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EFFECTIVE NONVANISHING,
EFFECTIVE GLOBAL GENERATION

by Mark Andrea A. de CATALDO (*)

0. Introduction.

Kolldr’s nonvanishing theorem [10], 3.2 is an instrument to make
Kawamata-Shokurov base-point-freeness assertion into an effective one. His
result can be applied to a variety of other situations; see [10], §4, [11], §8
and [12], §14.

The basic set-up is as follows. Let ¢ : X — S be a surjective
morphism of proper varieties, where X in nonsingular and complete, M
be a nef and g¢-big line bundle on X, L be a nef and big line bundle
on S and N = Kx + M + mg*L be a line bundle varying with the
positive integer m. Kollar proves, under the necessary assumption that
the first direct image sheaf g, N # 0, that h°(X, N) = h°(S, g.N) > 0 and
the sections of g.IN generate this sheaf at a general point of S for every
m > (1/2)(dim S? 4 dim S) (this is what makes the result “effective”).

The proof starts with the choice of a very general point x on S and
ends with producing sections of g,/N which generate at x and therefore at
a general point.

The purpose of this note is to observe that more precise statements
are possible if one considers the local Seshadri constants of L on S. See the
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discussion at the beginning of §2 and Remark 2.3. The main result is the
effective nonvanishing Theorem 2.2, a “multiple-points higher-jets” version
of [10], Theorem 3.2.

The proof hinges on Demailly’s observation that, given a nef line
bundle £ on X, a big enough local Seshadri constant for £ at a point x can
be used together with Kawamata-Viehweg Vanishing Theorem to produce
sections of the adjoint line bundle Kx + £ with nice generating properties
at  (cf. [3], Proposition 7.10). An effective way to force a big enough local
Seshadri constant is Theorem 1.6, which is due Ein-Kiichle-Lazarsfeld.

As a first application, some generalizations to the case of nef vector
bundles of the results concerning line bundles in [5] and [11] are given:
effective construction of rational and birational maps, and nonvanishing on
varieties with big enough algebraic fundamental group. In the case of one
point these results follow easily from the line bundle case by considering
the tautological line bundle of the projectivization of the vector bundles in
question. They seem to be new in the case of multiple-points and higher-
jets.

As another application, it is shown that the global generation results
for line bundles of Anghern-Siu, Demailly, Tsuji and Siu (see [3] and [2] for
a bibliography) generalize to vector bundles of the form K ;82'1 RE®det E®
L®™ where a and m are appropriate positive integers, E is a nef vector
bundle and L is and ample line bundle. Explicit upper bounds on m are
given and they depend only on the dimension of the variety, and not also
on the Chern classes of the variety and the bundles in question. However,
one should not expect these bounds to be optimal since they do not match
with the line bundle case (i.e. assuming that the vector bundle E is the
trivial line bundle).

The paper [2] provides upper bounds as above for vector bundles E
subject to curvature conditions which seem to be the natural differential-
geometric analogue of nefness and indeed imply nefness. These bounds
match exactly the results in the line bundle case. The methods employed
there are analytic.

A global generation result for nef vector bundles, which indeed
matches the result of Anghern-Siu and Tsuji in the line bundle case, is
proved in the final section by the use of algebraic Nadel ideals.

The paper is organized as follows. §1 is preliminary and consists of
easy and mostly known facts about local Seshadri constants, and of more
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elaborate ones, such as Theorem 1.6, which makes Theorem 2.2 into an
effective statement. §2 is devoted to the main result, Theorem 2.2. §3 is
devoted to the applications discussed above. §4 is devoted to the proof of
Corollary 4.6, which improves upon the results of Theorem 3.7.1 and 3.7.3.

Acknowledgments. §4 has been written while the author enjoyed the
hospitality of the Max-Planck-Institut fiir Mathematik in Bonn. It is a
pleasure to acknowledge useful conversations with J.-P. Demailly while the
author was visiting the University of Grenoble.

1. Notation and preliminaries.

We mostly employ the notation of [9].

A variety is an integral and separated scheme of finite type over k,
an uncountable algebraically closed field of characteristic zero.

We say that a property holds at a very general point on X if it holds
for every point in the intersection, i, of some at most countable family of
Zariski-open dense subsets of X. Any such set 4 meets any Zariski-open
dense subset of X.

A “point” is a closed point.

Vector bundles and associated locally free sheaves are identified.
Cartier divisors are at times identified with the associated invertible sheaves
and the additive and multiplicative notation are both used, at times
simultaneously.

The symbol B(a,b) denotes the usual binomial coefficient.

Let X be a variety, n be its dimension and Div(X) be the group of
Cartier divisors on X. A Q-Cartier divisor is an element of Div(X) ® Q.
The linear and numerical equivalence of Q-divisors are denoted by “~”
and “=," respectively. A Q-divisor is an element in Z,_;(X) ® Q, where
Zn—1(X) is the free abelian group of Weil divisors on X.

The symbols |a| and (a) denote the biggest integer less than or equal
to a, and a — |a|, respectively. These symbols are used in conjunction with
Q-divisors when these divisors are written as a Q-combination of distinct
prime divisors.

Given any proper morphism of varieties 7 : X — S, we have the
notions of (m-)ample, (7-)nef, (7-)big and (7-)nef and (7-)big for (numerical
equivalence classes of) Q-Cartier divisors on X.
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Let A € (Div(X) ® Q)/ = be a numerical class and D be a Q-Cartier
divisor on X. By abuse of notation, A = D means that A = D for one
and thus all the elements in A. This remark plays a role when we use the
canonical divisor class together with Q-Cartier divisors.

In the above definitions, the field R can replace Q with minor changes.

The following two vanishing-injectivity theorems are needed for
Theorem 2.2.

THEOREM 1.1 (cf. [9], 1.2.3). — Let X be a nonsingular variety
and m : X — S be a proper morphism onto a variety S. Assume that N
is a Cartier divisor on X and that M and A are Q-Cartier divisors on X
with the following properties:

(1) M is m-nef and m-big,

(2) the support of A is a divisor with normal crossings, and |A]| = 0,
and

(3) N=M + A.
Then R'n,Ox(Kx + N) =0 fori > 0.

THEOREM 1.2 (cf. [12], 10.13 and 9.17, and [7], 5.12.b). — Let
m: X — S and A be as above with X projective, D be an effective Cartier
divisor on X such that it does not dominate S via w, and L be a nef and big
Q-Cartier divisor on S. Let N be a Cartier divisor such that N = A+7*L.

Then the following natural homomorphisms are injective for every
1> 0:
H(X,Kx 4+ N) — H'(X,Kx + N+ D).

Local Seshadri constants. — Good references for what follows
are [3], §7 and [5].

DEFINITION 1.3. — Let X be a complete variety, L be a nef Q-
Cartier divisor on X, and x be a point on X. The following nonnegative
real number is called the Shesadri constant of L at x:

e(L,z) = inf{L'—C},

mult, C

where the infimum is taken over all integral curves passing through r and
mult, C is the multiplicity of C' at x.
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Let x be a point in X;eg, by : X — X be the blowing-up of X at z and
E be the corresponding exceptional divisor on X'. The Q-Cartier divisor
b L on X' is nef as well. In particular, there is a well-defined nonnegative
real number:

€(L,z) :==sup{e' € Q| biL — €'E is nef}.
It is clear that the R-Cartier divisor bXL — €/(L,z)E is nef, and that the

Q-Cartier divisor biL — €'E is nef for every rational number € with the
property that 0 < € < ¢€'(L,z).

FAacT 1.4. —  We have that €(L,z) = €'(L,z) for every T € Xreg.
This follows from the formula: (b;L — €E)-C = L-C — € mult, C, where ¢
is any real number, C is any integral curve in X’ not contained in E and

C:=b.(C).

We collect the simple properties of e(L,z) which, together with
Theorem 1.6, are needed in the sequel of the paper.

LEMMA 1.5. — Let L be a nef Q-Cartier divisor on a complete
variety X and x be a point in X;e;. Then

(1.5.1) L™ > e(L,z)™;
(1.5.2) for every t € QF, e(tL,z) = te(L, z);

(1.5.3) Let f : X' — X be a proper and birational morphism
and x be a point on X over which f is an isomorphism; then e¢(L,z) =

e(f*L, f~Ha});
(1.5.4) if L is Cartier, ample and generated by its global sections on
X, then e(L,z) > 1;

(1.5.5) if L is Cartier and the global sections of L generate jets of order
s at z, i.e. the natural evaluation map H°(X,L) — Ox(L)/m$t1Ox (L) is
surjective, then e(L,z) > s.

Proof. — The first property follows from the fact that since b5 L —
€(L,z)E is nef, then its top self-intersection is nonnegative. The second one
is an obvious consequence of the bilinearity of the intersection product.

The third property follows from the fact that there is a natural
bijection, given by taking strict transforms, between the sets of integral
curves on X through z and on X’ through 2’ := f~'{z}. If C and C’
correspond to each other in this bijection, then L - C = b:L - C' and
mult, C = mult, C’ so that the two local Seshadri constants are the same.
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If L is ample, Cartier and generated by its global sections on X, then
the rational map ¢ defined by |L| is a finite morphism. Let C be any integral
curve on X passing through z. Since C is not contracted by ¢, there is an
effective divisor D in |L| passing through z but not containing C. It follows
that L - C = D - C > mult, C. This implies the third property.

Finally, if s = 0, then there is nothing left to prove. Assume that
s > 1. Then the global sections of L ® m generate L ® mj at x. Given any
integral curve C on X’ not contained in E, we find a divisor D € |L @ m3|
not containing the curve b, (C). It follows that the effective divisor b% (D) €
|bxL — sE| does not contain C. In particular, (b*L — sE) - C > 0. This

establishes the last property. D

If X is complete and L is a nef Q-Cartier divisor on X, then Shesadri’s
criterion of ampleness asserts that L is ample iff ¢(L) := inf{e(L,z)|z €
X} > 0. An example of R. Miranda’s (cf. [3], 7.14) shows that given any
positive real number €, there exists a nonsingular rational surface X, a
point z € X and an ample line bundle L on X, such that ¢(L,z) <.

In particular, we cannot have a statement of the form: let X be a
nonsingular projective variety of dimensionn and L be an ample line bundle
on X, then e(L) > C,, for some positive constant depending only on n.

What is known is the following result of Ein, Kiichle and Lazarsfeld.
The authors prove it for projective varieties, but by Chow’s Lemma and
Lemma 1.5.3 the statement is true for every complete variety.

THEOREM 1.6 (cf. [5], Theorem 1). — Let L be a nef and big
Cartier divisor on a complete variety X of dimension n. Then at a very
general point x on X we have

1
L,x) > —.
o(L,a) >+

The example that follows shows that Theorem 1.6 cannot hold as
stated for an ample and effective integral Q-Cartier Q-divisor on a normal
projective variety. As is pointed out in [5], if m is the smallest positive
integer such that mL is Cartier, then Theorem 1.6 holds if we replace

1 1
« L, > 27 [y « L, >_—»
e(L,z) 2 =7 by “e(L,z) = —
Example 1.7. — Let S,, C P™*! be the surface which is a cone
of vertex v over the rational normal curve of degree m in P™ and [ be
any line belonging to the ruling of S,,. The Weil divisor [ is an integral
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Q-Cartier Q-divisor; it is m-Cartier. The Cartier divisor ml is very ample
1

so that, for every x € S,,, \ {v}, we have that ¢(I,z) > —. On the other
m

hand, fix x € Sy, \ {v} and let C be the line on Sy, passing through z. We

1
have [- C' = —, so that €(I,z) < —. It follows that €(I,z) = —, for every
m m m
z € S\ {v}.

2. An effective nonvanishing theorem.

In this section we prove a nonvanishing theorem very similar to [10],
Theorem 3.2. While the statement is clearly inspired by [10], Theorem 3.2,
its simpler proof is inspired by [4], Lemma 3.21.

The basic nonvanishing and global generation at a generic point follow
easily from [10], Theorem 3.2 (and in fact are slightly weaker than this latter
result). The “multiple-points higher-jets” statements do not seem to follow
directly from the results in the literature.

Let us point out that Kolldr’s result implies a version of Theorem 2.2
with x general, p=1 and s=0. However, one can use this result in place of
Kollar’s in proving the effective base-point-freeness result 1.1 of [10].

The advantages of Theorem 2.2 are at least two:

— The former is the simplicity of its proof which consists of basic
yoga and one blowing-up procedure. However, we should stress that this
may readily become an effective result if used in conjunction with result
Theorem 1.6.

— The latter is that it is a “multiple-point higher-jets” effective result
which, at least in principle, can be applied to prescribed points and can
give more than mere nonvanishing. For example, one can use this result to
obtain increased lower bounds of log-plurigenera (cf. [10], §4). We shall see
some other applications in the following sections.

Remark 2.1. — Let g : Y — S be a proper morphism of varieties
with Y nonsingular and A a divisor on Y such that Supp(A) has simple
normal crossings.

By virtue of generic smoothness, there exists a largest Zariski-open
dense subset U of S such that (i) gg-1() : 9" (U) — U is smooth, (ii) for
every point x € S, any irreducible component F' of the fiber F, of g is not
contained in Supp(A) and (iii) Supp(A) has simple normal crossings on F.
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THEOREM 2.2 (Effective Nonvanishing). —  Let the following data
be given.

(2.2.1) (Y,A): a log-pair, where Y is nonsingular and complete,
|A] = 0 and Supp(A) has simple normal crossings.

(2.2.2) N: a Cartier divisor on Y.
(2.2.3)

-g:Y — S:a proper and surjective morphism onto a complete
variety S of positive dimension,

—U =U(g,A): the Zariski-open dense set of S defined in Remark 2.1,

— V': the Zariski-open dense subset of S over which the formation of
g« for N commutes with base extensions.

(2.2.4)

— p: a positive integer,

—{s1,...,8p}: a p-tuple of non-negative integers,

—{z1,...,zp}: p distinct pointsinUNV.

(2.2.5) M: a Q-Cartier divisor on Y such that either it is nef and
g-big, or X is projective and M = 0.

2. Tye-- : -Cartier divisors on S such that a i are ne.

(2.2.6) L1,...,Ly: p Q-Cartier divi S such that all L; f
and big and either

(a) e(Lj,z;) >dimS+s;, Vj=1,...,p, or

(b) €(Lj, x;) > dim S +s;, Vj = 1,...,p and L§™5 > (L, )™ for
at least one index jo, 1 < jo < p.

Assume that

P
N=Ky+A+M+g"y L;.

Jj=1
Then the following natural map is surjective:
P
«N
HO(X,N) =~ H’(S,9.N) —> ) —-2 .

si+1
j=1 Mz ga N

In particular, if g,N, which is torsion-free, is not the zero sheaf, then
HO(X, N) # {0}.

Remark 2.3. — The reason for calling this theorem “Effective Non-
vanishing” is the last assertion of the theorem and the fact that, for ex-
ample, if all the L; were Cartier, then we could make sure, by virtue of



EFFECTIVE NONVANISHING, EFFECTIVE GLOBAL GENERATION 1367

Theorem 1.6, that condition (2.2.6) is fulfilled at very general points by
taking sufficiently high multiples of the L.

The conclusion of the theorem holds trivially for dim .S = 0, but in
this case (2.2.6) is meaningless.

Proof. — The proof is divided into two cases. The former deals with
M nef and g-big. The latter with X projective and M = 0. Each case is

divided into two sub-cases corresponding to the two numerical assumptions
(a) and (b) in (2.2.6).

CASE I: M is nef and g-big. — First we show that in this case
U = UnNV. By virtue of 1.1, we know that R'¢g.N = 0 for ¢ > 0. By
the smoothness of g over U, N is flat over U. By well-known results of
Grothendieck (see [8], II1.7.7.10) g. N is locally free on U and the formation
of g, commutes with base extensions over U.

In particular, if Y;7 := Y xg Spec(Os,s;/m7,) is the “o-thickened
fiber” of g at z; and N7 is the pull-back of N to Y7 via the natural
projection, then the following natural maps are isomorphisms:

9+ N

s:4+1
ma:]] * G«

— = 9.N © (050, /miy ™) — HOY NG,

To prove CASE I it is enough to show that the natural map
P
(1) HO(Y,N) — D HO(Y7H N *,
j=1
which factors through g.N ® Os,/ mf;ﬁ.“, is surjective.

Consider the following cartesian diagram:
B

Y" = Y
lg la
s X, s

where b is the blowing-up of S at all the simple points z;. Let F := [ F}
be the scheme-theoretic-fiber of g corresponding to the union of the points
zj, 3 = 1,...,p. Since g is smooth over U and all the z; are in U, we
see that B coincides with the blowing-up of Y along F'. In particular, Y’
is a nonsingular variety. Let E = ) E; be the exceptional divisor of b
and D = Y D; be the one of B. We have that D; = ¢'"E;, for every
i=1,...,p.
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The map (1) is surjective iff the natural map
H'(Y',B*N - (s; +1)D;) — H'(Y', B*N)

is injective. It is this injectivity that we are going to establish using
Theorem 1.1.

Note that Ky ~ B*Ky + (dimS — 1)> D; and that since no
irreducible component of any Fj is contained in any A; and if any such
component meets any A; it does so transversally, we have that a) A’ :=
B*A = B'A, i.e. the pull-back is the strict transform, b) |A’| = 0 and
¢) the support of A’ has simple normal crossings. The following numerical
equality is easily checked:

(2) B'N-Y (s;+1)D; = Ky/+A'+B*M+B*g"> "L;—» (dim S+s;)D;.

SUB-CASE I.A: Assume that e(L;, x;) > dim S+s;, for every index j,
1 <j <p.— Since for every index j we have that e(L;,z;) > dim S +s;,
there exists a positive rational number 0 < ¢ < 1 such that ¢((1—t)L;, z;) >
dim S + s; for every j, 1 < j < p. Using the fact that B*g* = ¢’*b* we can
re-write the r.h.s. of equation (2) as

(3) Ky +A'+B*(M+tg" Y Lj)+g"™ > [b"(1—t)L; — (dim S + s;) E}].
The last summand is nef by the very definition of €((1 —t)L;, z;).

Since M is nef and g-big and ¢ > 0, the Q-divisor M +tg* " L; is nef
and big. In particular, B*(M +tg* > L;) is nef and big. It follows that the
Lh.s. of (2) is a Cartier divisor satisfying the assumptions of Kawamata-
Viehweg Vanishing Theorem so that H'(Y’,B*N — Y (s; + 1)D;) = {0}
and (1) is surjective.

SUB-CASE 1.B: Assume that e(Lj,xz;) > dimS +s;, Vj,1 <j<p
and that L%ms > €(L;,)¥ ™S for at least one index jo, 1 < jo < p. —
Using the fact that B*g* = ¢’"b* and isolating the index j, we write the
r.hus. of (2) as
(4) Ky +A'+B°M+ Y ¢"[b"L; - (dim S + s;) E}]

7750 +gl* [b*Ljo - (dlmS + Sjo)Ejo] :
Since M is nef and g-big and ) ¢’"(b*L; — (dim S + s;)E;) is nef,
J#jo
we see that B*M + > ¢'"(b*L; — (dim S + s;)E;) is nef and g¢'-big.
J#Jjo
Since L%ms > €(Lj,,7j,)4 ™5, we see, as in the proof of Lemma 1.5.1,
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that (b*Lj, — (dim S + s;,)Ej,) is nef and big. It follows that B*M +
> ¢ (b*Lj — (dim S + s;)E;) + ¢'* (b*Lj, — (dim S + s;,)Ej,) is nef and

J#Jo

big and we conclude as in SUB-CASE I.A.

CASE II: X is projective, M = 0 and the points x; areinUNV. —
We by-pass the first paragraph in the proof of CASE I. We proceed verbatim
as in that case until we hit again (2). We delete M. We can again divide the
analysis into two separate sub-cases. We do so and obtain that in the two
distinct sub-cases the Lh.s. of (2) is numerically equivalent to the r.h.s. of
(3) and (4), respectively and, in both cases, we are in the position to apply
Theorem 1.2 to the morphism ¢’ : Y’ — S’ and infer the desired injectivity
statement. O

3. Applications.

The local Seshadri constant can be linked, via Kawamata-Viehweg
Vanishing Theorem to the production of sections for the adjoint to nef and
big line bundles. This observation is due to Demailly; see [3], Proposition
7.10 and [5], Proposition 1.3. In this section we apply Theorem 2.2 to nef
vector bundles. Actually, a factor det £ appears and is necessary in our
proof. We ignore if it is necessary for the truth of the various statements
that follow. First we fix some notation.

Let E be a rank r vector bundle on a nonsingular complete variety
X. We denote by Px(E) the projectivized bundle of hyperplanes, by
7 : Px(F) — X the natural morphism and by £ or {g the tautological
line bundle Op, (g)(1). We say that E is nef if £ is nef.

Let p be any positive integer. We say that the global sections of E
generate jets of order s1,...,s, € N at p distinct points {x1,...,z,} of X
if the following natural map is surjective:

p
H(X,E) — P Ex, ® Ox /m;*.
i=1
We say that the global sections of E separate p distinct points {z1,...,2p}
of X if the above holds with all s; = 0. The case p = 1 is equivalent to £
being generated by its global sections (generated, for short) at the point in
question.
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Rational maps to Grassmannians. Let V := H(X, E) and h° :=
h°(X, E) := dimy H°(X, E). Consider the Grassmannian G := G(r, h°) of
r-dimensional quotients of V', the universal quotient bundle £ of G and
the determinant of 9, q.

As soon as F is generated at some point of X, we get a rational map
¢ : X — G assigning to each point y € X where E is generated the
quotient E, ® k(y).

If E is generated at every point of X, then f := ¢ is a morphism and
E ~ f*Q.

It is clear that

— V separates arbitrary pairs of points of X iff f is bijective birational
onto its image;

— if V separates every pair of points of X and generates jets of order
1 at every point of X, then f is a closed embedding (the converse maybe
false if the rank r > 1).

In the three propositions that follow we generalize to the case of higher
rank results in [5]. The analogues to these facts involving arbitrary p and
{s1,...,sp} are clear, and left to the reader. We give the reference to the
analogous results for line bundles, but we prove only the first of the three
propositions to illustrate the method.

PROPOSITION 3.1 (cf. [5], 1.3 and 4.4). — Let X be a nonsingular
complete variety of dimension n. Let E be a rank r nef vector bundle on
X, L be a nef and big Q-Cartier divisor on X, A’ be a Q-Cartier divisor
on X such that |A’| = 0 and Supp(A’) has simple normal crossings, and
N’ be a Cartier divisor on X such that N' = L + A’.

Let s be a nonnegative integer and = be a point of X \ Supp(A).

Assume that either e(L,x) > n+ s, or e(L,z) > n+ s and L™ >
e(L,z)™.

Then H°(X,Kx ® E ® det E ® N') generates s-jets at = and the
rational map ¢ as above is defined. Moreover,

(X, Kx @ EQdet E® N') > rB(n + s, s).
In particular, if £ is a nef and big Cartier divisor on X, then

HX,Kx @ EQdet E® L®™) > rB(n+s,s), VYm>n?+ns.



EFFECTIVE NONVANISHING, EFFECTIVE GLOBAL GENERATION 1371

Proof. — Set Y := Px(E), S := X, g :=m A = g*A/, M =
(r+1)§¢ N: =Ky +(r+1)(+g¢g*N',p=1, s; =s. Note that M is nef
and g-big and that g.N = Kx @ FQdet EQ N'.

Apply Theorem 2.2. The only issue is whether x € U; this is why the
point z is assumed to be outside of Supp(A).

The lower bound on h° stems from the surjection given by Theorem
2.2 and the fact that

dimy Ox . /mit! = B(n + s,n).

The statement about L is a special case after Theorem 1.6: there exists
r € X such that €(£,z) > 1/n. If m > n? + ns, then €(mL, ) > n+ s and
equality holds iff €(£,z) = 1/n and m = n? +ns; in this case the inequality
L™ >1>¢(L,z)" is automatic. O

ProPosITION 3.2 (cf. [5],4.5). — Let X, n, E, L, A’ and N’ be as
above. Assume that either n > 2 and €(L,x) > 2n for every x very general,
or that n = 1 and deg N’ > 3.

Then the rational map ¢ associated with H*(X, Kx @ EQdet EQ N')
is defined and is birational onto its image.

In particular, if £ is a nef and big Cartier divisor on X, then the
rational map ¢ associated with H*(X,Kx ® E ® det E ® L®™) is defined
and birational onto its image for every m > 2n2.

PROPOSITION 3.3 (cf. [5], 4.6). — Let X be a complete variety of
dimension n with only terminal singularities and of global index i such that
Kx is nef and big, (i.e. X is normal, Q-Gorenstein and a minimal variety
of general type, and i is the smallest positive integer such that the Weil
divisor class iK x is a Cartier divisor class), and E be a nef vector bundle
on X.

Then the rational map associated with H*(X, O x (miK x)®E®det E)
is defined and is birational onto its image for every m > 2n% + 1.

The following follows from results in [11], §8. As is already pointed out
in [5], a generically large algebraic fundamental group on the base variety S
can be used to produce sections by increasing the local Seshadri constants
on finite étale covers of S. The reader can consult [11] for the relevant
definitions.
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PROPOSITION 3.4 (cf. [11],8.4). — Let X be a normal and complete
variety, N’ be an integral big Q-Cartier Q-divisor on X, and E be a nef
vector bundle on X.

Assume that X has generically large algebraic fundamental group.

Then h°(X,0x(Kx + N') ® E ® det E) > 0.

Sketch of proof. — By the proof of [11], Corollary 8.4 and by the first
part of the proof of [11], Theorem 8.3 we are reduced to the case in which
X is nonsingular and N’ = L + A, where L and A’ are Q-Cartier divisors,
L is nef and big, |A’| = 0 and Supp(A’) has simple normal crossings.

Pick a point z € X such that e(L,z) > 0. By [11], Lemma 8.2 there
is a finite étale map of varieties m : X” — X and a point z” € X" such
that e(m*L,z") > n.

Denote degm by d, m*L by L”, m*A’ by A”, m*N’ by N” and m*E
by E”.

Apply Proposition 3.1 to X”, L"”, A”, N”, E" and s = 0. We get
R (Kx» @ E" ® det E” @ N") > 0.

Kawamata-Vieheweg Vanishing Theorem applied to the nef and
big Q-divisor (r + 1)~ + m""L"” gives, via Leray spectral sequence,
h(X", Kxn @ E" ® det E” @ N") = 0, for every ¢ > 0. The analogous
statement holds on X.

The above vanishing and the multiplicative behavior of Euler-
Poincaré characteristics of coherent sheaves under finite étale maps of non-
singular proper varieties gives:

(X, Kx ® EQdet E®Q N') = x(X,-)
1
— EX(X”,—”)
1
= EhO(X”, Kx» ®E"®det E" @ N") > 0.
a

Let us point out a consequence of [11], 8.3 as a corollary to the result
above. Recall that the integers I} := hi(X, S'(Q%)® K{™) are birational
invariants of a nonsingular and complete variety X for every m,l > 0
and that they are independent of the more standard invariants like the
plurigenera or the cohomology groups of the sheaves QF; for some facts
about these invariants and some references see [14]. The assumptions of
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the “sample” corollary that follows are fulfilled, for example, by projective
varieties whose universal covering space is the unit ball in C™.

COROLLARY 3.5 (cf. [11],8.5). — Let X be a nonsingular complete
variety with Kx nef and big, Q% nef and generically large algebraic
fundamental group.

Then I?, > 0 for every | > 0 and m > 3.

We now observe that the global generation results of Anghern-Siu,
Demailly, Tsuji and Siu can be used to deduce analogous statements for
vector bundles of the form K§* ® E ® det E ® L®™, where E and L are
a nef vector bundle and an ample line bundle on X, respectively. The idea
is simple: once the sections of a line bundle of the form £ := Kx + mL
generate the s jets at every point, the local Seshadri constant is at least
s at every point by virtue of Lemma 1.5.5. We then use Proposition 3.1.
However, this observation is applied here in a primitive way; we expect
these results to be far from optimal.

We shall give statements concerning p = 1,2 and low values for the
jets. In the same way one can prove statements concerning more points and
higher jets. We omit the details.

For ease of reference we collect the line bundle results in the literature
in the following result. First some additional notation. Let n and p be
positive integers and {si,...,sp} be a p-tuple of nonnegative integers. Let
us define the following integers:

1
my(n,p) = 5(112 +2pn —n + 2),

p
ma(n,p; S1,-..,8p) = 2nZB(3n+2s,— —3,n)+2pn + 1.

=1

THEOREM 3.6. — Let X be a nonsingular projective variety of
dimension n, and L be an ample Cartier divisor on X.

(3.6.1) (cf. [15]) If m > ma(n, p; 81, - - ., Sp), then the global sections of
2K x + mL generate simultaneous jets of order sy,...,s, € N at arbitrary
p distinct points of X.

(3.6.2) (cf. [1]) If m > mq(n, p), then the global sections of K x +mL
separate arbitrary p distinct points of X .
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THEOREM 3.7. — Let X, n and L be as above. Let E be a nef
vector bundle on X. Then the vector bundles K§* @ E ® det E ® L®™:

(3.7.1) are generated by their global sections and the associated
morphism to a Grassmannian f : X — G is finite, for a = 2 and for
every m > (1/2)(ma(n, 1;2n) + 1);

(3.7.2) have global sections which separate arbitrary pairs of points
and 1-jets at an arbitrary point, and f is a closed embedding, for a = 2
and for every m > (1/2)(ma(n, 1;4n) + 1);

(3.7.3) are generated by their global sections and f is finite, for
a =n+ 1 and for every m > nm;(n,1);

(8.7.4) have global sections which separate arbitrary pairs of points,
1-jets at an arbitrary point, and f is a closed embedding, for a = 2n + 1
and for every m > 2nm;(n,1).

Proof. — Let us observe that all the vector bundles in question are
ample. One sees this easily by observing that Kx + (n + 1)L is always nef
(Fujita) and that “nef ® ample = ample.” As soon as f is defined, these
bundles are pull-backs under f so that they can be ample only if f is finite.

Let L' := Kx +(1/2)(m2(n, 1;2n) +1)L. By virtue of Theorem 3.6.1,
the global sections of 2L’ generate 2n jets at every point x € X. By virtue
of Lemma 1.5.5, ¢(L’',x) > n for every z € X. We can apply Proposition
3.1 which assumptions are readily verified. This proves (3.7.1).

The proof of (3.7.2) is similar. We observe that we need (L', z) > 2n
to separate points and ¢(L’,z) > n + 1 to separate 1-jets. We then use
Proposition 3.2 in the former case and Proposition 3.1 with s = 1 in the
latter.

(3.7.3) and (3.7.4) are proved similarly using Theorem 3.6.2 and
Lemma 1.5.4. O

4. Better bounds for global generation.

In this section we improve upon Theorem 3.7.1 and 3.7.3. The method
is similar to the one of the previous section. However, it does not use local
Seshadri constants. It needs a similar local positivity result which allows
one to apply the same techniques used in Theorem 2.2 in order to produce
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sections. Once the local positivity at one point has been established, the
technique employed in Theorem 2.2 becomes transparent.

Let us recall, for the readers’s convenience, a few basic facts about
the algebraic counterparts to Nadel Ideals. The reference is [6].

Let X be a nonsingular variety and D be an effective Q-divisor. Let
f:+ X' - X be an embedded resolution of (X, D). The integral divisor
Kx//x — f*|D] can be written as P — N, where P and N are integral
divisors without common components and P is f-exceptional.

The multiplier ideal Z(D) associated with (X, D) is, by definition,
I(D) = f*OX/(P - N) = f*OX/(—N) g Ox.
One checks that this ideal sheaf is independent of the resolution chosen

and that Ox/(P — N) has trivial higher direct images. As a consequence,
we get the following vanishing result.

PROPOSITION 4.1 (cf. [6], 1.4). — Let X be a nonsingular projec-
tive variety, L be a line bundle on X and D be an effective Q-divisor on
X. Assume that £ — D is nef and big.

Then H(X,Kx ® L Z(D)) = {0}, for every j > 0.

The following functorial property of these ideals is an easy conse-
quence of the definitions.

LEMMA 4.2. — Let 7w : P — X be a smooth and proper morphism
of nonsingular varieties and D be an effective Q-divisor on X. Then
m*ZI(D) = I(n*D).

Proof. — Consider the following cartesian diagram:
pr Iop
= O U=
x L

where f : X’ — X is an embedded resolution of singularities of the log-
pair (X, D). Since 7 is smooth, f' : P’ — P is an embedded resolution of
(P,7*D).
We have
I(r*D) = fu(Kpyp—Lf"(7*D)]) f' (7" Kxyx — |7 f*D))
= (" Kxyx =7 |f*D]) = f.(x" (Kx/x = [f*D]))
=m"(f.(Kx/x — |f*D]))  =="1I(D),
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where: the second equality holds because the formation of the sheaf of
relative differentials Q}D /x commutes with the base change f; the third
equality holds because 7’ is smooth; the fifth stems from the fact that
cohomology commutes with the flat base extension . O

The following result is a Q-divisors reformulation of the result of
Anghern-Siu and Tsuji. The result is due to Kollar [13]. The formulation
given below in terms of algebraic multiplier ideals is due to Ein [6].

THEOREM 4.3. — Let X be a nonsingular projective variety of
dimension n and £ be an ample line bundle on X such that

£ Z > B(n+1,2)¢
for every d-dimensional integral cycle Z on X.

Then, for every point x € X there exists an effective Q-divisor D such
that D = AL for some positive rational number 0 < A < 1 and x is in the
support of an isolated component of V(Z(D)).

Remark 4.4. — A similar statement holds if we consider several
distinct points.

THEOREM 4.5. — Let m : P — X be a smooth morphism with
connected fibers of nonsingular projective varieties, n be the dimension of
X, M be a nef and m-big line bundle on P, L be an ample line bundle on
X such that

£ Z > B(n+1,2)¢

for every d-dimensional integral cycle Z on X.

Then the vector bundle m.(Kp + M) ® L is generated by its global
sections.

In particular, if L is any ample line bundle on X, then we can choose,
L:=B(n+1,2)L.

Proof. — Let x € X be an arbitrary point and D be a Q-divisor for
L as in Theorem 4.3. Since £ — D is ample and M is nef and 7-big, the Q-
divisor M +7*(L — D) is nef and big (even ample) on P. The smoothness of
w implies, by virtue of Lemma 4.2, that 7*Z(D) = Z(n*D). It follows that
HY (P, (Kp+M+m*L)@n*I(D)) = H(P,(Kp + M +7*L) Z(n* D)) =
{0}, the second equality stemming from Ein’s version of Nadel Vanishing
Theorem Proposition 4.1.
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Since V(Z(D)) has isolated support at z, if we denote F, := 7~ (z),
then we conclude that

H°(P,Kp+ M + n*L) —> H°(F,,(Kp + M + 1*£) ® OF,).

The result follows from the natural identification between the map given
above and the map

HO(X77T*(KP+M)®£) _’W*(KP+M)®£®OX/IT1;U,

which holds because R'7,(Kp + M) = 0 is the zero sheaf by relative
vanishing. O

COROLLARY 4.6. — Let X be a nonsingular projective variety of
dimension n, E be a nef vector bundle on X, and L be an ample line bundle
on X. Assume that

£%.Z > B(n+1,2)¢

for every d-dimensional integral cycle Z on X.

Then Kx ® E®det E® L is generated by its global sections at every
point of X.

In particular, if L is any ample line bundle on X, then we can choose
L=B(n+1,2)L.

Proof. — Set P := P(FE), m := the natural projection onto X,
M := (r 4+ 1)ég, where r is the rank of F, and apply Theorem 4.5. O

Remark 4.7. — A similar statement holds for the simultaneous gen-
eration at several points; see Remark 4.4. The same is true for Theorem 4.5.

Remark 4.8. — The paper [2] contains similar results without the
factor det E. However, the assumption E nef is there replaced by a condition
on the curvature of E which is strictly stronger than nefness, and the
methods are purely analytic.

Remark 4.9. — We do not know if similar statements hold without
the factor det E.
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