MAT 534: Solutions for problem Set 4

Instructor: Alexander Kirillov

These are solutions for some of the HW problems. If you didn’t solve
the problem yourself, be sure to look through the solutions.

3.

(a) T is nilpotent iff x7(A) = A™.
(b) T is nilpotent = T4mV =0,

Proof: If T is nilpotent, then its eigenvalues are zero. Indeed, write T’
in upper tringular form; then T% will have )\f on diagonal, so T* = 0
implies that all \; = 0.

Conversely: assume that all A; = 0. Write 7" in an upper triangular
form; it will be strictly upper triangular, i.e. will have zeros on the
diagonal. Explicit calculation shows that 72 will have zeros on the
diagonal and immediately above it; T3 will have zeros on the diagonal
and the two adjacent subdiagonals, etc. This implies 79mV = 0,
proving both (a) and (b).

. Prove tr A = 0 for all i = A is nilpotent.

Idea of proof: Writing A in upper-triangular form and using the pre-
vious problem, we see that Z)\f = 0 for all k. Now we need the
following lemma:

Coefficients of the polynomial [[(A—A;) can be written as polynomials
without constant term in o3 = Y A, 00 = > A2, ... (For example: for
n = 2, the coefficients are

(A1 +A2) = —01
1 1
Mo = [+ A2)? = A = A = S (of — 02)
This lemma is not easy to prove, but it can be done by induction.

Using this lemma, we see that the chracteristic polynomial of A is \";
by previous probelm, it means that A is nilpotent.



5. Prove: det(e?) = etr4

Idea of proof. suffices to check for upper triangular matrix A with

eigenvalues \q, ..., \,. In this case, A* is also upper-triangular with
eigenvalues )\’f, e )\ﬁ. Thus, e = ZA’“ /k! is also upper triangular
with e, ..., e on the diagonal.

7. Let A be a diagonalizable operator such that \; = 1 and |\;| < 1
for i > 1. Prove that P = lim,,_.., A" exists and satisfies P2 = P.
Describe Im P.

Idea of proof: In a suitable basis, A = diag(1, Ag,...). Thus, A" =
diag(1, A\, ...) — diag(1,0,...) = P. It is easy to see that Im P = v
— the first eigenvector.

8. Let A, B be commuting linear operators: AB = BA. Prove that

(a) they have a common eigenvector.

(b) they have a common invariant flag, i.e., there exists a basis in
which both A and B are upper-triangular.

(c) the eigenvalues of AB are products of eigenvalues of A and B.
(d) Which of these statements still hold if AB # BA?

Idea of proof: (a) Let A be an eigenvalue of A, and V) = Ker(A—\) the
space of eigenvectors. We claim that V) is invariant under B. Indeed:
if v € Vy, then A(Bv) = BAv = BAv = ABv and thus, Bv is an
eigenvector for A with eigenvalue .

Consider the restriction of B to V). This restricted operator has at
least one eigenvector (say, w) in V. On the other hand, every vector
in V) is an eigenvector for A, so w is an eigenvector for both A and B.

(b) This is done in exactly the same way as for one opertor, by in-
duction in dimension of V. That is: let v; be a common eigenvector
for A, B. Consider the space V' = V/Cuv;. The operators A, B act
on V' and commute. By induction assumption, there exists a ba-

sis vf,...,v,_; in V/ in which these operators have upper triangular

y Un—

form. Lift v} to a vector in V (that is: choose a representative in
the equivalence class v]); denote it by ve. Do the same with all other
basis elements v}; this will give us vectors va,...,v, € V. As dis-
cussed before, the vectors vy, v, ..., v, form a basis in V, and A, B

are upper-triangular in this basis.



(c) is obvious from (b)

(d) None of these statements hold: take A = diag(1,2), B = ((1) [1)>



