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Exercise 2
20 -9 18
a) A(2B +3C) = [5 I 8]

A(BD) = (AB)D = [ 29 ]

—26
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t —
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BC' = |16
29

CB=[27 7 9
CA =20 26]

Exercise 12

(a) Let v € V such that T'(v) = 0. Applying U to both sides, we have UT'(v) = U(T'(v)) =
U(0) = 0. Since UT is one-to-one by hypothesis, we get that v = 0. Therefore T is one-to-
one.

However, U must not be one-to-one. For example, let T : R?> — R? be the linear map
T(a1,a2) = (a1, a2,0), and let U : R* — R2 be the linear map U (b;, bo, b3) = (b, b3,0). Then
it’s easy to check that UT is one-to-one and that N(U) = span(es) # {0}.

(b) Let z € Z be any vector. Since UT is onto by hypothesis, there exists v € V such that
UT(v) = z. Since UT'(v) = U(T(v)), we have that T'(v) € W is a vector whose image under
U is z, i.e., U is onto.

Hoever, T must not be onto. For example, let T': R?> — R? be the linear map T'(a;,a) =
(a1,0), and let U : R? — R be the linear map U(b;,b;) = b;. Then it’s easy to check that
UT is onto and that R(T") = span(e;) (which is a proper subspace of R?).



(c) Assume that U and T are isomorphisms. Then UT'(v) = 0 implies (since U is injective)
T(v) = 0, which implies (since T is injective) v = 0. Thus UT is injective. To prove
surjectivity, consider any z € Z. Since U is onto, there is some w € W such that U(w) = z.
Since T is onto, there is some v € V such that T'(v) = w. Therefore UT(v) = U(w) = z, i.e.
UT is onto.

Exercise 13

n n n n n

tr(AB) =Y (AB)u = > (> AuBu) = ( lBk, Ag) ZZB,“ i) En:(BA)kkztr(BA).

i=1 =1 k=1 i=1 k=1 k=1 i=1 k=1

ZA” _ZAt = tr(A").

Exercise 15

Say A is a n x ¢ matrix and M is a p x n matrix. We are assuming that the j-th column of
a'lj
Q25 | . . .

A, . | is equal to the linear combination

anj

a1 2_hs#j ChO1k

Z c A2 Zh;&j ChQ2h
h = .

hitj :
Qnh Zh# Chlnh
Then the j-th column of M A is
Dok M1kGkj 2ok mlk(2h¢j ChGkh) Zh;&j ch(D ok M1kGkn) >k M1kGkh
2omakarg || 2 mek(Ph; chann) 2 htj Ch (20 Mokakn) 2k MokGrh
Y = : Z Ch
: : : g
> Mopk 2ok Mpk (D ho25 ChOkh) 2 hotj Cn (O Mopkain) >k mpkakh
Zk M1kQkh
>k MokGkh
where k . | is exactly the h-th column of M A for every h # j.
>k Mpkkh

Exercise 18



Let A, B and C be three matrices, of sizes m X n, n x p and p X q respectively. We want to
show that (AB)C = A(BC). 1t is clearly enough to show that all entries are the same, i.e.,
that ((AB)C)i; = (A(BC));j for any i = 1,...,m and j = 1, ..., q fixed.

P

((AB)C)ij = > (AB)uCi; = > Z AinBhi)Cij = Z ZAZhBhka]

k=1 k=1 h=1 k=1 h=1
n p

=YY AuBuCi; = ZAzh(Z BukCij) = Y An(BC)n; = (A(BC))s-
h=1

h=1 k=1 =1



