
Rational homotopy type of low-dimensional homogeneous spaces

SO(2n)/U(n)

When considering the problem of �nding an almost-complex structure on a real
2n�manifold M , we can consider the obstructions to lifting the classifying map M →
BSO(2n) of the tangent bundle to a map to BU(n) (through the map BU(n) →
BSO(2n) induced by inclusion U(n) ↪→ SO(2n). The homotopy �ber of the map
BU(n) → BSO(2n) is the homogeneous space SO(2n)/U(n), so our obstructions
lie in H∗(M,π∗−1(SO(2n)/U(n)). For ease of reference when considering almost-
complex structures in dimensions up to twelve, we compute the rational minimal
models of these spaces. Of course, these do not tell us the full information about the
homotopy �bers, but they do lend some guidance.
Our procedure for �nding the minimal model of SO(2n)/U(n) will be to consider

the map

Model(BSO(2n))→ Model(BU(n))

on minimal models induced by the map BU(n) → BSO(2n). These classifying
spaces are formal, and their cohomology rings are free, so their minimal models are
isomorphic to their cohomology (as algebras over our ground �eld). The map we
are considering between the classifying spaces is formal as well, so the induced map
between models is given by the map on cohomology. As SO(2n)/U(n) is the �ber of
the map BU(n)→ BSO(2n), a model of SO(2n)/U(n) will be obtained as the co�ber
of the map Model(BSO(2n)) → Model(BU(n)). Explicitly, we build a di�erential
graded algebra E containing Model(BSO(2n)) along with a quasi-isomorphism to
Model(BU(n)) such that the diagram

E

Model(BSO(2n)) Model(BU(n))

∼

commutes. The model of SO(2n)/U(n) will be E modulo the ideal generated by
positive degree elements in Model(BSO(2n)), with the induced di�erential.
Recall that H∗(BU(n),Q) = Q[c1, . . . , cn], the polynomial algebra in the universal

Chern classes, while H∗(BSO(2n),Q) = Q[p1, . . . , pn−1, e], where e is the universal
degree 2n Euler class, whose square is the top Pontryagin class pn.

• SO(4)/U(2). The map on cohomologyH∗(BSO(4))→ H∗(BU(2)), i.e. Q[p1, e]→
Q[c1, c2] is given by the universal relations p1 7→ c2

1 − 2c2 and e 7→ c2. To build the
larger di�erential graded algebra E, we put in the variables p1 and e, as necessary, and
introduce a variable c̄1 which we will map to c1. So, for now we have E = Λ(p1, e, c̄1)
with trivial di�erential. Our map from E to H∗(BU(2)) is given by p1 7→ c2

1 − 2c2,
e 7→ c2, and c̄1 7→ c1. Note that this is not a quasi-isomorphism, since c̄1

2 − p1 + 2e
represents a non-trivial class in cohomology in E, while it gets mapped to the zero
class in H∗(BU(2)). For this reason, we introduce into E a new variable η3 (of degree
3) and set dη = p1− c̄1

2−2e. Further, we map η to zero in Model(BU(2)). This map
now induces an isomorphism on cohomology, and we are ready to take the co�ber.
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The model of SO(4)/U(2) is given by

Λ(p1, e, c̄1, η, dp1 = de = dc̄1 = 0, dη = c̄1
2 − p1 + 2e)

ideal(p1, e)
= Λ(c̄1, η3, dc̄1 = 0, dη = c̄1

2),

which is the minimal model of S2. Therefore SO(4)/U(2) ∼=Q S
2. (In fact, there is a

di�eomorphism to the two-sphere.)

• SO(6)/U(3) The map on cohomology H∗(BSO(6))→ H∗(BU(3)), i.e.

Q[p1, p2, e]→ Q[c1, c2, c3]

is given by p1 7→ c2
1−2c2, p2 7→ c2

2−2c1c3, e 7→ c3. Build E by putting in p1, p2, e, along
with a c̄1 to map to c1. Note that now c̄1

2 − p1 in E is mapped to c2 in H∗(BU(3)).
(The variables coming from H∗(BSO(6)) have to get mapped to what their images
under the map H∗(BSO(6)) → H∗(BU(3)) for the diagram to commute.) Now
observe that we have a non-trivial cohomology class (c̄1

2 − p1)2 − p2 − 2c̄1e mapping
to zero in H∗(BU(3)). We thus introduce a variable η7 into E such that dη =
(c̄1

2 − p1)2 − p2 − 2c̄1e, and map η to zero in H∗(BU(3)). This map is now induces
an isomorphism on cohomology, and we have that a model of SO(6)/U(3) is

Λ(p1, p2, e, c̄1, η7, dη = (c̄1
2 − p1)2 − p2 − 2c̄1e)

ideal(p1, p2, e)
= Λ(c̄1, η7, dη = c̄1

4),

which is the minimal model of CP3. So, SO(6)/U(3) ∼=Q CP3. These two manifolds
are in fact di�eomorphic.

• SO(8)/U(4). The map on cohomology H∗(BSO(8))→ H∗(BU(4)), i.e.

Q[p1, p2, p3, e]→ Q[c1, c2, c3, c4]

is given by

p1 7→ c2
1 − 2c2,

p2 7→ c2
2 + 2c4 − 2c1c3,

p3 7→ c2
3 − 2c2c4,

e 7→ c4.

Build E by placing p1, p2, p3, e in it and introducing a c̄1 and a c̄3 to map c1 and c3

respectively. Note that 1
2
c̄1

2−p1 maps to zero, and so we have non-trivial cohomology
classes in E given by 1

4
(c̄1 − p1)2 + 2e− 2c̄1c̄3 − p2 and c̄3

2 − 1
4
(c̄1

2 − p1)e that should
not be there. So, we introduce variables η7 and η11 to kill these classes, and map
them to zero. Now our map is a quasi-isomorphism, and we have that a model of
SO(8)/U(4) is given by

Λ(p1,p2,p3,e,c̄1,c̄3,η7,η11, dη7=
1
4

(c̄1−p1)2+2e−2c̄1c̄3−p2,dη11=c̄3
2−

1
4

(c̄1
2−p1)e)

ideal(p1,p2,p3,e)

= Λ(c̄1, c̄3, η7, η11, dη7 = 1
4
c̄1

4 − 2c̄1c̄3, dη11 = c̄3
2).

• SO(10)/U(5). We have the map H∗(BSO(10))→ H∗(BU(5)), i.e.

Q[p1, p2, p3, p4, e]→ Q[c1, c2, c3, c4, c5]
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given by

p1 7→ c2
1 − 2c2,

p2 7→ c2
2 + 2c4 − 2c1c3,

p3 7→ c2
3 − 2c2c4 + 2c1c5,

p4 7→ c2
4 − 2c3c5,

e 7→ c5.

We place p1, p2, p3, p4, e in E, map them accordingly to H∗(BU(5)), and introduce
c̄1 and c̄3 to map to c1 and c3 respectively. We see that 1

2
(c̄1

2 − p1) is mapped to c2,
and that p2 − 1

4
(c̄1

2 − p1)2 + 2c̄1c̄3 is mapped to c4, and so we introduce generators
η11 and η15 to set

dη11 = c̄3
2 − (c̄1

2 − p1)(p2 − 1
4
(c̄1

2 − p1)2 + 2c̄1c̄3) + 2c̄1e− p3,

dη15 = (p2 − 1
4
(c̄1

2 − p1)2 + 2c̄1c̄3)2 − 2c̄3e− p4.

From here, as usual, we see that the minimal model of SO(10)/U(5) is given by

Λ(c̄1, c̄3, η11, η15, dη11 = c̄3
2 + 1

4
c̄1

6 − 2c̄1
3c̄3, dη15 = (2c̄1c̄3 − 1

4
c̄1

4)2.

• SO(12)/U(6). We have the map H∗(BSO(12))→ H∗(BU(6)), i.e.

Q[p1, p2, p3, p4, p5, e]→ Q[c1, c2, c3, c4, c5, c6]

given by

p1 7→ c2
1 − 2c2,

p2 7→ c2
2 + 2c4 − 2c1c3,

p3 7→ c2
3 + 2c1c5 − 2c2c4 − 2c6,

p4 7→ c2
4 + 2c2c6 − 2c3c5,

p5 7→ c2
5 − 2c4c6,

e 7→ c6.

We build E by introducing variables c̄1, c̄3, c̄5 (mapping to c1, c2, c3) alongside
p1, . . . , p5, e. We see that 1

2
(c̄1

2−p1) maps to c2 and that and that p2− 1
4
(c̄1

2−p1)2 +
2c̄1c̄3 is mapped to c4, so we introduce generators η11, η15, η19 such that

dη11 = c̄3
2 + 2c̄1c̄5 − (c̄1

2 − p1)(p2 − 1
4
(c̄1

2 − p1)2 + 2c̄1c̄3)− 2e− p3,

dη15 = (c̄1
2 − p1)e− 2c̄3c̄5 + (p2 − 1

4
(c̄1

2 − p1)2 + 2c̄1c̄3)2 − p4,

dη19 = c̄5
2 − 2(p2 − 1

4
(c̄1

2 − p1)2 + 2c̄1c̄3)e− p5,

whence we obtain that the minimal model of SO(12)/U(6) is

Λ(c̄1, c̄3, c̄5, η11, η15, η19, dη11=c̄32+2c̄1c̄5+
1
4
c̄16−2c̄13c̄3, dη15=

1
16
c̄18+4c̄12c̄32−2c̄3c̄5, dη19=c̄52).
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•We can observe that the �rst 2n−2 rational homotopy groups (starting with π1)
of these homogeneous spaces have been computed to be

π∗(SO(4)/U(2))0,Q,
π∗(SO(6)/U(3)) = 0,Q, 0, 0,
π∗(SO(8)/U(4)) = 0,Q, 0, 0, 0,Q,
π∗(SO(10)/U(5)) = 0,Q, 0, 0, 0,Q, 0, 0,
π∗(SO(12)/U(6)) = 0,Q, 0, 0, 0,Q, 0, 0, 0,Q,

consistent with the result of Bott that the limiting space SO/U has the homotopy
type of a connected component of ΩSO, which has integral homotopy groups

π∗ΩSO = 0,Z, 0, 0, 0,Z,Z2,Z2, 0,Z, 0, 0, 0,Z,Z2,Z2, 0,Z, 0, 0, 0,Z, . . . .
For k ≤ 2n − 2, the homotopy groups πk(SO(2n)/U(n)) are those of the limiting
space πk(SO/U).
We can further observe that in the unstable range 2k ≥ 2n− 1, we have

π2k(SO(2n)/U(n))⊗Q = 0,

i.e. the even homotopy groups of SO(2n)/U(n) in the unstable range are all torsion.


