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Abstract. We go over the basic tools necessary to work with the Frölicher spectral
sequence, and do some example computations with complex nilmanifolds and a
hypothetical complex structure on the six-sphere. This is for the most part a
survey of some of the results in [1], [2], [3], [4], [ 5].

1. Complex Nilmanifolds

Suppose we have a real 2n–dimensional nilpotent Lie group G with an integrable
complex structure. We can choose a basis of the space of real one-forms that has the
form {ω1, ω2, . . . , ωn, ω̄1, ω̄2, . . . , ω̄n}. To be complex means we have

dωi =
∑
j,k

αi
j,kωjωk +

∑
j,k

βi
j,kωjω̄k

for some real coefficients α and β and to be nilpotent means the above basis can in
fact be chosen so that

dωi =
∑

j<i,k<i

αi
j,kωjωk +

∑
j<i,k<i

βi
j,kωjω̄k.

The differential on the conjugate basis elements is determined by

dω̄ = ∂ω̄ + ∂̄ω̄ = ∂̄ω + ∂ω,

where ∂ω is the first term in the above formula, and ∂̄ω is the second.
If we can choose a basis of one-forms so that the coefficients α and β are rational,

then a result of Malcev tells us we can find a cocompact discrete subgroup Γ of our Lie
group G such that G/Γ is a closed 2n–manifold, called a nilmanifold. If the complex
structure we have on G is left-invariant, then it descends to this nilmanifold, and so
we obtain a complex n-fold which we call a complex nilmanifold.

The real minimal model (in the sense of rational homotopy theory) of a nilmanifold
is particularly simple to compute. Namely, the model of a nilmanifold obtained as a
quotient of a Lie group with the above form is the free graded commutative algebra
generated in degree one by elements corresponding to the basis one-forms chosen
above, with the same differential. The differential is, in turn, obtained by dualizing
the Lie bracket on vector fields on the Lie group.

Example 1.1. The Lie algebra to SU(2) has basis vectors X, Y, Z with [X, Y ] =
Z, [X,Z] = −Y, [Y, Z] = X, and so the differential on the dual one-forms is given by
dx = yz, dy = −xz, dz = xy. The real minimal model of SU(2) is not the exterior
algebra on x, y, z with this differential, though, since such an algebra is not minimal.
In fact, since SU(2) is diffeomorphic to S3, the minimal model of SU(2) is given by
the exterior algebra on a single generator of degree 3, with trivial differential.
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Example 1.2. A nilmanifold M of dimension three can be obtained by taking the
real Heisenberg group of matrices of the form

A =

1 x z
0 1 y
0 0 1


and quotienting by the cocompact discrete subgroup of such matrices with integer co-
efficients. The Lie algebra of the Heisenberg group can be read off as the components
of

A−1dA =

1 −x xy − z
0 1 −y
0 0 1

1 dx dz
0 1 dy
0 0 1

 =

0 dx dz − xdy
0 0 dy
0 0 0

 .

So, a basis of left-invariant one-forms is given by dx, dy, dz − xdy. Denoting them
by α, β, γ, we have dα = 0, dβ = 0, dγ = −αβ. These forms descend to the quotient
nilmanifold, which thus has minimal model given by

Λ(α, β, γ, dα = 0, dβ = 0, dγ = −αβ).

Example 1.3. We can think of the 3–manifold in the previous example as obtained
by a circle bundle over a torus, where this base torus has minimal model Λ(α, β)
with trivial differential. This circle bundle is the one obtained by the classifying map
T 2 → BS1 = CP∞ corresponding to −1 ∈ Z = H2(T 2,Z) = [T 2,CP∞], so we have
dγ = −αβ, where γ is a volume form for the circle we are fibering in. Crossing
this 3–manifold with a circle, i.e. trivially fibering in another circle, we obtain a
4–manifold with minimal model Λ(α, β, γ, ξ, dα = 0, dβ = 0, dγ = −αβ, dξ = 0)
called the Kodaira-Thurston manifold, famous for being one of the first examples of
a symplectic non-Kähler manifold.

Example 1.4. We have the following complex nilmanifold analogue of the nilmani-
fold considered in Example 2. Consider the complex matrices of the form1 z1 z3

0 1 z2

0 0 1

 .

The same computation as in Example 2 gives us that dz1, dz2, dz3 − z1dz2 are a
complex basis for the left-invariant one-forms. Denoting again x = dz1, y = dz2, z =
dz3−z1dz2, we have that the underlying six-dimensional Lie group has x, y, z, x̄, ȳ, z̄ as
a real basis for the left-invariant one-forms. Quotienting by any cocompact discrete
subgroup, for example the subgroup of matrices with integer entries, yields a six-
dimensional nilmanifold with minimal model

Λ(x, x̄, y, ȳ, z, z̄, dx = 0, dy = 0, dz = −xy).

This manifold is known as the Iwasawa manifold.

2. The Frölicher spectral sequence

The zeroth page of the Frölicher spectral sequence is simply a 2–dimensional grid
in the first quadrant, with the (p, q)-forms in the (p, q)-th slot. The differential on
this page is ∂̄, and points one slot vertically.

We go to the E1 page by taking cohomology on the E0 page. That is, the (p, q)-slot
on the E1 page, denoted Ep,q

1 , consists of ∂̄-cohomology classes of degree (p, q). The
differential on the E1 page is the map induced by ∂ on ∂̄-cohomology, and points one
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Figure 1. The E0 page with its differential d0 = ∂̄.
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Figure 2. The E1 page with its differential d1 = ∂.

slot to the right. The map ∂ indeed descends to ∂̄-cohomology, since ∂̄-exact forms
get mapped to ∂̄-exact forms. Namely, ∂(∂̄α) = ∂̄(−∂α), since d2 = (∂+ ∂̄)2 = 0 and
so ∂∂̄ + ∂̄∂ = 0.

By taking cohomology on the E1 page with respect to this ∂ differential, we obtain
the E2 page. On the E2 page, the differential d2 points two slots right and one slot
down. To get to the E3 page, we take cohomology with respect to the d2 differential.
On E3, the differential d3 points three slots right, and two slots down, and so on. The
differentials on the second page and later do not have as nice descriptions as on the
zeroth and first pages, but we can still describe them. First let us record when a given
(p, q)-form even defines an element on the Er page, for varying r. Note that a (p, q)
form on the E0 page defines an element on the E1 page if it defines a ∂̄-cohomology
class, i.e. if it is ∂̄-closed. This element on the first page then defines an element on
E2 if it is ∂-closed. Further, it defines an element on E3 if it is d2-closed, and so on.
We say a (p, q) form lives to page r if it gives a well-defined element on Er (i.e. if it is
∂̄-closed, and then that induced class is ∂-closed, and that induced class is d2-closed,
. . ., and that induced class is dr−1-closed).

Note that all the slots outside of this first quadrant on each page is 0. So, if an
arrow points to or from a slot where no (p, q)-forms could live to, it is a zero arrow.
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Figure 3. The E2 page with its differential d2.

Proposition 2.1. A ∂̄-closed (p, q)-form α1 defines an element on Er if there exists
a chain of forms α2, . . . , αr such that ∂α1 = −∂̄α2, ∂α2 = −∂̄α3, . . ., ∂αr−1 = ∂̄αr.
(Here the forms αi are required to be homogeneous of the appropriate degrees).

If α1 defines an element on Er, then this element is zero if we can find a chain
of elements α0, α2, . . . , αr (again, homogeneous of the appropriate degrees) such that
∂̄α0 + ∂α2 = α1, ∂̄α2 = −∂α3, ∂̄α3 = −∂α4, . . ., ∂̄αr−1 = −∂αr, and ∂̄αr = 0.

The Frölicher spectral sequence for any complex n-fold eventually stabilizes. Namely,
when the arrows start to point n+ 1 slots or more to the right, then they are all zero
arrows, and taking cohomology does nothing to the slots. We denote this stable page
by E∞. This spectral sequence converges to the (complexified) de Rham cohomology,
here meaning

Ωk
dR(X)⊗ C =

⊕
p+q=k

Ep,q
∞ .

We say the spectral sequence degenerates at page r if Er is the earliest page on which
all the arrows are zero.

Remark 2.2. On a closed Kähler manifold, we have the ∂∂̄-lemma, which says that
a form α which is ∂-closed, ∂̄-closed, and ∂- or ∂̄-exact, is of the form α = ∂∂̄β for
some β. This implies that the differential d1 on E1 of the Frölicher spectral sequence
associated to a Kähler manifold is trivial. Namely, for a ∂̄-closed form α, we have
d1([α]∂̄) = [∂α]∂̄. (Here [−]∂̄ denotes a form’s ∂̄-cohomology class.) Now, ∂α is
closed under both ∂ and ∂̄, and is ∂̄-exact. Therefore, ∂α = ∂∂̄β = −∂̄∂β, and so
[∂α]∂̄ = [∂̄(−∂β)]∂̄ = 0. So, the spectral sequence degenerates on the first page.

3. Nilmanifold computations

We compute some terms of the Frölicher spectral sequence for some complex nil-
manifolds X. Let us adopt the notation hp,qr = dimCE

p,q
r . Note that hp,q1 are the

usual Hodge numbers hp,q = dimCH
p,q

∂̄
(X).

We note that at each slot (p, q), the vector space Ep,q
r+1 can be considered as a

subspace of Ep,q
r . All forms that live to Ep,q

r+1 must also live to Ep,q
r , and if they are

to be non-zero on Er+1, they must be non-zero on Er. In particular, as r increases,
the numbers hp,qr decrease.
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Example 3.1. Let us show that the Iwasawa manifold from Example 1.4 is not
Kähler by showing that its spectral sequence does not degenerate at the first page.
For this, it suffices to find a slot (p, q) such that Ep,q

1 6∼= Ep,q
2 . Recall the minimal

model
Λ(x, x̄, y, ȳ, z, z̄, dx = 0, dy = 0, dz = −xy).

Consider the (2, 0)-form xy. It is ∂̄-closed, and for degree reasons it cannot be ∂̄-
exact, so it defines a non-zero element in E2,0

1 . Since ∂(xy) = 0, this form lives to
E2. It defines the zero class in E2,0

2 , though, since ∂z = xy, and ∂̄z = 0. Keeping in
mind the above remark, we conclude that E2,0

2 is a proper subspace of E2,0
1 , and so

the spectral sequence does not degenerate on the first page.
In general, the Frölicher spectral sequence of a complex-parallelizable nilmanifold

degenerates at latest on the E2 page. (A complex manifoldX is complex-parallelizable
if the holomorphic tangent bundle T 1,0X is trivial. In the case of nilmanifolds, this is
equivalent to there existing a choice of basis one-forms {ω1, . . . , ωn, ω̄1, . . . , ω̄n} such
that {ω1, . . . , ωn} is closed under d, i.e. ∂̄ is trivial on the (1, 0)-forms.)

Example 3.2. Let us consider now an example of a complex threefold whose spec-
tral sequence degenerates on E3. Take the simply connected nilpotent complex
Lie group of complex dimension three with a basis {x, y, z} of left-invariant degree
(1, 0)-forms satisfying dx = 0, dy = xȳ, dz = xy + xȳ + x̄y. By Malcev, we can
find a cocompact discrete subgroup, and taking the corresponding quotient we ob-
tain a complex nilmanifold of dimension three. Its real minimal model is given by
Λ(x, y, z, x̄, ȳ, z̄, dx = 0, dy = xȳ, dz = xy + xȳ + x̄y).

Consider xy ∈ E2,0
0 . Note that ∂(xy) = 0, so this form lives to E2,0

1 . Further, since
∂̄(xy) = 0, in particular the induced ∂̄ on E1 is zero when applied to xy. So, xy
defines a class in E2,0

2 . Note that for degree reasons, by Proposition 2.1., the form
xy will live to every page (altough we do not a priori know if it will live to become a
zero class on some page). For this class to be zero on E2, there would have to be a
∂̄-closed (1, 0) form β such that ∂β = xy. The only such forms are z + cy, where c
is any constant. Then ∂(z + cy) = xy, but ∂̄(z + cy) = xȳ + x̄y + cxȳ, which cannot
be zero. However, by setting c = −1 and taking the (0, 1) form −ȳ, we see tthat we
have ∂(z − y) = xy, ∂̄(z − y) = x̄y, and ∂−ȳ = −x̄y, ∂̄(−ȳ) = 0, so by Proposition
2.1 we have that xy gives the zero class in E2,0

3 . Therefore E2,0
2 6∼= E2,0

3 .
We can check directly that degeneration for the spectral sequence happens precisely

on the third page (by considering every slot), but we will revisit this example and
check this with less work after we make some observations later.

Example 3.3. We consider a complex sixfold whose Frölicher spectral sequence de-
generates at least on the fourth page (meaning, E4). Take the sixfold (again going
through the procedure of taking a Lie group and quotienting) whose real minimal
model is given by

Λ(x1, x2, x3, y1, y2, y3, x̄1, x̄2, x̄3, ȳ1, ȳ2, ȳ3),

dx1 = dx2 = dx3 = 0, dy1 = x̄1x2, dy2 = x̄1x2, dy3 = x1y1 + x1x̄3.

Consider the (3, 0)-form x1x2y1. It is closed with respect to both ∂̄ and ∂, so it
defines a class on the E1 page and also defines a class (albeit possibly zero) on every
subsequent page. To determine if this class is 0 in E3,0

2 , we look for (2, 0) forms
whose ∂ part is equal to x1x2y1. A direct inspection yields that all such forms are
of the form x2y3 + c1x2y3 + c2x3y2, for arbitrary constants c1, c2. Then, note that
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∂̄(x2y3 + c1x2y3 + c2x3y2) = x1x2x̄3 + c1x1x2x̄2− c2x̄1x2x3. Another inspection shows
that y1x̄3 is the simple (1, 1) form with a summand of x1x2x̄3 in ∂(y1x̄3). (Here
by simple we mean that it is not a non-trivial combination of two or more (1, 1)-
forms in the basis for (1, 1)-forms obtained by multiplying an element of {xi, yi}
with an element of {x̄i, ȳi}.) However, ∂̄(y1x̄3) = x1x̄2x̄3. In particular, it is non-
zero, so we cannot have that x1x2y1 is the zero class on E3. But, in the notation of
Proposition 2.1, if we set α0 = 0, α2 = x2y3, α3 = −y1x̄3, α4 = x̄3ȳ2, we see that,
since ∂̄(x̄3ȳ2) = 0, we have that x1x2y1 represents the zero class on the fourth page.
Therefore E3,0

3 6∼= E3,0
4 , so degeneration happens no sooner than on E4.

4. Geography of spectral sequence degeneration

We can ask the following question: For given n and r, is there a closed n-fold for
which the spectral sequence degenerates on Er? First, as previously observed, the
spectral sequence associated to a complex n-fold degenerates at the n + 1-st page
at the latest, simply because at that page all the differentials become 0 by virtue of
being too long.

A particular case of our question is then: For given n, is there a complex n-fold
whose spectral sequence degenerates no sooner than on En+1? Some negative results
are given by the following two results.
Proposition 4.1. The Frölicher spectral sequence of a closed complex manifold of
dimension one or two degenerates on the first page.

The result for n = 1 follows from the observation that every complex curve is
Kähler. The n = 2 result is due to Kodaira (and note that not every complex surface
is Kähler). The question is unanswered for n ≥ 3.
Question 4.2. For n ≥ 3, is there a closed complex n-fold whose Frölicher spectral
sequence degenerates on page n+ 1?

If an n-fold were to have its spectral sequence degenerate on En+1, then there would
have to be non-zero arrows on En. Due to the length of the arrows, we see that there
can only be at most two non-trivial arrows on En, namely the arrow from (0, n) to
(n, 1) and the one from (0, n− 1) to (n, 0). However, the following observation shows
that the latter arrow is in fact always zero.
Lemma 4.3. If an (n, 0) form on a closed complex manifold X defines a non-zero
class on E1, then it defines a non-zero class on En+1 as well. In particular, the
spectral sequence in the (n, 0) stabilizes already on the first page.
Proof. For an (n, 0) form α to define a non-zero class on E1, it just has to be ∂̄-closed.
(It cannot be ∂̄-exact for degree reasons.) Observe that, again for degree reasons, this
form is ∂-closed, and so defines a class on every page En,0

r . Now, from Proposition
2.1, we can see that in order for this class to be zero on some page Er, there would
have to be forms α2, . . . , αr in the appropriate degrees such that α = d(α2 + · · ·+αn)
(here α0 = 0). So, let us show that α is not d-exact, and it will follow that α defines
a non-zero class on every page (and so in particular on En+1).

Suppose α = dβ. Then, using the Hermitian inner product on the holomorphic
part of the exterior algebra on the complexified cotangent bundle, we have

||α||2 =

∫
X

αᾱ =

∫
X

dβdβ̄ =

∫
X

d(ββ̄) =

∫
∂X

ββ̄ = 0.

So, α = dβ would have to be the zero form, which is not the case. �
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Figure 4. The only two possibly non-trivial differentials on E3 for a com-
plex threefold.

Degeneration on page n + 1 can therefore only be detected at the (0, n) slot. It
would have to be the case that there is a (0, n)-form which gives a well-defined class
in E0,n

1 , . . . , E0,n
n , but does not give a well-defined element in E0,n

n+1. Observe that
this cannot happen in the case of complex nilmanifolds. Namely, the E0,n

1 slot for a
nilmanifold would be spanned by a form like x̄1 · · · x̄n, where the differential applied
to an xk or x̄k is spanned by the xi and x̄i such that i < k. (So, here the real minimal
model would have underlying algebra Λ(x1, x̄1, . . . , xn, x̄n). From there we see that
∂(x̄1 · · · x̄n) = 0 since applying the differential results in a sum of products of xi and
x̄i, and in each of these summands some x̄i will repeat and hence make the summand
zero. Therefore x̄1 · · · x̄n lives to En+1. Namely, we can take α2 = . . . = αr = 0 in
the notation of Proposition 2.1 to observe that x̄1 · · · x̄n lives to any Er. The key
point here is that ∂(x̄1 · · · x̄n) is equal to zero, and not just ∂̄-closed. We record our
conclusion in the following remark.

Remark 4.4. The Frölicher spectral sequence of a complex nilmanifold of complex
dimension n degenerates on the En page or earlier.

In the positive direction, it has been shown (see [2]) that for any n there is a closed
complex manifold whose spectral sequence degenerates no sooner than on En. The
examples provided are complex nilmanifolds of complex dimension 4n− 2.

5. Hypothetical complex S6

A famous open problem is the following: For n ≥ 3, is there an almost-complex
manifold of (real) dimension 2n which does not admit an integrable complex struc-
ture?

A particular case of this is the question of whether S6 admits an integrable complex
structure. The six-sphere is known to admit an almost-complex structure (explicitly,
by interpreting the sphere as the unit imaginary octonions), and every other almost-
complex structure is homotopic to this one. It can also be directly checked that this
almost-complex structure induced by the octonions is not integrable. The question
is if there is perhaps some other integrable (almost) complex structure on S6.

Even though this question is unresolved, we can still say something about the
Hodge numbers hp,q of any complex structure on S6, if it did exist. Recall the
notation hp,qr = dimCE

p,q
r , and that by definition hp,q1 = hp,q.
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Figure 5. The geography of degeneration. The horizontal axis counts the
dimension, and the vertical axis the page of degeneration. A X means an
example of a manifold with the given dimension and degeneration page is
known. An × means such degeneration cannot occur. A ? indicates that
no examples of such manifolds are known or explicitly recorded. (An entry
in the (6, 3) slot, and possibly in the (5, 3) and (5, 4) slots, should not be
difficult to find.)

The following tools are useful in obtaining relations on the Hodge numbers of a
complex n-fold X:

• Serre duality, which can be succinctly stated as hp,q = hn−p,n−q, or visually as
a central symmetry of the Hodge diamond (about hn,n). Serre duality does
not hold in general for the numbers hp,qr , r ≥ 2.
• The "Euler characteristic" of every page Er in the Frölicher spectral sequence
is equal to the Euler characteristic of the manifold. Namely,

χ(X) =
∑
k

(−1)kbk =
∑
k

∑
p+q=k

(−1)khp,qr .

• The arithmetic genus χ0 of the complex manifold X is defined to be the
holomorphic Euler characteristic of the (trivial) vector bundle of holomorphic
functions on X,

χ0(X) =
∑
k

(−1)k dimCH
k(X,Ω0).

By the Dolbeault theorem, Hp,q

∂̄
∼= Hq(X,Ωp), and so Hk(X,Ω0) ∼= H0,k

∂̄
(X),

so we can rewrite the arithmetic genus as

χ0(X) = (−1)k
∑
k

h0,k.
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By Hirzebruch-Riemann-Roch, we have

χ(X) =

∫
X

ch(Ω0) td(X),

where ch(Ω0) is the Chern character of the bundle and td(X) the Todd class
of X. Here, ch(Ω0) = 1 since Ω0 is a trivial bundle. The first few terms of
td(X) are given by

td(X) = 1 +
c1

2
+
c2

1 + c2

12
+
c1c2

24
+

3c2
2 + c1c3 + 4c2

1c2 − c4
1 − c4

720
+ · · · .

Since the Chern character is trivial in our case, when evaluating χ0(X) only
the degree n term in td(X) matters in the integral

∫
X

ch(Ω0) td(X). So, for
example, for a complex threefold we have χ0(X) =

∫
X

c1c2
24

.
• The Euler characteristic along any line of differentials on Er is equal to the
Euler characteristic of the corresponding cohomology on Er+1. In particular,
for the transition from page one to page two, for all k we have∑

p

(−1)php,k1 =
∑
p

(−1)php,k2 .

Using the above toolkit, we obtain some conclusions on the Hodge numbers of a
hypothetical complex structure on S6. Many more inequalities can be obtained by
similar arguments, and are recorded in the references, and all Hodge numbers from
now on will be those corresponding to this complex manifold.

Proposition 5.1. h0,1 ≥ 1.

Proof. The arithmetic genus of S6 is given by χ0(S6) = h0,0 − h0,1 + h0,2 − h0,3. The
closed (0, 0)-forms are just the constants, so h0,0 = 1. Furthermore, by Lemma 4.3,
if h0,3 was non-zero, then h0,3

4 would be non-zero. Since for a complex threefold (as
S6 would be), E4 = E∞, we have

b3 = h0,3
4 + h1,2

4 + h2,1
4 + h3,0

4 ≥ h3,0
4 ,

and so we would have b3(S6) > 0, which is not true. Therefore, χ0(S6) = 1−h0,1+h0,2.
By Hirzebruch-Riemann-Roch, χ0(S6) =

∫
S6

c1c2
24

. Since c1 ∈ H2(S6,Z) and c2 ∈
H4(S6,Z), both of these classes are trivial, and so χ0(S6) = 0, from which we conclude
1− h0,1 + h0,2 = 0, i.e.

h0,1 = 1 + h0,2 ≥ 1.

�

The argument just used to show h0,3 = 0 gives the following Proposition.

Proposition 5.2. The Frölicher spectral sequence for S6 degenerates either on page
two or on page three.

Proof. As h0,1
1 = h0,1 ≥ 1 as we just saw, and 0 = b1 = h1,0

4 + h0,1
4 , we must have

that E0,1
1 6∼= E0,1

4 , and so degeneration happens on page two, three, or four. The
discussion following Lemma 4.3 shows that degeneration on page four can happen
only if h0,3

1 6= 0. However, by Serre duality, h0,3
1 = h3,0

1 , which we saw was zero. �

Proposition 5.3. If h1,1 = 0, then degeneration happens (exactly) on page three.
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Proof. Computing the Euler characteristic along the lines k = 0, 1, 2, 3 with respect
to the differential d1 in the transition from E1 to E2, we obtain the following four
equations:

h0,0 − h1,0 + h2,0 − h3,0 = h0,0
2 − h

1,0
2 − h

2,0
2 + h3,0

2

h0,1 − h1,1 + h2,1 − h3,1 = h0,1
2 − h

1,1
2 + h2,1

2 − h
3,1
2

h0,1 − h1,1 + h2,1 − h3,1 = h0,2
2 − h

1,2
2 + h2,2

2 − h
3,2
2

h0,3 − h1,3 + h2,3 − h3,3 = h0,3
2 − h

1,3
2 + h2,3

2 − h
3,3
2

Let us say what we can about some individual terms in the above equations. First
of all, since h0,0 = 1, b0(S6) = h0,0

3 = 1, and h0,0 ≥ h0,0
2 ≥ h0,0

3 , we have h0,0
2 = 1.

Similary, h3,3
2 = 1 since h3,3 = h0,0 = 1 by Serre duality, and h3,0

2 = h0,3
2 = 0 since

h3,0 = h0,3 = 0. Notice that on the second page, both arrows pointing to and from
E1,1

2 and E2,2
2 are zero since h3,0

2 = h0,3
2 = 0. Therefore h1,1

2 = h1,1
3 ≤ b3(S6) = 0, and

so h1,1
2 = 0 and analogously h2,2

2 = 0. Similarly we obtain h1,0
2 = 0 from b1(S6) = 0.

Using these observations and the equation h0,1 = 1 +h0,2 from Proposition 5.1, along
with Serre duality on the hp,q, we can rewrite our four large equations as

1− h1,0 + h2,0 = 1 + h2,0
2

h0,2 + 1− h1,1 + h1,2 − h0,2 = h0,1
2 + h2,1

2 − h
3,1
2

h0,2 − h1,2 + h1,1 − h0,2 − 1 = h0,2
2 − h

1,2
2 − h

3,2
2

−h1,3 + h1,0 − 1 = −h1,3
2 − 1

Summing the first and fourth equations gives us h2,0−h1,3 = h2,0
2 −h

1,3
2 , which becomes

h2,0
2 = h1,3

2 by Serre duality.
Summing the second and third equalities we obtain

h0,1
2 + h2,1

2 + h0,2
2 = h3,1

2 + h1,2
2 + h3,2

2 .

Now, observe that on page two, we have the following sequence of arrows,

0 −→ E0,1
2

d2−→ E2,0
2 −→ 0.

Because the spectral sequence must degenerate or have already degenerated at the
next page, and due to b2(S6) = b3(S6) = 0, we conclude that the middle arrow must
be injective and surjective. Therefore, h0,1

2 = h2,0
2 . Similarly we conclude h1,3

2 = h3,2
2 ,

h2,1
2 = h0,2

2 , and h3,1
2 = h1,2

2 . Combining this with the end of the previous paragraph,
we have h0,1

2 = h3,2
2 . Now the equation h0,1

2 + h2,1
2 + h0,2

2 = h3,1
2 + h1,2

2 + h3,2
2 becomes

h2,1
2 + h0,2

2 = h3,1
2 + h1,2

2 , so we have h0,2
2 = h1,2

2 .
We can rewrite the third large equation, using h3,2

2 = h0,1
2 , as

h0,1
2 = h0,2

2 − h
0,1
2 + h1,2 − h1,1 + 1.

Because of h0,2
2 = h1,2

2 , this becomes

h3,2
2 = h1,2 + 1− h1,1.

If h1,1 = 0, then h23, 2 = h1,2 + 1 ≥ 1, and since h3,2
3 ≤ b5(S6) = 0, we conclude

E2 6∼= E3. �
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