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Abstract

• This a preliminary version. It is certainly full of typos and mistakes. I
am not sure if/when there will be a substantial revision. The lectures
will cover a strictly smaller subset of these notes, which can be used to
start digging deeper into the material. There are several exercises. They
are meant to be tackled by using the material that preceds them.

• The goal of the lectures is to introduce non experts to perverse sheaves
and to a crowning achievement of this theory: the decomposition theo-
rem concerning the homology of proper maps of complex algebraic vari-
eties. Since derived categories are a necessary tool, some effort is made
to introduce the reader to them by introducing the various concepts and
tools in a concrete settings. I have chosen two such setting to be the the
Leray-Hirsch theorem and the contraction of curves on surfaces. The
former is an illustration of the notion of splitting in the derived cateogry
(that is what the DT is), the latter yields very naturally to perverse
sheaves and to intersection complexes (the building blocks of perverse
sheaves).

• Here is list of the principal items to be covered (non linearly):

1. Leray-Hirsch, contracting curves on surfaces.
2. Review of derived categories and associated functors.
3. Deligne thoerem for smooth projective maps.
4. Pervers sheaves.
5. Decomposition and relative hard Lefschetz theorem.
6. Example of application of DT and RHL.
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1 Contracting curves on surfaces and Leray-Hirsch

The two topics are un-related, except for the fact that we view them as an exercise
in trying to extract topological information on the domain of a map in terms of the
topology of the base and of some features of the map.
In this section we carry out this study by only using basic algebraic topology, but
being careful to lay some grounds for a more sheaf-theoretic approach.
Our goal is to explain the statement of the decomposition theorem. which is best
understood as a statement in the derived category.
This theorem can be viewed as a generalization to singular complex algebraic maps of
a theroem of Deligne concerning smooth projective maps of complex quasi projective
varieties. This result is also best understood in the derived category.
We shall introduce the language and some of the properties of derived categories
by revisiting and re-proving the Leray-Hirsch theorem as well as the examples of
contractions of curves on surfaces.
Once that is done, we discuss and prove Deligne theorem by introducing more prop-
erties of the derived category.

??????????????
Unless otherwise stated, we use rational cohomology.

1.0.1 Contractions of curves on complex surfaces

1.0.2 Four examples to keep in mind

Let f : (X,E) → (Y, v) be the contraction of a configuration of compact complex
curves E = ∪jEj on a complex algebraic surface X,
i.e. Y = X/E, f is the quotient map and v = f(E).

The map f : (X,E) → (Y, v) is a proper map of R-varieties (of which we are only
considering the real points) of real dimension 4 (Exercise 1.0.2.1).

The map f is holomorphic IFF ||Ej · Ek|| < 0 (Grauert).

We have the following 4 key examples in mind.
(|L|, C): |L| the total space of a holomorphic line bundle L on a complex nonsingular
projective curve C identified with the zero section. Let o ∈ C be a point.

1. (X,E) = (|L|, C), with L = trivial.

2. (X,E) = (|L|, C), with L < 0

3. (X,E) the blow-up of (|L|, C), L = trivial, E = Ê ∪ E ,

(Ê the strict transform of C and E the exceptional divisor of the blow up).
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4. (X,E) as above, but L < 0.

In Examples 1 and 3, the space Y is not a complex surface.
In Examples 2 and 4, f is a complex algebraic map.

Exercise 1.0.2.1 (Contractions in real algebraic geometry) A textbook ref-
erence is [1], Proposition 3.5.6.

1. Prove that PnR is affine. Hint:

(x0 : . . . : xn) 7−→
(
xjxk
||x||2

)
∈M(n+1)×(n+1)(R) = R(n+1)2 .

Deduce tht real projective varieties are affine.

2. Find a closed embedding of real algebraic varieties

PnC → R?.

Hint: See hint above and modify it by changing xk to xk and landing in
R2(n+1)2 .

3. Let X be real affine algebraic (e.g. projective!), let ∅ 6= Y ⊆ X be a closed
algebraic subset. There is a map Φ : X → Z of real algebraic varieties where
Z is affine, Φ contracts Y to a point z ∈ Z and it is otherwise a biregular
isomorphism.

The exercise is to fill-in the details of the following sketch of proof.

We may assume that Y ⊆ X ⊆ Rn.

Let P (x) be a real polynomial vanishing precisely at Y (sum of squares of
generators of the ideal of X).

Then X =
∐
t∈R Xt (Xt the level “hypersurfaces” for P ).

Set X ′ = {(x, t) | tP (x) = 1} ⊆ X × R (with π : X ′ → R the projection).

We have Xt“ = ”X ′1/t := π−1(1/t), for all t 6= 0.

We lost Y = X0 which has been sent to infinity in the sense that the Xt“ =
”X ′1/t ⊆ Rn × {1/t} are getting further and further away from the origin of

Rn+1 as t→ 0.

Take the inversion involution i : Rn+1 \ {0} → Rn+1 \ {0}, u 7→ u/||u||2.

This way, the X ′1/t are getting closer and closer to the origin as t→ 0.
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The set Z := i(X ′)
∐{0} ⊆ Rn+1 is algebraic and closed (i is an algebraic iso,

so i(X ′) is algebraic and Z is its Zariski closure) (BTW: this is an instance of
algebraic Kolmogorov one point compactification).

Set

Φ(x) :=

(
P 2(x)

||x||2P 2(x) + 1
,

P (x)

||x||2P 2(x) + 1

)
.

This does the job.

1.0.3 The long exact sequence of relative cohomology

Let us study the topology of the four examples in §1.0.1.

We set U = X \ E =f Y \ v and we have the open/closed embeddings:

U
j // X E.

ioo

By Lefschetz duality on the oriented 4-fold X, we have that:

H iX,U = H4−iE.

Exercise 1.0.3.1 Lefschetz duality can also be expressed as HiX,X
∗ = H4−iE.

In example §1.0.1.1, take i = 2 and view a disk ∆ := D×{p} as a cycle in H2X,X
∗.

Then view the same in H2E = (H2E)∗ as the map sending the fundamental class
of E to the intersection number, here +1, of E with ∆.
Find the analogus picture for the remaining 3 examples.

In all 4 examples, X retracts onto E, so that

i∗ : H∗X ∼= H∗E.

There is the cycle class map clE : H2E → H2X.

We have the following commuative diagram, where the horizontal string is the long
exact sequence (les) of relative cohomology (modulo the Lefschetz duality identifi-
cations) and the map ι is defined by the commutativity of the diagram:

H2X,U

LD=

��

H3X,U

LD=

��
0 // H1X

j∗1 // H1U
b1 // H2E

clE //

ιE %%KKKKKKKKKK H2X
j∗2 //

∼=i∗

��

H2U
b2 // H1E // 0

H2E.
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By exactness, we have
Coker b1 = Im clE = Ker j∗2 .

By splicing, we get the two es:

0 // H1X
j∗1 // H1U

b1 // H2E
epi

clE
//

ιE $$HH
HH

HH
HH

H Im clE //

mono
��

0

H2E,

0 // Im clE
⊆ // H2X

j∗2 //

∼=i∗

��

H2U
b2 // H1E // 0

H2E.

The following key remark puts the map clE in the center of the stage and sets
apart, among the 4 examples, the complex algebraic examples as the ones for which
clE is an iso.

Remark 1.0.3.2
What follows is clear in view of exactness and of dimH2E = dimH2X = dimH2E.

1. clE = iso IFF ιE = iso (obvious since ι is defined as above).

2. clE = iso IFF clE = mono IFF clE = epi.

3. clE = iso IFF b1 = 0 IFF j∗1 = iso IFF j∗s = 0 IFF b2 = iso.

4. clE = 0 IFF Im clE = 0 IFF ιE = 0 (in which case we get two obvious ses).

Fact 1.0.3.3 (Borel-Moore homology and Poincaré duality [2]) Recall that
singular homology is the homology of the chain complex made of finite chains and
that Borel-Moore homology is the homology of chains which are locally finite. There
is a natural map H∗ → HBM

∗ . There is a natural iso HBM
i = H i

c
∨. On an oriented

manifold M , there is the natural intersection pairing

IM : Hi ×HBM
dim−i

// Q

and Poincaré duality takes the following forms

H i = (Hdim−i
c )∨, H i ⊗Hdim−i

c

∫
// Q non degenerate;

H∨i = H i = HBM
dim−i, Hi ×HBM

dim−i
IM // Q non degenerate.
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Exercise 1.0.3.4 For the following oriented manifolds X first calculate all groups
by finding explicit geometric cycles as generators in the homology-type groups and
closed differential forms in the cohomology-type one and then use these generators
to describe the intersection forms IX :

1. X = R;

2. X = R2;

3. X = R2 \ {(0, 0)};

4. X = C × C, the trival line bundle on the curve C;

5. X = C̃2, the blowing-up of C2 at the origin. Let L be the strict transform
of a line in C2 and let E be the exceptional divisor. We must have L ∼ aE;
determine a. Describe IX by using E and L. Do the same by using only E.
Describe clE by using E. Describe ιE using E. Finally, view ιE as a bilinear
map H2E ×H2E → Q by using E. How many ways do you know to interpret
and prove the statement that E2 = −1?

6. Do the same as above for all 4 examples in §1.0.1.

(The example above is a special case of one of the four. Which one?)

Exercise 1.0.3.5

1. In the complex algebraic Examples 1.0.1.2 and 4, we have cl =iso.

2. In the non-holomorphic Examples 1.0.1.1 and 3, we have cl 6= iso.

In fact, we have that the rank is 0 and 1, respectively.

1.0.4 The topology of the two complex algebraic contractions

In this case, we know that cl = iso.
We thus get the following information

H2E
ι
∼=

// H2E; H1X
j∗

∼=
// H1U ; H2E

cl
∼=

// H2X
j∗=0 // H2U.

Preview:
as we shall see, this information can be written as as iso of graded vector spaces

HX = IHY ⊕H2E[−2],

where IHY is the intersection cohomology module of Y .
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1.0.5 The topology of the other two contractions

In this case, all we can do is simply re-write the two exact sequences in §1.0.3 as
follows:

0 // H1X
j∗ // H1U

b // Ker cl // 0.

0 // Im cl
⊆ // H2X

j∗ // H2U
b // H1E // 0.

This makes it clear that, since the rank of cl depends on the situation (Exercise
1.0.3.5.2), we will meet hurdles (i.e. non trivial extensions see ?????) when trying
to describe HX in terms of something on Y , e.g. IHY .

1.0.6 The refined intersection form

The map clE : H2E → H2X is the class map sending the fundamental class of E
to the associated cohomology class, i.e. the Poincaré dual to the same fundamental
cycle of E, but viewed on X:

clE(Ej) = IX(Ej, ∗) ∈ (H2X)∨ = H2X, ∗ ∈ H2X.

The map ιE : H2E → H2E is the compositum i∗◦clE is the first appearance in these
lectures of a key player in the decomposition theorem, in fact in the basic theory of
perverse sheaves:
it is an incarnation of the refined intersection form associated with E ⊆ X.
There are two other equivalent ways to view this map ιE:
as the refined cup product in relative cohomology (first row)
and as the refined intersection product associated with the compact E on the smooth
oriented X (second row)

H2(X,U)×H2(X,U)

∼=LD×LD
��

// H4(X,U)

∼=LD
��

H2(E)×H2(E) // H0(E) = Q,

once we observe that bilinear maps on the bottom correspond to linear maps H2E →
H2E.
Note that while H2E and H2E are dual to each other,
there is no natural map between them until we view E as embedded in the oriented
manifold X and we observe that E is compact.
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1.0.7 Explicit description of the boundary and restriction maps

1. Le et us first deal with Example 1.0.1.1 with C = P1
C.

(The reader can deal with the case of arbitray genus for Examples 1.0.1.1 and
2 as an exercise.)

We have

H1U
b
∼=

// H2E

ιE=0
��

H2X
j∗

∼=
//

∼=i∗

��

H2U

H2E, H2E.

Due to the explicit and simple nature of the example, this is info we can see
directly.

Let us work this out.

We have (U ⊆ X) = (C∗ × S2 ⊆ C× S2):

• The map b is the transposed of the map (clearly an iso):

H1U
∼=←− H2(X,U) : S1 × {p} δ←− D × {p}.

We can also view the map b directly via via Poincaré duality

HBM
∗

PD
= H4−∗

as follows:
HBM

3 U = H1U
b−→ H2X,U

where a generator for the lhs is R>0×S2 which is the restriction of R≥0×S2

and b sends said generator to the boundary of R≥0×S2 which is 0×S2 i.e.
the fundamental class of E (via Lefschetz duality)

• The map j∗ is an iso by direct calculation involving Künneth:
a generator for the lhs, i.e. a section C× p of C× P1

C, goes to
a generator for the rhs, i.e. the section C∗ × p of C∗ × P1

C.

• The map clE = 0 since the class of E in HBM
2 X is trivial as it is the

boundary of R≥0 × S2.

2. Let us nw deal with the complex algebraic contractions.

We look at the special case of Example §1.0.1.2 in the case of genus zero and
degL = −1.

(As before, the other cases are left as exercises).

We have:

0 ∼= H1U
b=0−→ H2E, H2E

ι∼= H2E, H2X
j∗=0−→ H2U ∼= 0.
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Of course, we can work things out explicitly.

We have U ∼htp S3 and this gives the first two items below

• b = 0.

• j∗ = 0.

• We have clE = iso (standard fact about the blow up).

1.0.8 Compactifying the examples

We can compactify the examples in §1.0.1 by adding a copyC∞ of C at infinity.
We obtain contractions

f : (X,E) −→ (Y , v).

and what was complex algebraic is still complex algebraic and what was not so, it
is still not so.
Note that this operation does not affect the map ιE, for nothing happens around E.
On the other hand, something interesting happens to clE (which has the new target
H2X):

1. In the two non complex algebraic examples compactified, we have:

clE = mono (unlike before the compactification),

ιE = 0 (like before the compactification).

2. In the two complex algebraic examples compactified, we have:

clE = mono (like before) and

ιE = iso (like before).

Of course, in all the examples, ιE cannot change after compactifying: it is computed
in a neighborhood W of E in X.

• What is interesting, and ultimately a simple instance of the decomposition
theorem for proper maps of complex algebraic varieties, is that in our two
complex algebraic examples, the rk clE does not depend on W and

rk clE can be expressed in sheaf-theoretic terms locally near v

because it contributes the same amount to all H2f−1U (U neighborhoods of y)

• On the other hand, in the non complex algebraic examples, the rank of clE :
H2E → H2f−1U changes with U , so that:

rk clE cannot be expressed in sheaf-theoretic terms locally near v.

It is a bit premature now, but what I mean is that we have maps in the derived
category, in fact of perverse sheaves (????):

(H2E)v
clE−→Rf∗QX [2]

p−→(H2E)v
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the composition of which is ιE and that

• in the complex algebraic case it splits H2Ev (and hence H2Ev) off Rf∗QX

• in the non complex algebraic case it does not split off either summand and
H2Ev appears as a non split quotient of Rf∗QX .

1.0.9 The Leray-Hirsch theorem

1.0.10 Statement of Leray-Hirsch

We state a version of this classical result in the context of smooth fiber bundles so
that we can use differentail forms. Later, we revisit this approach and sheafify it ans
use it as a working example to introduce derived cateogries, especially the notion of
splitting of the derived direct image.
Let f : M → B be a C∞ fiber bundle with fiber F of dimension l and let, for b ∈ B,
Mb := f−1b.
The cohomology H∗M,R is an H∗B,R-module via f ∗(−) ∪ (−).
Let {αij}, 0 ≤ i ≤ l, j ∈ Ji, be a collection of cohomology classes in H iM,R with the
following property: for every i, the classes αij |Mb

, j ∈ Ji form a basis for H iMb,R.

Theorem 1.0.10.1 The H∗B-module structure on H∗M is free with basis the αij’s,
i.e.:

A :
⊕

0≤i≤lH
∗(B,R)Ji [−i]

∑
i,j
f∗αij∪−

// H∗(M,R)

is an iso.

1.0.11 Leray-Hirsch via Mayer-Vietoris

A standard reference for this approach is [3].
The proof below looks a bit different. This is because we later turn it into a proof
of a splitting in the derived cateogry.
We use the de Rham model for real cohomology cohomology:

H iM = H i(Γ(M,EM) =
closed i-forms

exact i-forms
,

where EM is the sheafified de Rham complex and the rhs is the cohomology of the
complex of global sections on M (M can be replaced by any of its open subsets).
Choose closed representatives aij ∈ Γ(M,Ei

M) for each of the αij.
Define a map of complexes

A :
⊕
i Γ(B,EB)Ji [−i]

f∗aij∧− // Γ(M,EM).
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Recall that if if C = (C l, dl) is a complex, then C[k] is the complex with C[k]l := Ck+l

and d[k]l = (−1)kdl (visually: if k > 0 you translate it back by k units).
Note that the above is a map of complexes precisely because the forms aij are closed.
Note also that if we change the representatives aij, then the new map A′ is homotopic
to A and therefore induces the same map on the cohomology of the two sides.
Recall that f, g : C → D are homotopic, if there is a collection ti : Ci → Di−i with
f − g = t ◦ d+ d ◦ t.
The cohomology of the complex domain of the map A is a free module over H∗B of
the type predicted by Leray-Hirsch.
Clearly, the two complexes are not isomorphic (in general).
The proof of the Leray-Hirsch theorem we have in mind, consists of showing that
A induces an iso on the cohomologies of the two complexes, i.e. that A is a quasi-
isomorphism (qis).

Let us now sketch the Mayer-Vietoris-type argument.
Cover B with a good covering (Uλ), i.e. Uλ and Uλ ∩ Uµ diffeomorphic to RdimB.
For simplicity, assume the covering is finite.
Let Mλ := f−1Uλ.
We have a commutative diagram of ses of complexes (let us omit some decorations)
(the exactness is an argument with partitions of unity for the difference maps on
the rhs).

0 // ⊕iΓ(Bλ ∪Bµ)Ji [−i] //

��

⊕i(Γ(Bλ)⊕ Γ(Bµ))Ji [−i]

��

// ⊕iΓ(Bλ ∩Bµ)Ji [−i] //

��

0

0 // Γ(Mλ ∪Mµ) // Γ(Mλ)⊕ Γ(Mµ) // Γ(Mλ ∩Mµ) // 0

The hypothesis of Leray-Hirsch imply the conclusion for the (necessarily) trivial
bundles over Bλ and Bλ ∩Bµ.
The map of les and the five lemma imply the conclusion for the bundle over Bλ∪Bµ.
We conclude by induction:

B1 ⊆ (B1 ∪B2) . . . ⊆ (B1 ∪B2 ∪ . . . ∪BN) = B.
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2 Leray-Hirsch re-visited and the language of de-

rived categories

2.1 Summary

This section is a kind of warm-up in view of Deligne theorem on smooth projective
maps (§3). This theorem can be considered as the precursor to the decomposition
theorem which is a about a splitting taking place in the derived category.

We introduce some of the necessary language and, in order to be a bit concrete,
we state and prove the Leray-Hirsch theorem and the Künneth formula as splittings
in the derived category. We first do so rather directly, using differential forms, and
then we do it again using some of the language of derived categories.

The outline of this section is as follows. A review of sheaf cohomology using soft
sheaves, Weil’s proof of the de Rham theorem, push-forward of complex of differ-
ential forms, Leray-Hirsch and Künneth, review of derived categories and derived
functors, Rf∗ ????, re-formulation of Leray-Hirsch in the derived category.

2.2 Mini-review: cohomology groups and direct image sheaves

A standard reference is [4]. A short one is [5] (uses soft sheaves). Others: [6, 7, 8, 2].

We work with sheaves of Abelian groups on a topological space T .
Let F be a sheaf T .

Complexes . . .→ Ci−1 → Ci → Ci+1 → . . . are often denoted by C.
As we have seen earlier, they can be shifted C[k].
An object F can be promoted to a complex with 0-th entry F and thus shifted,
F [k].
A quasi-isomorphism (qis) is a map of complexes inducing iso on cohomology.

There is the Godement resoulution of F :

0 −→ F
ε−→ G0(F ) −→ G2(F ) −→ G2F −→ . . .

which is a les of sheaves constructed canonically starting with F .
This construction is functorial.
It is often convenient to look at F → G(F ) as qis of complexes.
Define the cohomology groups of T with coefficients in F by setting:

H i(T, F ) := H i(Γ(T,G(F )) (cohomology of the complex of global sections).

Each Gi(F ) is a flabby sheaf (sections extend from open subsets).
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The flabbiness, implies that the functor F 7→ G(F ) is exact (ses of sheaves 7→ ses of
complexes).
If follows that, given a ses 0 → F ′ → F → F ′′ → 0, we get the ses of complexes
involving the Γ(T,G(−)) and the usual snake lemma yields the funcotrial les:

. . . −→ H i(T, F ′) −→ H i(T, F ) −→ H i(T, F ′′) −→ H i+1(T, F ′) −→ . . . .

A flabby sheaf F is Γ(U,−)-acyclic, i.e. for every open set U ⊆ T , we have
H>0(U, F ) = 0 (that is because a bounded below les of flabby sheaves yields a
les of global sections).
Given any Γ(T,−)-acyclic resolution a : F → A (a is a qis, Ai are Γ(T,−)-acyclic),
there is a canonical iso

H i(Γ(T,A))
=−→ H i(T, F )

obtained by composing the natural maps below:
(all isos by acyclicity of the A’s) (Ki := KerAi → Ai+1):

H i(Γ(T,A)) =
Γ(T,Ki)

Im Γ(T,Ai−1)
∂∼=→ H1(T,Ki−1)

∂∼=→ H1(T,Ki−1)
∂∼=→ . . .

∂∼=→ H i(T,K0 = F ).

(N.b.: if we take the Godement resolution it is a fundamental (and non-tautological)
fact that the resulting map is the identity.)
This construction tells that cohomology can be computed canonically using any
Γ(T,−)-acyclic resolution.

Example 2.2.0.1 By the Poincaré lemma, the resolution RM → EM of the constant
sheaf on a smooth manifold M via the sheafification of the de Rham complex is a
Γ(M,−)-acyclic resolution which is not a flabby resolution. In fact, it is a Γ(U,−)-
acyclic resolution for every open U ⊆M .

Example 2.2.0.2 The complex of singular cochains CT on a metrizable topological
space T is a flabby resolution of the sheaf ZT . One can see that there are canonical
identifications:

H i
sing(T,Z) = H i(Γ(T,CT )) = H i(T,ZT )

(caution: the first equality is not tautological! [9], p.26), and similarly, for the differ-
entiable cochains. This is important as it tells us that sheaf cohomology computes
singular cohomology. Similarly, for the differentiable cochains. A picky remark: if
T is only paracompact, then the complex of singualar cochains is only soft (soft =
sections lift from closed subsets), but since soft implies Γ(T,−)-acyclic it is still ok.
I do not know much about this is T is not paracompact.
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Let f : T → S be a continuous map.
The direct image pre-sheaf below is a sheaf (clearly flabby, if F is flabby):

f∗F : U 7−→ F (f−1U).

We can repeat all of the above by replacing the left-exact Γ(T,−) with the left-exact
f∗(−) and obtain the complex f∗G(F ) on S and the canonical direct image sheaves
on S

Rif∗F := H i(f∗G(F )).

They can also be computed using f∗(−)-acyclic resolutions (e.g. flabby, or, if T
paracompact, soft).

Exercise 2.2.0.3 Prove that the sheaf Rif∗F above is canonically isomrophic to
the sheaf associated with the pre-sheaf

U 7−→ H i(U, F ).

Find many examples of this presheaf not being a sheaf for i > 0.

Example 2.2.0.4 Let f : M → S be a continuous map, with M a manifold. The
sheaves Ei

M of i-differential forms are soft (sections lift from closed subsets) on every
open subset U ⊆ M . It follows that they are Γ(U,−)-acyclic for every U and thus
that they are f∗(−)-acyclic.

All of the above works with a bounded below (Ci = 0, ∀i� 0) complex of sheaves
C replacing F : we get the groups H i(T,C) and the sheaves Rif∗C on S.
In this case G(C) is the single complex of the double complex Gi(Cj).

Exercise 2.2.0.5 Prove that the cohomology sheaf H iC of a complex of sheaves is
the sheaf associated with the pre-sheaf

U 7−→ H i(U,C).

Find many examples of this presheaf not being a sheaf.

Remark 2.2.0.6 We showed that cohomology and direct image sheaves are definied
up to canonical iso, independently of the chosen Γ = or f∗-acyclic resolutions. If
C → A is a Γ(T,−)-acyclic (f∗(−)-acyclic, resp.) resolution, then we obtain the
complex Γ(T,A) (f∗A, resp.). If we have two resolutions the resulting complexes
are not iso as complexes. In fact they are not even qis. In order to state that these
complexes are well-defined up to canonical iso, we need the language of derived
categories (where qis=iso by decree). We come back to this point later.
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2.3 Leray-Hirsch via sheaf cohomology

2.3.1 The complex EX: Weil’s proof of de Rham’s theorem

Let M be a C∞ m-manifold.
Weil’s proof of de Rham’s theorem goes as follows ([5]):

• One proves (Exercise 2.2.0.2) that H i
sing(M,R) = H i(M,RM), where the lhs is

singular cohomology and the rhs is sheaf cohomology.

• One sheafifies the de Rham complex and obtains the complex EM = (E•M , d),
where Ei

M is the sheaf of smooth R-valued differential i-forms on M , and the
differential is the sheafified exterior derivation.

• One forms the de Rham complex of sheaves (2.2.0.1):

0 −→ RM −→ E0
M

d0−→ E1
M

d1−→ . . .
dm−1

−→ Em
M −→ 0

which is a soft, hence Γ(U,−)-acyclic, resolution of RM , for every U open in
M : i.e.

Hq(U,Ei
U) = 0, ∀i, ∀q > 0.

• By splicing the resolution into ses, Weil deduces, by what is now a classical
inductive argument (§2.2), the de Rham’s theorem:

H i
sing(M,R) = H i(M,RM) = H i(Γ(M,EM), d) =

global closed i-forms

global exact i-forms
.

2.3.2 The complex f∗EM and the sheaves H if∗EM

Let f : M → B be a map of C∞-manifolds.
If F is soft, then f∗F is soft.
The pushed-forward complex on B:

f∗EM :=
[
0→ f∗E

0
M

f∗d0→ f∗E
1
M

f∗d1→ . . .
f∗dm−1

→ f∗E
m
M ,→ 0

]
is a complex of soft sheaves, therefore we have canonical identifications:

H i(B, f∗EX) = H i(Γ(B, f∗EM)) = H i(Γ(M,EM)) = H i(M,EM) = H i(M,RM).

i.e. the complex of global sections of f∗EM on B computes the cohomology of M .
The usual pull-back in cohomology f ∗ : H i(B,R) → H∗(M,R) can be viewed as
follows:
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take the natural pull-back map of complexes

EB −→ f∗EM , ω 7−→ f ∗ω

and take the map induced on the cohomology of the complexes of global sections.
Note that the pull-back in cohomology is rarely injective.
Since soft sheaves are f∗(−)-acyclic, we can use f∗EM to compute Rif∗RM and we
have canonical isos:

H if∗EM = Rif∗RM , ∀ i.

Remark 2.3.2.1 (Maps induced by cohomology classes on M)

1. Let u ∈ Γ(M,Ek
M) be a closed k-form on M . The cup product map with u

defines a map of complexes

u : EM −→ EM [k], a 7−→ u ∧ a,

where EM [k] is the complex EM moved to the left k steps (so that Ei
M is aligned

with Ei+k
M ).

The induced map in cohomology is of course the cup product map with [u].

2. Similarly, we have
u : f∗EM −→ f∗EM [k],

inducing the same map as above in cohomology.

It also induces the cup product map on the cohomology sheaves:

[u] : H if∗EM −→ H i+kf∗EM .

This map is important in the context of the relative hard Lefscehtz theorem.

3. We also have the map (EB → f∗EM seen above is a special case):

u : EB −→ f∗EM [k], b 7−→ u ∧ b

inducing b 7→ [u] ∪ f ∗b is cohomology (H(M,RM) is an H(B,RB)-module).

This plays an important role in the Leray-Hirsch theorem.

Remark 2.3.2.2 Recall the notion of homootpy in §1.0.11): a map of complexes
f : C → D is homotopic to zero if there are ti : Ci → Di−1 s.t. f i = t ◦ dC + dD ◦ t.
Two homotopic maps induce the same map in cohomology. What happens if we
take u′ = u+ dv in what above? Easy, we get that the two resulting maps u and u′

are homotopic to each other (i.e. u′ − u is homotopic to zero).
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2.3.3 Leray-Hirsch via sheaf cohomology

Let f : M → B be a fiber bundle with typical fiber Mb = F of dimension l.
Let

{aij} ∈ Γ(M,Ei
M), 0 ≤ i ≤ l, j ∈ Ji

be a collection of closed forms on M .
Each closed form aij gives rise (see Remark 2.3.2.1, part 3) to a map

Aij : RB qis

εB // EB
aij∧f∗− // f∗EM [i].

We shift each such map forward by i steps, and assemble all the maps into a single
map of complexes and obtain: (denote the sum of the εB by ε̃B)

A =
∑
i,j Aij :

⊕
i≥0 RJiB [−i] ε̃B

qis
// ⊕

i≥0E
Ji
B [−i]

∑
aij∧f∗−

?qis?
// f∗EM .

Up to homotopy, the map A depends only on the cohomology classes [aij] (Remark
2.3.2.2).

It is clear that in order to use the map A to prove the Leray-Hirsch theorem, we
need to prove that A is a soft resolution.
The map ε̃B is a soft resolution of its source.
The target of A is a soft complex.
We are left with showing that

∑
ij Aij is a qis.

This can be verified locally on B, i.e. by looking at maps induced on the cohomology
sheaves.
Take

aij ∧ f ∗− : EB[−i] −→ f∗EM .

It induces a map of i-th cohomology sheaves:

[aij] : RB −→ H if∗EM .

Exercise 2.3.3.1 Verify that the i-th cohomology sheaf H i(f∗EM) is a sheaf with
stalk at b ∈ B canonically isomorphic to the de Rham cohomology of the corre-
sponding fiber Mb:

H i(f∗EM)b = H i(f−1(Ub),R) = H i(Mb,R)

(here Ub ⊆ B is any contractible open neighborhood of b ∈ B).
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According to Exercise 2.3.3.1, at the level of stalks at b ∈ B, the map of cohomology
sheaves [aij] sends 1b → [aij]|Mb

∈ H i(Mb,R).
Since we are assuming that these classes form a basis, we have reached the desired
conclusion: A is a soft resolution.
Clearly, the map induced by A in cohomology is the Leray-Hirsch map associated
with the classes [aij] and we are done.

We have proved something a little stronger that is quite important in view of the
subjects of these lectures:

we have showed that, up to a qis, the complex f∗EX splits into a direct sum of
complexes of type RB[−i].
In the language of derived categories, we have proved that Rf∗RM is isomorphic in
the derived category to the direct sum of its shifted cohomology sheaves, all of which
are constant sheaves

Rf∗RM ∼=
⊕
i≥0

Rif∗RM [−i].

Exercise 2.3.3.2 Let f : M = B × F → B be the projection. Show that we do
not need to make any choice of generating classes and can obtain a canonical qis

K :
⊕
i≥0

H i(F )[−i] −→ f∗EM .

where H i(F ) denotes the constant sheaf with stalk H i(F,R).
Deduce the classical Künneth formula.

2.4 Derived Leray-Hirsch

2.4.1 Mini-review: derived categories and functors

An excellent reference is [10].
First a few words. Given a complex C, we have constructed different qis εi : C → Di.
We owuld like a framework in which it is meaningful to invert the qis, so that they
become iso and we can happily state that Di

∼= Dj. This can be done, almost
trivially, by means of an elementary universal construction. The problem is that
one looses control of the calculus of the arrows. We do not only need the qis to be
iso, we need some important ses of complexes to retain enough of their exactness
in the new category so that they stay useful and possible to work with. This is
unclear, at best, if we use that universal construction. One really needs to have
a triangulated categoriy (where a ses has become something retaining the essence
of the exactness). One construction that achieves this is the homotopy category
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of complexes. However, the qis are still not iso. The miracolous fact is that if
we perform on the homotopy category the inversion of the qis construction, the
calculus of the arrows is greatly simplified, the result is equivalent to the qis-to-iso
construction performed on the cateogry of complexes that resulted in the “bad”
arrows, and is still triangulated! This is funny: qis-to-iso on complexes forces a
factorization via the homotopy category.
The resulting cateogry is called the derived category. It is the natural framework
for defining derived functors togehter with their universal proeprty. Many of the
classical objects of algebraic topology can be interpreted via derived funcotrs, many
of the classical operations between them can be handled efficiently via the arrows
of the derived cateogry, and many of the classical long exact sequences are now
encoded into the triangles that give the name to a triangulated category.
Verdier, whose thesis under Grothendieck’s guidance, introduced this concept, used
to say (more or less) that they are a paradise where dozens of identities make for
an efficient handling of many complicated concepts. The introduction to his thesis
makes this case very clearly for the iterated change of coefficients “formulæ” when
dealing with complexes.

————————————-

Let A be an Abelian category and C(A) be the category of complexes.
The derived category D(A) is obtained from the category of complexes C(A) by
imposing that qis become isos. There is a canonical way to do this in a very general
setting. Unfortunately, the ensuing description of the arrows is more or less useless
in practice.
There is a construction that yields to a better description of the arrows: take the
homotopy category K(A) first (maps of complexes modulo homotopies) and then
localize wrt qis (this localization procedure is not possible in C(A), for you need
certain diagrams to commute, and they do only in K(A)):

C(A) −→ K(A) −→ K(A)qis =: D(A).

The objects are the same in all three categories; the arrows K → K ′ in D(A) can
be described as equivalence classes roofs in K(A):

K ′′
f

""DD
DD

DD
DD

qis

}}||
||

||
||

K K ′.
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where two roofs are equivalent if there is a commutative diagram:

K ′′

f

""DD
DD

DD
DD

qis

}}zz
zz

zz
zz

K K

qis

OO

qis

��

qisoo K ′

K ′′′.

g

<<zzzzzzzzqis

aaDDDDDDDD

Composition requires the basic verifications that suitable diagrams can be completed
(omitted).
It is clear then that, at the price of replacing K with the source K ′′ of a qis K ′′ → K,
we can represent an arrow in D(A) with an arrow in K(A).

Caution: arrows in D(A) yield maps in cohomology. An arrow is then as iso iff it
induces isos in cohomology; however a map inducing the zero maps in cohomology,
is not necessarily the zero map (the simplest example I know with field coefficients
for the sheaves comes from the normalization of two complex lines meeting at one
point).

Caution: the derived category is not Abelian, for one can show that kernels would
have to be direct summands. This applies to the homotopy cateogory as well.

If A has enough injectives, then we can give a better description of the morphisms
in D+(A) (+ stands for complexes bounded below, e.g. Godement resolutions of
sheaves are typically infinite on the right, but are clearly bounded below).

Briefly:

• An object I of A is said to be inejctive, if HomA(−, I) is exact;

• we say A has enough injectives if every object in A embeds into an injective
one;

• if A has enough inejctives, then there is an equivalence of categories

K+(I)
∼=−→ D+(A),

where I ⊆ A is the full subcategory (not Abelian, not a problem: it is additive
and that is enough) of injective objects.

An inverse consists of chosing injective resolutions (which exist, by the second
bullet).

Exercise 2.4.1.1 Let I → I ′ be a qis in K+(I). Show directly that it is an iso.
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Via this equivalence, the arrows in the derived category can be seen as bona-fide
maps of complexes modulo homotopy.

The category of (sheaves of) Abelian groups has enough injectives (any coefficients
OK!).

From now on, assume that A has enough injectives.

Given C ∈ D+(A), there is an injective resolution C → I(C) (I ∈ C+(I), the arrow
a qis).
Any two injective reolutions are canonically qis in the homotopy category and are
thus canonically isomorphic in the derived category: this is why derived categories
are so useful.
For every C ∈ D+(A) fix an injective resolution C → IC .
Given a left-exact functor of Abelian cteogries

G : A −→ B

(a ses 0→ A→ A′ → A′′ → 0 is sent to an es 0→ G(A)→ G(A′)→ G(A′′)),
we have the right derived functor:

RG : D+(A) −→ D+(B), C 7−→ G(IC).

(it is well-defined up to unique iso of functors subject to a certain universal property).

Remark 2.4.1.2 Note that the functor above is actually defined with sourceK+(I).
In order to verify that it is indeed a functor we need

Exercise 2.4.1.3 (i) Prove that a ses of injectives splits. (ii) Use this fact and
splicing to prove that if I ∈ C+(I) is acyclic (i.e. H∗(I) = 0) and G is left-exact,
then G(I) is acyclic. (iii) Prove that if u : I → I ′ is a qis in C+(I), then G(u) is a
qis in C+(B); (hint: use the cone C(u) and (ii)). (iv) Let Ci ∈ C+(A), i = 1, 2, and
Ci → Ii be two resolutions in C+(I). Prove that a map u : C → C ′ in C+(A) yields
a canonical map of the corresponding resolutions in K+(I) and that this map is an
iso iff u is a qis.

We have the i-th right derived functors:

RiG : D+(A) −→ B, C 7−→ H i(RG(C)).

A ses in C+(A) gives rise to a les of RiG’s in B
(the right generality for this statement requires the notion of cones and distinguished
triangles; we do not dwell on this in these lectures; if this makes you nervous, just
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keep in mind, that a distinguished triangle is isomorphic in the derived category to
a ses of complexes. Moreover, a ses yields a canonical distinguished triangle.
When working in the derived cateogry, I will use, by a serious abuse of language,
the term ses in palce of distinguished triangle.

Remark 2.4.1.4 (Not enough inejctives?) It happens. You can still get by if
you have a fixed left-exact functor G : A → ? and you have a subclass R ⊆ A
of objects adapted to G: i.e. (i) if R ∈ C+(R) is acyclic, then G(R) is acyclic,
(ii) every A ∈ A embeds in some R ∈ R. Then you still have an equivalence
K+(R)qis

∼= D+(A). (If there are enough injectives, the class of injective objects is
adapted to any left-exact functor and we have K(I) ∼= K(I)qis, hence the importance
of inejctives. However, the categories of constructible sheaves and of perverse sheaves
do not have enough inejctives!) This is good for two reasons: (i) the more concrete
description via this equivalence and (ii) we can construct the derived functor of G
using these resolutions exactly as it was done above. Note that once this is done, it
makes sense to define G-acyclic objects of A (R>0GA = 0). In this case, the objects
of R are automatically G-acyclic and the collection of G-acyclic objects is adapted
to G. Moreover, if we have two G-acyclic resolutions C → Ji, where the Ji have
G-acyclic entries, then the two objects G(Ji) are canonically isomorphic in D+(B).
The advantage of this is that once we know RG exists, we have some freedom in
choosing R. Compare this with Weil’s argument outlined in §2.2. Caution: given
another left-exact G′, the functor RG′ may not exist and, even if it does, there is
no reason why it should be computed using objects adapted to G.

Example 2.4.1.5 (Classes adapted to some funcctors) ([4, 7]) Flabby sheaves
are adapted to the global sections Γ(T,−) and push-forward f∗(−) functors. Ditto
for soft sheaves on paracompact spaces, where flabby implies soft. A useful fact is
that on a metrizable space, the restriction of flabby to any subset is flabby. Coherent
sheaves are adapted to Γ(X,−), X an affine variety (this was one of many Serre’s
stunning discovery). Flat sheaves (:= tensor product with them is an exact func-
tor) are adapted to the (right-exact) tensor product (essential, since in general the
category of sheaves does not have enough projectives). For locally compact spaces
which are countable at infinity, soft sheaves are adapted to Γc(T,−) (sections with
compact support) and f!(−) (direct image with proper support). This is because,
in this case soft = c-soft (can lift sections from a compact subset) ([7]). Note also
that f! preserves c-softness.

2.4.2 The functors RΓ, Rf∗, f
∗, RΓc, Rf!, RΓZ, RHom(K,−), RHom(K,−)

Well, this is a lot of functors. The good news is that the recipe to define them is
the same in each case (except for f ∗ which is exact). The bad news is that to have
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a good working knowledge of these objects, one should add a few more (say f ∗, f !,
derived tensor product duality, vanishing and nearby cycles) and then work through
a long list of the wonderful proeprties that these derived functors enjoy, especially
when combined (for a short list, see [12]; for a longer one see [7]).
In these lectures, I think I get by with the following list:

Rf∗, f
∗, i!(i closed embedding), RHom, RHom,D.

Let f : T → S be continuous and C be a bounded below complex of sheaves of
Abelian groups.
The functors Γ(T,−) and f∗(−) are left exact.
The construction in §2.4.1, i.e. apply the functor to an injective resolution, gives
rise to:

RΓ(T,C), RiΓ(T,C) =: H i(T,C); Rf∗C, Rif∗.

Remark 2.4.2.1 What is the relation between this definition of cohomology and
the one via Godement resolutions (§2.2)? They are canonically iso in view of the
fact that the Godement resolution is flabby (Example 2.4.1.5 and Remark 2.4.1.4).
Ditto for RΓ(T,−), Rf∗ and Rif∗. Similar remarks hold for the other functors and
will not be made explicit.

Exercise 2.4.2.2 (Cohomology on T and S and direct image presheaves)
Show that

H i(S,Rf∗C) = H i(T,C).

Prove that

Rif∗C is the sheaf associated with the presheaf V 7−→ H i(f−1(V ), C|).

Look back to your solution to Exercises 2.2.0.3 and 2.3.3.1. This is not the case for
Rif!C: why?

Exercise 2.4.2.3 (Pull back f ∗) Let G be a sheaf on S and define f ∗G to be the
sheaf associated with the presehaf

T ⊇ U 7−→ lim
W⊇f(U)

G(W ).

Show that the presehaf above is almost never a sheaf. Show that there is a natural
map of sheaves G→ f∗f

∗G. Deduce that there is a natural map G→ Rf∗f
∗G in the

derived category. The induced map in cohomology H(S,G) → H(T, f ∗G) is called
pull-back. If G = ZS, then it is the usual pull-back in cohomology (for paracompact
spaces §2.2). The functor f ∗ is exact and it extends in an obvious way to an exact
functor on complexes and to a functor of the corresponding derived categories (no
boundedness needed).
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Since the i-th direct image sheaf Rif∗C is the sheaf on Y associated with the
presheaf:

U 7−→ H i(f−1U,C|),

restriction (=pull-back) to the fiber induces the natural base change map:

(Rif∗C)s −→ H i(Ts, C|Ts).

Give examples where this map is neithr mono, nor epi.
It is an iso if f is a fiber bundle over a locally contractible space, or if f is a proper
map of locally compact spaces (proper base change theorem).

Exercise 2.4.2.4 (Cohomology with compact supports and Rf!) (See [10, 7]).
Let T be a locally compact space. Define Γc(T,−) the functor of sections with
compact supports. Show that it is left-exact. Define the cohomology groups with
compact supports H i

c(T, F ). Let f be a map of locally compact spaces. Let f! be
the functor direct image with proper supports:

f!F (V ) := {s ∈ F (f−1(V )) | supp(s) → V is proper}.

We have a map f! → f∗ which is an iso iff f is proper. The functor f! is left-
exact. Define Rf!, R

if!. Observe that if f is proper, then Rf! = Rf∗. Show that
H i
c(T,C) = H i

c(S,Rf!C). Show that there is a natural isomorphism (Rif!C)s ∼=
H i
c(Ts, C|Ts) This is the base change iso: note the different, better, behavior with

the base change map for the ordinary direct image sheaves seen above. Find family
of sheaves which are Γc-acyclic and/or f!-acyclic.

If S and T are locally compact, then we also have

RΓc(T,C), RiΓc(T,C) =: H i
c(T,C); Rf!C, Rif!C,

Hc(T,C) = Hc(S,Rf!C).

However, Rif!C is not the sheaf associated with the pre-sheaf U 7→ H i
c(f
−1U,C|) (it

is not a pre-sheaf, for there is no restriction to open subsets!).

Example 2.4.2.5 The map RM → EM (§2.3.1) is a qis of complexes, hence (gives
rise to) an iso in the derived category. Since EM is soft, hence Γ(U,−)-acyclic and
thus f∗(−)-acyclic, we deduce (Remark 2.4.1.4) that the complex f∗EM (§2.3.2) is
canonically isomrophic to Rf∗RM in the derived category. A bit more explicitely:
given RM → EM and RM → IRM , by the proeprties of injectives, there is a map of
resolutions EM → IRM which is a qis and unique up to homotopy. Apply f∗ and
show that the resulting map is a qis (see §2.2) and thus gives the desired canonical
iso in the derived category.
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Exercise 2.4.2.6 Let Z ⊆ X be locally closed. (Reminder: the support of a section
is always a closed set, but the support of a sheaf F is defined to be the closure of
the not necessarily closed set where Fx 6= 0.) Define the functor ΓZ(X,−), from
sheaves on X to Abelian groups, by setting F 7→ Γ(X,F ), the sections of F on X
supported on Z. Show that ΓZ(X,−) is left-exact and yields RΓZ(X,−). Define
a functor F 7→ ΓZ(F ), from sheaves on X to sheaves on X, by the assignement
U 7→ ΓZ(U, F ) (sections of F on U supported on Z). Show that ΓZ is left-exact
so that we get RΓZ . Prove that H i(X,RΓZ(C)) = H i(RΓZ(X,C)) =: H i

Z(X,C)
(cohomology with supports on Z).

Exercise 2.4.2.7 (f∗ and injectivity, f! and c-softness [10]) Show that (f ∗, f∗)
is an adjoint pair of functors (Hom groups):

Hom(f ∗G,F ) = Hom(G, f∗F ).

Deduce that f∗ preserves injectivity. Find examples showing that f! does not pre-
serve injectivity. Deduce the formula R(g ◦ f)∗ = Rg∗ ◦ Rf∗ (= means can iso).
Prove that f! preserves c-softness so that we get the formula R(g ◦ f)! = Rg! ◦Rf!.

In order to discuss RHom etc., one should really discuss derived functors of bi-
functors (see [7]). Instead of doing that, let us just outline what ensues.
Let A be an Abelian category. Given K ∈ C−(A) and C ∈ C+(A), define, functori-
ally, a complex in C+(A):

Homl(K,C) := Πp∈ZHomA(Kp, Cp+l), [dlf ]p := dl+p ◦ fp + (−1)l+1fp+1dp.

Note that an l-cocycle is a map of complexes K → C[l] and that an l-coboundary
is a map K → C[l] homotopic to zero, i.e.

H l(Hom(K,C)) = HomK(A)(K,C[l]).

The functor descends to the respective homotopy categories (this is not obvious).
Define: (C → IC an injective resolution) (o is for opposite category):

RHom(K,C) := Hom(K, IC), RHom : (D−(A))o ×D+(A) −→ D+(Z-Mod).

(Note the pleasant fact that we do not need to modify K.)
This turns out to be the right derived functor of the left-exact bi-functor Hom :
Ao ×A → Z-mod, whatever that is.
We have

Hn(RHom(K,C)) = Hn(Hom(K, IC)) = HomK(A)(K, IC).
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We are free to replace K with anything qis to it ([2], I.6.2; there K is bounded
below, but what is important is that IC is bounded below and injective), without
changing the rhs.
Using the description of arrows in D(A) as equivalence classes of roofs in the ho-
mootpy category, we see that we have the natural map

HomK(A)(K, IC) −→ HomD(A)(K, IC).

This map is surjective (use the roof description and [2], I.6.2).
The map is injective: use the roof descritpion and deduce that if a map goes to zero,

then we get K ′
u qis−→ K

f→ IC giving the zero map in homotopy and we use [2], I.6.2
again.
We thus have the important formula:

HomD(A)(K,C[i]) = H i(RHom(K,C)) = H0(RHom(K,C[i]))

Example 2.4.2.8 Let K = ZT . Then Hom(ZT , C) = Γ(T,C). It follows that since
RHom(Z,−) = RΓ(T,−), so that

HomD(ZT -mod)(ZT , C[i]) = H i(T,C),

i.e. an i cohomology class with coefficients in C is the same thing as a map ZT → C[i]
in the derived category.

Remark 2.4.2.9 In particular, we obtain a different way of viewing the cup product
maps 1 and 3 in Remark 2.3.2.1:

HomD(ZT -mod)(ZT ,ZT [i]) = H i(T,ZT ) 3 a : ZT [−i] −→ ZT .

HomD(ZT -mod)(ZS[−i], Rf∗ZT ) = H i(T,ZT ) 3 a : ZS[−i] −→ Rf∗ZT .

Let us talk about RHom.
There is the presheaf Hom(F,G) : U 7→ Hom(F|U , G|U).
It is a sheaf and its global sections are Hom(F,G).
Repeating the constructions mentioned above for RHom, we obtain RHom(K,C),
the result being a complex of sheaves (vs. Abelian groups).

Remark 2.4.2.10 (Non zero maps which are zero in cohomology) Example
2.4.2.8 shows inequivocably that maps in derived categories K → C that induce the
zero maps H iK → H iC need not to be zero.
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Remark 2.4.2.11 (Maps do not glue properly) The same example shows that
a map in the derived category of sheaves that becomes zero on the elements of an
open covering, needs not to be zero. This latter fact shows we cannot glue uniquely
maps in the derived category (which is thus not a stack).

Exercise 2.4.2.12 Prove that

RHom(K,C) = RΓ(T,RHom(K,C)).

(Hint: if F and G are sheaves and G is injective, then Hom(F,G) is flabby, hence
Γ(T,−)-injective).
“Derive” the adjunction relation of Exercise 2.4.2.7, i.e. show that

Rf∗RHom(f ∗K,C) = RHom(K,Rf∗C)

and
Hom(f ∗K,C) = Hom(K,Rf∗C).

Apply this to f ∗K = f ∗K and to Rf∗C = Rf∗C to get the natural adjunction maps

K −→ Rf∗f
∗K, f ∗Rf∗C −→ C.

(Hint: see previous hint.) (See also §4.2.3.)

Remark 2.4.2.13 (Yoneda Ext-groups) ([10]) Do not assume there are enough
inejctives. We have that the Yoneda Yon.Exti

A(A,B) groups classifying i-extensions
of B by A, i ≥ 0, are canonically iso with HomD(A)(A,B[i]). If there are enough
injectives, then these can be computed using

Yon.ExtiA(A,B) = HomD(A)(A,B[i]) = H i(RHom(A,B)) = H i(T,RHom(A,B)).

2.4.3 Derived of Leray-Hirsch and s-splitting

We have defined the functor Rf∗ in the previous section.
It is thus clear that the proof of the Leray-Hirsch theorem in §2.3.3 gives something
stronger, namely that there is an isomorphism

A =
∑
i,j∈Ji

[aij] :
⊕
i≥0

Rif∗RM [−i]
∼=−→ Rf∗RM .

in the derived category of sheaves on B whose induced map in cohomology is the
map A of Theorem 1.0.10.1.
Note that in view of Remark 2.4.2.9, we do not need to use differential forms.
In fact we do not need field coefficients.
The reader can formulate and prove the Z-version of Leray-Hirsch.

Caution: One has to exercise caution with the Künneth formula.
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Exercise 2.4.3.1 Let f : X = F ×Y → Y be the projection. Find a class of spaces
for which you can solve this exercise with the same method of proof of “derived”
Leray-Hirsch outlined in this section. Prove that there is a natural isomorphism in
the derived category ⊕

i

H i(F, Z)[−i]
∼=−→ Rf∗ZX ,

where H i(F, Z) is the constant sheaf with stalk H i(F, Z). Deduce that

Ha(X, Z) ∼=
⊕
i

Ha−i(Y,H i(F, Z))

and give examples showing that in general, we have

Ha−i(Y,H i(F, Z)) 6= Ha−i(X, Z)⊗Z H
i(F, Z).

Definition 2.4.3.2 A complex K ∈ D(A) is said to be s-plit if there is an iso in
D(A) ⊕

i∈Z
H i(K)

∼=−→ K.

We call such an iso an s-splitting (s stands for standard, as in standard truncation,
standard t-structure . . . ).

Clearly, inthe Leary-Hirsch and Künneth situations, the complex Rf∗ZM is s-split.

2.4.4 s-splitting for blowing-up nonsingular centers

Let us show that the method of proof of the derived Leray-Hirsch theorem outlined
in §2.4.3 applies to blowing-ups with nonsingular centers.

Let f : BlZY =: X → Y be the blowing up of a noningular complex manifold Y
along a nonsingular closed submanifold Z ⊆ Y .

Let c := dimY − dimZ (note that the cases c ≤ 1 are trivial).
Let E ∈ H2(X, Z) be the class of the exceptional divisor.
We have that p := f|E : E → Z is a Pc−1-bundle (i.e. the cohomology of the fibers
of f is known).
The powers Ej ∈ H2j(X, Z), 0 ≤ j ≤ c − 1 satisfy the hypothesis of Leray-Hirsch
in the sense that, even though f is not a fiber bundle, we have that the collections
of classes {Ej} forms a basis of the cohomology, when restricted to any fiber of f
(points, or Pc−1

C ).
By Remark 2.4.2.9, we have maps in the derived category:

E 0 : ZY −→ Rf∗ZX , E j : ZZ [−2j] −→ Rf∗ZX , 1 ≤ j ≤ c− 1,

31



which we can add up to yield a map

E : ZY
⊕ ⊕

1≤j≤c−1

ZZ [−2j]
∼=−→ Rf∗ZX

which is an iso since it induces isos on all cohomology sheaves.
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3 Decomposition theorem for smooth projective

maps

The main goal of these lectures is to discuss the decomposition theorem [16] for
proper maps of complex algebraic varieties, the archetype of which is the combina-
tion of two theorems of Deligne’s which are the subject of this section.

3.1 Notation

Unless otherwise stated, we work with complex quasi projective varieties endowed
with the classical topology.
Our main interest is

smooth projective maps of complex quasi projective varieties f : X −→ Y .

For ease of exposition only, we assume that X (and thus Y ) is nonsingular.
Projective: f can be factored as

prY ◦ i : X −→ PN × Y −→ Y,

with i a closed embedding; this is automatic, in our case.
Smooth: df has maximal rank, so that f is a proper holomorphic submersion and,
in particular, all fibers have the same dimension called the relative dimension of f :

n := relative dimension of f := dimX − dimY.

Unless otherwise stated, we work with rational cohomology:

H iX := H i(X,Q).

The theme here is that

H iX = H i Y,Rf∗QX (as for any continuous map)

and we want to understand a bit better Rf∗QX and Rif∗QX using the properties of
smooth projective map of complex algebraic varieties.

3.2 Deligne’s two theorems

Theorem 3.2.0.1
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1. (s-splitness) ([18]) There is an isomorphism in the derived category of sheaves
on Y :

Rf∗QX
∼=
⊕
i≥0

Rif∗QX [−i].

In particular, the Leray spectral sequence Hp Y,Rqf∗QX =⇒ Hp+qX is E2-
degenerate.

2. (Semisimplicity) ([20]) The direct image sheaves Rif∗QX are semsimple local
systems.

As we shall see the decomposition theorem is a far-reaching generalization of this
theorem to proper maps.

Remark 3.2.0.2 As the proof shows, part 1 (s-splitting) of Deligne theorem holds
for projective maps of analytic varieties. Part 2 (semisimplicity) does not (Example
3.3.2.2.2). We choose to state the two parts together to emphasize the connection
with the decomposition theorem.

3.3 Ehresmann lemma, local systems

3.3.1 Ehresmann lemma: f is a fiber bundle

For a proof (of a strengthening) of the following classical fact in the context of proper
holomorphic submersions, see ([22]).

Fact 3.3.1.1 (Ehresmann lemma) If p : M → B is a C∞ proper submersion of
smooth manifolds, then f is C∞-bundle. In particular, all fibers of f are diffeomor-
phic to each other.

Corollary 3.3.1.2 Smooth projective maps f are C∞ fiber bundles.

The proof is not hard, lift a local unit vector field on the base to the top and flow
at constant speed along it. On the other hand it affords the following beautiful
classical

Corollary 3.3.1.3 All nonsingular hypersurfaces of fixed degree d in a projective
space PNC are diffeomorphic to each other.

Of course, properness is essential to the Ehresmann lemma. Let me quote a master:
“puncturing inflates the topology.”
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3.3.2 Fiber bundles and local systems

Let L a local system on a good connected space (B, bo).
View L as a covering space (L, 0bo)→ (B, bo).
Let (B̃, b̃o)→ (B, bo) be a covering space and (L̃, 0

b̃o
) be the pull-back.

Let π := π1(B, bo) be the fundamental group (á la Deligne: a · b is b followed by a).
Then π acts on the LEFT on (L̃, 0

b̃o
)→ (L, 0bo) and

(L, 0bo) =
(
L̃, 0

b̃o

)
/ π.

We have that π acts on the left on Lbo (pull-back, act, project), hence a representa-
tion

ρ : π −→ Aut(Lbo).

Moreover, since B̃ is simply connected, the local system L̃ on B̃ is (iso to) the
constant local system with stalk Lbo .
The discussion above leads to the well-known classification of local systems on (B, bo)
with a given stalk L in terms of conjugacy equivalence classes of representations
r : π → Aut(L), where r gives rise to the local system on B:((

B̃, b̃o
)
× L

)
/π.

Recall some basic terminology for representation:

• irreducible = simple: no (non trivial) subrep;

• indecomposable: not a direct sum of subrep (in a non trivial way);

• completely reducible = semisimple: every subrep has a complementary subrep.

Accordingly, we use the same terminology for the corresponding properties of the
associated local systems.

Remark 3.3.2.1 The constant local system ZB on any space is not simple: 2ZB ⊆
ZB. This shows that the notion of simplicity is useful in the context of, for example,
field coefficients (we are interested in Q).

Example 3.3.2.2 Let π = 〈e〉 be infinite cyclic.

1. Let L = Z2 and r(e) be the matrix:

0 1
1 0.
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Then r is indecomposable and not simple (hence not semisimple) so that so
is the associated local system L which fits into the non split ses obtained by
taking invariants:

0 −→ ZB −→ L −→M −→ 0,

where M is associated with r(e) = multiplication by −1.

If L = Q2, then r it is semsimple and decomposable

(direct calculation and also because it factors through a finite group)

and the ses analogous to the one above splits (use the trace).

Geometrically, the associated L = f∗ZC∗ , where f : C∗ → C∗ is the square map,
which is a smooth projective map of quasi-projective varieties.

2. Let L = Q2 and r(e) be the matrix:

1 1
0 1.

Then r is indecomposable and not simple.

Geometrically, this is the local systemR1f∗ZED∗ , where f : E → P1 is a Lefschetz
pencil of elliptic plane curves, D∗ is a punctured disk about a critical value and
ED∗ := f−1D∗ (Picard-Lefschetz formula).

Both of the examples arise in connection with proper holomorphic submersions. The
difference is that the former is also a map of algebraic varieties, while the latter is
not (it is only a small Euclidean “piece” of one).

Let f : M → B be a fiber bundle.
Then each direct image sheaf Rif∗ZM is a local systems on B with fiber H i(Mb,Z).
In fact, Rif∗ZM is constant on the open subsets of a trivializing open cover made of
contractible open sets.

Exercise 3.3.2.3 Prove the last assertion. (Hint: the presheaf direct image (Exer-
cise 2.4.2.2) is not locally constant; however, on each of the contractible open sets
there is a natural map of presehaves from the appropriate constant sheaf into this
presehaf . . . )

These are the local systems we have met in Exercise 2.3.3.1, albeit with R-coefficients.
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3.3.3 Remarks on semsimplicity

Since I have no particular insight to offer concerning Deligne’s proof of the semisim-
plicity statement via his theory of mixed Hodge structures, I simply refer to his
proof.
Let me make the following remarks.

• Remark 3.3.2.1 tells us that there is no hope to have semisimplicity if we use
integral coefficients. See also Example 3.3.2.2.1.

• Example 3.3.2.2.1 is an example coming from a smooth projective map. We
note that the hypothesis of the Leary-Hirsch theorem are not met (look at H0),
but we trivially have Rf∗Z = R0f∗Z and the E2-degeneration of the LSS. In
particular, E2-degeneration is not the same thing has having enough global
classes generating the cohomology of the fibers.

• Example 3.3.2.2.2 can be seen as coming from a smooth projective map of
complex manifolds, yet semsimplicity fails. If we take the Zariski-dense open
subset U of P1

C of the regular values (instead of just D∗), then the resulting
map is smooth and projective of quasi projective varieties. The semisimplicty
theorem applies. Logically, this forces the local invariants about D∗ to be non
π1(U, uo)-invariant, a fact that can be verified directly.

• It is a general fact (due to Landman), that local monodromies in complex al-
gebraic geometry are quasi-unipotent (:= power of monodromy operator minus
the identity is nilpotent = all eigenvalues are roots of unity).

3.4 The Leray spectral sequence LSS

3.4.1 The Leray spectral sequence (LSS): take I

Some references (for fiber bundles) are: [24], p.473; [?], Theorem 1.3, for constant
coefficients; for locally constant coefficients, see page 17 and the section on local
coefficients in [26].

Let S be a topological space and S∗ := ∅ ⊆ S0 ⊆ S1 ⊆ . . . ⊆ Sd = S be an increasing
sequence (flag) of closed subspaces.
There is a spectral sequence

Epq
1 = Hp+q Sp, Sp−1 =⇒ Hp+qS, d1 = the coboundary of the triples (Sl, Sl−1, Sl−2),

abutting to the decreasing filtration given by F pHp+qS := Ker{Hp+qS → Hp+qSp−1} ⊆
HS (this means Ep,q

∞ = F pHp+qS/F p+1Hp+qS).
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Example 3.4.1.1 (Cohomology of cell complexes) If S∗ is a cell complex,
then Ep,q

1 = 0 for every q > 0, the spectral sequence is then just the complex
(E∗,0, d1) (lying on the p-axis) and Ep,0

2 = HpS and the filtration is essentially
trivial: F pHpS = HpS and F p+1HpS = 0.

Let f : T → S be continuous and set Tp := f−1Sp. We thus have the spectral
sequence

Epq
1 = Hp+qTp.Tp−1 =⇒ Hp+qT, F pHp+qT := Ker{Hp+qT → Hp+qTp−1}.

Exercise 3.4.1.2 Compute the cohomology of the Klein bottle T using the usual
structure of cell complex on T (1 2-cell, 2 1-cells, 1 0-cell); let f : T → S be the
usual bundle projection onto S := S1; compute the spectral sequence and abutment
that result by taking the obvious cell complex structure on S1. Do the same for
T = S1 × S1 and f = pr : S1 × S1 → S1. Do the same for the Hopf fibration
S3 → S2 and deduce that, in this case, the spectral sequence is not E2-degenerate,
i.e. d2 6= 0 (in this case it will be d0,1

2 6= 0).

Let f : M → B be a C∞ fiber bundle with fibers F = Mb.
Let ∅ ⊆ B0 ⊆ B1 ⊆ . . . Bn = B be a cell complex decomposition for B.
There is the spectral sequence (Mp := f−1Bp): E

pq
1 = Hp+qMp,Mp−1 =⇒ Hp+qM,

mentioned above.
Since Bp/Bp−1 is a bouquet of p-spheres, one has that:

Epq
2 = HpB,Rqf∗QM .

If E = B×F , then the formula above is clear: in fact, Hp+qMp,Mp−1 = Hp(Bp, Bp−1)⊗
HqF and the differential effects only the first factor; the spectral sequence is then
just a complex, the complex computing the cohomology of the cell complex B∗ with
the extra factor, H∗F , and we find (a weak version of) the Künneth formula.

From E2 on, this is the Leray spectral sequence (LSS) for π as we define is in §3.4.3.

If the LSS is E2-degenerate, then we have a non canonical isomorphism:

HaM ∼=
⊕
i≥0

Ha−iB,Rif∗QM .

If not, then the lhs is non canonically isomorphic to a subquotient of the rhs, how-
ever, without extra information, one does not know much beyond this (i.e. which
subquotient?).
Now we start over, and introduce the LSS after Grothendieck. In order to do this
(§3.4.3), let us first discuss truncations.
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3.4.2 Truncations

Every complex K in an Abelian category can be truncated by taking the subcom-
plexes:

τ≤iK := . . . −→ Ki−2 −→ Ki−1 −→ Ker{di} −→ 0 −→ . . .

and we have a system of maps

. . . τ≤i−1K −→ τ≤iK −→ . . . −→ K.

We can also take the quotient subcomplexes

τ≥iK := . . . 0 −→ Coker di−1 −→ Ki+1 −→ Ki+2 −→ . . .

with the system of maps analogous to the one above (reverse arrows andinequalities).
By construction: τ≤iτ≥iK = τ≥iτ≤iK = H iK[−i] the i-th cohomology object of the
complex, placed in cohomological degree i.
The truncations define functors, denoted by the same symbol, in the derived cate-
gory:

τ≤i : D(A) −→ D≤i(A), τ≤i : D(A) −→ D≥i(A),

where ι≤i : D≤i(A) → D(A) is the full subcategory of complexes K for which the
natural arrow τ≤iK → K is an iso. Similarly, for ι≥i : D≥i(A)→ D(A).
Note that Di(A) = D≤0(A)[−i] and similarly for ≥ i.
We have functorial ses (distinguished triangles):

0 −→ τ≤iK −→ K −→ τ≥i+1K −→ 0.

We have HomD(A)(D≤i(A),D≥i+1(A)) = 0

Remark 3.4.2.1 The notion of t-structure on a triangulated category is obtained
by turning some of the properties above into axioms. See ????.

Exercise 3.4.2.2 Show that D≤i(A)∩D≥i(A) is a full subcategory of D(A) equiv-
alent to A[−i]. Assume A has enough injectives. Show that if K ∈ D≤i(A)∩D+(A)
and C ∈ D≥i(A), then

HomD(A)(K,C) = HomA(H i(K), H i(C))

(this is reasonable, sinceK “stops” at i and C “starts” at i). (Hint: use HomD(A)(K,C) =
H0(Hom(K, IC)) (§2.4.2). One does not need injectives or boudnedness: use the fact
that (ι≤i, τ≤i) and (τ≥i, ι≥i) are pairs of adjoint functors (first entry left adjoint to
the second entry, second entry, right adjoint to the first) ([7]):

HomD(A)(K,C) = HomD(A)(K, τ≤iC) = HomD(A)(K,H
i(C)[−i]) =

= HomD(A)(τ≥iK,H
i(C)[−i]) = HomD(A)(H

i(K)[−i], H i(C)[−i]) = HomA(H i(K), H i(C)).

39



Exercise 3.4.2.3 Let f : T → S be continuous and K := Rf∗QT : you get
Rif∗QT [−i].

Assume there are enough injectives. Let G : A → B be a left-exact functor. Using
Cartan-Eilenberg resolutions, i.e. replace K by an injective resoltuion that has
the additional property that τ≤iK and H i(K) are also injective (this can bed one!
([27])), we get a filtered complex

. . . ⊆ G(τ≤i−1K) ⊆ G(τ≤iK) ⊆ . . . ⊆ G(K).

The Grothendieck (or standard) spectral sequence for G with coefficients in K is
the spectral sequence of the filtered complex above:

RpG(HqK) =⇒ Rp+qG(K), F pRp+qG(K) := Im{Rp+qG(τ≤−pK)→ R∗G(K)}.

(Everything is well-defined up to a unique isomorphism in the filtered derived cate-
gory)

Remark 3.4.2.4 If K ∼= ⊕H i(K)[−i] is s-split, then the Grothendieck spectral
sequence above is E2-degenerate: for so is the spectral sequence of a filtered complex
that splits, as a filtered complex, into the sum of its graded complexes endowed with
the direct sum filtration Di =

⊕
≤−i.

3.4.3 The Leray spectral sequence (LSS): take II

The Leray spectral sequence is a special case of the Grothendieck spectral sequence
where K := Rf∗QT is on S and G is the global sections functor Γ(S,−):

Hp S,Rqf∗QT =⇒ H i+jT, F pH∗T := Im{H∗(S, τ≤−pRf∗QT ) −→ H∗T.}.

Remark 3.4.3.1 By Remark 3.4.2.4, the LSS is E2-degenerate as soon as Rf∗QT
∼=

⊕iRif∗QT [−i].

Question 3.4.3.2 What is the relation between the definition II above and I in
§3.4.1?

Answer.

The answer is not entirely trivial. Let us discuss this a bit.

First of all, I is for bundles over cell complexes, while and II is general (f is a
continuous map of topological spaces). So let us first explain the relationship in this
case.
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As pointed out in §3.4.1, the E2 terms of the two spectral sequences coincide.
The reference [?] does not explain why the differentials dr≥2 are the same in the two
cases I and II (II is not discussed there).
[28] explains a technique (applied there in the context of complex algebraic geome-
try) that applies to this context.
The main point is that the flag S∗ should be cellular for the direct image sheaves,
i.e.

Hj(Sp, Sp−1, R
kf∗QX) = 0, ∀k, ∀j 6= p.

In the case of a fiber bundle this is automatic, since the direct image sheaves are
constant on the simply connected cells.
Once this cellularity condition is met, then [28, 29] explains how to identify II with
I.
Again, this does not apply only to fiber bundles, but to any map for which there is a
flag on the target meeting the cellularity requirements for the direct image sheaves.
I did not think hard enough about this; but algebraic maps of real/complex algebraic
varieties OK; ditto for semianalytic, subanalytic, semialgebraic.

3.4.4 Non E2-degeneration: the Hopf fibration

Let us collect in one place the following related constructions.
Let C2∗ := C2 \ {(0, 0)}.
It is acted upon by C∗ via dilations.
It is acted upon by Z, generated by the dilation 1/2.

1. C2∗ → C2∗/C∗ =: P1
C; it is the C∗-bundle of the complex line bundle OP1

C
(−1).

2. The Hopf fibration S3 → S2 is the restriction of the map above to the unit
3-sphere.

3. The Hopf surface H := C2∗/Z. There is the natural map H → P1 which is a
proper holomorphic submersion with fibers ellitpic curves.

Fact 3.4.4.1 The LSS of any of the three maps above is not E2-degenerate.

Proof. In all three cases let us write the map as π : M → S2.
In case 1. and 2. we have b1(M) = 0, whereas in case 3. we have b1(M) = 1.
Since the base S2 is simply connected, the local systems in sight are all constant.
If we had E2-degeneration, then we would have

b0(S2) · b1(F ) = b1(F ) ≤ b1(M).

In case 1. and 2., b1(F ) = 1, and in case 3., b1(F ) = 2.
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In each on the three cases we have reached a contradiciton.
(See also Exercise 3.4.1.2.)

The differential d2 can be seen ([3]) to be the cup product with the Euler class
e ∈ H2S2 (= first Chern class) of the line bundle OP1(−1).

Remark 3.4.4.2 In these examples, all the local systems involved are constant, so
that E2-degeneration is not related to how twisted the local systems Rif∗QM are.

IMPORTANT. These examples are in sharp contrast with the realm of smooth
projective complex algebraic maps, where, according to Deligne theorem, E2-degeneration
is the norm:

• the map 2. is a real algebraic proper submersion,

• the map 3. is a holomorphic proper submersion and

• the map 1. is a complex algebraic map which is even Zariski locally trivial
over the base (but it is not proper).

UPSHOT: E2-degeneration does not hold for proper bundle maps in the realms of
smooth manifolds, real algebraic geometry and complex geometry
(as we shall see, neither does the decomposition theorem).

Remark 3.4.4.3 Example 3.3.2.2.2, i.e. the smooth projetive map f : C∗ → C∗

given by squaring, shows that the E2-degeneration for smooth projective maps pre-
dicted by Deligne theorem is not a Leray-Hirsch-type phenomenon, as it may occur
in the absence of enough global classes to generate the cohomology of the fibers.
Compare with Remark 3.4.4.2.

Example 3.4.4.4 Let f : X → Y consider the family of smooth elliptic curves in
P2. Deligne theorem applies. In particular, we have the ses

0 −→ H1Y,R0f∗QX −→ H1X −→ H0Y,R1f∗QX = H1Xπ1(Y,y)
y −→ 0.

Note that H1X → H1Xy factors through the subspace of global invariants.
One can show that the global invariants (H1Xy)

π1(Y,y) = 0, but we need less: the
global invariants are a subspace of the local invariants about a critical value of
a Lefscehtz pencil, and we know, by Picard-Lefschetz (i.e. the local monodromy
representation is as in Example 3.3.2.2.2) that this is a 1-dimensional space, whereas
H1Xy is two dimensional and there are not enough 1-classes on X to plug into Leray-
Hirsch.

What is responsible for the E2-degeneration of the LSS for smooth projective maps
of complex varieties?
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3.5 The easy relative Hard Lefschetz theorem (eRHL)

3.5.1 Hard Lefschetz (HL) and primitive decomposition (PLD)

Let Z be a projective manifold of dimension n and η ∈ H2Z be the first Chern class
of an ample line bundle on Z.
The hard Lefschetz theorem (HL) is the statement that we have isomorphisms:

ηk : Hn−kZ
∼=−→ Hn+kZ.

Note that this implies bn−kZ = bn+kZ, a conclusion that can be reached also by
Poincaré duality (which is an entirely different statement).
HL is a deep theorem, even for Z a surface: how to prove η : H1Z ∼= H3Z?
The primitive spaces relative to η are defined by setting

P n−k
η := Ker {ηk+1 : Hn−kZ −→ Hn+k+2Z}.

By reasons of elementary linear algebra, we get the primitive Lefschetz decomposi-
tion (PLD)

Hn−kZ = P n−k
η

⊕
ηHn−k−2 =

⊕
ηjP n−k−2j

η , Hn+kZ =
⊕
j

ηk+jP n−k−2j
η .

Example. Let Z = P1 × P1, η = E + F (the two rulings) and η′ = E + 2F . Then

P 2
η = 〈E − F 〉, P 2

η′ = 〈E − 2F 〉.

3.5.2 eRHL: HL for the fibers of a smooth projective map

Remark 2.3.2.1 part 2 tells us that the choice of a closed 2-form η′ on X representing
η ∈ H2(X,R) yields a map of complexes

η′ : f∗EX −→ f∗EX [2].

If η′′ is another closed representative, then the map η′′ is homotopic to the map η′

(this is a simple exercise that is probably at the very root of the notion of maps of
complexes being homotopic to zero),
so that, we get a well-defined map f∗EX → f∗EX [2] in the derived category.
Recalling Example 2.4.2.5, this is the same as a map (in the derived category):

η : Rf∗RX −→ Rf∗RX [2].

By Exercises 2.3.3.1 and 2.4.2.2, this map yields maps of cohomology sheaves which,
stalk by stalk are the cup product map with the restriction of η to the fibers of f :

η : Rif∗RX −→ Ri+2f∗RX , ηy : H iXy −→ H i+2Xy, u 7−→ η|Xy ∪ u.

43



The HL theorem applies to each pair (Xy, ηy) so that we obtain what we may call
the relative hard Lefschetz theorem (RHL) for the smooth projective map f : we
have isos:

ηk : Rn−kf∗RX
∼=−→ Rn+kf∗RX , ∀ k ≥ 0.

We have chosen to explain what above using the de Rahm complex, so that we
expressed everything using real coefficients.
Of course all of the above remains valid with Q-coefficients (but not integrally, for
even the HL may fail integrally): one can take the flabby resolution of QX by the
complex of sheaves of cochains on X and use a closed cochain representing η and
repeat what above.
We can also use Remark 2.4.2.9, which gives η : QX → QX [2], apply Rf∗, take
cohomology sheaves and then argue that the map on the stalks of the cohomology
sheaves is the direct limit of the cup product maps H if−1(U) → H i+2f−1(U) and
that, in view of the fact that the map is proper, this is the cup product map on the
cohomology of the fibers.

At any rate, we apply HL to the fibers of the smooth projective map f and we get
isomorphisms of local systems

ηk : Rn−kf∗QM

∼=−→ Rn+kf∗QM ,

and PLDs for the local systems

Rn−kf∗QM =
⊕
j

ηjP n−k−2j
η (Pη sheaves of primitive spaces).

3.6 Proof of Deligne Theorem

3.6.1 E2-degeneration for smooth projective maps

Note that the s-splitting of Rf∗QX implies at once the E2-degeneration of the stan-
dard spectral sequence Hp Y,Rq =⇒ Hp+qX:
in fact, the filtered complex in §3.4.2 splits accordingly and the differentials are zero
(Remark 3.4.3.1).
In this section, we prove this E2-degeneration directly and without invoking derived
categories.

Recall that all the fibers of smooth projective map are diffeomorphic to each other
and that we have the local systems Rif∗QX on the base Y .
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Theorem 3.6.1.1 (Deligne 1968) Let f : X → Y be a smooth projective map. Then
the LSS

Hp Y,Rqf∗QX =⇒ Hp+qX

is E2-degenerate, so that

HaX ∼=
⊕
i

Ha−i Y,Rif∗QX .

Sketch of proof. This can be found in textbooks (e.g. [11]). We sketch a proof below.
Let us deal with d2 : HpY,Rqf∗QX → Hp+2Y,Rq−1f∗QX (the case of dr, r ≥ 3 is
similar).
By using the PLD’s on the local systems, it is enough to show that

d2 : Hp Y, P n−k
η −→ Hp+2 Y,Rn−k−1f∗QX

is zero.
We conclude by looking at the indicated properties of the following commutative
diagram,

Hp Y, P n−k
η

d2 //

ηk+10
��

Hp+2Y,Rn−k−1f∗QX

ηk+1injective

��
Hp+2(k+1)Y,Rn+k+2f∗QX

d2 // Hp+2+2(k+1)Y,Rn+(k+1)f∗QX ,

which imply that the top d2 = 0, i.e. the desired conclusion.

The key observation that makes the above work is that q goes down when applying
differentials so that the target of the differential survives more application of η’s
than the source and this, together with the injectivity statement of HL, forces the
triviality of the differentials.

3.6.2 Proof of Deligne’s theorem in relative dimension one.

The main idea emerges already for a smooth projective f : Xn+1 → Y n of relative
dimension one.
In fact, let us fix ideas and set n = 1: f : X2 → Y 1.
Recall that we can use f∗EX in place of Rf∗RX .
Note that f∗EX is a complex with non-trivial entry in cohomological degrees in [0, 4]
(X is a of real dimension 4) and that Rif∗RM = 0 for i /∈ [0, 2] (fibers have real
dimension 2 and the proper base change theorem).
Choose a 2-form Γ(X,E2

X) representing η ∈ H2X and denote it by η.
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We have the cup product map η : Ei
X(U) → Ei+2(U) and this induces a map of

complexes
η : f∗EX → f∗EX [2].

We have the commutative diagram which is a qis of complexes:

0 // f∗E
0
X

//

=

��

f∗E
1
X

//

=

��

Ker f∗d2
//

inclusion
��

0 //

��

0 //

��

0

0 // f∗E
0
X

f∗d0 // f∗E
1
X

// f∗E
2
X

f∗d2 // f∗E
3
X

// f∗E
4
X

// 0

Since we are working in the derived category, qis=iso and we can replace the bottom
row, with its suitably truncated versions: the top row
We have the (non commutative!) diagram: (denote by e the map induced by η)

R0f∗RX = Ker f∗d
0 e

∼=
//

inclusionι

��

R2f∗RX = Ker f∗d2
Imf∗d1

0 // f∗E
0
X

// f∗E
1
X

// Ker f∗d2
//

quotient π

OO

0

We thus get a map
(rem η : f∗EX → f∗EX [2] and in the derived category we can replace f∗EX with the
truncated bottom row above):

R0[0]⊕ 0⊕R2[−2]
ι+0+η◦ι◦e−1

// [0→ f∗E
0
X → f∗E

1
X → Ker f∗d2 → 0] .

Exercise 3.6.2.1 Find an explicit splitting map going the other way. Deduce the
desired conclusion: we have found that there is an isomorphism in the derived cate-
gory R0[0]⊕R1[−1]⊕R2[−2] ∼= Rf∗RX . Note that while the 0-th and 2nd component
are given above, this method only shows the existence of the 1st component, i.e. it
does not yield a distinguished isomorphism (hint: what happens to the map from
R1f∗RX if you change the closed form representing the class η? ).

The case of arbitrary relative and total dimensions is very similar and left to the
reader.

3.6.3 Proof of Deligne theorem

The following proof is not the original one in [18] (nor is the one in [30]). On the
other hand, it puts into action some of the definitions we have seen (e.g. truncations
§3.4.2).

46



Note that τ≤1τ≥2n−1Rf∗QX is a complex (think of it as a subquotient of Rf∗QX)
which shares cohomology sheaves with Rf∗QX for i ∈ [1, 2n−1], the remaining ones
being zero.
We have the commutative diagram

τ≤0Rf∗ = R0 ι //

∼=HLen

��

Rf∗

ηn

��
τ≥0(Rf∗[2n]) = R2n Rf∗[2n]πoo

It is easy to show that

R0 ⊕R2n[−2n]
ι+ηnι(en)−1

// Rf∗

induces an iso on the 0-th and 2n-th cohomolgy sheaves and that it splits
(exercise: find a splitting).
In particular, the cone C ∼= τ≥1τ≤2n−1Rf∗ splits off (noncanonically).
Verify that the RHL hypothesis works just as well for C:
the cohomolgoy sheaves H iC = 0 for i /∈ [1, 2n− 1], H iC = Ri i ∈ [1, 2n− 1] and C
inherits the map η : C → C[2].
Repeat what above for the cone C together with the induced map η, and conclude
by descending induction.

Note that while the map into Rf∗ in the first step is rather natural (it depends only
on the cohomology class of η, not on the chosen representative), the map from the
cone into Rf∗ depends on the representative (or at least, I was not able to show that
is not the case), thus making the proceedings above highly noncanonical.
On the other hand there are procedures that allow to choose distinguished splittings.
This is explained in [30].

3.6.4 The direct image complexes for the Hopf fibration and surface

Since the LSS for the Hopf fibration S3 → S2 is not E2-degenerate, there can be no
s-splitting for Rf∗QS3 .
Since we know about truncations, let us see what we get here.
We have the short exact sequence (more precisely a distinguished triangle)

0 −→ (τ≤0Rf∗QS3 =)R0f∗QS3 [0] −→ Rf∗QS3 −→ R1f∗QS3 [−1](= τ≥1RF∗QS3) −→ 0.

These are classified by the maps in the derived category
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(recall that R0f∗Q3
S
∼= R1f∗QS3

∼= QS2 .

Ext2(QS2 ,QS2) = H2S2 ∼= Q.

Since the extension is not trivial, it is classified by a non zero class in H2S2 and one
sees that this class is the Euler class of the oriented S1-bundle.
This is another way of viewing the differential d2 of the LSS.
In short, Rf∗QS3 is (up to iso in the derived category) the unique complex fitting
into a non-splitting ses 0→ Q→?→ Q[−1] of complexes on S2.

Let us turn to the Hopf surface.
Write C2 − (0, 0) = S3 × R>0 and notice that the group of homotheties preserves
the punctored lines through the origin which, in turn, we view as eiθ(zo, wo)ρ with
θ ∈ [0, 2π), ρ ∈ R>0 and (zo, wo) ∈ S3.
With this description, it is clear that we have a holomorphic proper submersion

q : X −→ P1
C, eiθ(zo, wo)ρ 7−→ (zo : wo),

with typical fiber an elliptic curve, with q diffeomorphic, as a fiber bundle to

S1 × S3 −→ S2, (a, b) 7→ p(b).

In other words, in the smooth category, the Hopf surface is a trivial S1-thickening
of the Hopf fibration.
The cohomology sheaves of Rq∗QX are R0f∗Q ∼= Q = R2f∗Q, R1f∗Q ∼= Q2.
Since b1(X) = 1 is odd, X is not Kähler. We have seen that the LSS is not E2-
degenerate, so Rq∗QX is not s-split.
Still, in thsi case, due to the Künneth formula [7] we do have a splitting of sorts for
Rq∗QX :
consider the Cartesian diagram (r the projection to S2):

S1 × S3 //

��

q

$$HHHHHHHHH S3

p

��
S1 × S2

r
// S2;

we have

Rq∗QX = Rp∗Q⊗Rr∗Q = Rp∗QS3 ⊗ (QS2 ⊕ QS2 [−1]) = Rp∗QS2 ⊕Rp∗QS2 [−1].
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3.7 Summary and failures for projective maps with singu-
larities

We have met the following concepts in the context of smooth projective maps:

• local systems on the target; they form an Abelian category which is clearly
Noetherian and Artinian, but not semisimple;

• s-splitting for Rf∗Q and some of the machinery behind it

truncation functors: . . .→ τ≤i−i → τ≤i → . . .→ Id,

cohomology sheaves functors: H i(−) := τ≤i/τ≤i−i(−)[i],

• the map η : Rf∗QX −→ Rf∗QX [2] and the induced maps ηk : Rn−k −→ Rn−k.

We have also met the following theorems for these maps (n the relative dimen-
sion):

1. s-splitting of Rf∗QX ;

2. semisimplicity of Ri;

3. RHL: ηk : Rn−kf∗QX
∼= Rn+kf∗QX .

The various examples we have met have shown us how all of this fails if we do not
assume that the map is a smooth and projective map of quasi projective complex
varieties:
Let us now observe that these results fail completely if the map is projective, with
singular fibers.

1. A natural source of examples for which Rf∗QX is not s-split are resolution of
the singularities f : X → Y of normal projective varieties admitting at least
one cohomology group H iY whose mixed Hodge structure is not pure: in that
case it is known that H iY → H iX is not injective, so that QY = R0f∗QX

cannot split off.

A concrete example: blow up P2 along 10 suitable points along an elliptic curve
(this is X) and then blow down the strict transform of the elliptic curve (the
target is Y ). One then shows that H2Y has non zero classes in weight 1.
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2. This is easy: if the map is not a fiber bundle, in general Rif∗QX is not locally
constant. One may ask if the sheaf Rif∗QX is semisimple. But the category
of sheaves on Y has too few simple objects:

for example the constant sheaf QC on a curve always has unbounded descending
chains of subsheaves: choose a sequence of distinct points on C and look at

. . . ⊆ j!QC\{p1,p2} ⊆ j!QC\{p1} ⊆ QC ,

where we have denoted all open immersions by j.

This shows that the category of sheaves, unlike the one of finite rank rational
local systems, is not Artinian.

This makes it clear that we cannot have semisimplicity statements for the
direct image sheaves sheaves arising from singular proper maps.

3. First of all, it is not clear hot to formulate a RHL for a map f : what do we
take as n? On the other hand for the map X → pt it is clear that we should
take n = dimX. Take a (necessarily singular) projective variety X for which
the palindromic symmetry of its Betti numbers, (bn−k = bn+k) predicted by
Poincaré duality fails. Then HL must fail as well (for every line bundle!).

A concrete example is the projective come over P1 × P1 ⊆ P3, for which we
have that b2 = 1 6= 2 = b4.

These examples seem to point to the fact that it is hopeless to have some kind of
generalization of Deligne theorem to singular projective maps.
In fact, there is such a generalization, i.e. the decomposition theorem.
Before getting to it, which requires that we discuss perverse sheaves etc., let us
discuss some examples.
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4 Introduction to perverse sheaves

4.1 Contracting curves on complex surfaces re-visited

4.2 Review: the functor i!

An excellent reference is [2], II.6.
Let i : Z → X be a locally closed embedding and F be a sheaf on X.
Recall that ΓZF is the sheaf of local sections of F supported on Z, so that its stalks
are zero outside Z.
Define the functor:

oi! := i∗ ◦ ΓZ (sheaves on X to sheaves on Z).

We have i!i
!F = ΓZF → F .

If G is a sheaf on X whose stalks are zero outside Z, then every G → F factors
uniquely through as G→ i!

oi!F → F .
It follows that if E is a sheaf on Z, then (recalling that i! is extension by zero):

Hom(i!E,F ) = Hom(i!E, i!i
!F ) = Hom(E, i!F ),

so that we have the adjoint pair (i!, i
!) (for sheaves).

The functor i! is left-exact and preserves injectives.
We have i! := R(oi!) = i∗RΓZ and it is calculated by taking oi! of injective resolu-
tions.
As above, if K is supported on Z, then any K → C factors uniquely through i!i

!C.
By “deriving” the adjunction above, we get the adjoint pair with the adjunction
map:

(i!, i
!), i!i

!C −→ C.

From now on, let i : Z → X ← U : j be two complementary closed/open embed-
dings.
Then j! = oj! = j∗ and it preserves injectives.
We have a ses of sheaves

0 −→ j!j
!F −→ F −→ i∗i

∗F −→ 0

where all the functors involved are exact, thus giving us a functorial ses (distin-
guished triangle) in the derived category

i1i
!C −→ C −→ Rj∗j

∗C −→
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whose les is the les of relative cohomology for the pair (X,Z):

H∗UX = H∗X,Z −→ H∗X −→ H∗Z
+−→ .

There is an es of sheaves

0 −→ i!
oi!F −→ F −→ j∗j

∗F

which, if F is injective is exact on the right also It follows that we have a ses
(distinguished triangle):

i!i
!C −→ C −→ Rj∗j

∗C −→ 0,

whose les is the les of relative cohomology for (X,U):

H∗ZX = H∗X,U −→ H∗X −→ H∗U
+−→ .

Note that Ri!C = i∗RΓZ and that, since RΓZ is supported on Z:

i!i
! = i∗Ri

! = RΓZ .

Finally, if f : X → Y is continuous, Z ′ ⊆ Y is closed, Z := f−1Z, and g : Z → Z ′ is
the induced map, then we have a natural identification (this is completely general
([7], p.????), but for this special case, the un-derived version can be found in [2], p.
111):

i!Z′Rf∗ = Rg∗i
!
Z .

4.2.1 Trying to split Rf∗ when contracting curves on surfaces

Let things be as in any of the four examples in 1.0.1.
We have the natural surjection of complexes p : Rf∗QX → R2f∗QX [−2] = (H2E)v.
Let us make the notation lighter: Rf → R2f [−2].
We want to know if R2f [−2] splits off.
This ie equivalent to having a map σ : R2f [−2]→ Rf inducing R2f = R2f .
Since R2f [−2] is supported on v, the map σ must factor uniquely σ′ : R2f [−2] →
iv !iv

!Rf .
We obtain the following commutative diagram of maps in the derived category and
of corresponding cohomology sheaves:

R2f [−2]

σ

��

σ′

yyttt
ttt

ttt
t

R2f = H2E

σ2

��

σ′2

tthhhhhhhhhhhhhhhhhh

i!i
!Rf

a //

i %%JJJ
JJJ

JJJ
J

Rf

p

��

H2E = H2(i!i
!Rf)

clE //

ιE

**VVVVVVVVVVVVVVVVVV
R2f = H2E

=

��
R2f [−2] R2f = H2(i∗i

∗Rf) = H2E.
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Note that i!i
!Rf is supported on v and, we have

Exercise 4.2.1.1 Use the last formula in §4.2 to prove that i!i
!Rf has cohomology

sheaves Hk 6= 0 only for k ∈ [2, 4]:

i!i
!Rf = H4E[0]⊕H3[−1]⊕H2E[−2]⊕H1E[−3]⊕H0E[−4].

By ???? and the above exercise, to give a map σ, and thus equivalently to give a
map σ′, is the same thing as giving σ′2.
We thus have:

Fact 4.2.1.2 R2f [−2] splits off IFF the refined intersection form in degree 2 ιE =
iso.

Fact 4.2.1.3 (First appearance of the decomposition theorem) Let the con-
traction be as in the complex algebraic examples §1.0.1.(2),(4). Then we have

τ≤1Rf∗QX = τ≤1Rj∗QU ,

and we have our first instance of the decomposition theorem:

Rf∗QX
∼= τ≤1Rj∗QU ⊕R2f∗QX [2].

Proof. We know that ιE = iso, hence R2f slits off and τ≤1Rf is what is left.
We only need to show the first equality.
Note that, by adjunction, we have Rf∗ → Rj∗j

∗Rf∗ = Rj∗QU .
By truncating this map, we have the map

τ≤1Rf∗QX −→ τ≤1Rj∗QU .

By inspecting cohomology sheaves, we need to show R1f → R1j is an iso.
This map is j∗1 : H1X → H1U .
We have already observed in §1.0.1 that j∗1 = iso IFF ιE =iso.

Remark 4.2.1.4 (First appearance of the intersection complex) At the ap-
propriate time, we shall introduce the intersection cohomology complex of any vari-
ety: (in the present case)

ICv = Qv; ICY = τ≤−1(Rj∗QU [2]), equivalently ICY := τ≤1Rj∗QU .

Then the splitting above takes the following form:

Rf∗ICX ∼= ICY ⊕ ICb2E
v .
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Exercise 4.2.1.5 (The non complex algebraic contractions) Let the contrac-
tion be as in the non complex algebraic examples 1.0.1.(1),(2). Show that:

1. Rf does not split off R2f [−2], so that it does not split off τ≤1Rf .

2. τ≤1Rf splits off R1f [−1] IFF H1E = 0, in which case Rif = 0.

3. τ≤1Rf → τ≤1Rj is not an iso and it does not split.

4. QY → τ≤1Rf splits IFF H1E = 0, QY → τ≤1Rj does not split.

Remark 4.2.1.6 (First appearance of Jordan-Hölder for perverse sheaves)
At the appropriate time, we shall see that in all four examples Rf [2] is a perverse
sheaf. Every perverse sheaf has a Jordan-Hölder filtration. The work done in Fact
4.2.1.3 and Exercise 4.2.1.5 can be interpreted as follows: in the complex algebraic
case, Rf is semisimple with simple quotients ICY = τ≤1RjQU [2] and b2 copies of
ICv; in the non complex algebraic case, we have a filtration:

0 ⊆ R1j/R1f ⊆ τ≤1Rf ⊆ Rf [2]

with simple quotients the perverse sheaves on Y :

(H1U/H1X)v ICY = τ≤−1Rj∗Q[2], (H2E)v.

4.2.2 Review: the adjunction map a : QY → Rf∗f
∗QX = Rf∗QX

We want to view the content of §4.2.1 in a different way: we want to see what
happens when we try to splits the adjunction map a : QY → Rf∗QX , i.e. we want
to see what happens if we try and start splitting Rf∗ from the opposite end!
The point of doing this is that, as we try and do this we first meet the intersection
form. If it is an iso, then we can map Rf into ICY which thus appears naturally
here as an hurdle as we try to split a.

Let f : X → Y be a continuous map.
There is the map of sheaves:

QY → f∗f
∗QY = f∗QX

where a local section (U, s) Y gives a section upstairs, i.e. (f−1U, f ∗s) of f ∗QY = QX

which is, by definition, a section of f∗QX on U .
Replace QX with an injective resolution and get

a : QY −→ Rf∗f
∗QY = Rf∗QX

54



it is called the adjiunction maps since it arises in the context of (f ∗, f∗) and (f ∗, Rf∗)
being adjoint pairs (Exercise 2.4.2.12).
By taking cohomology, we find that the adjunction map is the familiar pull-back in
cohomology:

H(a) = f ∗ : H∗Y −→ H∗X.

Exercise.

• Let f : C→ C, z 7→ z2. Show that a splits. (Hint: use the trace).

• Let f : P1
C × P1

C → P1
C. Prove that a splits.

• Let f : S3 → S2 be the Hopf map. Prove a does not split. (Hint: look at f ∗

on H2).

• Let f : X → Y be a map of algebraic varieties such that HjX is a pure Hodge
structure in some degree j, but HjY is not. Deduce that a does not split.
(Hint: functoriality of the mixed Hodge structures involved.)

4.2.3 Trying to split the adjunction map

We want to address the following

Question 4.2.3.1 Does a split in the Examples 1.0.1.(1-4). (contracting curves on
surfaces)?

Let j : U := (Y − v) −→ Y be the open embedding.
We have the adjunction map for j: (noting that j∗Rf∗QX = QY )

Rf∗QX −→ Rj∗j
∗Rf∗QX = Rj∗QU .

The sheaves Rif∗QX are:

R0f∗QX = QY , Rkf∗QX = (HkE)v.

They are zero for k > 2, so that:

Rf∗QX = τ≤2Rf∗QX .

Since truncation is a functor, we get

Rf∗QX
J // τ≤2Rj∗QU .
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The complex Rj∗QY has the following cohomology sheaves:

R0j∗QU = j∗QU = QY ; Rkj∗QU = Hk(U)v ∀k > 0.

Look at the following diagram:

QY
a // Rf∗QX

J

))SSSSSSSSSSSSSS
?1

uukkkkkkkkkkkkkk
?0

rrdddddddddddddddddddddddddddddddddddd

?1
1

{{xxxxxxxxxxxxxxxxxxxxxx

J 2

##FFFFFFFFFFFFFFFFFFFFFF

QY = τ≤0Rj∗QY ∗
// τ≤1Rj∗QY ∗

//

��

τ≤2Rj∗QY ∗

��
R1j∗QY ∗ [−1] = (H1U)v R2j∗QY ∗ [−2] = (H2U)v

The question whether a splits has become:

can we lift the map J to τ≤0Rj∗QY ∗ = QY ?

Remark 4.2.3.2 (First appearance of the intersection complex) The com-
plex

ICY := τ≤1Rj∗QU

has emerged as a natural actor in this play: it is the Deligne-Goresky-MacPherson
intersection cohomology complex of the pseudomanifold Y with an isolated singu-
larity v (here and always: middle perversity).

The map J 2 : R2f∗QX → R2j∗QY ∗ can be seen as the pull-back in cohomology

j∗2 : H2X −→ H2U.

We have the les: (shorthand: (Rf∗, Rj∗) = Hom(Rf∗QX , Rj∗QU), etc.)

. . . (Rf∗, R
2j∗[−3]) = 0 −→ (Rf∗, τ≤1Rj∗) −→ (Rf∗, τ≤2Rj∗) −→ (Rf∗, R

2j∗[−2]) −→ . . .

where J 7→ J 2.
Clearly

∃ ?1 lift IFF j∗2 = 0 and, if this lift exists, then it is unique.

The first lift ?1 exists (and is then unique) in the two complex algebraic contractions
and it does not in two non complex algebraic ones.
Let us deal with the complex algebraic contractions, where we have ?1 and thus the
natural ?1

1.
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This map fits into the les

H3E = 0 // H1X(∼= H1E)
?1
1=j∗1 // H1U

0 // H2E

and is thus an iso.
The same les of Hom argument above, shows that the lift ?0 exists and is unique
IFF the genus of E is zero.
Note that g(E) = 0 IFF ICY = QY .

Therefore, the first point we wish to make about these four examples is that:

the adjunction map does not split;
there is a lift ?1 : Rf∗QX → ICY of J : Rf∗ → τ≤2Rj∗ only in the complex algebraic
case.

Let us now show that the map ?1 splits in the derived category.
We take the cone C of the map (pretend you are working with a ses):

Rf∗QX −→ τ≤1Rj∗QU
β−→ C(?1) −→ .

The les of cohomology sheaves strarts with QY = QY so we can ignore it. The
remaining part is made of stuff supported on the singular point v and it boild down
to the following:

0 // H0C // H1X
j∗1 // H1U

β1 // H1C // H2X // 0.

We know that j∗1 = iso.
This forces H0C = 0, H1C = (H2E)v and H1U → H1C to be the zero map.
We thus have that τ≤1Rj∗ stops in degree 1, while C starts in degree 1 so that the
maps between them are classified (????) by the maps H1U → H1C.
We conclude that β = 0 and Rf∗QX → ICY splits (canonically) and we have a
(canonical) iso:

Rf∗Q ∼= ICY ⊕ (H2E)v[−2].

• This is our first example of the decomposition theorem.

Remark 4.2.3.3 (Key role of ιE) Note that the splitting occurred because of two
occurrences, namely j∗2 = 0 and j∗1 = iso. In fact, we have observed that these two
fact are equivalent to each other and equivalent to the refined intersection form ιE
= iso. Therefore, in these four examples, the refined intersection form is the agent
responsible for the splitting above. As it turns out, refined intersection forms are
always the agents controlling the splitting of the perverse sheaves occurring in the
decomposition theorem ????.
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Exercise 4.2.3.4 (Special case when E = P1) Let X be the total space of
OP1(−n). Let f : X → Y be the (holomorphic!, in fact algebraic!) contraction
of the zero section E. Show that Y is the affine cone over the twisted rational curve
of degree n in Pn. Show that we have ICY = QY and thus

ICY = QY , Rf∗QX
∼= QY ⊕ ICv[−2]

where ICv = Qv is the intersection complex of the manfold v. (N.b. rational
homology spheres S3/(Z/nZ) will arise). Observe that Rf∗QX is s-split.

Exercise 4.2.3.5 (Contracting curves on surfaces) Let (X,∪Ej) be a nonsin-
gular complex surface and Ej be finitely many compact irreducible curves on X.
Let Y := X/ ∪ Ej and f : X → Y be the natural map contracting the collection of
curves to a single point v. Show that we have a splitting as in the previous example
Rf∗QX

∼= ICY ⊕IC#
v [−2] where # is the number of curves IFF the intersection ma-

trix I = ||Ej · Ek|| is nondegenerate. Observe that this happens on (P2
C, E), E any

irreducible curve in P2
C, but it does not happen for E1 ∪ E2 two distinct irreducible

curves. (N.b.: Grauert proved that the configuration of curves is contractible in the
category of complex analytic spaces IFF I is negative definite.)

Example 4.2.3.6 (ICY is not QY ) Let f : X → Y be blowing up of the vertex of
the affine cone Y over a projective nonsingular curve E ⊆ PNC of positive genus (if
the genus is zero, then we are essentially in the situation of Exercise 4.2.3.4). Use
the Leray spectral sequence for the C∗-bundle X \ E → E to show that

H1(ICY ) = (H1E)v.

This shows that ICY is seldom equal to QY (as it was the case in Exercise 4.2.3.4).
This is exactly the obstruction to split the adjunction map.

Exercise 4.2.3.7 (Currents) Let things be as in Exercise 4.2.3.4. Consider the
soft resolution RX → DX (where DM is the complex of sheaves of currents on the
C∞ manifold underlying X. Then f∗DX = Rf∗RM (canonical iso in the derived
category. Define a map RY → f∗DX by sending, for every V open in Y , 1V to the
current of integration [11]

∫
f−1V . Define a second map Rv[−2] → f∗DX by sending

1v to
∫
E. Show that we get an iso in the derived category

RY
⊕

Rv[−2]
∼=−→ Rf∗RX .

Discuss why this does not work in the situation of Example 4.2.3.6 where one indeed
has the conclusion of Exercise 4.2.3.5, i.e. Rf∗RX ∼= ICY ⊕Rv[−2]. (Hint: H1E 6= 0.)
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Remark 4.2.3.8 I do not want to extrapolate too much, at this point, from the
DT for Example 2. I will say that the intersection form ι was the key to splitting
the direct image. This is an important ingredient and I will discuss it in detail by
providing a splitting criterion for perverse sheaves that uses the correct generaliza-
tion of this form. The second important ingredient is the relative hard Lefschetz
theorem. It has not appeared yet: the example we have discussed are trivial with
respect to this theorem.
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4.3 5 Examples

4.3.1 The blow up of P1
C × P1

C at a point t

Consider the following commutative diagram:

X := Blt P1 × P1 b //

f
((QQQQQQQQQQQQQQ P1 × P1

p

��
P1.

We already know that
Rb∗QX

∼= QP1×P1 ⊕ Qt[−2].

We have

Rf∗QX
∼= Rp∗Rb∗QX

∼= Rp∗QP1×P1 ⊕Rp∗Qt[−2]

∼=1 [R0 = QP1 ]⊕
[
R2 = QP1 ⊕ Qp(t)

]
[−2]

∼=2 ICP1 ⊕ ICP1 [−2]⊕ ICp(t)[−2].

The third row tells us that Rf∗QX decomposes as the direct sum of its shifted
cohomology sheaves;
it also tells us that the second direct image sheaf splits into two summands:

R2f∗QX
∼= QP1 ⊕ Qp(t).

I want to point out that these two splittings are really different and I will part them
by iintroducing a kind of symmetry that was inisible in the examples considered so
far: the relative hard Lefschetz theorem.

4.3.2 The 5 Examples

In the following five examples f : X → Y is a projective map of quasi porjective
varieties of the indicated dimensions.
In the previous sections we have proved that, in each example, Rf∗QX splits. We this
information below, taking care to write each term with its support as a subscript.
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1. f : Xn → Y 0 (v := Y 0):

Rf∗QX
∼=

2n⊕
i=0

H i(X)v[−i].

2. f : Xm+n → Y m projective smooth (example 1 is a special case of this):

Rf∗QX
∼=

2n⊕
i=0

Ri
Y [−i] (Ri

Y := Rif∗QX local system on Y )

3. f : X2 → Y 1 (BltP1 × P1 → P1 (§??):

Rf∗QX
∼= QY ⊕ QY [−2]⊕ Qp(t)[−2].

4. f : Xn = BlZY → Y n blow up with smooth center (§2.4.4) (set r := c− 1):

Rf∗QX
∼= QY

⊕ ⊕
1≤j≤r

ZZ [−2j].

5. f : X2 → Y 2 contraction of a curve E on a surface to a point v:

Rf∗QX
∼= ICY

⊕
H2(E)v.

In order to not get distracted by details, we write each term above simply as
Isupport[−].
Now, set

Isupport := Isupport[dim support].

We get

1. f : Xn → Y 0 (v := Y 0):

Rf∗IX
∼=

n⊕
i=−n

Iv[−i]

2. f : Xm+n → Y m projective smooth (example 1 is a special case of this):

Rf∗IX
∼=

n⊕
i=−n

IY [−i].
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3. f : X2 → Y 1 (BltP1 × P1 → P1 (§??):

Rf∗IX
∼= IY [1]⊕Ip(t) ⊕IY [−1].

4. f : Xn = BlZY → Y n blow up with smooth center (§2.4.4) (set r := c− 1):

(a) if r is odd:

Rf∗IX
∼= IZ [r]⊕ . . .⊕IZ [1]⊕IY ⊕IZ [−1]⊕ . . .⊕IZ [−r];

(b) if r is even:

Rf∗IX
∼= IZ [r]⊕ . . .⊕IZ [2]⊕ (IY ⊕IZ)⊕IZ [−2]⊕ . . .⊕IZ [−r].

5. f : X2 → Y 2 contraction of a curve E on a surface to a point v:

Rf∗IX
∼= IY ⊕Iv.

Something remrkable in now in plain sight:

the direct sum decompositions are palindromic!

There is the Grothendieck-Verdier generalization of Poincaré duality. It applies
here and it predicts, once Rf∗QX is known to split that the splitting should be
palindromic (up to duality).
So it seems that what above is expected.
But a closer look shows that the terms that correspond to each other under the
symmetry −i ↔ i are in fact isomorphic, whereas the duality would predict that
they are dual to each other.
Again, this seems remarkable.
On the other hand, the terms in the example are self-dual, so this could be a coin-
cidence.
But wait, this is what happens with the HL theorem: Hn−k ∼= (Hn+k)∗ (PD),Hn−k ∼=
Hn+k (PD), so the terms are self-dual:

Hn−k ×Hn−k −→ Q(a, b) −→
∫
X
ηk ∪ a ∪ b

is a perfect pairing.
If there is a kind of HL among the terms corresponding in the symmetry, then we
should be onto something.

Exercise 4.3.2.1 Verify that in each case there is η ample on X (or even just f -
ample, i.e. ample on the fibers) such that, for every i ≥ 0, ηi yields isos between
the terms in cohomological degree −i and i.
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So are we onto something?
The answer is yes.
In order to start explaining why, I need to explain the meaning of the dimensional
shift we have used above.
It is time to talk about perverse sheaves.

4.4 The perverse t-structure

4.4.1 t-structures

The context is the one of a triangulated category D.
Instead of saying what that is, let us be re-assured by the fact that if A is an
Abelian category, then the homotopy and derived categories, as well as they bounded
variants, K(A) and D(A) are triangulated. So the reader can keep these models in
mind.
As the various definitions below unfold, it is a good idea to keep in mind §3.4.2 on
truncations.
A t-structure p on D is the datum of two full subcategories pD≤0 and pD≥0 of D
subject to three axioms: (for a class R ⊆ D, set R[i] to be the class obtained by
translating the elements of R; set pD≤i := pD≤0[−i], pD≥i := pD≥0[−i]):

1. pD≤−1 ⊆pD≤0, pD≥1 ⊆pD≥0.

2. HomD(pD≤0,pD≥1) = 0.

3. Every K ∈ D gives rise to a distinguished triangle

K ′ −→ K −→ K ′′ −→ K ′[1], with K ′ ∈ pD≤0 and K ′′ ∈ pD≥1.

The first remark is that the distinguished triangle is functorial, thus defining functors
K 7→ K ′ and K 7→ K ′′ which is natural to call truncations pτ≤0 andpτ≥1 and a a
natural transformation pτ≥1 → [1] ◦ pτ≤0.
One sets pτ≤iK = (pτ≤0K[i])[−i]. Similarly, for pτ≥i.
The standard truncations §2.4.4 define the standard t-structure on the homotopy
and derived categories.
All the properties (and more) discussed in §2.4.4 for the (standard) truncation hold
for any t-structures.
We have that the full subcategory pC := pD≤0 ∩ pD≥0 (the heart of the t-structure)
is an Abelian category.
We have cohomological (this means a distinguished triangle yields a les) functor
pH : D → pC called the cohomology functor of the t-structure: pH(K) = pτ≤0]pτ≥0K.
One sets pH i := pH ◦ [i], so that pH iK[−i] = pτ≤i

pτ≥iK.
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Let e : K → K[r] be an arrow in D.
We get, completely formally:

pH i(e) : pH iK −→ pH i+rK.

We say that K is p-split if there is an iso⊕
i

pH iK[−i]
∼=−→ K.

4.4.2 Wouldn’t it be nice?

We are in the position to state what would be desirable in terms of a generalization
of Deligne theorem to proper maps of compelx algebraic varieties:
For every variety X there should be a full subcateogry DX of the derived category
of the category of sheaves of rational vector spaces on X, a t-structure p on DX
such that, for every proper map f : X → Y of complex algebraic varieties, with X
nonsingular and for every f -ample η ∈ H2X, we have that:

1. Rf∗QX is p-split in DY .

2. pH iRf∗QX is semisimple in pCY .

3. ηi : pH−i(Rf∗QX [dimX])
∼=−→ pH i(Rf∗QX [dimX]) in pCY , for every i ≥ 0.

This can all be done. In fact, more can be done.
Let us first say what the categories DX are.

below instead duality ....

4.4.3 f ! and duality

Recall that (f ∗, Rf∗) are an adjoint pair.
It is a theorem (due to Verdier) that there is a functor f ! (exceptional inverse
image, “f upper-shriek”) which is the right adjoint to Rf!, (Rf!, f

!) (Hom’s are in
the respective derived categories):

Hom(Rf!K,C) = Hom(K, f !C), Rf∗RHom(Rf!K,C) = RHom(K, f !C).

As in Exercise §2.4.2.12, we get, functorially, the adjonction maps

Rf!f
!K −→ K, C −→ f !Rf!C.

If f = j is an open immersion (or smooth of relative dimension zero), then j! = j∗.
If it is smooth in relative dimension d, then f ! = f ∗[d].
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If f = i is a locally closed immersion, then f ! = f ∗RΓX (if F is a sheaf on Y , then
ΓXF is the sheaf (on Y !) of sections of F supported on X, ΓX is left-exact, RΓX is
the right derived funcctor; H(Y,RΓX(C)) = HX(Y,C) (cohomology with supports
on X).

Exercise 4.4.3.1 (Relative cohomology) Let X = U
∐
Z, where i : Z → X is a

closed immersion and j : U → X is an open one. Let F be a sheaf on X. Show that
there is a functorial exact sequence

0 −→ j!j
∗F −→ F −→ i∗i

∗F −→ 0

Apply this to an injective resolution of F and deduce that there is an funcotrial
exact sequence (more precisely, a distinguished triangle): (here, Rj! = j!, j

∗ = j!,
Ri∗ = i∗)

j!j
!C −→ C −→ i∗i

∗C −→ .

Note that the first two arrows are the adjonction maps for (Rj!, j
!) and (i∗, Ri∗).

The corresponding les is the les of relative cohomology HX,Z → HX → HZ
+1→.

Show that there is a funcotrial ses

0 −→ i∗i
!F −→ F −→ j∗j

∗F −→ 0.

Derive it as above to obtain

i∗i
!C −→ C −→ Rj∗i

∗C −→ .

Note that the first two arrows are the adjunction maps for (Ri!, i
!) and (j∗, Rj∗).

The corresponding les is the les of relative cohomology HX,U → HX → HU
1→.

Moreover, HX,U = HZX.

Exercise 4.4.3.2 Let Let i : o → Rn be the closed immersion of a point. Use the
les of cohomology sheaves of the “ses” 0 → i∗i

! → Id → Rj∗j
∗ → 0 to prove that

i!QRn
∼= Qo[−n].

Exercise 4.4.3.3 Let i : Z → X be a closed embedding. Prove that i∗ = Ri∗ is
fully faithful (map on Hom’s is an iso). In particular, show that Hom(i∗K, i∗C) =
Hom(K,C).

Exercise 4.4.3.4 (The map i! → i∗) Let i : Z → X be a closed embedding. Use
the natural adjunction maps to get the natural map

i!C −→ i∗C

inducing

Hk(Z, i!C) −→ Hk(Z, i∗C), Hk
c (Z, i!C) −→ Hk

c (Z, i∗C).

Observe that if Z is compact, then the two maps coincide.
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Define the dualizing complex ωX of X by setting

ωX := γ!Qpt, γ : X → pt.

Since it is a fact that (g ◦ f)! = g! ◦ f !, we have that, if f : X → Y , then ωX = f !ωY .
The dualizing complex is canonically isomorphic (in the derived category) to the
shifted complex DX [2 dimC X of Borel-Moore chainson X and we have

Hk(X,ωX) = HBM
2n−kX.

[13] explains this statement and illustrates that ωX has cohomology sheaves only in
the interval [−2 dimC X, 0], shows how to compute this complex using links so that
one can be convinced that if X is nonsingular, then ωX = QX [2n].

Define the duality functor D : C → C∨ := RHom(C, ωX).
Off the bat, note that, by adjunction ωX = Q∨X .
We have: [k] ◦ D = D ◦ [−k].
We have: D2 = Id (canonical iso).
We have the important:

DY Rf! DX = Rf∗, DX f
! DY = f ∗.

Exercise 4.4.3.5 (Poincaré duality) The importance of the duality functor be-
comes manifest on X nonsingular, with K = QX , C = ωpt = Qpt. Show (using
(Rf!, f

!)) that:
Hom(RΓc(X,QX),Qpt) = Hom(QX ,QX [2n]),

which gives, after taking i-th cohomology

(H−ic X)∨ = H i+2nX (Poincaré duality).

Exercise 4.4.3.6 (Stalks of H iC∨) Use the argument above to show that:

H−ic (X,C)∨ = H i(X,C∨).

Deduce that (the limit is a direct limit) (the first = is general):

(H i(C∨)x =) H i(i∗xC
∨) = lim

−→
U3x

H−ic (U,C)∨.

Exercise 4.4.3.7 (Lefschetz duality) Let X be a nonsingular variety of dimen-
sion n and i : Z → X be a closed embedding. Use the composition Z → X → pt to
deduce that ωZ = i!QX [−2n]. Deduce that

(HkX,X \ Z =) Hk(Z, i!QX) = HBM
2n−kZ.
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Use the intepretation of Poincaré duality in terms of the non degenerate intersection
pairing

HkX ×HBM
2n−kX −→ Q

to interpret the natural map of Exercise 4.4.3.3

H2n−kZ −→ HkZ

as follows: take a Borel-Moore (2n− k)-cycle in Z, push it forward via the (proper)
closed embedding i to the “same” cycle viewed in the BOrel-Moore homology of X,
apply th eintersection form above on X to this cycle paired with a variable homology
cycle on X, thus obtaining a cohomology class on X which, finally, we view as a
cohomology class on Z once we pair it with the homology cycles in the image from
Z. Make precise the fact that the refined intersection product in §1.0.6 is a special
case.

Exercise 4.4.3.8 Let X be contractible, nonsingular manifold of dimension n. Let
C be a bounded (may work in general . . . , not sure) complex with Li := H iC local
systems (necessarily constant)

1. Observe that there are no higher extensions among the Li:

Hom>0(Li, Lj) = 0

2. Prove that C is s-plit: C ∼= ⊕iLi[−i]. (Induction using truncation and the
observation above).

3. Show that C∨ ∼= ⊕L∗i [2n+ i] (L∗ the dual local system, here iso to Li).

4. Do not assume that X is contractible anymore. Prove, by working on con-
tractible open sets, that C∨ is also a bounded complex with locally constant
cohomology sheaves Mi := H i(C∨). Show the following: If Li = 0 for i /∈ [a, b],
then Mi = 0 for i /∈ [−2n− b,−2n− a]. (In fact Mj = L∗−j−2n). We may say:
if C lives before b, then C∨ lives after −2n− b.

4.4.4 Constructible bounded derived category

A sheaf of finite dimensional rational vector spaces on a variety Z is constructible
if there is a partition Z =

∐
Za into locally closed subvarieties such that F|Za is a

local system for every a.
A complex of sheaves of rational vector spaces is said to be constructible if all of its
cohomology sheaves are constructible.
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Note that the de Rham complex EZ on a nonsingular Z is constructible, but the Ei
Z

are not.
Let DZ be the full subcategory of the derived category of the category of sheaves of
rational vector spaces whose objects are the bounded constructible complexes.
These categories are stable under all the functors we use (and more):

Rf∗, Rf!, f
∗, f !, RHom,⊗,D, . . .

For example: if f : X → Y is a map of varieties, then Rif∗QX is a constructible
sheaf on Y .
Another example is that the dualizing complex ωX = Q∨X is constructible. This
is clear in view of ωX ∼= DX (complex of Borel-Moore chains) and the explicit
description of the cohohology sheaves H iDX via links.
Let me try to explain why this is the case.
Let f : X → Y be a proper map of algebraic varieties.
Then by fundamental results of Thom-Mather, there is a partition of Y =

∐
Ya into

locally closed subvarieties, s.t. fa : Xa := f−1Ya → Ya is topologically locally trivial
for every a.
This maps is clear that we have the constructibility statement for Rifa∗Q.
Since the map is proper, by proper base change, (Rif∗Q)|Ya = Rifa∗Q, so that Rif∗Q
is constructible.
If f is not proper, it is a fact that it can be “embedded” into a proper one and can
deduce the wanted statement.
The case of C constructible (we discussed C = QX above) is dealt-with similarly
(but one needs a bit more technical machinery, namely the local product structure
of C in these neighborhoods).
What makes the constructible derived category something we can work with (and
the basis for all that above) is that constructible complexes have, locally around the
strata of a suitable stratification of X a product structure (see [14], §3.5 and/or [12],
§1.5.5 for a summary). This leads to the notion of standard neighborhoods of a point
x ∈ X. The most important feature of constructibility is then that, for each k, as U
varies among the open neighborhoods of x direct system Hk(U,C) and the inverse
system Hk

c (Ux, C) are “eventually constant” ([15], §3), so that the corresponding
limits are already attained by a suitably small standard neighborhood U (and then
by any smaller standard neighborhood as well):

lim
−→
U3x

Hk(U,C) = Hk(U , C), Hk
c (U , C) = lim

←−
U3x

Hk
c (U,C).

Compare this situation with the skyscreper sheaf with stalks Q over the Cantor set.

Exercise 4.4.4.1 (The map i!x → i∗x)
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1. Use duality to show that the same two equalities above can be derived from
each other. (Hint: it holds for every k and every C, so it holds for −k and
C∨.)

2. Use Exercise 4.4.3.6 and the two equalities above to deduce the following
identity for constructible complexes C (not sure how general this is):

Hk(i!xC) = H−k(i∗xC
∨)∨.

(Hint: we know Hk(U , C) ∼= Hk(i∗xC); a duality argument shows Hk(i!xC) ∼=
Hk
c (U , C); now apply Verdier duality.)

3. Show that the natural map i!x → i∗x of Exercise 4.4.3.4 can be viewed as the
natural maps

Hk
c (U , C) −→ Hk(U , C), H−k(i∗xC

∨)∨ −→ Hk(i∗xC).

4. If C is self dual, conclude that the natural map i!x → i∗x can be viewed as a
natural pairing (map between space and its dual; compare with the refined
intersection form in Exercise 4.4.3.7 and in §1.0.6):

H−k(i∗xC)∨ −→ Hk(i∗xC)

Remark 4.4.4.2 (i!x → i∗x and splitting) Let f : X → Y be the non complex
algebraic contraction of the zero section (to a point v ∈ Y ) of the trivial line bundle
on a curve C (Example 1.0.1.1). As seen in ?????, P := Rf∗QX [2] is a perverse
sheaf on Y . The map i!vP → i∗vP is the zero map between one dimensional vector
spaces. The complex P has composition series with exactly 2 constituents (non
trivial simple quotients) and it does not split into the sum of its constituents (it is
thus reducible but not semisimple). In the complex algebraic contraction of Example
1.0.1.2, instead, the map i!vP → i!xP is an iso and P splits and is semisimple. As
we shall see, for self-dual perverse sheaves, the map i!x → i∗x controls exactly the
splitting behaviour of a perverse sheaf at x. This turns out to be of fundamental
importance for a geometric proof of the decomposition theorem.

Remark 4.4.4.3 (Whitney stratifications) We did not mention Whitney strat-
ifications ([17]) in the definition of constructible sheaves/comlexes. That is because
of a fact (not easy to prove; need to put together some results in [7])) that the
definition employed here ensures that the “stratificatons” employed can be refined
to a Whitney stratifications and the complex will be still of course constructible
in the sense defined here, but also have a local product structure (mentioned few
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paragraphs above). Then one proves, for example a precise form of the stability
of constructible complexes wrt the functors Rf∗ etc.: e.g. if f : X → Y is strati-
fied in this strong sense and C is constructible (strong sense) on X, then Rf∗C is
constructible on Y (strong sense); similarly, for duality etc. See [15].

4.4.5 The definition of perverse sheaves

In what follows X does not need to be irreducible, nor pure-dimensional.
Recall that the support |F | of a sheaf F is the closure of the set of points where
Fx 6= 0. The support |K| of a complex K ∈ DX is the (Zariski closed) support
| ⊕i H iK|.
Recall that C∨ := D(P ) is the Verdier dual to C ∈ DX .

Definition 4.4.5.1 (Perverse sheaf) We say a complex P ∈ DX is a perverse
sheaf if:

dim |HkP | ≤ −k, dim |HkP∨| ≤ −k.

The two conditions are called the conditions of support and of co-support.

Since this is the most important definition in these lectures, and it is not easy to
digest, let us view it from different angles and give 3 additional equivalent formula-
tions.
There is a partition X =

∐
Xa with Xa locally closed nonsingular subvarieties with

(H iP )|Xa and (H iP∨)|Xa locally constant for all k and all a.

1. The condition of support is equivalent to having:

∀ a : Hki∗XaP = 0, ∀k > − dimXa

and also to having:
∀ a : i∗XaP ∈ D

≤−dimXa
Xa .

The condition of co-support is then equivalent to having

∀ a : i∗Xa(P
∨) ∈ D≤−dimXa

Xa

2. We dualize the above (use the identities Di∗D = i! and D2 = Id, apply Exercise
4.4.3.8.(4)) and get that the condition of co-support is equivalent to having

∀ a : i!XaP ∈ D
≥−dimXa
Xa .
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and thus it is also equivalent to having

∀ a : Hki!XaP = 0, ∀k < − dimXa

It follows that we could have defined the category of perverse sheaves by
requiring that, for all a: (the two conditions below are exchanged by D)

i∗XaP is concentrated in cohomological degrees ≤ − dimXa

and

i!XaP is concentrated in cohomological degrees ≥ − dimXa .

3. Recalling that Hki
!
xP=H−k(i∗xP

∨)∨ (Exercise 4.4.4.1.(2), we have that P is per-
verse iff

dim {x | Hki∗xP 6= 0} ≤ −k, dim {x | Hki!xP 6= 0} ≤ k.

These conditions admit a nice visual exemplication: see [12], p.556, Figure 1, which
also displays the analogous conditions of support and co-support for intersection
cohomology complexes. That picture was given to us by M. Goresky.

Let PX ⊆ DX be the corresponding full subcategory of perverse sheaves.
It is clear that the duality functor preserves the category of perverse sheaves.
We denote by D[a,b]

X the full subcategory of objects C with HkC = 0 for every
k /∈ [a, b].

Proposition 4.4.5.2 If P ∈ PX , then P ∈ D[− dimX,0]
X .

More precisely, if |P | is a union of strata Xb satisfying s ≤ dimXb ≤ d, then

P ∈ D[−d,−s]
X .

Proof. Note that the conditions of support imply at once that P ∈ D≤−sX so that we
consider only the remaining inequality (“≥ −d”).
P = 0?, then nothing left to prove.
We may assume X = |P | and we may assume dimX = d.
Induction on the number # of strata contained in X.
If # = 1, then X is that stratum and it is nonsingular of dimension d.
We have P ∈ D≤−dX (support).
By Exercise 4.4.3.8.(4), we have P∨ ∈ D≥−dX and, by co-support, the opposite in-
equality.
P∨ is thus a local system in degree −d and so is P (base case of induction OK).
Assume (#− 1) is OK.
Let X have # strata. One of them, S, must be closed.
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We can write X = U
∐
S, where U is the union of the remaining #− 1 strata and

j : U → X ← S : i are open/closed embeddings.
We have the ses (distinguished triangle):

τ≤−d−1P −→ P −→ τ≥−dP −→

Since i!S = i∗SRΓS, this functor sends D≥lX → D
≥l
X for every l.

Apply this to the ses above, take the les and observe that:

Hki!Sτ≤−d−1P
∼=−→ Hki!SP = 0, ∀k < −d,

where the = 0 is from the cosupport condition.
Using the adjunction maps, we get a natural map i!S → i∗S. This map is iso when
we feed it something supported on S.
By the inductive hypothesis, |τ≤−d−1P | ⊆ S.
It follows that

i!Sτ≤−d−1P
∼=−→ i∗Sτ≤−d−1P

so that (using i∗S is exact):

Hki!Sτ≤−d−1P
∼=−→ Hki∗Sτ≤−d−1P = Hkτ≤−d−1i

∗
SP, ∀k.

The lhs is zero for k ≤ −d− 1, so is the rhs.
Finally, take the les of cohomology sheaves of

j!P|U −→ P −→ i∗i
∗P −→ .

By the inductive hypothesis on P|U , and by using that j! and iS∗ are exact, we get
isos:

HkP
∼=−→ HkiS∗iS

∗P = iS∗H
ki∗SP = iS∗H

ki∗Sτ≤−d−1P, ∀k ≤ −d− 1.

We have proved above that the rhs is zero and we are done.

Exercise 4.4.5.3

1. Let X be nonsingular of dimension d and L be a local system on it. Show L[d]
is perverse. In particular, QX [d] is perverse (and clearly, self-dual).

2. Let i : o → ∆ ← ∆∗ : j be the usual thing for the uni disk ∆ ⊆ C. Let L
be a local system on ∆∗. Show that Rj∗L[1], Rj!L[1] = j!L[1] and j∗L[1] are
perverse on ∆.
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3. (This is not really an exercise, just a funny observation) As above, with L =
Q∆∗ . In the following ses, nothing is a perverse sheaf, except the quotient:

0 −→ j!Q∆∗ −→ Q∆ −→ i∗Qo −→ 0.

Shift by [1]:
0 −→ j!Q∆∗ [1] −→ Q∆[1] −→ i∗Qo[1] −→ 0.

Now the first two are perverse, but not the third. (I wrote the above as a ses,
that is fine, it is a ses of complexes. But it is not a ses in the category of per-
verse sheaves! The category of perverse sehaves is indeed Abelian. A ses in it
is a distinguised triangle in the derived category and viceversa a distinguished
triangle withwhose entries are perverse sheaves is a ses of perverse sheaves.)
Believe that the category of perverse sheaves is Abelian. “Turn” the triangle
aboe into

i∗Qo −→ j!Q∆∗ [1] −→ Q∆[1] −→ .

Now everything is perverse. Conclusion, the above is a ses in P∆ so that j!Q∗∆
is a subsheaf of Q∆, but, under the same map!, Q∆[1] is a quotient of j!Q∆∗ [1]
in the category of perverse sheaves. Conclusion: one needs to be careful to use
set-theoretic intuitions.

4. Let f : X → Y be a finite map (= proper + finite fibers) and P be a perverse
sheaf on X. Then Rf∗P = f∗P is perverse on Y .

5. Let f : X → Y be a proper map from X nonsingular of dimension 2m contract-
ing exactly one n-dimensional subvariety. Prove that Rf∗QX [2n] is perverse
on X.

6. Generalize the above as follows. Assume that f : X → Y is proper, X is
nonsingular of dimension n and that dimX ×Y X ≤ n (it is always ≥ n (these
maps are called semismall). Show that Rf∗QX [n] is perverse on Y .

7. Same as above, but assume in addition that there is only one irrducible com-
ponent of X ×Y X of dimesnion n (these maps are called small; e.g. the
blowing up of the cone over the nonsingular quadric in P3 along one of the
planes through the origin). Show that P := Rf∗QX [n] (which is perverse by
the previous exercise) satisfies some stronger conditions than the support/co-
support ones, namely: dim |H iP | ≤ −i−1 and dim |H i(P∨| ≤ −i−1 for every
i ∈ [−n+ 1, 0]. In particular, H0P = H0P∨ = 0. Note that the only intersec-
tion complex we have met so far, the one of surfaces targets of contractions,
satisfy these stronger requirements.
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8. Note that the stronger condtions above are not met by Rj∗Q∆∗ [1], nor by
j!Q∆∗ [1], but that they are met by j∗Q∆∗ [1], whic is in fact self-dual. Discuss
the analogous situation with a local system L on ∆∗.

9. Let i : Z → X be a closed subvariety. Show that i∗ = Ri∗ induces a full
embedding PZ → PX . For this reason, if P is perverse on Z, it is costumary
to identify it with Ri∗P (and viceversa).

10. Show that all the complexes I in §4.3.2 example 1, 2,3 and 4 are perverse.
This is the reason why we used the dimensional shifting. The only non trivial
one is the 5th example.

11. Do the same for the 5th example. This is not so immediate and it has inter-
esting features. First show that Rf∗QX is perverse by using the support/co-
support conditions. Deduce that the summands are perverse. We have just
proved that the intersection complex on a singular surfcae is a perverse sheaf.

12. (More about the above) Deduce that there is an iso a : IY ⊕Iv
∼= I ∨

Y ⊕I ∨
v .

Consider the 4 components of this iso and show that IY → I ∨
v must be zero

(see Exercise 3.4.2.2). By looking at the inverse iso a−1, deduce that the map
Iv → I ∨

Y is also zero. Deduce that a is diagonal so that the summands are
self-dual. We have just proved that the intersection complex of a singular
surface is self-dual.

13. (More about the above) Prove that the intersection complex IY of the surface
Y is a simple object in the category of perverse sheaves on Y .

14. ([13], §4.3.5, 4.3.6) The complex QC [1], C any curve is perverse. The complex
QS[2] is perverse if S has only unibranch singularities. Find a natural condi-
tion for the perversity of QY [dimY ], for Y with isolated singularities in any
dimension.

4.4.6 The perverse t-structure on DX
There is a t-structure p on DX (constructible bounded derived cateogry of sheaves
of rational vector spaces on X) and its heart is the category of perverse sheaves PX ,
which is therefore Abelian.
It is easy to define the full subcateogry:

pD≤0
X := {K ∈ DX | dim |H iK| ≤ −i, ∀i}.

Set
pD≥0

X := D
(

pD≤0
X

)
.
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Axiom 1 in §4.4.1 is verified easily.
Axiom 2 requires some work.

Exercise 4.4.6.1 Prove that axiom 2 holds. Here are the main steps. (This is just
an adaptation of [16] to this special case). It is enough to prove the statement for
two complexes K and C which are constructible with respect to a fixed stratification
X =

∐
Xa. On the strata of top dimension K and C are complexes that live in

degrees ≤ 0 and ≥ 1, repsectively so we can use Exercise 3.4.2.2. The key point
becomes the following. Assume X = U

∐
S with i : S → X and j : U → X, with U

union of strata and S the new stratum (U open, S closed). The inductive hypothesis
is that axiom 2 holds on U and S separately (for the complexes constructible with
respect to the stratification we are using). Verify that j∗K ∈ pD≤0

U , i∗K ∈ pD≤0
S

and that j∗C ∈ pD≥1
U , i!C ∈ pD≥1

S . Apply Hom to the ses (distinguished triangle)
i∗i
∗K → K → j!j

∗K → and get an es:

Hom(i∗i
∗K,C) −→ Hom(K,C) −→ Hom(j!j

∗K,C).

Note that Hom(i∗i
∗K,C) = Hom(i∗K, i!C) = 0 (inductive hypothesis for S) and

that Hom(j!j
∗K,C) = Hom(j∗K, j∗C) = 0 (inductive hypothesis for U).

The key point is the existence of the distinguished triangle, i.e. the construction of
the perverse truncation pτ≤0 and pτ≥1 ([16, 7]).
Let me refer the reader to [19], §4.1 where a short account of the follwoing facts is
given: construction of perverse truncation functors, exchanges via duality, i.e.

D ◦ pτ≤k ◦ D = ◦ pτ≥−k, D ◦ pHk = pH−k ◦ D,

truncations and shift, i.e. (symbolically):

[−l] ◦ τk ◦ [l] = τk+l, Hk ◦ [l] = Hk+l

The functor pH0 is cohomological: a distinguished triangle K → K ′ → K ′′ →
K[1] is in particular an infinite diagram of maps in the derived category with two
consecutive arrows composing to zero. This gives a diagram . . . → pHj(K) →
pHjK ′ → pHjK ′′ → pHj+1K → . . . which is automatically a complex by what above.
One then verifies it is exact ([16], p.31-32).
We are not going into that in these lectures but let us at least work out one example
using the formulae in [19].§4.1.

Example 4.4.6.2 Let D = D∗
∐
o be the unit disk with the indicated stratification

Let K = QD[1]⊕ QD. Note that QD[1] is perverse and QD = QD[1][−1] ∈ PD[−1] ⊆
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pD≥1
D . We thus exapect that pτ≤0K = QD[1] (i.e. we lose QD). We verify this. Here

are the relevant formulæ: i : o→ D ← D∗ : j, define τ ′≤0 and τ ′′≤0 as follows:

τ ′≤0F −→ F −→ Rj∗
pτD

∗

≥1 j
∗F −→, τ ′′≤0F −→ F −→ i∗τ>− dim oi

∗F −→,

pτD≤0F := τ ′′≤0τ
′
≤0F.

(with the following understanding: this is an inductive procedure from a union of
previous strata U to a the adjunciton of a new stratum U

∐
S; perverse truncations

are assumed to be known on U ; the starting point is a one stratum space, which
is then smooth and there the complexes have locally constant cohomology sheaves
and are truncated using the standard truncation with the dimensional shift pτ≤0 =
τ≤−dim. Finally, one has to verify that the τ ’s above are functors.).
Apply τ ′≤0 to K: (n.b.: pτD

∗
≥1 (QD∗ [1]) = 0)

? −→ QD[1]⊕ QD −→ Rj∗QD∗ −→

So that ? = QD[1]⊕ i!i!QD.
Apply τ ′′≤0 to this and verify that you loose i!i

!QD, so that only QD[1] remains.

Exercise 4.4.6.3 Do the same as above on a d-dimensional disk withK = ⊕di=−dQD[d][−i].

Once we have the perverse truncations, we have the perverse cohomology functors
pH i : DX → PX .
Given a map of perverse sheaves a : P → Q we form the cone P → Q→ C →, take
the les of perverse cohomology sheaves and get the les of perverse sheaves

0 −→ pH−1C −→ P −→ Q −→ pH0C −→ 0.

This way one verifies that one has kernels cokernels, etc.
We have maps

. . . pτ≤i−1 −→ pτ≤iC −→ . . . −→ C.

Using injecitve resolutions as in §???, we obtain a filtered complex and hence a
spectral sequence: the perverse spectral sequence. If f : X → Y , C ∈ DX and
K := Rf∗C, then we get the perverse Leray spectral sequence as the perverse
spectral sequence for K := Rf∗C. (You can avoid using injectives; see [30].)

We say that K is p-split, if there is an iso in the derived category⊕
i

pH iK[−i]
∼=−→ K.
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Given η ∈ H2X ample, we get (§???)

η : pH iRf∗C −→ pH iRf∗C.

We are ready to state the decomposition theorem and RHL, including the semisim-
plicity statement.
However, before doing that, let us first show that like the category of local sys-
tems, but unlike the category of sheaves, the category of perverse sheaves (rational
coefficients!) is Artinian. Otherwise, semsimplicity would be impossible (see the
discussion in ????).

4.4.7 Artinianity and Jordan-Hölder

Exercise 4.4.7.1 (Glueing sheaves) Let F be a sheaf on X and j : U → X ←
Z : i be complementary open/closed embeddings. Show that the category of sheaves
on X is equivalent to the category of triples (A,B, u : B → i∗j∗A), A sheaf on U ,
B on Z. F itself corresponds to (j∗F, i∗F, i∗F → i∗j∗j

∗F ), where the map is given
by adjunction.

Exercise 4.4.7.2 (Category of constructible sheaves: Noetherian, not Ar-
tinian) Use the Noetherianity of varieties to show that the category of constructible
sheaves is Noetherian (ascending chain condition ok). Show that it Artinian iff
dimX = 0 (descending chain condition fails). With integer coefficients, it fails for
X = pt. (Hint for Noetherianity: let Fi ⊆ F be the situation; use Exercise 4.4.7.1
and Noetherian induction on X to reduce to proving the statement on a non empty
open subvariety; reduct to a non empty irreducible open set where F is a local sys-
tem L of rank r; there is the notion of generic rank on this open set; the sequence of
these generic ranks is stationary; show that the acc is equivalent to the appropriate
statements on the quotients; the quotients have stationary ranks; it follows that
the increasing kernels of the quotients are eventually supported on a proper closed
subset so that they must stabilize by induction.)

Exercise 4.4.7.3 Show that PX is Noetherian. Deduce, by using D, that it is Ar-
tinian. (Hint (for the Noetherian statement): let Pi ⊆ P be the increasing sequence
and let d := dimX; show the sehaves H−d(Pi) form an increasing sequence in
H−d(P ); deduce that the images pH0(H−d(Pi)) inside Pi stabilize; form the increas-
ing sequence of corresponding cokernels and conclude by Noetherian induction).

By the Jordan-Hölder theorem, we have then that every non zero perverse sheaf P
on X admits a finite increasing filtration 0 = P0 ⊆ P1 ⊆ . . . ⊆ Pl = P with non zero
quotients Pi/Pi−1, 1 ≤ i ≤ l, which are simple perverse sheaves.
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The filtration is not canonical, but the set of non zero quotients (called the con-
stituents of P ) is canonical.
Since Exercise 4.4.7.3 does not shed light on this structure, let us give another proof.

First of all, let us introduce the intermediate extension functor.
Let j : U → X ← Z : i be the usual thing.
Let Q ∈ PU .
Take the natural map a : j!Q→ Rj∗Q. We get the natural factorization of pH0(a):

pH0(j!Q)
epi−→ Im a

mono−→ pH0(Rj∗Q).

This cosntruction is functorial and we set

j!∗Q := Im a.

This functor is left-exact (preserves monos), right-exact (preserves epics), but it is
not exact.
We are going to take the following fundamental fact for granted ([16], 1.4.25):
j!∗Q is the unique (up to can iso) perverse extension of Q to X which does not admit
non trivial perverse subobjects, nor perverse quotients supported on Z.
(It may have non trivial subquotients supported on Z).
If j : T → X is a locally closed embedding, then by factoring, i.e. T → T → X,
we can define the intermediate extension from T to X as the push forward from T
to X of the intermediate extension from T to T . This way, it is immediate to see
that the intermediate extension functor has the same characterization as above: no
subobjets and no quotients supported inside X \ T .

Exercise 4.4.7.4 Let j : T ⊆ X be a locally closed subvariety (not necessarily
irreducible, nor pure-dimensional) and P ∈ PT . Prove that j!∗P

∨ = (j!∗P )∨. (Hint:
dualize the diagram in the definition). In particular, if P is self dual, then so is
j!∗(P ).

Exercise 4.4.7.5 Let j : U → X be an open immersion. Prove j∗ : PX → PW , i.e
it preserves perverse sheaves. Show that is is an exact functor (i.e. ses 7→ ses).

Theorem 4.4.7.6 The category of perverse sheaves on X is Artinian and the simple
objects are the intermediate extensions j!∗L[dimV ] of simple local systems on integral
locally closed nonsingular subvarieties V of X.

(Of course, we view those intermediate extensions, which are perverse sheaves on
the closed V ⊆ X, as perverse sheaves on X.)
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Proof. Let us first prove that j!∗L[dimV ] is simple.
Let P →j!∗L[dimV ] be mono.
By Exercise 4.4.7.5, |P | ⊆ V .
By the fundamental fact above, |P | = V .
There is a non empty open V ′ ⊆ V s.t. P|W = M , with M ⊆ L|V ′ a local syatem.
Since L is simple, on V , L|V ′ is also simple (π1(V ′, v′) → π1(V, v′) is epic due to
normality).
It follows that M = L|V ′ .
This implies that the quotient j!∗L[dimV ]/P is supported indide V \ V and is thus
trivial by the fundamental fact again.
Simplicity follows.
It follows that if L is a local system on V then j!∗L[dimV ] admits a composition
series with simple quotients: just take a composition series for L and use the fact
that j!∗ is left-exact and what we have just proved.
We now prove that we have a composition series with simple quotients.
We proceed by Noetherian induction, i.e. we start by assuming that the conclusion
holds for the perverse sheaves supported on proper closed subsets of X.
Let P ∈ PX . Then there is an irreducible open set U ⊆ X s.t. P|U = L[dimU ], for
some local system on U . Leet j : U → X be the embedding.
We have the natural adjunction maps j!j

∗P → P → Rj∗j
∗P . Apply pH0 and we get

the following commutative diagram:

P
b

((PPPPPPPPPPPPPP

pH0j!j
∗P

77ooooooooooooo

can epi ''OOOOOOOOOOO
// pH0Rj∗j

∗P

j!∗L[dimU ]

canmono

77nnnnnnnnnnn

It follows that the bottom is a subquotient of the top (sub of Im b, image of P ).
We get the following commutative diagram:

Ker c
epi //

mono

��

j!∗L[dimU ]

mono

��
Ker b

mono
::vvvvvvvvv

mono // P
epi //

epi

c ''PPPPPPPPPPPPP Im b

epi
��

Im b/j!∗L[dimU ]

with j!∗L[dimU ] = Ker c/Ker b.
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Hence inclusions
Ker b ⊆ Ker c ⊆ P

With successive quotients

Ker b, j!∗L[dimU ], P/Ker c

where the first and third are supported on X \ U .
As observed above, j!∗L[dimU ] has the required composition series.
By the inductive hypothesis so do the first and third successive quotients so that
a composition series of them can be lifted from them and inserted between 0 and
Ker b and betwen Ker c and P .

Exercise 4.4.7.7 Use the perverse truncation formulæ and the content of Remark
4.4.4.3 (taken as a black box), to show that if C is constructible wrt a Whitney
stratification, then all of its perverse cohomology sheaves are constructible wrt the
same Whitney stratification. Show that if Q → P is a monomorphism of perverse
sheaves (perverse subsheaf!), then Q is constructible wrt the same Whitney stratifi-
cation. Ditto for quotients. Show that these two facts do not hold for constructible
sheaves. Formualate and prove the analogous fact for extensions of a P by a P ′

and note that this remains true even if we do not use Whitney stratifications, but
only a partition of X into locally closed subvarieties s.t. both P and P ′ have locally
constant cohomology sheaves on the elements of the partition of X. Show that this
holds for constructible sheaves. Show that if f : K → C is such that K and C have
cohomology sheaves which are locally constant on some partition of X as above,
then so is the cone of f . Deduce that if in a distinguished triangle any two terms
are constructible wrt to a given partition as above, then so is the third.

Exercise 4.4.7.8

1. Let C = U
∐
o be a curve where U is the regular part and o is a singular point..

Use the truncation formulæ in Exercise 4.4.6.2 to show that QC [1] = pτ≤0QC is
perverse. Show that j!∗QU [1] = j∗QU [1]. Find the composition series for QC [1].
Find the composition series for j!QU [1] and for Rj∗QU [1]. Let L be a local
system on U . Study the les of perverse cohomology sheaves associated with
0→ j!L→ j∗L→ i∗j∗L→ 0. Do the same for 0→ j!L→ Rj∗ → i∗Rj∗L→ 0.

2. Let Y = U
∐
v be a surface with an isolated singualr point. Show that QY [2] is

perverse iff v is unibranch. Assume v is unibranch (e.g. Y is normal). Use the
truncation formulæ to show that pτ≤0Rj∗QY [2] = (τ≤2Rj∗QY )[2]. Show that
this is perverse, hence it is pH0(Rj∗QU [2]). Show that pH0(j!QU [2]) = QY [2].
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Use the above and the les of perverse cohomolgoy sheaves of i!i
!QY [2] →

QY [2]→ Rj∗QY [2] to deduce that j!∗QU [2] sits into a ses of perverse sheaves

0 −→ j!∗QU [2] −→ (τ≤2RjQU)[2] −→ R2j∗QU −→ 0

so that
j!∗QU [2] = (τ≤1RjQU)[2] = τ≤−1(Rj∗QU [2])

which is the intersection complex of Y as defined in §????. Let L be a local
system on U . Study the les of perverse cohomology sheaves associated with
0→ j!L→ j∗L→ i∗j∗L→ 0. Do the same for 0→ j!L→ Rj∗ → i∗Rj∗L→ 0.

3. Let Ed−1 ⊆ PN be an embedded projective (d− 1)-fold. Let Y = U
∐
v be the

corresponding affine cone with vertex v over an E. Verify that

j!∗QU [dimY ] = τ≤−1(Rj∗QU [dimY ])

and that the stalks

Hk(Rj∗QU)v = P k
η , 1 ≤ k ≤ d− 1

where P k
η ⊆ HkE is the primitive cohomology wrt the hyperplane bundle.

Determine the compostion series for the perverse sheaf QY [d] (cf. ????). Let
L be a local system on U . Study the les of perverse cohomology sheaves
associated with 0 → j!L → j∗L → i∗j∗L → 0. Do the same for 0 → j!L →
Rj∗ → i∗Rj∗L→ 0.

4. Let P = Rf∗QX [2] be as in the four examples in §1.0.1. We know it is perverse
(see Exercise 4.4.5.3, parts 5,6,11). Verify that it is uneffected by pτ≤0 (as
it should). Determine its composition series (without using the fact that it
splits). (See Remark 4.2.1.6.)

Definition 4.4.7.9 Let L be a local system on a non empty open subset U of
the regular part of an irreducible varietey X. The Goresky-MacPherson-Deligne
intersection cohomology complex of Y with coefficients in L is (j : U → Y the open
immersion):

ICX(L) := j!∗L[dimX].

The intersection cohomology complex of a variety X is defined to be

ICX := ICX(QXreg).
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The cohomology groups of this complex are called the (Goresky-MacPherson) inter-
section cohomology groups:

IH i(X,Q) := H i+dimX(X, ICX), IH i
c(X,Q) := H i+dimX

c (X, ICX).

By Exercise 4.4.7.4, ICX is self-dual and Verdier duality implies that we have
Poincaré duality for intersection cohomology:

IH i(X,Q) ∼= IH2 dimX−i
c (X,Q), IH i

c × IH2 dimX−i −→ Q non degenerate

Similarly, for twisted coefficients.
Actually, the original definition [21] of Goresky-MacPherson is for intersection ho-
mology groups IHc,∗ and uses special complexes of geometric chains (i.e. no sheaf
theory) with compact support (analogous to singular homology). There is the vari-
ant IH∗ with locally finite supports (analogous to Borel-Moore homology). (i.e. no
sheaf theory). The paper [23] re-builds the theory in sheaf-theoretic terms. In par-
ticular, one has IHc,∗ = IH2 dimX−∗

c and IH∗ = IH2 dimX−∗, and the sheaf-theoretic
pairing coincides with the one defined geometrically in intersection homology.

Exercise 4.4.7.10 Let (L′, U ′) be a second pair as above. Assume that L = L′ on
the overlap. Show that ICX(L) = ICX(L′), i.e. the intersection complex ox X with
coefficients above is independent of the regular open set used to define it. (Hint:
look at the intermediate extension of from U to U ∩ U ′ and show that it coincides
with the local system on U ∩ U ′ obtained by glueing L and L′ (shifted by dimX);
note that this is a local problem and reduce to computing the intermediate extension
of the constant sheaf from Cn \ Cn−k to Cn.)

There is the following formula. Let X =
∐
Sl be a Whitney stratification of X,

where Sl is the union of all l-dimensional strata. Let d := dimX. Let Ul =
∐
l′≥l Sl.

We have an increasing sequence of open sets Ud ⊆ Ud−1 ⊆ . . . ⊆ U0 = X. Let
jl : Ul → Ul−1 be the open immersions, 1 ≤ l ≤ d. Then

ICX(L) = τ≤−1Rj1∗ (τ≤−2Rj2∗ (. . . τ≤−d+1Rjd−1∗ (τ≤−dRjd∗L[d]))) .

This matches with the ad-hoc definition we have used when dealing with contrac-
tions of curves on surfaces (see ????? and also Exercise 4.4.7.8).(2)), where the
intersection cohomology complex appeared natrually as an essential ingredient in
the study of the topology of the contraction.
It is possible to characterize intersection cohomology complexes using some strength-
ned conditions of support/co-support. In fact, this was, more or less, the original
definition. See [12], p.556 for a visual display of these conditions.
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Here, we state the following characterization of intersection cohomolgoy complexes:
ICX(L) is the only (up to iso) perverse sheaf P on X that extends L[dimX] and
has the following property:
(recall that being perverse both P and P∨ can have non trivial cohomology sheaves
of degree i ∈ [− dimX], 0] and that dim |H i(P, P∨)| ≤ −i)

dim |H i(P, P∨)| < −i, ∀i 6= − dimX.

E.g.: the intersection complex ICX of a threefold has H iICX = 0 for every i /∈
[−3.− 1] and dim |H−2| ≤ 1, dim |H−1| ≤ 0.

Exercise 4.4.7.11 Exercise 4.4.7.4 implies that ICX(L)∨ = ICX(L∨). Prove this
by testing the support/co-support characterization of ICX(L∨ against ICX(L)∨.
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5 Decomposition and relative Hard Lefschetz the-

orem

5.1 Statements and features

5.1.1 Statements

Theorem 5.1.1.1 Let f : X → Y be a proper map of complex algebraic varieties.

1. Then Rf∗ICX is p-split:⊕
i

pH i(Rf∗ICX)[−i] ∼= Rf∗ICX .

2. Each pH i(Rf∗ICX) is semisimple, i.e. it splits as a direct sum of the intersec-
tion cohomology complexes with simple coefficients of a suitable finite collection
of closed irreducible subvarietes of Y :

pH i(Rf∗ICX) ∼=
⊕
a

ICZi,a(Li,a).

3. Assume that f is projective and let η ∈ H2X be the first Chern class of an
f -ample line bundle on X. Then the relative hard Lefschetz theorem holds, i.e.
we have the isos

ηk : pH−k(Rf∗ICX)
∼=−→ pHk(Rf∗ICX), ∀ k ≥ 0.

5.1.2 Some features

By Verdier duality, the summation in 1. is symmetric about zero, i.e. i ∈ [−r,+r]
for some r ≥ 0 and:

(pH i(Rf∗ICX))∨ = pH−i(Rf∗ICX).

Part 1 and Part 3 imply that each perverse cohomology sheaf is self-dual.

The isomorphism 1 is not unique in any way. It is not even in the Leray-Hirsch
setting, so it cannot be here. This non uniqueness parallels the fact that once we
have a filtration on a vector space, we can split it, but not canonically.

The isomorphism 2 is also not canonical. It can’t be: the vector space R2 splits, but
a splitting is the same thing as chosing a basis. However, for every i, we can group
together the summands supported on the same subvarieties and get

pH i(Rf∗ICX) ∼=
⊕
Z⊆Y

ICZ(Li,Z).
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where the sum is finite and the Li,Z are semisimple. This decomposition is more
canonical as any two such differ by an automorphism of the rhs which is a direct
sum map wrt the Z’s (essentailly by Schur’s lemma). In fact, it is possible to
describe the rhs in geometric terms and, with this description of the rhs, a canonical
decomposition is possible.

Question. Why bother with this non canonical business?
Answer. Matters of precision aside, let us say that the after taking cohomology
both sides of the iso have a mixed Hodge structure. Then one would like to know if
one can chose isos compatible with this extra structure.

The RHL iso does not mix the Z-terms above (again by the Schur lemma). In
particular, the resulting primitive Lefscehtz decomposition can be performed Z-
term by Z-term.

Now we come to a fundamental feature of the decomposition theorem. If we restrict
to an open subset (Zariski or even Euclidean!) U ⊆ V an iso 1. we get a corre-
sponding decomposition iso on U . This implies that when we pass from U back
to Y we know that the intersection cohomology complexes ICZ∩U(L)) appearing in
the decomposition theorem over U also appear automatically, as ICX(L) of course,
in the decomposition theorem over Y ! In other words, knowing summands on an
open subset tells us that they give corresponding summands globally. This fact is
exactly what does not happen in the real algebraic contraction in Example ??? and
points to the fact that the decomposition theorem expresses a fundamental rigidity
proeprty of complex algebraic maps.
Morevoer, these summands are built using a recipe, intersection cohomology, which
is internal to the target Y of the map f : X → Y .

5.1.3 Maps from surfaces onto curves

Let f : X2 → C1 be a surjective projective map with connected fibers from a
nonsingular surface to a nonsingular curve. Let j : U → C be the open embedding
where U is the set of regular values. For simplicity let C \U = o be one single point.
Let # be the number of irreducible curves in f−1o. We have

Rf∗QX [2] ∼= {QC [1]} [1]
⊕{

j∗R
1[1]⊕ Q#−1

o

}
[0]
⊕
{QC [1]} [−1].

The first summand, in perversity −1, corresponds to the trivial local system on C
with canonical generator given by 1 on each fiber.
The RHL predict we should find a twin of this in perversity +1 generated by the
the cup product of η with 1 restricted to each fiber. And so it is.
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In doing so we fail to generate # − 1 classes in H2f−1o = (R2f∗Q)o which we find
instead in perversity 0! You know this a priori because RHL does not allow for this
packet of classes to be placed in any other perversity.
More canonically, it can be shown that that summand is really the non injective!
image under the class map of H2f

−1o in H2X, follwed by the restriction to H2f−1o
(recall that this is the refined intersection form on H2f

−1o).
If we apply Poincaré duality to this picture, we deduce that V is self-dual and the
intersection form on X (say X compact, for simplicity) induces a non degenerate
bilinear form on V . As we shall comment upon later this form is < 0. This is the
classical Zariski’s lemma.
It follows that we know that all the cohomology classes of the components con-
tribute to the cohomology of X, but in two distinct patterns, one pattern where the
refined intersection form is non-degenerate, the other pattern where the class of F
contributes as a monodromy invariant to (j∗R

2)o = (QC)o = 〈[F ]〉 and on which the
refined intersection form is trivial (F 2 = 0).
Note that the only important feature of f−1o that appears in the iso above is the
number #.
In perversity 0 we find the sheaf j∗R

1, where R1 is the local system on U with fiber
H1 of a regular fiber.
Note that we must have (R1f∗QX)o ∼= (j∗R

1)o and this says that

H1f−1∆o = R1π1(∆∗o),

i.e. the cohomology classes in the pre-image of a small disk about o are precisely
the local monodromy invariants of a regular fiber near o. A priori there is only a
map left to right.
This is an instance of the celbrated, and difficult, local invariant cycle theorem.

5.1.4 Resolution of 3-fold singularities

Let f : X3 → Y 3 be the resolution of the singularities of a 3-fold. For simplicity, we
assume there is only one singular point v ∈ Y away from which f is an iso and that
f−1v = ∪Dj a union of # divisors Then

Rf∗QX [3] ∼=
{

Q#
v

}
[1]
⊕{

ICY ⊕ Q%
o

}
[0]
⊕{

Q#
v

}
[−1].

The first summand in perversity −1 is canonically the injective! image under the
class map of H2 ∪ Dj, i.e. the divisor classes [Dj] are lineraly inepedent in X and
in fact, in any neighborhood of ∪Dj.
RHL tells us that the cup product with a hyperplane H produces one curve, Cj :=
H ∩Dj for any Dj and that their cohomology classes are linearly independent and
form a basis for that summand.
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Looking at perversity zero, we must have ICY as a summand, because it it a sum-
mand away from v! This is the fundamental fact discussed earlier (seen also in the
previous example, but not commented upon).
This is a general fact, the intersection cohomology groups of a variety are (a canon-
ical) direct summand (of a canonical subquotient) of the cohomology of X.
The piece Q%

v . This is analogous to the piece Q#−1
o in the previous example. In that

example it is clear that it is a pure Hodge structure of weight 2 and in fact it is of
pure type (1, 1). Morevoer, polarized by the intersection form. Here, Q%

v is also a
polarized PHS, but of weight 3. It is the only contribution to R3f∗QX (since ICY
stops just short of contributing!) so that we must have that H3 ∪Dj is a PHS. This
yields a general contractibility test, which in this case reads that the configuration
∪Dj is contractible only if H3 ∪Dj is pure and polarized by the intersection form.
(Converse is clearly not true: take D = P2 in X = P3.

5.2 Decomposition theorem for semismall maps

5.2.1 Semismall maps and perversity of Rf∗QX

Let f : X → Y be a proper map of algebraic varieties.
For ease of exposition, we assume that f is surjective.
Let n := dimX.
Let Y =

∐
δYδ be the stratification of Y by the locally closed subsets Yδ of points

over which the fiber has dimension δ.
We say that f is semismall if

2δ ≤ n− dimYδ, ∀k.

Exercise 5.2.1.1 Show that f is semismall iff there is no irreducible subvariety
T ⊆ X s.t. 2 dimT − dim f(T ) > n, iff dimX ×Y X ≤ n. Note that one always has
≥ n. We say f is small if, in the definition, we have a strict inequality, except when
δ = 0. Show that this is equivalent to having that all but one of the irreducible
components of Z of X × Y X have dimZ < n.

Note that semismall implies generically finite.

Example 5.2.1.2 A surjective map of surfaces is always semismall A blowing up
with smooth center of a nonsingular variety is semismall iff the center has codimen-
sion 2. The blowing up of the affine quadric cone of dimension 3 over the projective
quadric nonsigular surface in P3 along the divisor of one of the plane rulings is small
and not semismall. The blow up of the vertex is not semismall. There are many
interesting examples stemming from geometric representation theory [12].
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Proposition 5.2.1.3 Let f : X → Y be semismall with X nonsingular. Then
Rf∗QX [n] is perverse.

Proof. Note that QX [n] is self-dual:

(QX [n])∨ = Q∨X [−n] = ωX [−n] = QX [2n][−n] = QX [n];

since D ◦ Rf∗ = Rf! ◦ D, and f si proper, so Rf∗ = Rf!, we have that (Rf∗Q[n])∨ =
Rf∗Q[n].
By the very definition of perverse sheaf, it is sufficinent to show that Rf∗QX [n]
satisifes the conditions of support:

|H−i(Rf∗QX [n])| = |Rn−if∗QX | ≤ i.

Since f is proper, proper base change gives:

(Rif∗QX)y = H iXy.

A simple Noetherian argument shows that any quasi projective variety has no co-
homology after degree twice its dimension.
It follows that Rn−if∗ is supported on the closure of the union (in fact the union by
Chevalley’s upper-semicontinuity theorem) of the Yδ with

2δ ≥ n− i.

Let Yδo be such that dimYδo is maximum with that property: this dimension is an
upper bound for dim |Rn−if∗|.
we have

n− dimYδo ≥ 2δo ≥ n− i,

i.e.
|Rn−if∗| ≤ dimYδo ≤ i.

What follows applies to every algebraic map f : X → Y . We limit ourselves to
stating what we need (more is true [17, 15]:
there is a finite algebraic Whitney stratification Y =

∐
Ya (in particular, Ya are

irreducible, locally closed, nonsingular) with fa : f−1Ya → Ya a topologically locally
trivial fibration.
It is a general fact that the top dimensional irreducible components of the fibers of
fa form a locally constant sheaf of sets on Ya. Since the monodromy factors via a
finite group, the resulting local system La is self-dual.
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Back to f semismall. Note that in the definition of semismall we could have used
any stratification as above. In particular, we have the inequality for every Ya.

say that a stratum Ya is relevant if we have equality, i.e.

2 dim f−1ya = n− dimYa.

In this case, we have

La = local system with stalk HBM
n−dimYa(f

−1ya)

Theorem 5.2.1.4 (Decomposition theorem for semsimall maps) There is a
canonical isomorphism

Rf∗QX [n] =
⊕

Ya relevant
ICYa(La).

5.2.2 Sketch of proof

Let us work under some strong additional hypothesis that simplify the discussion of
the important points:

let us assume that f : (X2n, E) → (Y 2n, v) is a map of projective varieties (X
nonsingular) contracting precisely to a apoint v ∈ Y a closed algebraic subset E ⊆ X
with dimE ≤ n and such that the map is of maximal rank over Y \v (hence a covering
space with associated local system L).

In this case we have to prove that

Rf ∗ QX [n] = ICY (L)⊕ (H2nE)v.

Note that we did not assume that v is relevant i.e. that dimE = n. The proof is
blind to this fact, as it gives us the direct summand ICv(H2E) = H2(E)v which is
the vector space generated by the irreducible components of E of dimension n and
this is non zero iff v is relvant.

The proof consists of showing the following two facts:

1. The complex Rf∗QX [n] splits as predicted iff the refined intersection form

ιE : H2nE → H2nE is an iso.

As it turns out, this is a local question and treated using a little formalism
from the derrived cateogry.
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2. The refined intersection form ιE = iso.

As it turns out, this is proved using a global approach based on the classical
Hodge theory of projective manifolds.

Proof of 1. Set Rf∗QX [n] = P and let iv : v → Y ← U : j be the closed/open
complementary embeddings, E = f−1v and U ′ = f−1U ⊆ X.
Given any σ as below, we we have the commutative diagram:

(H0P )v = (H2nE)v

σ

��

σ′

vvnnnnnnnnnnnnn

iv !i
!
vP

a //

i ((QQQQQQQQQQQQQ P

p natural truncation map τ≤0

��
H0P = (H2nE)v

where σ′ exists and is unique due to the fact that its source is aupported on v.
We are looking for σ splitting p.
The cohomology hseaves of the taget of σ′ are in degree ≥ 0, so that σ′ is given
precisely by a map in degree zero.
We have H0(iv !i

!
vP ) = H2nE.

It follows that to give σ is the same as giving a map of vector spaces H2nE → H2nE.
For σ to be a splitting, we need p ◦ σ = Id.
Since dimH∗ = dimH∗, this can be done IFF H0(i) = ιE is an iso.

As to the proof that ιE = iso, again, let us first look again at the special case of
surfaces.

5.2.3 Grauert’s sign theorem via mixed Hodge Hodge theory

Recall Grauert criterion for contracting curves on complex surfaces (see Exercise
4.2.3.5).
The harder part of Grauert’s result is shwoing that I < 0 implies contractibility.
We focus insted on determining the signature of I once we have a contraction. We
do so in the projective context.
We want to give a proof of the following

Proposition 5.2.3.1 Let f : X → Y be a surjective and projective map of pro-
jective surfaces with X nonsingular. Let ∪Ej be a union of distinct curves on X
contracted by f to a point v ∈ Y . Then I = ||Ej · Ek|| < 0.
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Proof.
CLAIM 1: the class map below is mono:

cl : H2 ∪ Ej −→ H2X.

Proof of CLAIM 1.
We need to show cl : H2 ∪ Ej → H2X ∼= H2X is mono.
ETS H2 ∪ Ej → H2X is mono.
Equivalent to showing H2X → H2 ∪ Ej is epi.
By the theory of weights for mHS on the cohomology of complex varieties, if ∪Ej ⊆
U ⊆ X is a Zariski open set, we have that the image of H2X into H2 ∪Ei coincides
with the image of H2U .
Let V be an affine open set containing v and let U := f−1V .
It is enough to show that H2U → H2 ∪ Ej is epi.
This follows easily by looking at the E2 page of the Leray spectral sequence for
f : U → V which shows that all the differentials exiting from H0R2f∗QU = H2 ∪Ej
land in zero due to the theorem on the cohomological dimension of constructible
sheaves on affine varieties: H>dimC Z(Z, F ) = 0, Z affine, F constructible):

E2,1
2 = H2R1f∗QU = 0, E3,0

2 = H3R0f∗QU = 0

(in fact R1 lives on an affine curve in V and R0 on the affine surface V ).
This means that E0,2

2 = E0,2
∞ is the last graded piece of the Leray filtration, i.e.

H2U → E0,2
∞ is epi.

CLAIM 1 is proved.

CLAIM 2: The intersection form
∫
X on the compact oriented X is negative definite

when restricted to the image of the class map.
Proof of CLAIM 2.
Let A be the first Chern class of an ample line bundle on Y . Let L := f ∗A.
Since L2 6= 0, the hard Lefschetz theorem hold on the even cohomology, i.e.:

L0 = Id : H2X = H2X, L2 : H0X ∼= H4X.

We have the primitive Lefschetz decomposition

H2X = P 2
L ⊕ L ∪H0X, P 2

L = PL := Ker{L : H2X → H4X}.

This decomposition is orthogonal with respect to the intersection form
∫
X given by

the cup product on X.
In particular, by PD, the restriction of this form to PL is nondegenerate.
Let η be the first Chern class of an ample line bundle on X.
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For convenience only, we swtich to cohomology with real coefficients.
Let Lε := L+ εη, ε > 0.
The hard Lefschetz theorem holds for Lε.
The Hodge-Riemann bilinear relations tella us that the intersection form

∫
X is < 0,

when restricted to PLε for every ε > 0.
We have, in the appropriate Grassmannian: (it is essential that the two spaces have
the same dimension!)

lim
ε→0

PLε = PL.

It follows that
∫
X restricted to PL is ≤ 0.

But it is non degenerate by what above.
It follows it must be < 0.
CLAIM 2 is proved.

Finally:
the intersection form is ∫

X
H2X ×H2X → Q.

We have
H2X,X − ∪Ej ×H2X,X − ∪jEj −→ Q

factoring through
∫
X via the class map cl.

Since the class map cl is injective and its image lands in PL (!), the desired conclusion
follows (negative definite form restricted to subspace stays negative definite).

THe key points of the proof above are

1. clE : H2nE → H2nX is injective.

2. The restriction of the intersection form IX on H2nX, which is non degenerate
by Poincaré duality, stays non degenerate when restricted to Im clE.

Let us discuss how to generalize these two facts to any dimension in the specail case
we have been working with.

Part 1 generalizes to all dimensions with the same proof.

Part 2 is delicate:
we need IX to define a polarization of the kernel PL and we need Im clE to be a pure
Hodge substructure of the pure Hodge structure PL.

Let us explain a bit more this point.
H2nX is a PHS;

92



PL is a PHSS;
since H2nE is pure, so is its image and Im clE is a PHHS of the PHS PL.
if we knew IX that IX polarizes PL, then, we would be done by linear algebra:
a polarization restricts to a polarization on any PHSS of PL, and thus on Im clE;
clearly, polarizations are non degenerate: they become positive definite after a simple
linear algebra trick (Weil operator) that does not change their rank.

It is now clear that to finish up we need to show that PL is a PHHS of H2nX.

Let us pretend for a second that L ia ample on X. It is not, but . . . .
Then the Hodge-Riemann bilinear relations would precisely say what we need.
As in our proof of Grauert’s criterion, we try to do so with that same limiting
argument.
The key to that argument is to have PL to have the expected dimension b2n(X) =
b2n−2(X).
This does not happen if you blow up a point in P4, for you get the expected dimension
to be zero, while PL is one dimensional.
This happens precisely because the HL does not hold for L.
So one way to show PL has the right dimension is to prove HL for L.
In the surface case, this aspect was trivial.
In arbitrary dimension we have

Theorem 5.2.3.2 Let f : X → Y be a semismall map of projective varieties, X
smooth. Let A be ample on Y and L := f ∗A.
Then HL for L iff f is semismall.
In this case, we have the PLD and the HRBR.
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Let Y = U
∐
S, where S is a d-dimensional closed stratum of a Whitney strat-

ification of Y .

Let j : U → Y ← S : i be the open/closed embedding.

Let P ∈ PY .

We have the distinguished triangle

i!i
!P −→ P −→ Rj∗j

∗P −→ .

We have that:
either i!i

!P = 0, or |i!i!P | = S,

and
i!i

!P has locally constant cohomology sheaves on S.

The co-support conditions for P say that

i!i
!P ∈ D≥−dY .

We have the les of cohomology sheaves

0→ H−d−1P
j∗−d−1→ H−d−1Rj∗j

∗P
b−d−1→ H−di!i

!P
i−d→H−dP

j∗−d→H−dRj∗j
∗P

b−d→H−d+1i!i
!P → 0.

In degree ≥ −d, the above are all local systems on S.

Clearly,

(i−d = iso) IFF (b−d−1 = j∗−d = 0) IFF (j∗−d−1 and b−d = iso).

Proposition 5.2.3.3 The perverse sheaf P splits

P = j!∗j
∗P ⊕H−dP [−d]

IFF ι−d is an iso.

In this case, the splitting is canonical.

Proof. We have a diagram

H−dP [d]

σ

��

σ′

yyttttttttt

i!i
!P

a //

i %%JJJJJJJJJ P

τ
��

H−dP [d],
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where a is the adjunction map, τ is the projection induced by truncation and
i is the composition and where σ is any map and σ′ is the unique map that
makes the upper part commutative (this is because the top is supported on S).

We have that P splits into τ≤−d−1P ⊕ H−dP [d] IFF there is σ inducing s.t.
τ ◦ σ = Id.

Note that giving σ is the same as giving σ′ and that, since H−dP [d] (starts and)
ends in degree −d and i!i

!P starts in that same degree, giving σ′ is the same as
giving H−dσ′ : H−di!i

!P → H−dP (both local systems on S.

It follows that P splits into τ≤−d−1P ⊕H−dP [d] IFF i−d = iso. Moreover, this
splitting is unique for H−dσ′ is, so σ′ is, so σ is.

It remains to show that, if i−d = iso, then

τ≤−d−1P −→ τ≤−d−1Rj∗j
∗P = j!∗j

∗P

is an iso.

The les above (continued on the left) says that we only need to verify that
j∗−d−1 = 0 which is implied by i−d =iso.

Now we show that the map of local systems

ιS := i−d : H−di!i
!P −→ H−dP

can be interpreted as the same kind of map associated with the restriction to
any normal slice N at any point of s ∈ S (now a closed stratum in N):

ιs : H0is!i
!
sPN −→ H0PN

where PN := P|N [−d] ∈ PN .

This amounts to the following:

show that the restriction (i∗N) to N of the attaching triangle for (Y = U
∐
S)

is precisely the attaching triangle for (N,N \ s, s) (this is a local picture).

This follows by usual base change in view of a double use of i!N = i∗N [−2 dimS]
(the double use means here the shifts cancel out).

Note that if P = Rf∗ something, then similar base change will relate the above,
to a map of type Hn(X,X \Xs, P )→ HnXs, P|Xs .

(In our typical situation X is smooth and P = QX [n] is self-dual (we did not
assume that in what above), and we obtain, for P self-dual, the intersection
form on the pre-image of a normal slice).
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6 Appendices

6.1 The semisimplicity theorem

6.1.1 Some preliminaries

1. Let S be a topological space.

2. Reminder:

let M be a local system on S of finite dimensional complex vector spaces;

let C = CS be the sheaf of C-valued C0-functions on S;

let M := C(M) := M ⊗C C
(identified with the sheaf of continuous sections of the vector bundle M
associated with the local system M);

there is the natural ses of sheaves

0 −→M −→M −→M/M −→ 0; (1)

note that M admits a trivialization with constant transition functions.

If S is a smooth manifold, replace C with the sheaf of smooth functions
A;

Since the transition functions are locally constant, we can define

d : M−→ A1(M) :=M⊗C A1 (2)

and then
M = Ker d (3)

3. Given a subbundle N ⊆ M, we have its sheaf of sections.

We say a subsheaf N ⊆M is a subbundle is N arises as above.

We say a subbundle N is horizontal if it is of the form C(N) for N ⊆ M
a sub local system.

In this case, we have that N is the kernel of the compositum map

N −→M −→M/M. (4)

Using the above, it is easy to show that a subbundle N ⊆M is horizontal
IFF it admits local frames made of horizontal sections (i.e. sections of M)

(for the non trivial implication: take the kernel of (4)).
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4. Let V ⊆ H be of rank one.

Then V is horizontal IFF V⊗ ⊆ H⊗n is horizontal for some n 6= 1 IFF it
is horizontal for every n 6= 0.

Proof. It is enough to show that V⊗n horizontal for some n 6= 0 implies V
horizontal.

Let me do the case n = 2 to illustrate.

There is local frame v for V and v ⊗ v = h ∈ HC.

Write v =
∑
i lihi (li continuous, (hi) horizontal local frame).

Then ∑
liljhi ⊗ hj ∈ HC (5)

so that
lilj ∈ C, ∀i, j. (6)

This implies exists c ∈ Cn (n the rank of HC) and f continuous function
s.t. fc = (l1, . . . , ln).

This means that (1/f)v is a horizontal fram for V and we are done by
what below (4).

5. In the same vein:

Let V ⊆ H and V ′ ⊆ H′ = H ′C ⊗C C be both of rank one. Then V and V ′
are horizontal IFF V ⊗ V ′ is horizontal in H⊗C H′.
(Write v =

∑
lihi, v

′ =
∑
l′jh
′
j etc.)

6. N of M is horizontal IFF the top wedge
∧dN is horizontal in

∧dM.

For the non-trivial implication ⇐=:

by assumption, there is a local frame (ν1, . . . , νd) of N such that

ν1 ∧ . . . ∧ νd as a section of
∧dN (7)

equals some

µ ∈
d∧
M n.b.: M , not M! (8)

As a local section of a local system, µ is determined

(assume the local frame is on a conencted open set U)

by its value µ(s) at a point s ∈ U .

In particular, we have

µ(s) = ν1(s) ∧ . . . ∧ νd(s) (9)

Each νi(s) ∈Ms.
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Caution: νi is a continuous section of N, hence of M, but is is a discontinuos
section of M , in general.

On the other hand: mi := νi(s) defines a local section of M ! and we have
the equality of local sections of

∧dM :

µ = m1 ∧ . . . ∧md. (10)

(The above is the key, for most tensors in
∧d Cn do not correspdond to

d-dimensional linear subspaces.)

It follows that µ is not only a section of
∧dM , but µ(s) corresponds to

the linear span of the νi(s) in Ms, for every s ∈ U .

In other words: we have that (m1, . . . ,md) is a local frame for N so, as
seen above, N is horizontal.

7. Recall that if HZ is a Hodge structure, then we have

HC =
⊕

Hpq (11)

and, for t ∈ S = C∗ and v =
∑
vpq ∈ HC:

t ? v = t ?
(∑

vpq
)

=
∑

tpt
q
vpq. (12)

Given HZ and H ′Z two Hodge structures, we have that HZ⊗ZH
′
Z is a Hodge

structure and
t ? (hpq ⊗ h′rs) = tp+rt

q+s
(hpq ⊗ h′rs) . (13)

8. A continuous family of Hodge structures on S is:

• HZ a local system on S of Z-modules of finite type;

• (HZ)s a Hodge structure that varies continuously with s ∈ S.

The meaning of “continuously” does not seems to be spelled out.

My interpretations is:

let C be the sheaf of C-valued C0-functions on S;

let HC := HZ ⊗Z C;

let H be the associated vector bundle;

let H := HZ⊗ZC be the (sheaf of continuosu sections of) the vector bundle
(H);

(we do not distinguish between H and H, so we use goemetric language:

vector bundles instead of sheaves and HC as the the horizontal sections of
H etc.);
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then:
H =

⊕
Hpq (14)

and for every h ∈ HC, we have h =
∑
hpq and, for every s, we have that

h(s) =
∑

hpq(s) is the Hodge decomposition (second •) above)
(15)

Be careful: the Hpq are complex continuous subbundles and in general
they are not horizontal! else the theory of VHS would be trivial!:

the hpq are not necessarily horizontal sections of H.

Then S act as in (10) by complex linear isomorphisms.

In particular, if V ⊆ H is a subbundle, then we have

tV ⊆ H (16)

In general, even if V is horizontal, there is no reason why tV should be
horizontal.

Also, if we take the invariants H
π1(S,s)
C , there is no reason why the as-

sociated horizontal subbundle (which is trivial of some rank) should be,
fiber by fiber, given by Hodge substrcutures, for t of an invariant is not
necessarily an invariant.

Let us remark that (13) implies at once that if V is a subbundle on H,
then

(tV)⊗n = t
(
V⊗n

)
. (17)

9. Such a continuos family is said to be hoomogeneous of weight n is all the
fibers are PHS of weight n.

10. The definition of continuous family of Q-Hodge structures on S is analo-
gous.

11. A polarization of a continuos family H of rational structures of weight n
is an arrow of local systems

Ψ : HQ ⊗Q HQ −→ Q(−n) (18)

that defines a polarization in every fiber.

Recall that a polarization .....

12. If H is polarized and H ′ is a subobject, then H ′ has a complement H ′′ in
H by the usual argument:

take the annhilator of Ψ(−, H ′).
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6.1.2 Statement of Deligne semisimplicity theorem

1. Let S be connected.

Let C be a full subcategory of the cateogry of continuous families of Q-
Hodge structures on S subject to the following conditions.

• C is stable under the following operations:
– taking a direct summand;
– taking direct sums;
– taking tensor products.

• The constant Q(n), ∀n ∈ Z, are in C .

• Every element of C of pure weight n is polarizable.

• For every H ∈ C , there is a local system H ′Z on S with

H ′Z ⊗Z Q = HQ. (19)

• For every H ∈ C , the biggest constant local subsystem T of H is a
constant family of Hodge substructures of H.

2. Lemma. If C satisifes the first three bullets, then:

– C is an Abelian semisimple subcategory of the category of continuous
families of Q-Hodge structures on S.

– C is closed under taking duals, wedges and Homs.

3. Proposition. Let me just say this: if f : X → Y is smooth and proper
with Y smooth, then the Rif∗Q are polarizable variations og PHS belonging
to a suitable category satisfying the requirements made above (five bullets).

4. Theorem (Semisimplicity Theorem).Let S be connected, locally con-
nected, locally simply connected and let s ∈ S. Let C be a category of ra-
tional continuous Hodge structures satifying the five bullets above. Then,
if H ∈H , then HQ is semisimple (the π1(S, s) representation on (HQ)s is
semisimple.

6.1.3 Proof of the semisimplicity Theorem

1. We assume we have H ∈ C as in the theorem.

2. Lemma. Let V ⊆ HC be a local subsystem of rank one such that V ⊗n is
trivial for some n ≥ 1. Then tV is horizontal for every t ∈ S .

Proof. By §1.4, we have that it is enough to show that (tV)⊗n is horizontal.
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By (17), we have that:

(tV)⊗n = t
(
V⊗n

)
, (20)

so that now it is enough to show that t (V⊗n) is horizontal.

We are assuming V⊗n is trivial hence generated by a horizontal global
section v.

We are also assuming that the invariants form a Hodge substructure and
this means that t ? v is also invariant and hence is an horizontal section,
thus proving t (V⊗n) is horizontal, as desired.

3. We prove the theorem by induction on the dimension of (HQ)s.

Since H splits already according to weights, we may assume H is of some
pure weight n.

Hence it is polarizable by assumption (one of the bullets).

4. Let d the smallest dimension of the non trivial simple local subsystem of
HC.

Take W to be the sum of all the local subsystems of HC of rank d (each
one is simple, the sum is semisimple).

Then W ⊆ HC is in fact defined over Q, i.e. of the form W = WQ ⊗ C for
some local subsystem WQ ⊆ HQ.

Note that since W is semisimple, so is WQ.

5. Let HZ be a local system of free Z-modules with HZ ⊗Z Q = HQ

(a local system of f.g. Z-modules exists by assumption (one of bullets);
divide by the torsion).

Set WZ := HZ ∩WQ.

Then WZ ⊗Z Q = WQ and (let e := rank of W ):

d∧
W =

d∧
Z
⊗ZC. (21)

6. By integrality: the action of π1(S, s) on
∧eW is by ±1.

This means we can apply the Lemma above to it.

7. Let V ⊆ W be one of the rank d local subsystems of HC.

Since W is sum of simples, W is semisimple, so that V has a complement
V ′ in W : W = V ⊕ V ′.
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Apply the Lemma to the local subsystem

d∧
V ⊗

e−d∧
V ′ ⊆

d∧
HC ⊗

e−d∧
HC (22)

and deduce that, for every t ∈ S , we have, as in (17):

t

(
d∧
V ⊗

e−d∧
V ′
)

=
d∧

(t V ) ⊗
e−d∧

(t V ′) ⊆
d∧
HC ⊗

e−d∧
HC (23)

is horizontal.

By §1.5, we have that both factors in the middle are horizontal.

By §1.6, we have that tV is horizontal, for every t ∈ S .

But, by the very definition of W , this meand that tV ⊆ W for every
t ∈ S .

This means that S preserves W , i.e. that WQ is a Hodge substructure of
H.

8. Take a polarization Ψ of H and split off W using Ψ:

H = W ⊕W ′ ∈ C . (24)

We conclude by induction on the dimension: i.e. take W ′, it must be
semsimiple because the dimension went down.

6.2 Semisimplicity via purity

9. If f : X → Y is over C, then semsimplicity can be deduced from an
analogous result in the context of finite fields.

This circle of ideas is explained in [BBD], §6 and we do not say anyhting
more here.

Let us outline the semisimplicity statement in that context.

10. Let f : X → Y be a map over F an algebraic closure of a finite field.

We assume that f is smooth.

Then Ri := Rif∗Q` is semisimple.

11. Sketch of proof. (See [BBB], §5; or Deligne’s [Weil2].)

• Let f0 : X0 → Y0, Ri
0 be the situation over a finite subfield F0 = Fq.

The main result of Weil2 is that Ri
0 is pure of weight i:

this means that at every geometric point centered at a point in Y0(Fqn),
the action of the n-th iterate of Frobenius has eigenvalues algebraic
numbers, all of whose conjugate λ have

|λ| = (qn)i/2.
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• Any subquotient of Ri
0 is pure of weight i.

Take any extension of Ri
0:

e0 : Ext1(B0, A0).

We have the base change map to F :

bc : Ext1(B0, A0) −→ Ext1(B,A)

There is a general spectral sequence (of Galois cohomology [BBD],
that implies ([BBD], 5.1.2.5) that the base change arrow factors
through the Frobenius invariants of the rhs as follows:

Ext1(B0, A0)
epi−→ Ext1(B,A)Frob

mono−→ Ext1(B,A)

By the basic properties of weights and Hom ([BBD], 5.1.15.iii), we
have that Ext1(B,A) has weights ≥ 1 (because A,B, being subquo-
tients of Ri

0 have weight 0).
It follows that there are “no” invariants.
It follows that any extension e0 splits after passing to F .

• Take B ⊆ Ri be the sum of all simples inside of Ri.
Then B is semi-simple.
It is the biggest semi-simple in Ri.
It follows that it is invariant under Frobenius.
It follows that it comes from a B0.
The corresponding extension

0 −→ B0 −→ Ri
0 −→ Q0 −→ 0

must split, over F , from the previous point.
If Q 6= 0, then it has a non-zero simple subobject S.
It follows that we can lift that subobject to B ⊕ S and enlarge B,
contradiction.
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