reason we from now on take S6 to be the
unit sphere in the imaginary octonions endowed with the round metric and the standard orientation.

We will employ the useful description of J (S6) as the space of sections of the natural SO(6)/U(3) ∼=
CP3 bundle over S6 whose fibers are the complex structures on the given tangent vector space. Likely
one would be interested primarily in the smooth sections of this bundle, corresponding to smooth
almost complex structures; the inclusion of the space of smooth sections into the space of continuous
sections is a homotopy equivalence, so we will study the latter without loss of generality.

Let Jcn denote the canonical almost complex structure given on TpS
6 by octonion multiplication

Jcn
p (x) = px.

The group SO(7) acts naturally on the space of sections by

(A · J)p(v) = AJA−1p(A
−1v).

For our canonical almost complex structure Jcn we have that A · Jcn = Jcn means

A(pv) = (Ap)(Av),

and so the isotropy of this action is the group G2 of real algebra automorphisms of the octonions. We
thus obtain an inclusion

SO(7)/G2
∼= RP7 j

↪→ J (S6).

This subspace was previously studied by Battaglia [Ba90]. Her description of the space of complex
structures on R6 in terms of octonion multiplication is crucial to the present work (see Proposition
2.1).

The aim of this note is to show that the homotopy fiber of the inclusion RP7 j
↪→ J (S6) is a path

component of the sevenfold based loop space Ω7S7 of the seven–sphere. As the homotopy groups of
the latter space are torsion, we recover the result of the first named author [F18, §4] that J (S6) has
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the rational homotopy groups of S7 (or RP7), and see that the natural inclusion of RP7 induces an
isomorphism on rational homotopy groups and on fundamental groups. This also answers a question
communicated by Dennis Sullivan and stated in loc. cit., on whether this inclusion is a genuine (i.e.
integral) homotopy equivalence.

We then touch upon the general problem of the topology of the space of almost complex structures on
a closed six–manifold in the component of an almost complex structure with c1 = 0. This, along with
the case of c1 6= 0, will be studied more systematically in upcoming work.

Acknowledgements. We thank Luis Fernandez and Scott Wilson for useful comments; the third
author likewise thanks Claude LeBrun and Dennis Sullivan. The second author was partially supported
by FCT/Portugal through project UIDB/MAT/04459/2020.

2. Complex structures on R6

We use [CS] as a reference for the normed division algebra O of the octonions. This algebra is obtained
from the quaternions H by the Cayley–Dickson construction: given quaternions a, b, an octonion is a
pair of quaternions (a, b), written a+ Ib, with multiplication rule given by

(1) (a+ Ib)(c+ Id) = (ac− db) + I(cb+ ad)

We identify R6 with the orthogonal complement to C = 〈1, i〉,
R6 = 〈1, i〉⊥ ⊂ O.

A complex structure J on R6 is said to be compatible with the standard orientation if a complex basis
(u, v, w) for R6 gives rise to a real basis (u, Ju, v, Jv, w, Jw) with the standard orientation. Given a
unit octonion x, let Rx ∈ SO(8) denote right multiplication by the octonion x.

Proposition 2.1. Let J be an orthogonal complex structure on R6 compatible with the standard
orientation. The following equivalent statements hold:

(1) J is obtained by conjugating the standard complex structure (given by left multiplication by
i) by the map Rx for some unit octonion x, which is unique up to the action of S1 ⊂ 〈1, i〉 = C.
Namely, J is of the form

Jx(v) = (i(vx))x =: iRx(v).

(2) J has a complex line in common with i, i.e. there is a complex line L on R6 (with complex
structure given by i) such that J restricted to L is equal to (left multiplication by) i.

Proof. The formula above for Jx can be understood as follows using quaternion coordinates: let A
denote a quaternion subalgebra of O containing 1, i and x (which is unique unless x ∈ C). Fix a
standard basis 〈1, i, j, ij〉 for this algebra and write

x = cos θ + w sin θ

with w a unit vector in the 〈i, j, ij〉 plane. Let I ∈ O be a unit vector orthogonal to A and write an
element v ∈ R6 as

v = a+ Ib

with1 a, b ∈ A. Using (1) we see that

(i(vx))x = (i((a+ Ib)(cos θ + w sin θ)))(cos θ − w sin θ)

= (ia(cos θ + w sin θ) + I((−i)((cos θ + w sin θ)b)))(cos θ − w sin θ)

= ia+ I((cos θ − w sin θ)(−i)(cos θ + w sin θ)b)

= ia+ ((cos θ − w sin θ)i(cos θ + w sin θ))(Ib)

1We are interested in the case a = zj with z ∈ C but the computation holds for an arbitrary a ∈ A.
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This means that Jx acts as

• left multiplication by i on the quaternion subalgebra A,
• left multiplication by l on the orthogonal plane A⊥ where l is the unit quaternion obtained

from i by rotating the unit imaginary quaternions in A by an angle of 2θ around the axis w.

If x and y are unit octonions such that Jx = Jy then x and y must both be contained in the same
quaternion subalgebra A = 〈1, i, j, ij〉 ⊂ O. If we write x = z1 +z2j and y = w1 +w2j with zi, wi ∈ C,
the equality of Jx and Jy on A⊥ translates to

(z1 − z2j)i(z1 + z2j) = (w1 − w2j)i(w1 + w2j),

and one easily checks this amounts to the existence of eiθ such that y = eiθx.

We now prove the equivalence of statements (1) and (2). That (1) implies (2) is immediate from the
description of Jx in quaternion coordinates. Conversely, assume that J is an almost complex structure
agreeing with i on the complex line L ⊂ R6. Then A = C⊕ L is a quaternion subalgebra of O. Since
J is orthogonal and preserves orientation, its restriction to A⊥ must be given by left multiplication by
a unit imaginary element l ∈ A. Clearly there exists x = cos θ+w sin θ ∈ A such that xix = l and, for
such an x, we have J = Jx. We have already seen that x is unique up to left multiplication by a unit
complex number.

Statement (1) follows immediately from [Ba90, Proposition 3.5], but for completeness we sketch a proof
of (2). A complex structure J on R6 determines a subspace

CP2
J ⊂ Gr+

2 (R6)

consisting of J-complex lines inside Gr+
2 (R6) (the Grassmannian of oriented planes). Since the space of

complex structures compatible with the orientation is path connected, the fundamental class [CP2
J ] ∈

H4(Gr+
2 (R6)) is independent of J . The self intersection of CP2 in Gr+

2 (R6) is given by the Euler class
of the normal bundle, which one can check to be 1. It follows that, for any two complex structures
J, J ′, the subspaces CP2

J and CP2
J′ intersect, i.e. J and J ′ have a complex line in common. If J and

J ′ are orthogonal, this line is necessarily unique, and J and J ′ must agree on that line. �

Remark 2.2. The previous Proposition gives rise to the following geometric description of the space
J(R6) of orthogonal complex structures on the vector space R6 compatible with the standard orien-
tation: Let CP2 be the space of complex lines in R6 for the complex structure i. The tautological
line bundle T → CP2 gives rise to a bundle of quaternion algebras T ⊕ 〈1, i〉 → CP2. There is a map
from the unit sphere bundle S(T ⊕ C) → J(R6) sending x 7→ iRx , which descends to the quotient by
the natural action of S1 ⊂ C. This yields a surjective map φ : P (T ⊕ C) → J(R6) which collapses
the 0-section to the point i and is bijective away from the 0-section. The map φ expresses J(R6) as a

blow-down of CP3]CP3.

Alternatively, a complex structure other than i determines an element of CP2 (the line on which it
coincides with i). Identifying J(R6) with CP3, we obtain a map

CP3 \ {i} → CP2

with fiber the affine line CP1 \ ∗ of all possible orthogonal complex structures on the orthogonal R4

other than i itself. Considering the section given by assigning to L ∈ CP2 the complex structure given
by i on L and −i on L⊥, we may regard this fibration as the standard fibration of CP3 \ ∗ by linear
projection onto CP2 from a point at ∞ on a complementary line.

3. Almost complex structures on S6

Recall that S6 denotes the unit sphere in the imaginary octonions equipped with the round metric
and the standard orientation. Each p ∈ S6 determines (by left octonion multiplication) an orthogonal
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complex structure on R8 and on TpS
6 = 〈1, p〉⊥ ⊂ O. Since there is an automorphism of the octonions

taking i to p, it follows from Proposition 2.1 that an arbitrary orthogonal complex structure on TpS
6

can be written as pRx for some unit octonion x.

We have the following description of the twistor space Z(S6) ∼= SO(7)/U(3):

Proposition 3.1. Consider the S1-action on S6 × S7 defined by

eiθ · (p, x) = (p, (cos θ + p sin θ)x)

The map

(S6 × S7)/S1 ψ−→ Z(S6)

given by

[(p, x)] 7→ pRx

is a diffeomorphism.

Proof. The quaternion subalgebras containing p and x are the same as the quaternion subalgebras
containing p and (cos θ + p sin θ)x. The computation in the proof of Proposition 2.1 shows that

(p(v((cos θ + p sin θ)x)))((cos θ + p sin θ)x) = (p(vx))x

so that ψ is well defined. Again by Proposition 2.1, the map ψ is a fiberwise bijection and hence a
fiberwise homeomorphism. Clearly ψ is a smooth map. We leave it to the reader to check that ψ−1 is
also smooth. �

Remark 3.2. The twistor space of S6 is the space of orthogonal complex structures on the vector
space R8 ' O compatible with the standard orientation. Proposition 2.1 gives the following picture
for an element J of this space: there is a unique unit octonion p ∈ S6 with which J agrees on the
plane 〈1, p〉 (and then necessarily on some four-plane containing this) and J is then determined by a
six-dimensional complex structure on 〈1, p〉⊥.

Remark 3.3. Recall that it follows from the Cayley–Dickson construction that G2 acts transitively
on S6 and the isotropy group of i can be identified with SU(3). The fibration

SO(6)/U(3)→ SO(7)/U(3)→ S6

is associated to the principal fibration

(2) SU(3)→ G2 → S6

where SU(3) acts on CP3 = SO(6)/U(3) fixing a distinguished point (in the fiber over p this is the
tautological complex structure p). Indeed, we have a map

G2 × S7 Ψ−→ S6 × S7

given by

(φ, x) 7→ (φ(i), φ(x))

If λ ∈ SU(3), we have Ψ(φλ, x) = Ψ(φ, λ(x)) so Ψ descends to a diffeomorphism Ψ: G2 ×SU(3) S
7 →

S6 × S7. As Ψ conjugates the standard S1 action on the second coordinate of G2 × S7 to the action
of Proposition 3.1, we see that Ψ induces a diffeomorphism

G2 ×SU(3) CP3 → (S6 × S7)/S1.

Note that the clutching map for (2) is a generator of π5SU(3) (see for instance [G19]) which becomes
trivial in π5G2, so the bundle of normed division algebras associated to (2) is trivial. The map Ψ is
an explicit trivialization.
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Consider the map of fibrations over S6

S6 × S7 //

��

SO(7)/U(3)

��
S6 // S6

Taking sections and evaluating at i gives rise to a square diagram of fibrations

Map(S6, S7)
$ //

evi

��

J (S6)

evi
��

S7 // CP3

This can be completed to a 3× 3 diagram of fiber sequences

(3) Map∗(S
6, S1) //

��

Ω6S7 $′ //

��

J∗(S6)

��
Map(S6, S1)

ι //

evi

��

Map(S6, S7)
$ //

evi

��

J (S6)

evi
��

S1 // S7 // CP3

where J∗(S6) = {J ∈ J (S6) : J(i) = i}; notice that J∗(S6) ' Ω6CP3 ' Ω6S7. The fiber of $ is the
space of sections of a trivial S1-bundle over S6, and we have used the canonical trivialization

(p, eiθ) 7→ (p, cos θ + p sin θ) ∈ S6 × S7

to identify this space of sections with Map(S6, S1). By Map∗(S
6, S1) we denote the (contractible)

space of maps from S6 to S1 which send i to 1.

Lemma 3.4. The map ι in (3) induces multiplication by 2 on π1.

Proof. A generator of π1 Map(S6, S1) is given by

eiθ 7→ (p 7→ eiθ)

and its image in π1 Map(S6, S7) is given by

(4) eiθ 7→ (p 7→ (cos θ + p sin θ)) .

Note that ±p both get sent to the same circle in S7. Therefore, upon the natural identification
π1Ω6S7 = π0Ω7S7, the element in π1Ω6S7 corresponding to the loop (4) via the natural inclusion
Ω6S7 ↪→ Map(S6, S7) becomes the component of a map of degree 2 from S7 to S7. �

Remark 3.5. We can also compute π1J (S6), and hence obtain an alternative proof of the above
lemma, using the following result of Crabb and Sutherland [CrSu84, Proposition 2.7 and Theorem
2.12]:

Let X be an oriented closed connected 2n–manifold and ξ a complex rank n+1 bundle over X. Denote
by Nξ the space of sections of the projective bundle Pξ which lift to sections of ξ; this is a non-empty
connected space. Then π1(Nξ) is a central extension

0→ Z/cn(ξ)[X]→ π1(Nξ)→ H1(X;Z)→ 0.

We note that our CP3 bundle CP3 → SO(7)/U(3)→ S6 is the projectivization of the rank 4 complex

vector bundle of positive pure spinors /S
+

, see [LM, Proposition IV.9.8 and Remark IV.9.12]. Taking

ξ = /S
+

, since H2(S6;Z) = 0, every section of Pξ lifts to a section of ξ, i.e. Nξ = J (S6), and so by
the above result and knowledge of the cohomology of SO(7)/U(3) (see e.g. [P91, Proposition 3.2]) we
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conclude from the projective bundle formula that π1J (S6) = Z/c3(/S
+

)[S6] = Z/2. Lemma 3.4 follows

from here, i.e. the map Map(S6, S1)
ι−→ Map(S6, S7) in diagram 3 must induce Z 2−→ Z on fundamental

groups.

Corollary 3.6. The homotopy groups of the space J (S6) are given by

πkJ (S6) =

{
Z/2 if k = 1,

πk(S7)⊕ πk+6(S7) otherwise.

Proof. Since S7 is an H-space we have Map(S6, S7) ' S7 ×Map∗(S
6, S7) = S7 × Ω6S7. The result

follows from the long exact sequence in the middle row of (3) and Lemma 3.4. �

Since the map Map(S6, S7)
π−→ J (S6) in diagram (3) factors through Map(S6,RP7) (as −1 is in the

center of O), the constant sections of S6 × S7 π1−→ S6 give rise to an inclusion

(5) RP7 j
↪→ J (S6).

The image of this map is what Battaglia [Ba90] calls the space of linear almost complex structures
on S6 and, as we explain in Proposition 4.1 below, equals the subspace SO(7)/G2 mentioned in the
introduction.

Theorem 3.7. The inclusion j in (5) sits in a homotopy fiber sequence

Ω7
0S

7 → RP7 j−→ J (S6),

where Ω7
0S

7 denotes a path component of the sevenfold based loop space of S7.

Proof. Proposition 2.1 identifies the evaluation map RP7 evi−−→ CP3 with the Hopf fibration RP1 →
RP7 → CP3.

The map of fibrations

RP7 //

evi
��

J (S6)

evi
��

CP3 = // CP3

can be extended (see [N10, Section 3.2]) to a 3× 3 diagram of homotopy fiber sequences

(6) G //

��

RP1 //

��

J∗(S6)

��
F //

��

RP7 //

evi
��

J (S6)

evi
��

∗ // CP3 = // CP3

We will first prove that it suffices to show that RP1 → J∗(S6) sends a generator of π1RP1 to a
generator of π1J∗(S6) ∼= π1Ω6S7 ∼= Z. Indeed, if g : S1 → Ω6S7 generates π1 we may extend the
homotopy commutative square

S1 Ω6S7

S1 S1

g

=

=
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(where the right vertical arrow classifies the generator of H1(Ω6S7) = Z) to a 3×3 square of homotopy
fiber sequences. It is then clear that the space G in (6) is homotopy equivalent to Ω7

0S
7, from which

it follows that the same is true of F .

The image of a generator of π1(RP1) under the map RP1 → J∗(S6) is represented by the loop γ : [0, 1]→
J∗(S6) given by

t 7→ (p 7→ pRcosπt−i sinπt).

A lift γ̃ of this loop to Ω6S7 along the map $′ in (3) is given by the formula

t 7→ (p 7→ (cosπt− p sinπt)(cosπt+ i sinπt)).

The image of γ̃ under the canonical identifications π1Ω6S7 = π0Ω7S7 = [S7, S7] is the product of the
homotopy classes of the maps

cosπt+ p sinπt 7→ cosπt− p sinπt and cosπt+ p sinπt 7→ cosπt+ i sinπt

using the H-space structure on S7. The first map has degree 1, while the second one has degree 0.
This completes the proof. �

Corollary 3.8. The inclusion RP7 j
↪→ J (S6) is an isomorphism on fundamental groups and rational

homotopy groups.

4. Two RP7s mapping to J (S6)

We will now explain why the subspace j(RP7) ⊂ J (S6) in Theorem 3.7, coming from the constant
sections of the fibration S6 × S7 → S6 agrees with the orbit SO(7)/G2 of the natural SO(7)-action
on the canonical element of J (S6). This is also explained in [Ba90] but we include an argument for
completeness.

Recall from [CS, Section 8.2] that Spin(8) is the group of orthogonal isotopies of the octonions

Spin(8) = {(φ, ψ, λ) ∈ SO(8)3 : φ(x)ψ(y) = λ(xy) for all x, y ∈ O}.
Each coordinate in a triple (φ, ψ, λ) determines the other two up to a global sign [CS, Theorem 8.3].
The projections Spin(8)→ SO(8) onto the first two coordinates are the spin representations of Spin(8)
while the projection onto the third coordinate is the natural projection to SO(8).

Given λ ∈ SO(8), it is proved in [CS, Theorem 8.11] that there are unit octonions aλ, bλ ∈ S7 that are
unique up to sign, called companions of λ, such that the elements (φ, ψ, λ) ∈ Spin(8) satisfy

φ(x) = λ(x)aλ, ψ(y) = bλλ(y) for all x, y ∈ O.

Note that the classes of the companions in RP7 can be regarded as the “difference” between the SO(8)
and the spin representations of Spin(8) and therefore vary smoothly with λ.

Let SO(7) = {λ ∈ SO(8) : λ(1) = 1}. Then for (φ, ψ, λ) ∈ Spin(8) with λ ∈ SO(7) we have φ(x)ψ(x) =
1 for all x ∈ O, and hence

ψ(x) = φ(x), bλ = aλ.

Proposition 4.1. Let Jcn denote the canonical almost complex structure from the introduction, and
let j denote the inclusion in (5). Then SO(7) · Jcn = j(RP7).

Proof. Given λ ∈ SO(7), p ∈ S6, v ∈ O and writing aλ for a companion of λ, we have

λ(λ−1(p)λ−1(v)) = (λ(λ−1(p))aλ)(aλλ(λ−1(v)))

= (paλ)(aλv)

= (paλ)(aλ(vaλ)aλ)

= (p(vaλ))aλ
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where the last two equalities follow from the Moufang laws [CS, Section 7.4].

Hence λ · Jcn = j([aλ]) and we have SO(7) · Jcn ⊂ j(RP7). The subgroup {(φ, ψ, λ) ∈ Spin(8) : λ ∈
SO(7)} is Spin(7) and the projection

(φ, ψ, λ) 7→ φ

is the restriction of a spin representation of Spin(8) to Spin(7). This is the spin representation of
Spin(7). Evaluating at 1 we see that

φ(1) = ±aλ.

Since the spin representation of Spin(7) acts transitively on S7 the proof is complete. �

We have been considering the inclusion SO(7)/G2
∼= RP7 ↪→ J (S6). We can also consider the map

RP7 → J (S6) given by the composite

(7) S7/Z2 = RP7 c−→ SO(7)→ SO(7)/G2 ↪→ J (S6)

where the map c takes (the equivalence class of) a unit octonion to its action on the imaginary octonions
by conjugation.

Proposition 4.2. The composite RP7 c−→ SO(7) → SO(7)/G2 is a degree three self-map of RP7.
Hence the composite RP7 ↪→ J (S6) in (7) also induces an isomorphism on fundamental groups and
on rational homotopy groups.

Proof. Given a unit octonion x and p ∈ S6, let A be a quaternion algebra containing p, x with standard
basis 〈1, p, j, pj〉 and decompose R8 ∼= O as A⊕IA. We will compute the action of c(x) on the canonical
complex structure Jcn in these coordinates.

(c(x) · Jcn)p(v) = x((xpx)(xvx))x

If v ∈ A, then associativity implies that (c(x) · Jcn)p(v) = pv. Suppose now that v = Iw with w ∈ A.
Then, using (1) we obtain

(c(x) · Jcn)p(v) = x((xpx)(x(Iw)x))x

= x((xpx)((I(xw))x))x

= x((xpx)(I(x2w)))x

= x(I((x px)(x2w)))x

= x(I(x px3w))x

= I((x3px3)w).

We conclude that, with the notation of Proposition 2.1, we have

(c(x) · Jcn)p = pRx3 .

Thus the image of the map (7) equals j(RP7) for the inclusion j in (5), but (7) is generically a 3-to-1
map. Given unit octonions x, y, the elements [x], [y] ∈ RP7 have the same image under (7) if and only
if x6 = y6. �

5. The space of almost complex structures with c1 = 0 on a six manifold

We now consider the more general setting of the space of almost complex structures on a six–manifold
homotopic to a given J with c1(J) = 0. As before, all almost complex structures will be assumed to
be orthogonal with respect to some fixed background metric and compatible with a fixed orientation.
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Proposition 5.1. Let M be a six–manifold with an almost complex structure J so that c1(J) = 0.
Let f : M → BSU(3) be a lift2 of the classifying map of TM determined by J . Let J (M) denote the
path component of J in the space of almost complex structures on M and

S7 → E
q−→M

be the S7-bundle on M classified by the composite

M
f−→ BSU(3)→ BG2

(where we consider the standard action of G2 on the unit octonions). Then there is a fiber sequence

Map(M,S1)→ Γ(q)→ J (M).

Proof. The map M → BG2 gives TM ⊕ R2 the structure of a bundle of normed division algebras on
M . Writing 1, i for the sections corresponding to the last two coordinates, we have that 1 is the unit
on each fiber while i acts as multiplication by J on TM .

Proposition 2.1 then expresses the bundle of orthogonal almost complex structures on M (compatible
with the orientation) as the quotient of E by the S1 action given by fiberwise multiplication by
cos θ + i sin θ. The statement follows. �

Remark 5.2. Note that Γ(q) is an H-space. If M is simply connected then Map(M,S1) ' S1 and
so Proposition 5.1 shows that each component of the space of almost complex structures on M with
c1 = 0 is homotopy equivalent to the quotient of an H-space by an S1-action. The space Γ(q) is the
space of sections of the sphere bundle of TM⊕R2, and is therefore independent of the choice of almost
complex structure. On the other hand, its H-space structure (and the corresponding S1-action) will
depend on the path component of the almost complex structure.

If in addition c2(J) = 0, then the bundle q in Proposition 5.1 is trivial as the next lemma shows. In
that case we have in the previous statement Γ(q) = Map(M,S7).

Lemma 5.3. Let X be a six–dimensional cell complex. The composite

X
f−→ BSU(3)→ BG2

is null if and only if c2(f) = 0.

Proof. Recall that we have a fiber sequence S6 → BSU(3)→ BG2 (cf. (2)). Consider the diagram

S6 K(Z, 6) P6BSU(3)

BSU(3) K(Z, 4)
c2

p6

where the map P6BSU(3)→ K(Z, 4) is the bottom of the Postnikov tower of BSU(3), with homotopy
fiber K(Z, 6). If c2 = 0 then the map p6 ◦ f factors through K(Z, 6) and hence through S6. Since a
map from a six complex into P6BSU(3) which lifts to BSU(3) does so uniquely, we see that f lifts to
S6. Conversely, if f factors through the homotopy fiber S6 of BSU(3)→ BG2, then clearly c2 = 0. �

Example 5.4. As an illustration we can compute the homotopy groups of J (Xg), where Xg denotes
the connected sum of g copies of S3 × S3, in terms of the homotopy groups of S7. Note that the
space of orientation-compatible almost complex structures on Xg is non-empty and connected, and

2Note that this lift is unique up to homotopy through sections, as the homotopy fiber S1 → BSU(3) of the map

BSU(3) → BU(3) is null.
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since c1 = c2 = 0, by Lemma 5.3 the tangent bundle map Xg → BU(3) factors through S6. Since
χ(Xg) = 2− 2g, this implies the map Xg → S6 is of degree 1− g. We thus have the pullback diagram

(8)

Z(Xg) SO(8)/U(4)

Xg S61−g

where Z(Xg)→ Xg denotes the twistor space of Xg, and a corresponding map of fiber sequences

(9)

Map(S6, S1) Map(S6, S7) J (S6)

Map(Xg, S
1) Map(Xg, S

7) J (Xg)

(1−g)∗ (1−g)∗ (1−g)∗

For a closed oriented 6-manifold W , we have π1 Map(W,S7) ∼= π1 Map∗(W,S
7) ∼= π0 Map∗(ΣW,S

7) ∼=
Z, with the last isomorphism sending f ∈ [ΣW,S7]∗ to its degree n, i.e. the unique integer n such that
f∗(Σ[W ]) = n[S7] ∈ H7(S7). It follows that the map (1 − g)∗ in the middle column of (9) induces
multiplication by (1− g) on fundamental groups. Lemma 3.4 together with the long exact sequence of
the bottom row of (9) then implies that

π1J (Xg) = Z/(2− 2g).

There is a cofiber sequence

S5 w−→ ∨2g
i=1S

3 → Xg

where the attaching map w of the top cell is a sum of Whitehead products of inclusions of S3 in the
wedge

w = [ι1, ι2] + . . .+ [ι2g−1, ι2g]

As Σw is null (see for instance [Wh, Theorem X.8.20]), we have

ΣXg '
(
∨2g
j=1S

4
)
∨ S7.

As S7 is an H-space, Map(Xg, S
7) ' S7 ×Map∗(Xg, S

7) and hence for all i ≥ 1 we have

πi Map(Xg, S
7) ∼= πi(S

7)⊕ πi−1 Map∗(ΣXg, S
7) ∼= πi(S

7)⊕
2g⊕
j=1

πi+3S
7 ⊕ πi+6S

7.

The homotopy long exact sequence of the bottom row of (9) then gives us

π2J (Xg) =

{
Z⊕ Z/2 if g = 1,

Z/2 otherwise,

while the remaining higher homotopy groups agree with those of Map(Xg, S
7).
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