(a)
$$\begin{bmatrix} 2 & -1 \\ 3 & 4 \\ 1 & 0 \end{bmatrix}$$
 (b) $\begin{bmatrix} 2 & 3 & -1 \\ 1 & 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & 1 & -3 \end{bmatrix}$

2.2.5.

(a)
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 0 & 1 & 0 \\ 2 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}$

$$(e) \begin{bmatrix} -2 \\ -2 \\ 0 \end{bmatrix} \quad (f) \begin{bmatrix} 3 \\ -6 \\ 1 \end{bmatrix} \quad (g) [a].$$

$$(f) \begin{bmatrix} 3 \\ -6 \end{bmatrix}$$

2.1.25 (b) T(a,b,c)= (0,0,c)

(c) . W, & L = R3

(i) $W_1 \cap L = \{0\}$?: $(a,b,c) \in W_1 \cap L \Rightarrow (a,b,c) \notin W_1$ and $(a,b,c) \in L$ => c=0 and b=0, a=c

⇒ a=b=c=0

(11) WI+L=R3 ?:

(a,b,c) = (a-c,b) + (c,o,c) / where (a-c,b,o) & W,

and (c, o, c) ∈ W2.

Now, just according to the definition, T(a,b,c) = (a-x,b,o) is a projection along L

2.1.27

(a) · W is a subspace of V . so has a basis, say & w. ..., we & (By the corrollary of Thm 1.13)

By Thm 1.13, I a maximal linearby independent subset & w. .. wx, wx+1 ... wn } of V that contains S = {w, ..., wk}.

Now, according to Thm 1.12 (we just take \$ \ \ \ in this theorem), Sz is a basis for \ \.

- · We define w' = Span {won, ..., wn}, then wow = {o} since Sz is linearly independent. and W+W'= V since Sz generates V. So/ V= W DW
 - · We define T:V -> V by Ma a, w, + ... + anw + > a, w, + + a R W R, and T is a projection on Wallong W!
- (b) We use the same notation in (a) and assume $k = d_{in} W < d_{in} V = n$, and define W" = Span { WHH + WRHZ , WR+Z , ..., Wn }

Alternatively,

by Covollary 2 to Theorem 1. 10, we can also extend S1 = {w,... we} to a basis

2.2.12.

Find a basis {w,, w, wk} for W

Find a basis & wen, ..., who for W! then for B = {w, ..., who is a basis for V

And Twi = Wi -- Twe = WR

Twk+1 = -- = Tn = 0 .

$$[T]_{\beta} = \begin{bmatrix} 1 & k \\ 1 & 0 \end{bmatrix}$$
 is diagonal.

MAT 310 HW 5

Section 2.3

Exercise 2

a)
$$A(2B + 3C) = \begin{bmatrix} 20 & -9 & 18 \\ 5 & 10 & 8 \end{bmatrix}$$

 $A(BD) = (AB)D = \begin{bmatrix} 29 \\ -26 \end{bmatrix}$
b) $A^t = \begin{bmatrix} 2 & -3 & 4 \\ 5 & 1 & 2 \end{bmatrix}$
 $A^tB = \begin{bmatrix} 23 & 19 & 0 \\ 26 & -1 & 10 \end{bmatrix}$
 $BC^t = \begin{bmatrix} 12 \\ 16 \\ 29 \end{bmatrix}$
 $CB = \begin{bmatrix} 27 & 7 & 9 \end{bmatrix}$
 $CA = \begin{bmatrix} 20 & 26 \end{bmatrix}$

Exercise 12

(a) Let $v \in V$ such that T(v) = 0. Applying U to both sides, we have UT(v) = U(T(v)) = U(0) = 0. Since UT is one-to-one by hypothesis, we get that v = 0. Therefore T is one-to-one.

However, U must not be one-to-one. For example, let $T: R^2 \to R^3$ be the linear map $T(a_1, a_2) = (a_1, a_2, 0)$, and let $U: R^3 \to R^3$ be the linear map $U(b_1, b_2, b_3) = (b_1, b_2, 0)$. Then it's easy to check that UT is one-to-one and that $N(U) = span(e_3) \neq \{0\}$.

(b) Let $z \in Z$ be any vector. Since UT is onto by hypothesis, there exists $v \in V$ such that UT(v) = z. Since UT(v) = U(T(v)), we have that $T(v) \in W$ is a vector whose image under U is z, i.e., U is onto.

Hoever, T must not be onto. For example, let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear map $T(a_1, a_2) = (a_1, 0)$, and let $U: \mathbb{R}^2 \to \mathbb{R}$ be the linear map $U(b_1, b_2) = b_1$. Then it's easy to check that UT is onto and that $R(T) = span(e_1)$ (which is a proper subspace of \mathbb{R}^2).

1

(c) Assume that U and T are isomorphisms. Then UT(v)=0 implies (since U is injective) T(v)=0, which implies (since T is injective) v=0. Thus UT is injective. To prove surjectivity, consider any $z\in Z$. Since U is onto, there is some $w\in W$ such that U(w)=z. Since T is onto, there is some $v\in V$ such that T(v)=w. Therefore UT(v)=U(w)=z, i.e. UT is onto.

Exercise 13

$$\operatorname{tr}(AB) = \sum_{i=1}^{n} (AB)_{ii} = \sum_{i=1}^{n} (\sum_{k=1}^{n} A_{ik} B_{ki}) = \sum_{i=1}^{n} (\sum_{k=1}^{n} B_{ki} A_{ik}) = \sum_{k=1}^{n} (\sum_{i=1}^{n} B_{ki} A_{ik}) = \sum_{k=1}^{n} (BA)_{kk} = \operatorname{tr}(BA).$$

$$\operatorname{tr}(A) = \sum_{i=1}^{n} A_{ii} = \sum_{i=1}^{n} A_{ii}^{t} = \operatorname{tr}(A^{t}).$$

Exercise 15

Say A is a $n \times q$ matrix and M is a $p \times n$ matrix. We are assuming that the j-th column of

$$A, \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{nj} \end{pmatrix}$$
, is equal to the linear combination

$$\sum_{h \neq j} c_h \begin{pmatrix} a_{1h} \\ a_{2h} \\ \vdots \\ a_{nh} \end{pmatrix} = \begin{pmatrix} \sum_{h \neq j} c_h a_{1h} \\ \sum_{h \neq j} c_h a_{2h} \\ \vdots \\ \sum_{h \neq j} c_h a_{nh} \end{pmatrix}.$$

Then the j-th column of MA is

$$\begin{pmatrix} \sum_{k} m_{1k} a_{kj} \\ \sum_{k} m_{2k} a_{kj} \\ \vdots \\ \sum_{k} m_{pk} a_{kj} \end{pmatrix} = \begin{pmatrix} \sum_{k} m_{1k} (\sum_{h \neq j} c_h a_{kh}) \\ \sum_{k} m_{2k} (\sum_{h \neq j} c_h a_{kh}) \\ \vdots \\ \sum_{k} m_{pk} (\sum_{h \neq j} c_h a_{kh}) \end{pmatrix} = \begin{pmatrix} \sum_{h \neq j} c_h (\sum_{k} m_{1k} a_{kh}) \\ \sum_{h \neq j} c_h (\sum_{k} m_{2k} a_{kh}) \\ \vdots \\ \sum_{h \neq j} c_h (\sum_{k} m_{pk} a_{kh}) \end{pmatrix} = \sum_{h \neq j} c_h \begin{pmatrix} \sum_{k} m_{1k} a_{kh} \\ \sum_{k} m_{2k} a_{kh} \\ \vdots \\ \sum_{k} m_{pk} a_{kh} \end{pmatrix}$$

where
$$\begin{pmatrix} \sum_k m_{1k} a_{kh} \\ \sum_k m_{2k} a_{kh} \\ \vdots \\ \sum_k m_{pk} a_{kh} \end{pmatrix}$$
 is exactly the h-th column of MA for every $h \neq j$.

Exercise 18

Let A, B and C be three matrices, of sizes $m \times n$, $n \times p$ and $p \times q$ respectively. We want to show that (AB)C = A(BC). It is clearly enough to show that all entries are the same, i.e., that $((AB)C)_{ij} = (A(BC))_{ij}$ for any i = 1, ..., m and j = 1, ..., q fixed.

$$((AB)C)_{ij} = \sum_{k=1}^{p} (AB)_{ik} C_{kj} = \sum_{k=1}^{p} (\sum_{h=1}^{n} A_{ih} B_{hk}) C_{kj} = \sum_{k=1}^{p} \sum_{h=1}^{n} A_{ih} B_{hk} C_{kj} =$$

$$= \sum_{h=1}^{n} \sum_{k=1}^{p} A_{ih} B_{hk} C_{kj} = \sum_{h=1}^{n} A_{ih} (\sum_{k=1}^{p} B_{hk} C_{kj}) = \sum_{h=1}^{n} A_{ih} (BC)_{hj} = (A(BC))_{ij}.$$