MAT 131 FALL 2012 Practice Final

NAME :

ID :

RECITATION NUMBER:

THERE ARE TEN (10) PROBLEMS. THEY HAVE THE INDICATED VALUE. SHOW YOUR WORK DO NOT TEAR-OFF ANY PAGE

Do not illin off mit find

NO CALCULATORS NO CELLS ETC.

ON YOUR DESK: ONLY test, pen, pencil, eraser.

1	30pts
2	30pts
3	30pts
4	30pts
5	30pts
6	30pts
7	30pts
8	30pts
9	30pts
10	30pts
Total	300pts

!!! WRITE YOUR NAME, STUDENT ID AND LECTURE N. BELOW **!!!**

NAME :

ID :

LECTURE N.

1. (30pts)

For each of the following functions, find its domain and range, then draw its graph.

a. $y = x^2 - x$.

b. $y = \sqrt{2x - x^2}$.

c.
$$y = \cos(2x) - 1$$
.

2

Suppose $\cos \theta = \frac{2}{7}$ and $-\frac{\pi}{2} < \theta < 0$. Find the values of the $\sin \theta$, $\tan \theta$, $\sec \theta$, $\cot \theta$ and $\csc \theta$.

4

(a) State the product law for limits.

(b) If

$$\lim_{x \to 0} \frac{f(x)}{x^2} = 1,$$
$$\lim_{x \to 0} f(x)?$$

then what is

(c) If

$$x+1 \le f(x) \le e^x$$

for all x. Find $\lim_{x\to 0} f(x)$, stating any results you use.

Plot the graph of a function satisfying the following: f(0) = 0, $\lim_{x\to 2} f(x) = \infty$, $\lim_{x\to 1^-} f(x) = -\infty$, $\lim_{x\to 1^+} f(x) = 0$, $\lim_{x\to\infty} f(x) = \infty$, $\lim_{x\to\infty} f(x) = 0$.

Differentiate the following functions. (a) $\frac{e^x - e^{-x}}{e^x + e^{-x}}$.

(b)
$$\sin(\sqrt{x^2+1})$$
.

(c) $x^{\tan x}$.

6

Let the curve ${\cal C}$ be given by the implicit equation

$$x^{2} + y^{2} = (2x^{2} + 2y^{2} - x)^{2}.$$

Find the tangent to the curve C at the point $(x, y) = (0, -\frac{1}{2})$.

A particle is moving along the curve xy = 1. As the particle passes through the point $(\frac{\sqrt{3}}{2}, \frac{2}{\sqrt{3}})$, its y-coordinate increases at a rate of 2cm/s.

(a) What's the rate of change of x-coordinate at this instant?

(b) How fast is the distance from the particle to the origin changing at this instant?

Compute the following limits.

(a) $\lim_{t\to 0} \frac{\sin 3t}{\tan 6t}$

(b)
$$\lim_{x\to\infty}(\sqrt{x}+1-\sqrt{x})$$

(c) $\lim_{x\to\infty} x^{\frac{1}{x}}$

Evaluate (a)

$$\int_{1}^{\sqrt{3}} \frac{d}{dx} (\ln(\tan^{-1} x)) dx$$

(b)

$$\frac{d}{dx}\int_{x^2}^{\sqrt{3}}\ln(\tan^{-1}t)dt.$$

Evaluate the following definite and indefinite integrals

(a)

$$\int_0^\pi |\cos x| dx.$$

(b)

$$\int_{-1}^{1} \frac{\sin(3x)}{1+x^2} dx.$$

(c)

$$\int \frac{\sin(2x)}{1+\sin^2 x} dx.$$

Scrap Paper