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Summary

Exotic Stein manifolds are Stein manifolds diffeomorphic to R
2k which

cannot be embedded symplectically into the Stein manifold C
k. In this

thesis we prove two results about exotic Stein manifolds. The first result

shows us that in each complex dimension > 2, there exists an exotic Stein

manifold which is not symplectomorphic to any finite type Stein manifold.

The second result states that in each dimension > 3 there are infinitely many

finite type exotic Stein manifolds which are pairwise distinct as symplectic

manifolds.
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1. Introduction

This thesis is about the symplectic topology of Stein manifolds. A Stein

manifold is a triple (V, J, φ) where φ : V → R is an exhausting (i.e. proper

and bounded from below) plurisubharmonic function and J is an integrable

complex structure. Here plurisubharmonic means that ω := −ddcφ is a

symplectic form where dc is defined by dc(a)(X) := da(JX). These are

examples of symplectic manifolds called exact symplectic manifolds. An

exact symplectic manifold (W, θ) is a manifold W with a 1-form θ such

that dθ is a symplectic form. In the case of Stein manifolds, θ := −dcφ.

There are many choices of φ and J , so we wish to study these manifolds

up to some sort of deformation, or up to exact symplectomorphism. An

exact symplectomorphism between two exact symplectic manifolds (M1, θ1),

(M2, θ2) is a diffeomorphism Φ : M1 → M2 such that Φ∗(θ2) = θ1 + dR

where R : M1 → R is a smooth function. The kind of deformation we want

is called Stein deformation equivalence and is defined later in 2.8. We define

an equivalence relation ∼ on Stein manifolds by: A ∼ B if there exists a

sequence of Stein manifolds F0, F1, · · · , Fn such that

(1) F0 = A and Fn = B

(2) Fi is either exact symplectomorphic or Stein deformation equivalent

to Fi+1.

If we have a complex manifold (V, J) with a holomorphic embedding i :

V →֒ C
N for some large N such that the image of i is closed, then φ :=

i∗(
∑N

i=1 |zk|2) is an exhausting plurisubharmonic function. This means that

(V, J, φ) is a Stein manifold. This also means that any smooth affine variety

has a Stein structure. In fact all Stein manifolds can be holomorphically

embedded into C
N (See for instance [13]).

If a manifold V carries a Stein structure, then there are restrictions to

its topology. We can perturb the associated exhausting plurisubharmonic

function φ so that it becomes a Morse function. From now on we will always

assume these exhausting plurisubharmonic functions are Morse functions. It

turns out that the index of the critical points of φ is at most n where 2n is the

real dimension of V . Hence V has the homotopy type of an n dimensional

CW complex (see [24]). This is because the stable manifold coming from

a critical point of φ is actually isotropic (i.e. restricting ω to this manifold

is 0) and therefore must have dimension ≤ n. Conversely we also have the

following theorem due to Eliashberg:
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Theorem. ([10] [7, Theorem 9.4]) Let W be a manifold of real dimension

2n > 4 with an almost complex (not necessarily integrable) structure J and

an exhausting Morse function φ : W → R such that all the critical points of

φ have index ≤ n. Then J is homotopic to an integrable complex structure

J0 such that (W,J0, φ) is a Stein structure.

In dimension 4 we have a slightly weaker result by Gompf [18]. This says

that W is homeomorphic to a Stein manifold if and only if it is the interior

of a handlebody with handles of index less than or equal to 2.

Another interesting question is, given a manifold W , what kind of Stein

structures can it carry and how many? We can define an invariant m(W,J, φ)

of the ∼-equivalence class of Stein structures taking values in N∪ {∞}. For

a Stein structure (W,J ′, φ′) on W we define c(W,J ′, φ′) ∈ N ∪ {∞} as the

number of critical points of φ′. We define m(W,J, φ) as the infimum of

c(W,J ′, φ′) over all Stein structures (W,J ′, φ′) which are ∼-equivalent to

(W,J, φ). We have a Stein manifold (R2n, Jstd, φstd) where Jstd is the stan-

dard complex structure on C
n and φstd := i∗(

∑N
i=1 |zk|2) is an exhausting

plurisubharmonic function. Every exhausting plurisubharmonic function

must have at least one critical point, hence m(Cn, Jstd, φstd) = 1. Con-

versely if we had a Stein structure (W,J, φ) with m(W,J, φ) = 1, then this

is in fact Stein deformation equivalent to (Cn, Jstd, φstd). Eliashberg asked

in [11] whether there are Stein structures (R2n, J, φ) such that any Stein

structure deformation equivalent to (R2n, J, φ) has at least 3 critical points.

He also constructed a candidate for a Stein manifold with this property.

It is easy to construct Stein manifolds that are not symplectomorphic to

(R2n, ωstd) for reasons to do with volume. For instance the unit disc is not

symplectomorphic to C. We can also construct Stein domains of the same

volume or of infinite volume but which are not symplectomorphic. For in-

stance, in [12, Prop 3.4.A] we have a Stein manifold constructed as follows:

Let x1, y1, . . . , xn, yn be real coordinates for C
n. Let B be the unit ball with

centre 0 in C
n, and let H := {x1 = 0} \B. Then C

n \H is a Stein manifold

which is not symplectomorphic to (Cn, Jstd, φstd) by the camel problem. This

Stein manifold and (Cn, Jstd, φstd) both have infinite volume. But all these

manifolds are Stein deformation equivalent to (Cn, Jstd, φstd). There are

other symplectic structures on R
2n which are very different from (R2n, ωstd)

but the problem is they are not Stein. Generally they don’t behave well

at infinity. For instance in [19, Corollary 0.4.A′
2], Gromov shows that there
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exists symplectic forms on R
2n which cannot be symplectically embedded

into (R2n, ωstd). But these examples are not shown to be Stein.

We can also ask the slightly stronger question: is there a Stein structure

(R2n, J, φ) with m(R2n, J, φ) > 2 (this question is stronger as we are dealing

with ∼-equivalence and not just Stein deformation equivalence). An equiv-

alent formulation of this question would be: are there any Stein manifolds

diffeormorphic to R
2n but not ∼-equivalent to (R2n, ωstd)? Using results

by Eliashberg, in real dimension 4 there are no Stein manifolds (R4, J, φ)

with ∞ > m(R4, J, φ) > 2, i.e. there are no finite type Stein surfaces dif-

feomorphic to R
4 but not ∼-equivalent to (R4, ωstd) (see the introduction

to [34]). It is unknown whether there are Stein manifolds (R4, J, φ) with

m(R4, J, φ) = ∞ (i.e. non-finite type Stein manifolds diffeomorphic to R
4).

The closest we get to such a result is [18]. The case n = 2k (k > 1) is

answered in [34] where Seidel and Smith show that there are finite type

Stein structures (R2n, J, φ) which are not ∼-equivalent to (R2n, ωstd). These

satisfy ∞ > m(R2n, J, φ) > 2. They show this by constructing an affine

variety which has a Lagrangian torus which cannot be moved off itself by

a Hamiltonian isotopy. In fact they show that none of these Stein mani-

folds can be embedded in a subcritical Stein manifold (i.e. a Stein manifold

whose critical points have index at most n− 1). In this thesis we will show

a similar result for all n ≥ 3 (Theorem 1.2 covers the case n > 3 and section

3.1 covers n = 3).

We can also ask if there are Stein structures for which this invariant is

infinite (i.e. if there are non-finite type Stein manifolds). We say that a Stein

manifold is of finite type if it has a Stein function φ with finitely many critical

points, each of which is non-degenerate. It is easy to find a Stein manifold

(W,J, φ) with m(W,J, φ) equal to infinity (i.e. it is not ∼-equivalent to any

finite type Stein manifold). For instance we could consider an infinite genus

surface. This Stein manifold is not ∼-equivalent to any finite type manifold

for topological reasons, as it is not homotopic to a finite CW-complex so it

cannot even admit a Morse function with finitely many critical points. In

complex dimension 2, it is also possible to construct Stein manifolds (W,J, φ)

homeomorphic to R
4 but withm(W,J, φ) = ∞ (i.e. they are not finite type).

In [18], Gompf constructs uncountably many of these Stein manifolds which

are homeomorphic to R
4, but they are pairwise non-diffeomorphic. These

manifolds are not diffeomorphic to any finite type Stein manifold for the

following reason: If they were diffeomorphic to a finite type Stein manifold,
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they would admit a proper Morse function with finitely many critical points.

But in the introduction of [18] near the top of page 622, Gompf says that

no such function exists on these manifolds. In particular these manifolds

cannot be ∼-equivalent to any finite type Stein manifold for reasons to do

with the diffeomorphism type of these manifolds. The first main result of

this thesis is the following:

Theorem 1.1. Let k ≥ 3. There exists a Stein manifold M diffeomorphic

to R
2k such that M ≁ N for any finite type Stein manifold N .

The above theorem shows that there are Stein manifolds not ∼-equivalent

to any finite type Stein manifold for purely symplectic reasons. The theorem

and the author’s proof were published in [32] by Seidel.

Another question is: how many ∼-equivalence classes of Stein structures

are there on a given manifold M? Eliashberg’s theorem shows which mani-

folds have at least 1 ∼-equivalence class. In complex dimension n = 4 + 2k

where k ≥ 0, we have already shown there are at least 3 ∼-equivalence

classes of Stein structures on R
2n. We have the standard Stein structure

(Cn, Jstd, φstd) with m(Cn, Jstd, φstd) = 1. We also have a Stein structure

(R2n, J, φ) with ∞ > m(R2n, J, φ) > 2. Finally, we have a Stein structure

(R2n, J ′, φ′) with m(R2n, J ′, φ′) = ∞. In fact we can do better than this:

the second result of this thesis is the following theorem:

Theorem 1.2. Let k ≥ 4. There exists a family of finite type Stein mani-

folds Xi diffeomorphic to R
2k indexed by i ∈ N such that

i 6= j ⇒ Xi ≁ Xj .

We also have the following corollary:

Corollary 1.3. Let M be a compact manifold of dimension 4 or higher.

There exists a family of finite type Stein manifolds XM
i diffeomorphic to

T ∗M indexed by i ∈ N such that

i 6= j ⇒ XM
i ≁ XM

j .

We will prove this corollary at the end subsection 1.2. Theorem 1.1 is

stronger than previous results in two ways:

(1) we give examples of finite type exotic Stein manifolds in all complex

dimensions ≥ 4 (not just in dimension 4 + 2k where k ≥ 0);

(2) we also show there are countably many pairwise distinct examples

in each of these dimensions.
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(1) is straightforward but (2) is much harder and involves various new ideas.

It is also possible to show that these manifolds cannot be embedded in a

subcritical Stein manifold (Corollary 12.5). We hope to address the question

of whether Theorem 1.2 holds in dimension 6 in future work.

Any finite type Stein manifold (W,J, φ) has a cylindrical end. This means

that outside some compact set K ⊂ W , W is exact symplectomorphic to

(A× [1,∞), rα) where r is the coordinate for [1,∞) and α is a contact form

on A. We call A the contact boundary of W and we will write ∂W := A.

The boundary of (Cn, Jstd, φstd) is the standard contact structure αstd on

the sphere. For n ≥ 3, the contact boundary of any Stein structure on R
2n

is diffeomorphic to a 2n − 1 dimensional sphere. We can ask how many

such spheres there are up to contactomorphism. All contact structures that

can be filled with a Stein domain diffeomorphic to the unit ball have a

hyperplane field which is homotopic to the standard contact hyperplane

field (see [33]). The reason why is as follows: Let (R, JR, φR) be a Stein

manifold diffeomorphic to R
2n. Define θ := −dcφR and ω := dθ. We can

choose a Morse function H : R → R such that it has only one critical

point corresponding to its minimum and such that H = r on the cylindrical

end ∂R × [1,∞). Let XH be the ω orthogonal vector field to dH. We

have that on the cylindrical end ∂R × [1,∞), the contact hyperplane field

is the ω-orthogonal hyperplane field to the 2-plane field spanned by ∇H
and XH . If c is the minimal value of H, then we can ensure that (V :=

H−1(c+ǫ), θ|V ) is the standard contact sphere for sufficiently small ǫ. Hence

we get that the contact hyperplane field on H−1(1) = ∂R×{1} is homotopic

to the standard hyperplane field on H−1(c + ǫ) = V . This means that we

cannot distinguish such contact structures purely for reasons to do with the

homotopy class of the hyperplane field associated to the contact form. If

we have a Stein manifold (R2n, J, φ) constructed as in [34], Theorem 1.2

or section 3.1, then [32, Corollary 6.5] tells us that its boundary is not

contactomorphic to αstd. At the moment we can only find two such contact

structures on the 2n− 1 dimensional sphere. We will study whether we can

find infinitely many contact boundaries on Stein manifolds diffeomorphic to

R
2n up to contactomorphism in future work. In Theorem 1.2 we used an

invariant called symplectic homology to distinguish these manifolds. But

this is not an invariant of the contact boundary. For instance the boundary

of C is contactomorphic to the boundary of a once punctured Riemann

surface of genus greater than zero, but the first manifold has symplectic
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homology 0 while the other has non-trivial symplectic homology. If we had

some numerical invariant of the Stein filling of a contact boundary, and we

took the supremum of this invariant over all Stein fillings, then this would

be an invariant of the contact boundary. The numerical invariant of the

Stein filling we hope to use is related to the rank of a localized version of a

group called negative equivariant symplectic homology.

We have shown that there is a countably infinite number of finite type

Stein manifolds diffeomorphic to R
2n (n > 3). There are uncountably many

Stein manifolds not ∼-equivalent to finite type ones (such as the examples

in [18]), so it is natural to ask whether there are uncountably many Stein

manifolds diffeomorphic to R
2n. Most of these Stein manifolds have to be

of non-finite type. Again we will address this question in a future paper.

There are many completely unknown questions related to Stein mani-

folds. Symplectic homology of convex symplectic manifolds (in particular

Stein manifolds) was developed in [15], [8], [9], [39]. It was used to show for

instance that the Weinstein conjecture was true for subcritical Stein mani-

folds (The Weinstein conjecture for Stein manifolds states that the contact

boundary of any Stein manifold has at least one Reeb orbit where a Reeb

orbit is an embedded circle in a contact manifold (C,α) whose tangent space

is in the kernel of dα viewed as a map TC → T ∗C). The chain complex

for symplectic homology SH∗(M) involves (roughly) Hn−∗(M) and Reeb

orbits of the boundary of M (counted twice). So, if you could show for

instance that SH∗(M) 6= Hn−∗(M), then there must be Reeb orbits on the

boundary. We do not know how to calculate symplectic homology for most

Stein manifolds. We can calculate this invariant completely for a very small

class of these manifolds. We know that symplectic homology SH∗(W ) of a

subcritical Stein manifold is 0, and that SH∗(T
∗M) = H∗(LM) where LM

is the loopspace of M . We have a Künneth formula for symplectic homology

[26], so we can calculate it for products of these manifolds. We know what

symplectic homology is for multiply punctured Riemann surfaces. There

are a few more Stein manifolds for which we know a bit about symplectic

homology such as examples where we know that it is non-trivial [32, Section

5], or examples (other than the ones mentioned) where it has finitely many

idempotents (sections 5.2 and 5.3).

In [32, Section 6] it is shown that it is impossible to calculate the rank of

SH2n(M) if we are given a handle decomposition of a general Stein manifold

M . In particular it is possible to algorithmically construct a list of simply
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connected Stein manifolds M1,M2, . . . such that the set {i : Mi ∼ M1}
is impossible to construct with a computer. This means that in general it

might be very difficult to study Stein structures.

1.1. Sketch proof of the first theorem. Here we give an outline of the

proof of theorem 1.1. For each Stein manifold Y with a trivialisation of

the canonical bundle, we have an integer graded commutative Z/2Z algebra

SHn+∗(Y ) where SH∗(Y ) is called symplectic homology 1. If Y1 and Y2 are

Stein manifolds with Y1 ∼ Y2, then SH∗(Y1) = SH∗(Y2) (see [32, Section

7]). If we have a compact codimension 0 exact convex submanifold W of

Y , then there is a map SH∗(Y ) → SH∗(W ) called the transfer map. An

exact submanifold is an embedding i : W →֒ Y such that i is an exact

symplectomorphism onto its image. Compact convex symplectic manifolds

will be defined later in section 2.1. All we need to know here is that Stein

domains are examples of compact convex symplectic manifolds.

First of all we construct a finite type Stein manifold Mk of complex di-

mension k ≥ 3 diffeomorphic to Euclidean space such that SH∗(Mk) 6= 0.

If k ≥ 4, then these examples will be constructed in the proof of the second

theorem which also shows that SH∗(Mk) 6= 0. We construct M3 separately.

We will use technology from the proof of the second theorem 1.2 combined

with results from [32, Section 5] to show that SH∗(M3) 6= 0.

If we have two Stein manifolds A and B, then it is possible to construct

their end connected sum A#eB (see 2.10). Roughly what we do here is join

A and B with a 1-handle, and then extend the Stein structure over this

handle. If we have a family of Stein manifolds Ai, i ∈ N, then we can also

form their end connect sum #e
∞
i=1Ai. The good thing about end connect

sums is that symplectic homology of the end connect sum of a family of

Stein manifolds is the product of the symplectic homology rings of all the

Stein manifolds in that family. We define M∞
k to be the infinite end connect

sum #e
∞
i=1Mk.

We now wish to show that M∞
k is not ∼-equivalent to any finite type

Stein manifold. Suppose for a contradiction that it is. Suppose that it is

exact symplectomorphic to a finite type Stein manifold, then there exists a

compact codimension 0 exact convex submanifold W of M∞
k such that the

transfer map SH∗(M
∞
k ) →֒ SH∗(W ) is an injection. The manifold M∞

k is a

union of Stein domains M j
k , j ∈ N where M j

k is the j-fold end connect sum

1With our convention, the pair-of-pants product makes SH∗ (and not SH∗) a unital ring.
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of Mk. We have SH∗(M
j
k) =

∏j
i=1 SH∗(Mk) for j ∈ N ∪ {∞}. For a large

enough j ∈ N, there exists M j
k such that W ⊂M j

k . Hence we get a sequence

of maps:

SH∗(M
∞
k ) → SH∗(M

j+1
k ) → SH∗(M

j
k) → SH∗(W ).

The composition of all these maps is an injection. But the middle map

SH∗(M
j+1
k ) → SH∗(M

j
k) is a projection

∏j+1
i=1 SH∗(Mk) ։

∏j
i=1 SH∗(Mk)

with kernel SH∗(Mk) 6= 0. Also the first map is surjective because SH∗(M
∞
k )

is an infinite end connect sum. But this means that the transfer map

SH∗(M
∞
k ) →֒ SH∗(W )

has non-trivial kernel, contradiction. Hence M∞
k is not symplectomorphic

to any finite type Stein manifold. A small extension of this argument shows

us that M∞
k is not ∼-equivalent to any finite type Stein manifold.

1.2. Sketch proof of the second theorem. We will only consider the

theorem in dimension 8, as the higher dimensional case is similar. We will

first construct an example of a family of Stein manifolds (Xn)n∈N as in

Theorem 1.2 in dimension 8. Let V := {x7 + y2 + z2 + w2 = 0} ⊂ C
4 and

consider a smooth point, say p := (0, 0, 1, i) ∈ V . Let H be the blowup of C
4

at p. Then X := H \ Ṽ is a Stein manifold where Ṽ is the proper transform

of V . The variety X is called the Kaliman modification of (C4, V, p). We

will think of this modification in two stages:

(1) Cut out the hypersurface V in C
4 to get Z := C

4 \ V .

(2) Blow up Z at infinity to get X.

In real dimension 4, operation (2) attaches a 2-handle along a knot which is

transverse to the contact structure. We let Xn := #n
i=1X be our family of

Stein manifolds.

For each Stein manifold Y , we can define another invariant i(Y ) which

is the number of idempotents of SH∗(Y ) (this invariant might be infinite).

Hence all we need to do is show that for i 6= j, i(Xi) 6= i(Xj). We have

that SH∗(Xn) =
∏n

i=1 SH∗(X), and hence i(Xn) = i(X)n. So all we need

to do is show that 1 < i(X) <∞. If SH∗(X) 6= 0, i(X) > 1 since we have 0

and 1; but since SH∗(X) can a priori be infinite dimensional in each degree,

finiteness of i(X) is much harder. Most of the work in this thesis involves

proving i(X) <∞.
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For any Stein manifold Y , SH∗(Y ) is Z graded by the Robbin-Salamon

index (or the Conley-Zehnder index taken with negative sign). The group

SH∗(Y ) has a ring structure making SHn+∗(Y ) into a Z/2Z graded algebra.

This ring is also graded by H1(Y ). Hence idempotents in SHn+∗(Y ) have

Robbin-Salamon index n and are in the torsion part of H1(Y ). The problem

for our example is that H1(X) = 0. In order to find out which elements of

SHn+∗(X) are idempotents, we will show that SH∗(X) is isomorphic as a

ring to SH∗(Z) where Z = C
4 \V was defined above. Because Z is so much

simpler than X and H1(Z) 6= 0, it is possible by a direct calculation to show

that SHn+∗(Z) has finitely many idempotents.

Proving that SH∗(X) ∼= SH∗(Z) relies on the following theorem. This

theorem is the heart of the proof. We let E′ → C, E′′ → C be Lefschetz

fibrations, and F ′ (resp. F ′′) be smooth fibres of E′ (resp. E′′). Let F ′ and

F ′′ be Stein domains with F ′′ a holomorphic and symplectic submanifold of

F ′.

Theorem 1.4. Suppose E′ and E′′ satisfy the following properties:

(1) E′′ is a subfibration of E′.

(2) The support of all the monodromy maps of E′ are contained in the

interior of E′′.

(3) Any holomorphic curve in F ′ with boundary inside F ′′ must be con-

tained in F ′′.

Then SH∗(E
′) ∼= SH∗(E

′′).

Remark 1: There exist Lefschetz fibrations E′, E′′ with the above proper-

ties such that SH∗(E
′) ∼= SH∗(X) and SH∗(E

′′) ∼= SH∗(Z). This is because

we can choose an algebraic Lefschetz fibration on Z where the closures of all

the fibres pass through p. Then blowing up Z at infinity (operation (2) of

the Kaliman modification) is the same as blowing up each fibre at infinity

and keeping the same monodromy. Hence SH∗(X) ∼= SH∗(Z).

Remark 2: Given varieties X and Z in dimension 4 such that X is ob-

tained from Z by blowing up at infinity, there are Lefschetz fibrations E′,

E′′ satisfying properties (1) and (2) such that SH∗(E
′) ∼= SH∗(X) and

SH∗(E
′′) ∼= SH∗(Z). These do not satisfy property (3) because E′ is ob-

tained from E′′ by filling in a boundary component of the fibres with a

disc.

We will prove Theorem 1.4 in two stages. In stage (i), we introduce a

new invariant SHlef
∗ (E) for a Lefschetz fibration E and show it is equal to
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symplectic homology. This is covered in sections 6 and 7.1. In stage (ii), we

prove that SHlef
∗ (E′) ∼= SHlef

∗ (E′′). This is covered in section 8. In a little

more detail:

(i) Let F be a smooth fibre of E and D a disc in C. In section 7, we show

(roughly) that the chain complex C for SH∗(E) is generated by:

(1) critical points of some Morse function on E;

(2) two copies of fixed points of iterates of the monodromy map around

a large circle;

(3) pairs (Γ, γ) where Γ is a Reeb orbit on the boundary of F and γ is

either a Reeb orbit of ∂D or a fixed point in the interior of D.

This is done in almost exactly the same way as the proof of the Künneth

formula for symplectic homology [26]. The differential as usual involves

counting cylinders connecting the orbits and satisfying the perturbed Cauchy

-Riemann equations. The orbits in (1) and (2) actually form a subcomplex

Clef, and we define Lefschetz symplectic homology SHlef
∗ (E) to be the ho-

mology of this subcomplex. Next we need to show that SH∗(E) ∼= SHlef
∗ (E).

We have a short exact sequence 0 → Clef → C → Q → 0 where Q is the

quotient complex C/Clef. The chain complex Q is basically generated by

the orbits (γ,Γ) in (3). We can choose a filtration of the chain complex

Q by action so that the orbits γ are close together compared to Γ (see the

diagram below).

a1

Orbits generating C

Orbits of the form (γ, Γ1).

Orbits of the form (γ, Γ2).

Orbits of the form (γ, Γ3).

Orbits generating Clef Orbits generating Q

a2 a3
Action

This means we can construct a spectral sequence converging to H∗(Q)

where each page is equal to SH∗(D) = 0, because the orbits γ generate a

chain complex for SH∗(D). Hence H∗(Q) = 0 which implies that SH∗(E) ∼=
SHlef

∗ (E).
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(ii) Let C ′ (resp. C ′′) be the standard chain complex for SHlef
∗ (E′) (resp.

SHlef
∗ (E′′)). The fibration E′ \ E′′ is a trivial fibration D ×W . We have

a short exact sequence 0 → B → C ′ → C ′′ → 0 where B is generated by

orbits of the form (γ,Γ) in D ×W . The orbit Γ is a critical point of some

Morse function on W and γ is either a Reeb orbit of ∂D or a fixed point in

the interior of D. We can use a similar action filtration argument to show

that H∗(B) = 0. Property (3) in theorem 1.4 is needed here to ensure that

the above exact sequence exists. If we didn’t have this property, then there

would be some spectral sequence from SHlef
∗ (E′′) (with an extra grading

coming from the H1(E
′′) classes of these orbits) to SHlef

∗ (E′).

Lefschetz symplectic homology was partially inspired by Paul Seidel’s

Hochshild homology conjectures [29], which also relate symplectic homology

to Lefschetz fibrations. His conjectures would in particular prove theorem

1.4.

Proof. of corollary 1.3. There is a standard Stein structure on T ∗M such

that SH0(M) is a non-trivial finite dimensional Z/2Z vector space. By

Lemma 9.6 this means that i(T ∗M) < ∞. Also 0 ∈ SH∗(T
∗M) is an

idempotent which means that 0 < i(T ∗M). We let Xi be defined as in the

proof of the main theorem 1.2. We define

XM
i := T ∗M#eXi.

Then i(XM
i ) = i(T ∗M)i(Xi). These numbers are all different as 0 <

i(T ∗M) <∞ and i(Xi) 6= i(Xj) for i 6= j. �

1.3. Notation. Throughout this thesis we use the following notation:

(1) M,M ′,M ′′, . . . are manifolds (with or without boundary).

(2) ∂M is the boundary of M .

(3) (E, π), (E′, π′), (E′′, π′′) are exact Lefschetz fibrations (4.2).

(4) If we have some data X associated to M (resp. E), then

X,X ′,X ′′, . . . are data associated to M,M ′,M ′′, . . .

(resp. E,E′, E′′, . . . ). For instance ∂M ′′ is the boundary of M ′′.

(5) ω is a symplectic form on M or E.

(6) θ is a 1-form such that dθ = ω.

(7) (M,θ) is an exact symplectic manifold.

(8) J is an almost complex structure compatible with ω.

(9) If (M,θ) is a compact convex symplectic manifold (2.1), then (M̂, θ)

is the completion of (M,θ) (2.5). Similarly by (4.6), (E, π) can
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be completed to (Ê, π) (we leave π and θ as they are by abuse of

notation).

(10) (M,θt) is a convex symplectic or Stein deformation.

(11) F will denote a smooth fibre of (E, π).

(12) If we have some subset A of a topological space, then we will let

nhdA be some open neighbourhood of A.

2. General background

This section gives some general background on Stein manifolds and Sym-

plectic homology. The material about Stein manifolds and convex symplectic

manifolds in subsection 2.1 is not origional and is mainly taken from [11],

[7], [34, Section 2]. The material about symplectic homology in section 2.2

is mainly taken from [14], [39]. A good summary of this is in [25] and in

[32]. The symplectic homology calculation in 2.3 has not been published in

this form (except the calculation of SH∗(C) which is in [25] for instance).

Experts might have been familiar with these calculations due to the fact that

they know about symplectic homology of a once punctured surface of genus

greater than 0 which involves similar calculations (See [32, Example 3.3] and

the comment after the second conjecture in [39, Section 5.2]). The material

in section 2.4 has not been published in this form either, but again might

be familiar to experts. This way of thinking can be seen for instance in [12,

Section 2.4] where an ‘alternating trick’ is used to show that two symplectic

manifolds are symplectomorphic. Similar tricks are used for instance in the

proof of Lemma 2.13 to show that two compact convex symplectic manifolds

Ft and FT have the same symplectic homology ring.

2.1. Stein manifolds. We will define Stein manifolds as in [34]. We let M

be a manifold and θ a 1-form where ω := dθ is a symplectic form.

Definition 2.1. (M,θ) is called a compact convex symplectic manifold

if M is a compact manifold with boundary and the ω-dual of θ is transverse to

∂M and pointing outwards. A compact convex symplectic deformation

is a family of compact convex symplectic manifolds (M,θt) parameterised by

t ∈ [0, 1].

We will let λ be the vector field which is ω-dual to θ.
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Usually, a compact convex symplectic manifold is called a convex sym-

plectic domain. We have a natural contact form θ|∂M on ∂M , and hence we

call this the contact boundary of M .

Definition 2.2. Let M be a manifold without boundary. We say that (M,θ)

is a convex symplectic manifold if there exist constants c1 < c2 < · · ·
tending to infinity and an exhausting function φ : M → R such that ({φ ≤
ci}, θ) is a compact convex symplectic manifold for each i. Exhausting here

means proper and bounded from below. If the flow of λ exists for all positive

time, then (M,θ) is called complete. If there exists a constant c > 0 such

that for all x ≥ c, ({φ ≤ c}, θ) is a compact convex symplectic manifold,

then we say that (M,θ) is of finite type.

Definition 2.3. Let (M,θt) be a smooth family of convex symplectic mani-

folds with exhausting functions φt. Suppose that for each t ∈ [0, 1], there are

constants c1 < c2 < · · · tending to infinity such that for each s near t and

i ∈ N, ({φs ≤ ci}, θ) is a compact convex symplectic manifold. Then (M,θt)

is called a convex symplectic deformation.

(We have a notion of a complete and a finite type convex symplectic de-

formation, which we won’t need in this thesis.) The constants c1 < c2 < · · ·
mentioned in this definition depend on t but not necessarily in a continuous

way. The nice feature of convex symplectic manifolds is that we have some

control over how they behave near infinity. That is, the level set φ−1(ck)

is a contact manifold for all k. We say that an exact symplectic manifold

has a cylindrical end if outside some relatively compact subset it is exact

symplectomorphic to (N × [1,∞), rα) where α is a contact form on N and

r is the coordinate on [1,∞). Note that cylindrical ends are not unique.

For instance for any function f : N → [1,∞) we have a subset of the

form i : N × [1,∞) →֒ N × [1,∞) where i(x, r) := (x, rf(x)). We have

i∗(rα) = r(fα) where fα is a new contact form on N . This means that

we have a new cylindrical end (N × [1,∞), r(fα)). Suppose that M is a

complete finite type convex symplectic manifold.

Lemma 2.4. There exists a relatively compact set K ⊂M such that M \K
is exact symplectomorphic to (N × [1,∞), rα) where (N,α) is a contact

manifold contactomorphic to (φ−1(c), θ|φ−1(c)), c≫ 0.

Proof. Choose c so that it is a regular value of φ and such that λ is transverse

to N := φ−1(c). Let α := θ|N . We can ensure that c is large enough so that
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φ has no critical values above c. Let Φt : M → M be the flow of λ (this is

well defined as M is complete). We define a map G : N × [1,∞) → M by

G(x, r) := Φlog r(x) where x ∈ N ⊂ M and r ∈ [1,∞). We also have that

G is a diffeomorphism onto its image. Because there are no critical values

of φ above c, we have that the complement of the image of G is a relatively

compact and equal to {φ < c}. Also, Lλθ = θ (L here means Lie derivative).

This means that G∗(θ) = rα. �

Lemma 2.5. A compact convex symplectic manifold M can be completed to

a finite type complete convex symplectic manifold (M̂, θ).

This is explained for instance in [39, section 1.1]. The proof basically

involves gluing a cylindrical end onto ∂M . Let (M,θ) be a complete convex

symplectic manifold. Let (M ′, θ′) be a compact convex symplectic manifold

which is a codimension 0 exact submanifold of (M,θ) (i.e. θ|M ′ = θ′ + dR

for some smooth function R on M ′).

Lemma 2.6. We can extend the embedding M ′ →֒ M to an embedding

M̂ ′ →֒M .

Proof. There exists a function R : M ′ → R such that θ′ = θ + dR. We

can extend R over the whole of M such that R = 0 outside some compact

subset K containing M ′. Let θ1 = θ + dR, and λ1 be the ω-dual of θ1. Let

Ft : M →M be the flow of λ1. This exists for all time becauseM is complete

and λ1 = λ outside K. We have an embedding Φ : (∂M ′) × [1,∞) → M

defined by Φ(a, t) = Flog t(a). This attaches a cylindrical end to M ′ inside

M , hence we have an exact embedding M̂ ′ → M extending the embedding

of M ′. �

Definition 2.7. A Stein manifold (M,J, φ) is a complex manifold

(M,J) with an exhausting plurisubharmonic function φ : M → R (i.e. φ is

proper and bounded from below and −ddc(φ) > 0 where dc = J∗d). A Stein

manifold is called subcritical if φ is a Morse function with critical points

of index < 1
2dimRM . A manifold with boundary of the form φ−1((−∞, c])

is called a Stein domain.

We can perturb φ so that it becomes a Morse function. From now on,

if we are dealing with a Stein manifold, we will always assume that φ is a

Morse function. The index of a critical point of φ is always less than or equal

to 1
2dimRM . Note that the definition of a Stein manifold in [11, Section 2]
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is that it is a closed holomorphic submanifold of C
N for some N . This has

an exhausting plurisubharmonic function |z|2. An important example of a

subcritical Stein manifold is (Cn, i, |z|2). The Stein manifold (M,J, φ) is

a convex symplectic manifold (M,θ := −dcφ). Note that λ := ∇φ where

∇ is taken with respect to the metric ω(·, J(·)). It is easy to see that ∇φ
is a Liouville vector field transverse to a regular level set of φ and pointing

outwards. We call a Stein manifold complete or of finite type if the associated

convex symplectic structure is complete or of finite type respectively.

Definition 2.8. If (Jt, φt) is a smooth family of Stein structures on M , then

it is called a Stein deformation if the function (t, x) −→ φt(x) is proper

and for each t ∈ [0, 1], there exists c1 < c2 < . . . tending to infinity such

that for any s near t we have that ck is a regular value of φs. This induces

a corresponding convex symplectic deformation.

Example 2.9. An affine algebraic subvariety M of C
N admits a Stein struc-

ture. This is because it has a natural embedding in C
N , so we can restrict

the plurisubharmonic function ‖z‖2 to this variety to make it into a Stein

manifold. We can also use the following method to find a plurisubharmonic

function on M . We first compactify M by finding a projective variety X

with complex structure i and an ample divisor D such that M = X \D (for

instance we can embed M in C
N ⊂ P

N and then let X be the closure of M

in P
N). There exists an ample line bundle E −→ X associated to the divisor

D. Choose a holomorphic section s of E such that D = s−1(0). Then am-

pleness means that we can choose a metric ‖.‖ such that its curvature form

ω := iF∇ is a positive (1, 1)-form. Hence we have a Stein structure

(M := X \D,J := i, φ := −log‖s‖).

Note that by [34, Lemma 8], this is of finite type. The Stein structure on

this variety has finite volume because we can extend the symplectic structure

over to the compactification X of M .

The following operation constructs a new Stein manifold from two old

ones. This is used to construct our infinite family of Stein manifolds. We will

let (M,J, φ), (M ′, J ′, φ′) be complete finite type Stein manifolds. Because

these manifolds are complete and of finite type, they are the completions of

compact convex symplectic manifolds N , N ′ respectively. In fact N = {φ ≤
R}, N ′ = {φ′ ≤ R} for some arbitrarily large R. Let p (resp. p′) be a point
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in ∂N (resp. ∂N ′). The following theorem is proved in greater generality in

[10] and [7, Theorem 9.4].

Theorem 2.10. There exists a connected finite type Stein manifold

(M ′′, J ′′, φ′′) such that N ′′ := {φ′′ ≤ R} is biholomorphic to the disjoint

union of N and N ′ with φ′′|N = φ on N and φ′′|N ′ = φ′ on N ′. Also, the

only critical point of φ′′ outside N ′′ has index 1.

In this theorem, what we are doing is joining N and N ′ with a 1-handle

and then extending the Stein structure over this handle, and then completing

this manifold so that it becomes a Stein manifold. The Stein manifold M ′′ is

called the end connect sum of M and M ′, and we define M#eM
′ as this

end connected sum. If M and M ′ are Stein manifolds diffeomorphic to C
n,

then M#eM
′ is also diffeomorphic to C

n. The proof of this theorem also

ensures that if we have two Stein domains A and B, then we can construct

a new Stein domain A#eB containing the disjoint union of A and B.

It is also possible to construct infinite end connect sums as follows: Let

A1, A2, · · · be a countably infinite family of Stein manifolds. Let φi be the

Stein function associated to Ai. Let A′
i := {φi ≤ Ri} where Ri is large

enough so that A′
i contains all the critical points of φi in Ai. We will now

describe this infinite end connect sum as a union of Stein domains B :=

B1 ∪B2 ∪B3 · · · where Bi ⊂ Bi+1 for all i. We want the dimensions of the

Bi’s to be the same, and that Bi is a holomorphic submanifold of Bi+1. If φBi

is the Stein function associated to Bi, then we want φBi
|Bi−1

= φBi−1
. This

ensures that B is a Stein manifold with Stein function φ where φ|Bi
= φBi

.

We define B1 := A′
1. Suppose by induction we have constructed the Stein

domain Bi−1 with the properties described above. Let Bi := Bi−1#eA
′
i.

Then Bi−1 is a holomorphic submanifold of Bi and there is a Stein function

φBi
on Bi such that φBi

|Bi−1
= φBi−1

and ∂Bi is a level set of φBi
. Hence

we have constructed Bi for all i and the infinite end connect sum is defined

to be equal to the union of all these Bi’s.

2.2. Symplectic homology. In [14] Floer used a new homology theory

called symplectic homology for compact symplectic manifolds in order to

prove the Arnold conjecture for a large class of compact symplectic mani-

folds. The Arnold conjecture states that the number of periodic orbits of

a generic Hamiltonian must be greater than the sum of the Betti numbers

of that manifold. Given a Hamiltonian H, he constructs a chain complex

consisting of linear combinations of periodic orbits of H with a differential
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which is defined by counting holomorphic cylinders connecting these orbits.

He then proves that the homology of this chain complex is equal to singu-

lar homology. This means that the number of orbits of the Hamiltonian is

greater than the sum of the Betti numbers of the manifold and hence the

Arnold conjecture is proven for these manifolds. In this section we will dis-

cuss symplectic homology as defined by Viterbo in [39] for finite type Stein

manifolds. This homology theory is defined in almost exactly the same way

as Floer’s homology theory above except that our Hamiltonian H behaves in

a particular way at infinity. Symplectic homology for many Stein manifolds

is not equal to singular homology in contrast to Floer’s homology theory

for compact symplectic manifolds. For simplicity we will assume that our

homology theory has coefficients in Z/2Z.

Let (M,θ) be a compact convex symplectic manifold. Our manifold M̂

has a cylindrical end symplectomorphic to (N × [1,∞), d(rα)) where r is a

coordinate on [1,∞) and α is a contact form on N . We choose a smooth

function H : S
1 × M̂ −→ R, and an S

1 family of almost complex structures

Jt compatible with the symplectic form. We also assume that H is linear at

infinity (i.e. H = ar+b for some constants a, b), and Jt is convex with respect

to this cylindrical end outside some large compact set (i.e. θ ◦ Jt = dr). We

call the constant a the slope at infinity. We also say that Jt is admissible.

We define an S
1 family of vector fields XHt by ω(XHt , ·) = dHt(·). The

flow Flowt
XHt

is called the Hamiltonian flow. We choose the cylindrical

end and the slope of our Hamiltonians so that the union of the 1-periodic or-

bits form a compact set. Let F := Flow1
XHt

, then we have a correspondence

between 1-periodic orbits o and fixed points p of F . In particular we say

that o is non-degenerate if DF |p : TpM̂ → TpM̂ has no eigenvalue equal to 1.

We can also assume that the 1-periodic orbits of our Hamiltonian flow XHt

are non-degenerate. We call a Hamiltonian H satisfying these conditions an

admissible Hamiltonian.

From now on we will assume that c1(M) = c1(M̂) = 0. If we are given a

trivialisation of the canonical bundle K ∼= O, then for each orbit o, we can

define an index of o called the Robbin-Salamon index (This is equal to

the Conley-Zehnder index taken with negative sign, but we will not define

the Conley-Zehnder index here). The choice of these indices depend on the

choice of trivialisation of K up to homotopy but the indices are canonical if

H1(M) = 0. Here is the definition: To any path of symplectic matrices, we

can assign an index which is also called the Robbin-Salamon index. It can be
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calculated as follows (See [21] or [25, Section 3.1]): Let Ψ : [0, 1] → Sp(2n)

be a path of symplectic matrices. A crossing is a number t ∈ [0, 1] such that

Ψ(t) has an eigenvalue equal to 1. To each crossing we associate a quadratic

form Γt : ker(Id − Ψ(t)) → R defined by:

Γt = ωstd(v,
∂Ψ(t)

∂t
v),

where ωstd is the standard symplectic form on R
2n. We say that a crossing

t0 ∈ [0, 1] is simple if Γt0 is non-degenerate. We can perturb the path slightly

relative to the endpoints so that it only has simple crossings. This ensures

that there are only finitely many crossings. We define the Robbin-Salamon

index iRS(Ψ) to be:

1

2
Sign(Γ0) +

∑

t∈(0,1)

SignΓt +
1

2
Sign(Γ1).

The main properties of the Robbin-Salamon index are:

(1) If we join the end of one path p1 with the start of another path p2

to create their concatenation p3, then iRS(p3) = iRS(p1) + iRS(p2).

(2) If we deform a path relative to its endpoints, then its Robbin-

Salamon index doesn’t change.

(3) If a1 is a path in Sp(2n1) and a2 is a path in Sp(2n2), then iRS(a1
⊕
a2) =

iRS(a1) + iRS(a2).

We let 2n be the real dimension of M . Let x : R/Z → M be a non-

degenerate periodic orbit of Ht. The differential of the flow Flowt
XHt

gives

us a family of vector space symplectomorphisms at : (Tx(0)M,ω|x(0)) →
(Tx(t)M,ω|x(t)). The trivialisation of K induces a symplectic trivialisation of

x∗TM up to homotopy because the natural map π1(Sp(2n)) → π1(U(1)) ∼=
Z is an isomorphism. This means that we have a smooth family of vector

space symplectomorphims bt : (Tx(t)M,ω|x(t)) → (R2n, ωstd), where ωstd is

the standard symplectic for R
2n. Hence the map l′ : t → bt ◦ at ◦ b−1

0 is a

path of symplectic matrices.

Definition 2.11. (See [32, Section (3a)]) The Robbin-Salamon index of

the orbit x : R/Z → M is defined to the Robbin-Salamon index of the path

l′ : [0, 1] → Sp(2n).

Given a trivialisation of K we can see that this index is well defined

because it induces a symplectic trivialisation of x∗TM up to homotopy. The

grading on symplectic homology is induced by the Robbin-Salamon index
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(or equivalently, the Conley-Zehnder index taken with negative sign). We

denote the Robbin-Salamon index by ind(x). Let

CFk(M,H, J) :=
⊕

Flow1

XHt
(x)=x,ind(x)=k

(Z/2Z)〈x〉.

For a 1-periodic orbit γ we define the action AH(γ):

AH(γ) := −
∫ 1

0
H(t, γ(t))dt −

∫

γ
θ.

This is the convention of [39] and [26]. This differs in sign from Seidel’s

convention in [32]. We will now describe the differential

∂ : CFk(M,H, J) → CFk−1(M,H, J).

We consider curves u : R × S
1 −→ M̂ satisfying the perturbed Cauchy-

Riemann equations:

∂su+ Jt(u(s, t))∂tu = ∇gtH

where ∇gt is the gradient associated to the metric gt := ω(·, Jt, ·). For two

periodic orbits x−, x+ let Ū(x−, x+) denote the set of all curves u satisfying

the Cauchy-Riemann equations such that u(s, ·) converges to x± as s→ ±∞.

This has a natural R action given by replacing the coordinate s with s+v for

v ∈ R. Let U(x−, x+) be equal to Ū(x−, x+)/R. If ind(x−) − 1 = ind(x+),

then for a C∞ generic admissible Hamiltonian and almost complex structure

we have that U(x−, x+) is a zero dimensional manifold. There is a maximum

principle which ensures that all elements of U(x−, x+) stay inside a compact

set K (see [25, Lemma 1.5]). We have a compactness theorem (see for

instance [4]) which ensures that U(x−, x+) is compact and hence a finite

set. Let #U(x−, x+) denote the number of elements of U(x−, x+) mod 2.

Then we have a differential:

∂ : CFk(M,H, J) −→ CFk−1(M,H, J),

∂〈x−〉 :=
∑

x+=index k-1 periodic orbit

#U(x−, x+)〈x+〉.

By analysing the structure of 1-dimensional moduli spaces, one shows ∂2 = 0

and defines SH∗(M,H, J) as the homology of the above chain complex. As a

Z/2Z module CFk(M,H, J) is independent of J , but its boundary operator

does depend on J . The homology group SH∗(M,H, J) depends on M,H but

is independent of J up to canonical isomorphism. Note that for each f ∈ R
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we have a subcomplex generated by orbits of action ≤ f . The homology of

such a complex is denoted by: SH≤f
∗ (M,H, J).

If we have two admissible Hamiltonians H1 ≤ H2 and two admissible

almost complex structures J1, J2, then there is a natural map:

SH∗(M,H1, J1) −→ SH∗(M,H2, J2).

This map is called the continuation map and is defined as follows: We let

Gt, t ∈ (−∞,∞) be a monotone increasing smooth family of Hamiltonians

such that Gt = H1 for t ≪ 0 and Gt = H2 for t ≫ 0. We define a chain

map:

∂ : CFk(M,H1, J) −→ CFk(M,H2, J),

∂〈x−〉 :=
∑

x+=index k periodic orbit

#U ′(x−, x+)〈x+〉.

The symbols 〈x−〉 and 〈x+〉 are periodic orbits. The number #U ′(x−, x+) ∈
Z/2Z is the number of elements of the set U ′(x−, x+) where U ′(x−, x+) is

the set of solutions of the parameterised Floer equations:

∂su+ Jt(u(s, t))∂tu = ∇gtHs

where u(s, ·) converges to x± as s → ±∞ and where ∇gt is the gradient

associated to the metric gt := ω(·, Jt, ·).
If we take the direct limit of all these maps with respect to admissible

Hamiltonians ordered by ≤, then we get our symplectic homology groups

SH∗(M). Supposing we have a family of Hamiltonians (Hλ)λ∈Λ ordered by

≤. We say that a family of Hamiltonians (Hi)i∈I⊂Λ is cofinal if for every

λ ∈ Λ, there exists an i ∈ I such that Hλ ≤ Hi. Hence we can also

define SH∗(M) as the direct limit of all these maps with respect to any

cofinal family of Hamiltonians. There is another equivalent way of defining

SH∗(M) described in [32, Section 3d]. It is defined as follows: We let H be a

Hamiltonian such that H = h(r) on the cylindrical end of M such that h′(r)

tends to infinity as r tends to infinity. We define SH∗(M) := SH∗(M,H, J).

This definition is equivalent to the previous definition as we can construct

a cofinal family of Hamiltonians Hi such that Hi = H on {r ≤ i} and such

that Hi is linear on {r > i + 1
i }. We can also ensure that the only orbits

of Hi are in the region {Hi = H}. We get a sequence of continuation maps

SH∗(M,Hi, J) → SH∗(M,H, J). These induce a map

lim−→
i

SH∗(M,Hi, J) → SH∗(M,H, J).
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This map must be an isomorphism as all the orbits of Hi lie in the set

{Hi = H} so for each orbit of Hi there is a trivial cylinder satisfying the

parameterised Floer equations connecting this orbit to the corresponding

orbit of H. Any cylinder satisfying the parameterised Floer equations must

also decrease action. Hence if we view the above map as a matrix, it will be

upper triangular with 1’s down the leading diagonal. This kind of matrix is

invertible hence must induce an isomorphism.

Suppose that (M ′, θ′) is a compact convex symplectic manifold which is

an exact submanifold of M , then there exists a natural map

i : SH∗(M) −→ SH∗(M
′)

called the transfer map. The composition of two of these transfer maps is

another transfer map. These maps are introduced in [39, Section 2] and

studied in [6, Section 3.3]. In order to construct this map we carefully

construct a cofinal family of admissible Hamiltonians Hi, i ∈ N on M̂ . Here

is a sketch of how to do this: We can use Lemma 2.6 to embed M̂ ′ in M̂ . Our

cofinal family of admissible Hamiltonians Hi will look cofinal on arbitrarily

large compact subsets Ki of M̂ ′ ⊂ M̂ (the union of the Ki’s is M̂ ′). We can

ensure the orbits of non-negative action lie in Ki ⊂ M̂ ′ and that Hi is linear

with respect to the cylindrical end of M̂ ′ near ∂Ki. We also force Hi to be

constant on a large region of M̂ ′ outside Ki to ensure that no Floer cylinders

connecting orbits insideKi escapeKi (see [26, Lemma 1]). Because the Floer

differential decreases action, there is a subcomplex C∗ consisting of orbits of

negative action. The direct limit of the quotient complexes CH∗(Hi, J)/C∗

is the chain complex for SH∗(M
′) because all the orbits and Floer cylinders

connecting orbits inside Ki stay inside Ki and because Hi|Ki
looks cofinal.

So quotienting by C∗ induces a map:

SH∗(M) → SH∗(M
′)

which is the transfer map.

If SH∗(M) 6= 0 then it has the structure of a unital ring, where the

product is called the pants product. If we shift the grading by n, we have

that SHn+∗(M) is a Z graded Z/2Z algebra. This is how it is constructed:

We start with a disk with two holes in it (i.e. a pair of pants) which we will

call Σ. We put a 1-form γ on it such that dγ ≤ 0 and such that near the end

of each cylindrical end I × S
1 we have γ = δdt where dt is the standard 1-

form on S
1 and δ is a constant. Here I is the interval (−∞, 1] for a negative
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end or [1,∞) for a positive end. We give the pair of pants two negative

ends with γ = dt and a positive end with γ = 2dt. Let H be an admissible

Hamiltonian. Let o1, o2 be 1-periodic orbits of H and o3 a periodic orbit of

2H. Let M(H,J, o1, o2, o3) be the set of solutions u : Σ →M satisfying:

(du+XH ⊗ γ)0,1 = 0

(note we have a + sign instead of a − sign due to differing sign conventions

between this thesis and [32]) where XH is the Hamiltonian flow of H. We

view XH ⊗ γ as a map from TΣ to TM covering u sending a vector V

to γ(V )XH . If we have a map κ : TΣ → TM covering u, then (κ)0,1 :=

J ◦ κ − κ ◦ j where J is the almost complex structure on M and j is the

complex structure on Σ. We define a chain map:

CFk(H,J) ⊗ CFj(H,J) → CFk+j−n(2H,J),

o1 ⊗ o2 →
∑

index k+j-n periodic orbits o3 of 2H

#M(H,J, o1, o2, o3)〈o3〉.

This commutes with continuation maps and hence we can take the direct

limit of these maps with respect to the ordering ≤ giving us a map:

SHn+i(M) ⊗ SHn+j(M) → SHn+i+j(M).

The unit is in SHn(M) and is given by counting holomorphic planes

([32, Section 8]). Note that in [32, Section 8], Paul Seidel is dealing with

symplectic cohomology instead of symplectic homology. But, because he

uses different sign conventions, both theories are exactly the same up to

change of grading. The sign conventions in this thesis are exactly the same

as Oancea’s ones in [26]. The action functional in [26] is: A := −
∫
γ θ−

∫
H

and the one in [32] is: A := −
∫
γ θ +

∫
H. Also the other difference in sign

convention is that in [26] the Hamiltonian vector field satisfies: ω(X, .) = dH

whereas the one in [32] satisfies: ω(.,X) = dH. Both these changes in

sign convention mean that the homology theory in [26] is the same as the

cohomology theory in [32] up to change of grading (the grading in [26] is

2n-(the grading in [32])). The periodic orbits in [26] are the same as the

ones in [32], but they go in the opposite direction. The Floer trajectories

are the same, except that we replace the coordinates (s, t) (for R× S
1) with

(−s,−t).

2.3. A symplectic homology calculation. In this section we will explic-

itly calculate SH∗(Cn) as a vector space where Cn is a disc with n holes in
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it. We will also produce a sketch of how to calculate its ring structure for

n 6= 2. In this thesis we only need to know SH∗(Cn) for n = 0. We also

need to know that SH∗(C1) has finitely many idempotents corresponding to

fixed points of the Hamiltonian in the interior of C1. We will deal with the

case SH∗(C0) first.

2.3.1. Calculation for the disk. We let C0 be the unit disk in C. There is an

obvious trivialisation of the canonical bundle K for C0. In polar coordinates,

the standard symplectic form is rdr ∧ dθ. This has a standard Liouville

vector field λ := r
2

∂
∂r where (r, θ) are polar coordinates for Ĉ0

∼= C. This

is transverse to all the circles with centre the origin, and hence makes C0

into a compact convex symplectic manifold. Integrating λ gives us a family

of diffeomorphisms Ft : Ĉ0 → Ĉ0, Ft(r, θ) = (ret/2, θ). Let S
1 be the unit

circle in Ĉ0. We can use Ft to construct a cylindrical end as follows: We

define Φ : S
1 × [1,∞) → Ĉ0 by Φ(θ, b) = Flog b(1, θ) = (b

1

2 , θ) where θ is a

point in S
1 represented by the angle θ and b ∈ [1,∞). Hence a Hamiltonian

H is admissible with respect to this cylindrical end if it is of the form h(r2)

near infinity and h′ is constant near infinity. When h′ is constant we need

h′ 6= kπ for some k ∈ Z to ensure that there are no orbits near infinity. We

choose our cofinal family of Hamiltonians to be of the form Hk := (kπ−1)r2.

These have only one periodic orbit corresponding to the minimum at the

origin. So there are no differentials in the chain complex associated to Hk.

We will now calculate the Robbin-Salamon index of this orbit. The flow of

this Hamiltonian is: φt(r, θ) := (r, θ − 2(kπ − 1)t). So the linearization of

this flow with respect to the trivialisation of K and coordinates (x, y) is:
(

cos 2(kπ − 1)t − sin 2(kπ − 1)t

sin 2(kπ − 1)t cos 2(kπ − 1)t

)
.

We have that the Robbin-Salamon index is 1 plus twice the number of values

of t ∈ (0, 1] for which this matrix is the identity. Hence, the index is 2k− 1.

Hence SH2k−1(Ĉ0,Hk, J) = Z/2Z and SHi(Ĉ0,Hk, J) = 0 for i 6= 2k − 1.

Taking the direct limit of these groups gives us SH∗(C0) = 0.

2.3.2. Calculation for multiply punctured disks. We will now deal with Cn

where n > 0. The surface Cn is the n-fold end connect sum of C1 (i.e. the

annulus). One would expect that SH∗(Cn) could be calculated in terms of

SH∗(C1) using Theorem 2.17, but the problem is that Theorem 2.17 doesn’t

work in real dimension 2. The set of trivialisations of K corresponds to the
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set of smooth maps Cn → U(1) ∼= S
1 up to smooth homotopy. This in turn

corresponds to the set of continuous maps from the wedge sum of n circles

to S
1. Hence the set of trivialisations is Z

n. We choose a trivialisation

(l1, · · · , ln) ∈ Z
n. This means that the i’th coordinate tells us that the i’th

circle in the wedge sum of n circles wraps round S
1 li times. The manifold Ĉn

has n+ 1 cylindrical ends (S1
i × [1,∞), ridθi) where S1

i is the i’th boundary

circle, ri is the radial coordinate and dθi is the standard 1-form on S1
i giving

it a volume of 1. The interior boundaries are oriented in a clockwise direction

and the outer boundary circle is oriented in an anticlockwise direction:

Let H be a Hamiltonian such that H = 0 away from these cylindrical

ends and H = h(ri) on each cylindrical end where h : R → R and h′ ≥ 0

and h′′(ri) → ∞ as ri → ∞. We also make sure that h′′ > 0 when h′ > 0.

To make H smooth we set h = 0 near {ri = 1}. The problem with this

Hamiltonian is that its orbits are degenerate. The constant orbits form a

manifold with boundary diffeomorphic to Cn. We will define V to be this

manifold with boundary. The other orbits, which correspond to h′(ri) = kπ

for some k, form manifolds diffeomorphic to S
1. The reason why these orbits

are degenerate is because they are not isolated. We need to perturb H by

some C2 small function to make its orbits non-degenerate. Let L : Ĉn → R

be a function which is 0 outside V and is Morse inside V . For β > 0

sufficiently small, we have that H1 := H + βL has non-degenerate orbits

inside V . Any Floer trajectory connecting orbits inside V must be entirely

contained in V by [25, Lemma 1.5]. If we choose an almost complex structure

J which is time dependent outside V but time independent inside V , then

[28, Theorem 7.3] says that the only Floer trajectories connecting orbits

inside V are Morse flow lines for β sufficiently small. We now need to deal

with the orbits outside V . Note that for topological reasons, there are no

cylinders satisfying Floer’s equations connecting orbits in the cylindrical

ends with the constant orbits in the interior. Similarly, there are no Floer
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cylinders connecting orbits in different cylindrical ends. Hence we may focus

on one cylindrical end (S1
i ×[1,∞), ridθi). On a small neighbourhood of each

S
1 family of orbits, we will add a time dependent Hamiltonian Kt to H1 to

make the orbits non-degenerate. Fix some k ∈ N. Choose l ∈ R such that

h′(l) = 2kπ. Let N be a small neighbourhood of {ri = l} of the form

{l − ǫ ≤ ri ≤ l + ǫ} which doesn’t touch any orbits of H1 and such that H1

is of the form h(ri) in N . Let f : N → R be a function which is 0 near ∂N

and which has two Morse critical points away from f−1(0). We also assume

that these critical points lie on {ri = l} and correspond to a maximum of

Morse index 1 and a minimum of Morse index 0. Let φt be the Hamiltonian

flow of H1. Let ft := f ◦ φ−t. We let H2,t = H1 + αft be our new time

dependent Hamiltonian where α > 0 is very small. The orbits of H2,t in N

are non-degenerate for α small enough. We perturb all the orbits in this

way until H2,t has only non-degenerate orbits.

We now need to calculate the index of these orbits and the differentials.

We will calculate the index first with respect to a standard trivialisation of

K induced by filling all the interior boundaries with disks, and then we will

consider the other trivialisations. We can use the index calculations from

the previous section as follows: We can fill in the boundary of the cylindrical

end (S1
i × [1,∞), ridθi) with a disk D and extend the Hamiltonian H2,t over

it such that the only additional critical point is the minimum of Morse index

0 (this is because H2,t is of the form h(ri) near {ri = 1} with {h′(ri) < 2π}).
This minimum has Robbin-Salamon index 1 as the Robbin-Salamon index

is 1 minus the Morse index. We let Kk,t be a Hamiltonian which is equal

to H2,t in the region D ∪ {h′ ≤ 2kπ − 1}. We also make Kk,t linear with

respect to ri in the region {ri ≥ 2kπ − 1
2} such that all its orbits are in the

region {Kk,t = H2,t}. This Hamiltonian is homotopic through Hamiltonians

of the same slope at infinity to a Hamiltonian with 1 non-degenerate critical

orbit (corresponding to its minimum) of index 2k − 1. This is done using

calculations from the previous section. The Hamiltonian K2,t has 3 orbits

and SH∗(K2,t) is Z/2Z in degree 3 and 0 elsewhere. Also K2,t has an orbit

of degree 1. So the chain complex looks like:

ind=3

Z/2Z
0→

ind=2

Z/2Z
id→

ind=1

Z/2Z.

To compute the chain complex for Kk,t we proceed by induction. Because

Kk,t = Kk−1,t in some region ri ≤ C and no Floer differential can escape

this region by [25, Lemma 1.5], we have that the orbits in this region form
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a subcomplex (by the induction hypothesis):

ind=2k−3)

Z/2Z
0→

ind=2k−4

Z/2Z
id→ · · ·

ind=3

Z/2Z
0→

ind=2

Z/2Z
id→

ind=1

Z/2Z.

The Hamiltonian Kk,t has two additional orbits, and we also know that

SH∗(Kk,t) is Z/2Z in degree 2k − 1 and 0 elsewhere, hence the extra two

orbits have index 2k − 1 and 2k − 2 which ensures that the chain complex

is:
ind=2k−1

Z/2Z
0→

ind=2k−2

Z/2Z
id→ · · ·

ind=3

Z/2Z
0→

ind=2

Z/2Z
id→

ind=1

Z/2Z.

Let u be a Floer cylinder connecting the orbits of index 2k − 1 and 2k − 2.

Suppose that u intersects a point p in the interior of D, then if we let Kk,t

tend to 0 in D, then u by Gromov compactness converges to a holomorphic

curve in D and hence intersects p a positive number of times (it could the-

oretically degenerate into a Morse flow line, but the direction of the Morse

flow ensures that it cannot intersect the interior of D either). But this is

impossible as any cylinder connecting these orbits has an intersection num-

ber of 0 with p. Hence we may assume that any Floer trajectory connecting

these orbits cannot leave the region {ri ≥ 1}. This is true for all k. The

other Floer trajectories must meet D at least once, so when we remove D

and replace it by Cn again, then we get a complex:

ind=2k−1

Z/2Z
0→

ind=2k−2

Z/2Z
0→ · · ·

ind=2

Z/2Z
0→

ind=1

Z/2Z.

This is because inserting Cn again doesn’t introduce any additional Floer

cylinders as they have an intersection number of 0 with each point in the

interior of Cn by using this compactness argument explained above. We now

need to compute the indices of these orbits with respect to the trivialisation

(l1, · · · , ln) ∈ Z
n. In fact we just add 2li for each time the orbit wraps

around the cylinder. The reason is because for any path Ψ of symplectic

matrices, we have

iRS(e
(2ikπt)Ψ) = iRS(e

(2ikπt)) + iRS(Ψ).

The above identity holds because we can use a homotopy fixing the endpoints

(similar to the one in [25, Section 3.3]) to deform the path e(2ikπt) to the

concatenation of the two paths e(2ikπt) and Ψ. Also, the Robbin-Salamon

index of the orbits corresponding to Morse critical points of H2,t is equal to n

minus the Morse index. Putting all of this together we get that SH1+∗(Cn)
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(for n > 0) is isomorphic as a Z/2Z vector space to the algebra:

Zn := (Z/2Z)[x1, y1, · · · , xn, yn, xn+1, yn+1]/J

where J is the ideal

(y1 + · · · + yn+1, y
2
i , yiyj, xixj, 1 ≤ i < j ≤ n+ 1)

where xi has degree li and yi has degree −1 for i ≤ n. Also xn+1 has degree

(−∑n
j=1 li) and yn+1 has degree −1.

We will show that in fact SH1+∗(Cn) (for n > 2) is isomorphic as an

algebra to Zn. We will sketch the argument here.

The case n = 1 is different. We will deal with the case n = 1 before

the case n > 2. We have that Ĉ1 is the same as T ∗(S1). This means that

SH∗(C1) is the same as the string topology of S
1 using results from [1].

Hence using results from [23] we get that SH1+∗(C1) is isomorphic as a

graded algebra to:

(Z/2Z)[x, y, x−1]/(y2 = 0)

where the degree of x is l1 and the degree of y is −1.

We will now deal with the case n > 2. The maximum principle [25,

Lemma 1.5] ensures that that any Floer cylinder or pair of pants connecting

orbits outside a chosen cylindrical end must stay outside this cylindrical end.

So, if we cut off one of the cylindrical ends of C1, we get a subalgebra:

Al := (Z/2Z)[x, y]/(y2 = 0)

where l ∈ Z and x is of degree l and y is of degree −1. We give the

Hamiltonian H2,t constructed above a unique minimum. This corresponds

to the unit element in SH∗(Cn) using results from [32, Section 8]. We cannot

multiply orbits in different cylindrical ends together for topological reasons,

as there are no orbits in the homology class represented by the sum of these

orbits in H1(Cn). This is where the assumption n > 2 (rather than n = 2) is

used. So we only need to focus on a single cylindrical end (S1
i × [1,∞), ridθi)

of Ĉn. Making the Hamiltonian in Cn very small we can ensure that any pair

of pants trajectory, between orbits in the cylindrical end or in the interior,

intersecting this region is a Morse flow line (using the Gromov compactness

argument above). Let R be the set of critical points of the Hamiltonian

whose stable Morse flowlines intersect this chosen cylindrical end. Then by

looking at the model for C1 (with one cylindrical end missing) we see that
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multiplying any orbit xi in (S1
i × [1,∞), ridθi) with a critical point of index

one in R gives us xiyi. Any other Floer trajectory stays entirely within this

cylindrical end. This gives us enough information to calculate SH∗(Cn).

2.4. Invariance of symplectic homology. In this section we define sym-

plectic homology for convex symplectic manifolds (not just compact convex

symplectic manifolds). We also show that symplectic homology and transfer

maps are invariant under general convex deformations and exact symplecto-

morphism. Hence they are an invariant of the ∼-equivalence class defined in

the introduction 1. Finally we state a theorem relating symplectic homology

to end connect summation.

Let W be a compact convex symplectic manifold. Let ∂W × [1,∞) be

the cylindrical end of Ŵ and r the coordinate for [1,∞). The manifold

W δ := {r ≤ δ} is a compact convex symplectic manifold for each δ ≥ 1.

Let θW be the convex symplectic structure on Ŵ . We will only need the

following properties of SH∗:

(1) SH∗(W
δ) ∼= SH∗(W ).

(2) The composition of two transfer maps is a transfer map.

Item (1) is true for the following reason: Let H be an admissible Hamil-

tonian on Ŵ . Then there exists a diffeomorphism Φ : Ŵ δ → Ŵ induced

by the backwards Liouville flow pulling back an admissible almost complex

structure J on Ŵ 1 to an admissible almost complex structure J ′ on Ŵ δ. It

is then easy to see that SH∗(δ.Φ
∗(H), J ′) ∼= SH∗(H,J) as we are solving the

same equations (Hamilton’s equations and Floer’s equations) in each case.

Item (2) is true by using continuation maps and looking at the construction

of the transfer map in section 12.

Let (M,θ) be a convex symplectic manifold. We have a direct system

of codimension 0 compact convex symplectic exact submanifolds of (M,θ)

where the morphisms are just inclusion maps. If we have two such man-

ifolds N1 and N2 in M such that N1 ⊂ N2, then we have a transfer map

SH∗(N2) → SH∗(N1). Hence, we have an inverse system SH∗(N). We

define SH∗(M) as the inverse limit of the inverse system SH∗(N). First of

all we need to show that this definition is consistent with SH∗ defined in

section 2.2 for compact convex symplectic manifolds.

Theorem 2.12. Let S be a compact convex symplectic manifold. Then

SH∗(Ŝ) as defined in this section is equal to SH∗(S) as defined in section

2.2.
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Proof. Let r be the radial coordinate on the cylindrical end ∂S × [0,∞).

Let Ni := {r ≤ i}. The family Ni is a cofinal family of compact convex

symplectic manifolds for Ŝ. Hence SH∗(Ŝ) is the inverse limit of SH∗(Ni).

But the transfer maps SH∗(Ni+1) → SH∗(Ni) are isomorphisms. This

means

SH∗(Ŝ) ∼= SH∗(N1) ∼= SH∗(S).

�

The ring SH∗(M) is well defined up to exact symplectomorphism as the

definition involves the directed system of codimension 0 exact embeddings

of compact convex symplectic manifolds. We now need to show that it is

invariant under convex symplectic deformation. We first need some pre-

liminary lemmas: Let N be a compact symplectic manifold with convex

boundary, and let pt : Ut →֒ N be a smooth family of exact symplectic

embeddings of some convex manifold with boundary Ut. We also assume

dim(N) = dim(Ut).

Lemma 2.13. There exists an isomorphism Φ so that we have a commuta-

tive diagram:

SH∗(N) SH∗(U0)

SH∗(U1)

//

""FF
FF

FF
FFF

FF
FF

FFF
FF

��

!p0

!p1

∼=
Φ

!pt is the transfer morphism induced by pt.

Proof. let Ft := pt(Ut).Then nhd(∂Ft) is exact symplectomorphic to ∂Ft ×
[1− ǫt, 1 + ǫt], where ∂Ft is identified with ∂Ft ×{1} in ∂Ft × [1− ǫt, 1 + ǫt].

Let F 0
t = Ft \ (∂Ft × (1 − ǫt, 1]) and F 1

t = Ft ∪ (∂Ft × (1, 1 + ǫt]). Fix some

T ∈ [0, 1]. We can assume, locally around T , that ǫt varies smoothly with

respect to t. Hence, there exists a δ > 0 such that for all t ∈ (T − δ, T + δ)

we have that:

F 0
T ⊂ Ft ⊂ F 1

T

and

F 0
t ⊂ FT ⊂ F 1

t .
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Hence we have natural morphisms:

SH∗(F
1
T ) SH∗(Ft) SH∗(F

0
T ) SH∗(FT ) SH∗(F

1
t )

SH∗(F
0
t )

// // oo oo

		

�������
��

a b c d
∼=

g h ∼=
77 77

e

∼=

ww
f

∼=

We know that e, h, c and f are isomorphisms from property (1) mentioned

at the start of this subsection. First we show that b is an isomorphism. b is

surjective: This is because the image of b contains the image of b ◦ a = e,

and e is surjective. b is injective: d is injective because h = g ◦d is injective.

Hence b = c ◦ d ◦ f−1 is injective. Therefore c−1 ◦ b is an isomorphism

between SH∗(Ft) and SH∗(FT ). Also, c−1 ◦b◦!pt =!pT where !pt and !pT are

the natural transfer maps induced by the inclusions of Ft and FT respectively

into N . Therefore because [0, 1] is compact, we can choose FT1
. . . FTk

(T0 =

0, Tk = 1) such that we have natural morphisms:

SH∗(N) SH∗(FT1
)

SH∗(FT2
)

SH∗(FTk
)

//

))SSSSSSSSSSSSSSS

""FF
FF

FF
FF

FFF
FF

FFF
FF

��

��

!pT0

!pT1 ∼=

!pTk
∼=

�

Let (N, θt) be a family of compact convex symplectic manifolds and Ut

a compact codimension 0 exact submanifold of (N, θt). We also assume

dim(N) = dim(Ut) and Ut varies smoothly with t.

Lemma 2.14. We have the following commutative diagram of transfer

maps:

SH∗(N, θ0)

SH∗(N, θ1)

SH∗(U0, θ0)

SH∗(U1, θ1)

//

//

OO OO

∼= ∼=

Proof. By [34, Lemma 5] we have that (N̂ , θt) is exact symplectomorphic to

(N̂ , θ0) such that we have a smooth family of exact embeddings of (N, θt)
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in (N̂ , θ0). There exists a large compact convex codimension 0 exact sub-

manifold K of (N̂ , θ0) such that (N, θt) is contained in K for all t ∈ [0, 1].

By lemma 2.13 and the fact that the composition of two transfer maps is a

transfer map, we have a commutative diagram:

SH∗(K) SH∗(N, θ0)

SH∗(N, θ1)

SH∗(U0)

SH∗(U1)

//

!!C
CC

CC
CC

CC
CC

CC
CC

CC

��

//

//
��

∼= ∼=

�

Theorem 2.15. Let (M,θt) be a convex symplectic deformation, then

SH∗(M,θ0) ∼= SH∗(M,θ1).

Proof. We may as well assume that the deformation is arbitrarily small

because [0, 1] is compact. In particular, we may assume that there exist

constants c1 < c2 < . . . tending to infinity such that the level set φ−1
t (ci) is

transverse to the Liouville vector field λt. We let Mi,t := φ−1
t (−∞, ci] which

is a compact convex symplectic manifold. Fix some k > 0 and t ∈ [0, 1].

The convex symplectic manifold (M,θt) may not be complete, but we can

use the vector field λt to flow Mk,t to some convex symplectic manifold M ′
k,t

for a very small amount of time. We also construct M ′
k+1,t in a similar way.

We also assume that

Mk,t ⊂M ′
k,t ⊂Mk+1,t ⊂M ′

k+1,t.

There exists an ǫ > 0 such that for all s ∈ (t− ǫ, t+ ǫ), ∂Mk,s and ∂Mk+1,s

are transverse to λt. We also assume that ǫ is small enough so that for all

such s,

Mk,s ⊂M ′
k,t ⊂Mk+1,s ⊂M ′

k+1,t.

Here is a picture illustrating our situation:



37

Mk,t

Mk+1,t

Mk+1,s

Mk,s

M ′
k,t

M ′
k+1,t

We have that (Mk,s, θt) is a compact convex symplectic manifold as λt

is transverse to ∂Mk,s. Because λt is transverse to both ∂Mk,s and ∂M ′
k,t,

we have that the natural transfer map SH∗(M
′
k,t, θt) → SH∗(Mk,s, θt) is

an isomorphism by lemma 2.13. Similarly we have a transfer isomorphism:

SH∗(M
′
k+1,t) → SH∗(Mk+1,s). Hence using Lemma 2.14 we get a commu-

tative diagram:

SH∗(Mk,t, θt)

SH∗(M
′
k,t, θt)

SH∗(Mk,s, θt)

SH∗(Mk,s, θs)

SH∗(Mk+1,t, θt)

SH∗(M
′
k+1,t, θt)

SH∗(Mk+1,s, θt)

SH∗(Mk+1,s, θs)

oo

oo

oo

oo

OO

��

OO

��

�� ��

∼=

∼=

∼=

∼=

∼= ∼=

By compactness of the interval [0, 1], we get an isomorphism

Φ : SH∗(Mk,0, θ0) ∼= SH∗(Mk,1, θ1).
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This map Φ commutes with the transfer maps

SH∗(Mk+1,i, θi) → SH∗(Mk,i, θi)

(i = 0, 1). So we get SH∗(M,θ0) ∼= SH∗(M,θ1). �

We have transfer maps defined for compact convex symplectic manifolds,

but we need to extend them to maps whose domain is a general convex

symplectic manifold. Let W be a compact codimension 0 exact submanifold

of M . We have a direct system ∆ of compact convex codimension 0 exact

submanifolds N of M containing W . Let N be an element of this direct

system, then there is a natural transfer map SH∗(N) → SH∗(W ). Let

SH∗(∆) denote the respective inverse system whose objects are SH∗(N) and

whose maps are transfer maps. Taking the inverse limit K of the inverse

system SH∗(∆) gives us a natural map SH∗(M) ∼= K → W . We call this

the transfer map from SH∗(M) to SH∗(W ). We can see from the definition

that the transfer map only depends on the exact symplectomorphism type

of M . This means that if we have an exact symplectomorphism Φ from M

to M ′, then we get a commutative diagram:

SH∗(M)

SH∗(M
′)

SH∗(W )

SH∗(Φ(W ))

//

//

OO OO

∼= ∼=

Again we need to prove that transfer maps are invariant under deforma-

tions. Let (M,θt) be a convex deformation such that there is a smooth family

of compact codimension 0 exact symplectic submanifolds Vt of (M,θt).

Theorem 2.16. We have the following commutative diagram:

SH∗(M,θ0)

SH∗(M,θ1)

SH∗(V0)

SH∗(V1)

//

//

OO OO

∼= ∼=

Proof. We use the same notation as in theorem 2.15. We can find a smooth

family of functions Rt on M such that (Vt, θt + dRt) is an exact symplectic

manifold (i.e the associated Liouville vector field λt + XRt to θt + dRt is

transverse to ∂Vt and pointing outwards). By Theorem 2.15 we can replace

θt with θt + dRt. Hence from now on we will assume that λt is transverse to
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∂Vt and pointing outwards. We can assume that the deformation is small

enough so that there exists a c1 < c2 < · · · such that dφt(λM,t) > 0 on

φ−1
t (ck). Fix t ∈ [0, 1] and k ∈ N. There exists an ǫ > 0 such that for all

s ∈ (t − ǫ, t + ǫ), ∂Mk,s, ∂Mk+1,s and ∂Vs are transverse to λt. We also

assume that ǫ is small enough so that for all such s,

Vs ⊂Mk,s ⊂M ′
k,t ⊂Mk+1,s ⊂M ′

k+1,t.

Hence, we have a diagram:

SH∗(Mk,t, θt)

SH∗(M
′
k,t, θt)

SH∗(Mk,s, θt)

SH∗(Mk,s, θs)

SH∗(Mk+1,t, θt)

SH∗(M
′
k+1,t, θt)

SH∗(Mk+1,s, θt)

SH∗(Mk+1,s, θs)

SH∗(V0, θt)

SH∗(V1, θt)

SH∗(V1, θs)

oo

oo

oo

oo

oo

oo

YY

33
33

33
33

33
33

3

��

�������������

oo

OO

��

OO

��

�� ��

��

��

∼=

∼=

∼=

∼=

∼=

∼= ∼=∼=

This diagram is commutative, because the right hand side comes from a

commutative diagram in theorem 2.15, the left hand triangle is the same as

the triangle from lemma 2.13. Using compactness of the interval [0, 1] we

have a commutative diagram:

SH∗(Mk,0, θ0)

SH∗(Mk,1, θ1)

SH∗(Mk+1,0, θ0)

SH∗(Mk+1,1, θ1)

SH∗(V0, θ0)

SH∗(V1, θ1)

oo

oo

oo

oo
�� ����

∼= ∼=∼=

Taking inverse limits proves our theorem.

�

Finally, we need a theorem involving end connect sums:

Theorem 2.17. Let M,M ′ be Stein manifolds of real dimension greater

than 2, then
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SH∗(M#eM
′) ∼= SH∗(M) × SH∗(M

′) as rings. Also the transfer map

SH∗(M#eM
′) → SH∗(M) is just the natural projection

SH∗(M) × SH∗(M
′) ։ SH∗(M).

Cieliebak in [6] showed that the above theorem is true if we view SH∗ as

a vector space. We can combine Cieliebak’s proof with [3, Lemma 7.2] as a

substitute for the Annulus Lemma [6, Lemma 3.3] in order to prove a ring

isomorphism. We will also prove that we have a ring isomorphism in section

12.3.

3. Proof of the first theorem

3.1. Constructing our non-finite type examples in dimension 3.

First we wish to construct a finite type Stein manifold M3 of complex di-

mension 3 such that SH∗(M3) 6= 0.

Theorem 3.1. There exists a contractible Stein manifold W of complex

dimension 2 such that SH∗(W ) 6= 0. This Stein manifold is an affine variety

constructed as in example 2.9.

Before we prove the theorem, we will first construct W . Let V := {z2
1 =

z3
2} ⊂ C

2. Let w ∈ C
2 be a point in the smooth part of V . We define

W to be BlwC
2 \ Ṽ where BlwC

2 is the blowup of C
2 at the point w and

Ṽ is the proper transform of V in BlwC
2. Another way of saying this is

that W is equal to Kalmod(C2, V, w) where Kalmod will be defined later in

section 4.3 (this kind of construction is mentioned in [22]). This surface is

also contractible (see [22, Theorem 3.5] and Lemma 4.16).

Let B(ǫ) ⊂ C
2 be a small ball around the origin which does not contain

w (w 6= 0 as V has its only singular point at the origin). There exists a

Lagrangian torus L in B(ǫ) ⊂ W called the linking torus (see [34, section

4]). The inclusion L →֒ C
2 \V is π1 injective. Suppose (for a contradiction)

there exists a non-constant holomorphic disk i : (D, ∂D) → (W,L). Then

because L →֒ C2 \ V is π1 injective, we have that this disk must intersect

the exceptional divisor (if it didn’t, then the disk bounds a contractible

loop on the torus which would mean it had volume zero by Stokes’ theorem

which is impossible). Let D
′ ⊂ C

2 be the holomorphic disk corresponding

to the image of i after applying the blowdown map Bl : W → C
2. Then

D
′ has boundary in B(ǫ) and it passes through w /∈ B(ǫ). Hence it has

an interior maximum outside B(ǫ) which is impossible. Hence there are no

non-constant holomorphic disks in W with boundary in L.
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In order to show that SH∗(W ) 6= 0 we apply the following theorem us-

ing L: Let N be a compact convex symplectic manifold, and J an almost

complex structure on the completion N̂ which is convex at infinity.

Theorem 3.2. Suppose that there is a Lagrangian submanifold LN of N

such that there are no non-constant holomorphic disks in (N̂ , LN ). Then

SH∗(N) 6= 0.

This theorem is basically proved in [39]. It is also mentioned in the

comment after Proposition 5.1 in [32, Section 5].

We now wish to use this theorem to show that SH∗(W ) 6= 0. We can

assume that the Stein manifold W is complete by [34, Lemma 6]. The

problem is that the complex structure on W is not necessarily convex at

infinity with respect to any cylindrical end. To get around this problem we

just apply Theorem 11.1. Hence we can find an almost complex structure

J on W (or an some manifold convex deformation equivalent to W - we

can ensure that the convex deformation fixes L) such that it is convex at

infinity with respect to some cylindrical end and such that there are no non-

constant J-holomorphic disks in (W,L). So applying Theorem 3.2 shows us

that SH∗(W ) 6= 0 and hence we have proved Theorem 3.1.

We construct M3 in the following way: Let q be a point in W . We have

a hypersurface K := W × {0} ⊂ W × C. Let M ′ be equal to W × C blown

up at the point (q, 0) ∈ W × C. Let M3 := M ′ \ K̃ where K̃ is the proper

transform of K in M ′. Again, another way of saying this is that M3 is equal

to Kalmod(W × C,K, (q, 0)). This manifold M3 is also diffeomorphic to R
6

(see Lemma 4.16).

We need to show that SH∗(M3) 6= 0. By the Künneth formula [26], we

have that SH∗(W × C
∗) 6= 0 as SH∗(W ) 6= 0 and SH∗(C

∗) 6= 0 (because

C
∗ = T ∗

S
1 and SH∗(T

∗
S

1) = Hn+∗(S
1) 6= 0 by [38]). Later on in the thesis

we will show that SH∗(W ×C
∗) = SH∗(M3) (see Theorem 4.20). So we get

that SH∗(M3) 6= 0. Finally we define M∞
3 as the infinite end connect sum

#e
∞
i=1M3.

3.2. Constructing our non-finite type examples in dimension 4 and

higher. In complex dimension 4 and higher we define Mk := Kk where

Kk is constructed in section 5.1. It is shown in sections 5.2 and 5.3 that

SH∗(Kk) 6= 0. We define M∞
k as the infinite end connect sum #e

∞
i=1Mk.
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3.3. Main argument. First of all we need a necessary condition for a con-

vex symplectic manifold M to be of finite type.

Definition 3.3. We say that M is of algebraic finite type if there exists a

codimension 0 compact convex submanifold W of M such that the transfer

map SH∗(M) → SH∗(W ) is an injection.

Note that if we have another codimension 0 compact convex submanifold

W ′ in M containing W , then we have that SH∗(M) → SH∗(W
′) is an

injection because:

SH∗(M) → SH∗(W
′) → SH∗(W )

is an injection.

Lemma 3.4. A finite type Stein manifold N is of algebraic finite type.

Proof. Let (N,JN , φN ) be the Stein structure forN . Let c≫ 0 be a constant

such that φN has no critical values above c. The manifoldsNs := φ−1
N (−∞, s]

for s ≥ c form a cofinal family of convex symplectic manifolds for N . So

SH∗(N) is the inverse limit of SH∗(Ns). We aim to show that the natural

map SH∗(Ns) → SH∗(Nc) is injective. Let λN be the associated Liouville

flow. Then flowing ∂Ns using −λ gives us a concave cylindrical end (note

that −λ is complete as it flows into the manifold): (∂Ns × (−∞, 1], rα)

where r ∈ (−∞, 1] and α is a contact form on ∂Ns (this is constructed in

a similar way to the convex cylindrical end in lemma 2.4). Also, because

there are no critical values of φN between s and c, we have that ∂Nc is a

subset of this cylindrical end. This means that there exists a K < 1 such

that {r ≤ K} ⊂ Nc ⊂ Ns = {r ≤ 1}. This means we get a sequence of

maps:

SH∗({r ≤ 1}) → SH∗(Nc) → SH∗({r ≤ 1}).
The composition of both these maps is an isomorphism by property (1)

of SH∗ mentioned at the start of section 2.4. Hence the natural map

SH∗(Ns) → SH∗(Nc) is an injection. �

It is easy to see that being of algebraic finite type is invariant under exact

symplectomorphism. We now need to show that this definition is invariant

under convex deformation.

Lemma 3.5. Suppose we have a convex deformation (M,θt), then (M,θ0)

is of algebraic finite type if and only if (M,θ1) is.
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Proof. Because [0, 1] is compact, we may as well assume that the deformation

is very small. In particular, we will assume that there exist constants c1 <

c2 < . . . tending to infinity such that λt is transverse to the regular level set

φ−1
t (ci). Let Vt,i := φ−1

t (−∞, ci]. If (M,θ0) is of algebraic finite type, then

for a very large i, we have that the transfer map:

SH∗(M,θ0) → SH∗(V0,i)

is an injection. We now have a smooth family of compact codimension 0

convex exact submanifolds Vt,i of (M,θt). Using theorem 2.16 we get that

SH∗(M,θ1) → SH∗(V1,i)

is also an injection, which implies that (M,θ1) is also of algebraic finite type.

By symmetry, we also have that if (M,θ1) is of algebraic finite type, then

so is (M,θ0). �

Proof. of theorem 1.1. Suppose for a contradiction that the manifold M∞
k

(constructed in Sections 3.1 and 3.2) is ∼-equivalent to a finite type Stein

manifold N . The manifold N is of algebraic finite type. Being of algebraic

finite type is invariant under exact symplectomorphism and convex deforma-

tion which means that M∞
k is also of algebraic finite type. By the comment

after Theorem 2.10 we can describe M∞
k as a union of Stein domains M j

k

where M j
k is the j-fold end connect sum of Mk. Because M∞

k is a union

of compact codimension 0 exact submanifolds M j
k , we get (by the comment

after Definition 3.3) an injective transfer map:

SH∗(M
∞
k ) →֒ SH∗(M

j
k)

for some very large j. The above map factors as follows:

SH∗(M
∞
k ) → SH∗(M

j+1
k ) → SH∗(M

j
k).

By Theorem 2.17, the map SH∗(M
j+1
k ) → SH∗(M

j
k) is a projection

j+1∏

i=1

SH∗(Mk) ։

j∏

i=1

SH∗(Mk)

with kernel SH∗(Mk) 6= 0. Theorem 2.17 also ensures that the map

SH∗(M
∞
k ) → SH∗(M

j+1
k ) is a surjection. This is because SH∗(M

j
k) is the

j-fold product of SH∗(Mk) and SH∗(M
∞
k ) is the inverse limit of these rings

where the maps SH∗(M
j
k) → SH∗(M

j−1
k ) in this inverse limit are the natural

projection maps from the j-fold product of SH∗(Mk) to the j−1 fold product
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of SH∗(Mk) (eliminating one of the factors). Hence SH∗(M
∞
k ) is a countably

infinite product of SH∗(Mk) and the transfer map SH∗(M
∞
k ) → SH∗(M

j
k)

is a projection. All of this means that the transfer map M∞
k →֒ SH∗(M

j
k)

has non-trivial kernel, contradiction. �

4. Background for the second theorem

4.1. Lefschetz fibrations. Throughout this section we will let E be a com-

pact manifold with corners whose boundary is the union of two faces ∂hE

and ∂vE meeting in a codimension 2 corner. We will also assume that Ω is

a 2-form on E and Θ a 1-form satisfying dΘ = Ω. We let S be a surface

with boundary. Let π : E → S be a smooth map with only finitely many

critical points (i.e. points where dπ is not surjective). Let Ecrit ⊂ E be the

set of critical points of π and Scrit ⊂ S the set of critical values of π. For

s ∈ S, let Es be the fibre π−1(s).

Definition 4.1. If for every s ∈ S we have that Ω is a symplectic form on

Es \Ecrit then we say that Ω is compatible with π.

Note that if Ω is compatible with π then there is a natural connection

(defined away from the critical points) for π defined by the horizontal plane

distribution which is Ω-orthogonal to each vertical fibre. If parallel trans-

port along some path in the base is well defined then it is an exact symplec-

tomorphism (an exact symplectomorphism is a diffeomorphism Φ between

two symplectic manifolds (M1, dθ1) and (M2, dθ2) such that Φ∗θ2 = θ1 + dG

where G is a smooth function on M1). From now on we will assume that

Ω is compatible with π. We deal with Lefschetz fibrations as defined in

[30]. Let J0 (resp. j0) be an integrable complex structure defined on some

neighbourhood of Ecrit (resp. Scrit). Remember F is some smooth fibre of

π.

Definition 4.2. (E, π) is an exact Lefschetz fibration if:

(1) π : E −→ S is a proper map with ∂vE = π−1(∂S) and such that

π|∂vE : ∂vE → ∂S is a smooth fibre bundle. Also there is a neigh-

bourhood N of ∂hE such that π|N : N → S is a product fibration

S × nhd(∂F ) where Ω and Θ are pullbacks from the second factor of

this product.

(2) π is (J0, j0) holomorphic near Ecrit and the Hessian D2π at any

critical point is nondegenerate as a complex quadratic form. We

also assume that there is at most one critical point in each fibre.
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(3) Ω is a Kähler form for J0 near Ecrit.

Sometimes we will need to define a Lefschetz fibration without boundary.

This is defined in the same way as an exact Lefschetz fibration except that

E, the fibre F and the base S are open manifolds without boundary. We

replace “neighbourhood of ∂hE” in the above definition with an open set

whose complement is relatively compact when restricted to each fibre. We

also replace “∂vE” with π−1(S \K) where K is a compact set in S. Also π

is obviously no longer a proper map, and we assume that the set of critical

points is compact. From now on we will let (E, π) be an exact Lefschetz

fibration.

Lemma 4.3. [30, Lemma 1.5] If β is a positive two form on S then ω :=

Ω +Nπ∗β is a symplectic form on E for N sufficiently large.

We really want our Lefschetz fibrations to be described as finite type

convex symplectic manifolds.

Definition 4.4. A compact convex Lefschetz fibration is an exact

Lefschetz fibration (E, π) such that (F,Θ|F ) is a compact convex symplectic

manifold. A compact convex Lefschetz deformation is a smooth family

of compact convex Lefschetz fibrations parametrized by [0, 1].

Note that by the triviality condition at infinity, all smooth fibres of π are

compact convex symplectic manifolds as long as the base S is connected.

From now on we will assume that (E, π) is a compact convex Lefschetz

fibration.

Theorem 4.5. Let the base S be a compact convex symplectic manifold

(S, θS). There exists a constant K > 0 such that for all k ≥ K we have:

ω := Ω + kπ∗(ωS) is a symplectic form, and the ω-dual λ of Θ + kπ∗θS is

transverse to ∂E and pointing outwards.

(The proof is given in section 6.) Note that this theorem also implies that

if we have a compact convex Lefschetz deformation, then we have a corre-

sponding compact convex symplectic deformation because we can smooth

the codimension 2 corners slightly.

If we have a compact convex Lefschetz fibration, then we wish to extend

the Lefschetz fibration structure over the completion Ê of E. Here is how

we naturally complete (E, π): The horizontal boundary is a product ∂F ×S.

We can add a cylindrical end G := (∂F × [1,∞)) × S to this in the usual
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way, extending Θ over this cylindrical end by the 1-form r(Θ|∂F ) where r is

the coordinate for [1,∞). Let E1 be the resulting manifold. We also extend

the map π over E1 by letting π|G : G → S be the natural projection. This

ensures that π is compatible with the natural symplectic form on E1 defined

as in Lemma 4.3. The fibres of π are finite type complete convex symplectic

manifolds. We now need to “complete” the vertical boundary of E1 so that

we have a fibration over the completion Ŝ of S. Let V := ∂vE1 := π−1(∂S).

We then attach A := V × [0,∞) to E1 by identifying V ⊂ E1 with V ×{0} ⊂
A to create a new manifold Ê. Let π1 : A → V be the natural projection

onto V . We can extend Θ over A by a 1-form π∗1(Θ) and then perturb this

1-form near V ×{0} ⊂ A so that it is smooth. We can also extend our map

π over A by letting π|A(v, r) = π|V (v) where v ∈ V ⊂ E1 and r ∈ [0,∞).

Definition 4.6. (Ê, π) is called the completion of (E, π).

Note that the base of our completed fibration is (Ŝ, θS).

Definition 4.7. Any fibration which is the completion of a compact convex

Lefschetz fibration is called a complete convex Lefschetz fibration.

Note that if we add a large multiple of π∗θS to Θ then (Ê, θ) is a complete

finite type convex symplectic manifold. Lefschetz fibrations have well defined

parallel transport maps due to the fact that the fibration is trivial near

the horizontal boundary of E. Now we need to deal with almost complex

structures on Ê, as this will be useful when we later define SHlef
∗ . Let J

(resp. j) be an almost complex structure on Ê (resp. Ŝ). We also assume

that π is (J, j)-holomorphic, and that J = J0 near Ecrit and j = j0 near

Scrit.

Definition 4.8. We say that (J, j) are compatible with (Ê, π) if:

(1) j is convex at infinity with respect to the convex symplectic structure

of Ŝ (i.e. θS ◦ j = dr for large r where θS is the contact form at

infinity on Ŝ and r is the radial coordinate of the cylindrical end of

Ŝ).

(2) J is a product (JF , j) on the region C×S where C is the cylindrical

end ∂F × [1,∞) of S, and JF is convex at infinity for F . (θ| bF ◦JF =

dr for large r where r is the radial coordinate of the cylindrical end).

(3) ω(·, J ·) is symmetric and positive definite.
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If (Ê, π) is a complete convex Lefschetz fibration then the space of such

almost complex structures is nonempty and contractible (see [30, section

2.2]). We wish to have a slightly larger class of almost complex structures.

Definition 4.9. We define Jh(Ê) to be the space of almost complex struc-

tures on Ê such that for each J in this space, there exists a (J1, j1) compat-

ible with (Ê, π) and a compact set K ⊂ Ê with J = J1 outside K and with

ω(·, J ·) symmetric and positive definite.

4.2. Symplectic homology and Lefschetz fibrations. We need three

theorems which relate symplectic homology to Lefschetz fibrations. These

are the key ingredients in proving that our exotic Stein manifolds are pair-

wise distinct. The proofs of these theorems will be deferred to sections 7

and 8. Theorem 4.11 is very close to Oancea’s Künneth formula [26] but

theorems 4.13 and 4.14 are new and the main part of the story. Throughout

this section we will let π′ : E′ → S′ be a compact convex Lefschetz fibration

with fibre F ′. From now on we will assume that c1(E
′) = 0 and to make

SH∗(E
′) graded we will choose a trivialisation of the canonical bundle of

E′. Note that when we talk about symplectic homology of a compact con-

vex Lefschetz fibration, we mean the symplectic homology of its completion

with respect to the convex symplectic structure. The fibration Ê′ can be

partitioned into three sets as follows:

(1) E′ ⊂ Ê′

(2) A := F ′
e × Ŝ′, where F ′

e := ∂F ′ × R≥1 is the cylindrical end of F̂ ′.

(3) B := Ê′ \ (A ∪E′)

The set B is of the form (A1 × R≥1)
⊔

(A2 × R≥1) · · ·
⊔

(An × R≥1), where

Ai is a mapping torus of the monodromy symplectomorphism around one of

the boundary components of S. Here is a picture of the regions E′, A and

B.
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����

E′ ∂vE′∂vE′

∂hE′

∂hE′

A A A

A A A

B B

π

Ŝ

Let π1 : A ։ F ′
e be the natural projection onto F ′

e.

Definition 4.10. Let HS′ be an admissible Hamiltonian for the base Ŝ′. Let

HF ′ be an admissible Hamiltonian for the fibre F̂ ′. We assume that HF ′ = 0

on F ′ ⊂ F̂ ′. The map H : Ê′ → R is called a Lefschetz admissible

Hamiltonian if H|A = π∗HS′ + π∗1HF ′ and H|B = π∗HS′ outside some

large compact set. We say that H has slope (a, b) if HS has slope a at

infinity and HF has slope b at infinity.

Let H be a Lefschetz admissible Hamiltonian and let J be an admissible

almost complex structure for E′. We will call the pair (H,J) a Lefschetz

admissible pair. For generic (H,J) we can define SH∗(E
′,H, J) (see sec-

tion 7 for more details). If (H1, J1) is another generic Lefschetz admissible

pair such that H ≤ H1, then there is a continuation map SH∗(H,J) →
SH∗(H1, J1) induced by an increasing homotopy from H to H1 through Lef-

schetz admissible Hamiltonians. Hence, we have a direct limit SH l
∗(E

′) :=

lim−→
(H,J)

SH∗(H,J) with respect to the ordering ≤ on Hamiltonians H. This

has the natural structure of a ring with respect to the pair of pants product.

Theorem 4.11. There is a ring isomorphsim SH∗(E
′) ∼= SH l

∗(E
′).
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This will be proved in section 7. Let (H,J) be a Lefschetz admissible pair

of slope (a, ǫ) where ǫ is smaller than the length of the shortest Reeb orbit

of ∂F ′. We say that (H,J) is a half admissible Hamiltonian. We should

think of H as a perturbation of π∗HS′ .

Definition 4.12. We define

SHlef
∗ (E′) := lim−→

(H,J)

SH∗(H,J)

as the direct limit with respect to the ordering ≤ on half admissible Hamil-

tonians H. This has the structure of a ring as usual.

The difference between SH∗(E
′) and SH l

∗(E
′) is that SH∗(E

′) is defined

using Hamiltonians which are linear with respect to some fixed cylindrical

end. The ring SH l
∗(E

′) is defined using Hamiltonians which are linear in the

horizontal and vertical directions with respect to some Lefschetz fibration.

The difference between SHlef
∗ (E′) and the other homology theories is that

the slopes of a cofinal family of half admissible Hamiltonians do not have

to tend to infinity pointwise in the vertical direction. This has to be true

for SH∗(E
′) and SH l

∗(E
′) where the Hamiltonians have to get steeper and

steeper at infinity in all directions. Because a half admissible Hamiltonian

is Lefschetz admissible, we have a natural ring homomorphism:

Φ : SHlef
∗ (E′) → SH l

∗(E
′).

Theorem 4.13. If S′ = D, the unit disk, then Φ is an isomorphism of rings.

Hence by Theorem 4.11,

SH∗(E
′) ∼= SHlef

∗ (E′)

as rings.

This will be proved in section 7.1. Let F ′ (resp. F ′′) be a smooth fibre

of E′ (resp. E′′). Let F ′ and F ′′ be Stein domains with F ′′ a holomorphic

and symplectic submanifold of F ′.

Theorem 4.14. Suppose E′ and E′′ satisfy the following properties:

(1) E′′ is a subfibration of E′ over the same base.

(2) The support of all the monodromy maps of E′ are contained in the

interior of E′′.

(3) Any holomorphic curve in F ′ with boundary inside F ′′ must be con-

tained in F ′′.
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Then SHlef
∗ (E′) ∼= SHlef

∗ (E′′) as rings.

This theorem will be proved in section 8. Combining this theorem with

theorem 4.13 proves the key theorem 1.4 in the introduction of this thesis.

4.3. The Kaliman modification. In order to produce examples of exotic

symplectic manifolds, we first need to construct exotic algebraic varieties.

One tool used for constructing these manifolds is called the Kaliman modi-

fication. Our treatment follows section 4 of [40].

Consider a triple (M,D,C) where C ⊆ D ⊆ M are complex varieties.

Let M and C be smooth, D be an irreducible hypersurface in M , and C be

a closed subvariety contained in the smooth part of D such that dim(C) <

dim(D).

Definition 4.15. (see [22]) The Kaliman modification M ′ of (M,D,C)

is defined by M ′ := Kalmod (M,D,C) = M̃ \ D̃ where M̃ is the blowup of

M along C and D̃ is the proper transform of D in M̃ .

The Kaliman modification of an affine variety is again an affine variety

(see [22]).

Lemma 4.16. [22, Theorem 3.5] Suppose that (i) D is a topological mani-

fold, and (ii) D and C are acyclic. Then M ′ is contractible iff M is.

Example 4.17. (tom Dieck-Petrie surfaces see [36, 35]) For k > l ≥ 2

with (k, l) coprime, the triple Ak,l :=
(
C

2, {xk − yl = 0}, {(1, 1)}
)

satisfies

the conditions of Lemma 4.16. Hence Xk,l = Kalmod (A) is contractible.

Note: Xk,l is isomorphic to
{

(xz + 1)k − (yz + 1)l − z

z
= 0

}
.

Here x, y, z are the standard coordinates of C
3. Also the numerator of this

fraction is divisible by z, hence the above fraction is a polynomial.

Here is another construction:

Example 4.18. (Kaliman [22]) If we have a contractible affine variety M

of complex dimension n, then we can construct a contractible affine variety

Mk := Kalmod (M × C,M × {p1, . . . , pk}, {(a1, p1) , . . . , (ak, pk)})

where pi are distinct points in C and ai are points in M . This variety

is contractible by a repeated application of 4.16, because it is a repeated
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Kaliman modification with D isomorphic to M and C a point. There are

obvious variants: replace C and {p1, . . . , pk} with some contractible variety

and a disjoint union of contractible irreducible hypersurfaces, etc.

At the moment we are only discussing contractibility of varieties. We need

to produce varieties diffeomorphic to some C
n. We will use the h-cobordism

theorem to achieve this stronger condition.

Corollary 4.19. (See [2, Page 174], [27] and [40, proposition 3.2]) Let M

be a contractible Stein manifold of finite type. If n := dimCM ≥ 3 then M

is diffeomorphic to C
n.

Proof. Let (J, φ) be the Stein structure associated with M . We can also

assume that φ is a Morse function. For R large enough, the domain MR :=

{φ < R} is diffeomorphic to the whole of M as M is of finite type. We want

to show that the boundary of M̄R := {φ ≤ R} is simply connected, then the

result follows from the h-cobordism theorem.

The function ψ := R−φ only has critical points of index ≥ n ≥ 3 because

the function φ only has critical points of index ≤ n (see [11, Corollary 2.9]).

Viewing ψ as a Morse function, M̄R is obtained from ∂M̄R by attaching han-

dles of index ≥ 3. This does not change π1, hence ∂M̄R is simply connected

because M̄R is simply connected. �

We now need a theorem which relates the Kaliman modification with

symplectic homology. We do this via Lefschetz fibrations. Let X,D,M be

as in example 2.9. Let Z be an irreducible divisor in X and q ∈ (Z ∩M) a

point in the smooth part of Z. We assume there is a rational function m on

X which is holomorphic on M such that m−1(0) is reduced and irreducible

and Z = m−1(0). LetM ′ := Kalmod(M, (Z∩M), {q}), and letM ′′ := M\Z.

Suppose also that dimCX ≥ 3. We also assume that c1(M
′) = c1(M

′′) = 0.

Theorem 4.20. SH∗(M
′′) = SH∗(M

′).

This theorem follows easily from the key theorem 1.4 and the following

theorem:

Theorem 4.21. There exist compact convex Lefschetz fibrations E′′ ⊂ E′

respectively satisfying the conditions of theorem 1.4 such that E′ (resp. E′′)

is convex deformation equivalent to M ′ (resp. M ′′).

This will be proved in the appendix (10). The basic idea of the proof is

to use Lefschetz fibrations defined in an algebraic way.



52

5. Proof of the second theorem

5.1. Construction of our exotic Stein manifolds. First of all, we will

construct a Stein manifold K4 diffeomorphic to C
4. We will then construct

Stein manifolds Kn diffeomorphic to C
n for all n > 3 from K4. Finally using

end connect sums we will construct infinitely many Stein manifolds (Kk
n)k∈N

diffeomorphic to C
n for all n > 3.

We define the polynomial P (z0, . . . , z3) := z7
0 + z2

1 + z2
2 + z2

3 and V :=

{P = 0} ⊂ C
4. Let S

7 be the unit sphere in C
4.

Theorem 5.1. [5] V ∩ S
7 is homeomorphic to S

5.

Since V is topologically the cone on the link V ∩ S
7,

Corollary 5.2. V is homeomorphic to R
6.

Let p ∈ V \ {0}. We let K4 := Kalmod(C4, V, {p}). Now by Corollary 5.2

and Lemma 4.16 we have that K4 is contractible. Hence by Theorem 4.19

we have that K4 is diffeomorphic to C
4. We will now construct the varieties

Kn by induction. Suppose we have constructed the varieties K4, . . . ,Kn,

we wish to construct the variety Kn+1. We do this using example 4.18.

This means that we will define Kn+1 := Kalmod(Kn × C,Kn × {0}, (q, 0))
where q is a point in Kn. All these are affine varieties and hence have Stein

structures by example 2.9. Finally, we define

Kk
n := #e

i=1...k
Kn

which is the k fold end connect sum of Kn. The aim of this thesis is to show

that if Kk
n ∼ Km

n then k = m.

5.2. Proof of the second theorem in dimension 8. In this section we

wish to show that if Kk
4 ∼ Km

4 then k = m. Let M ′ := K1
4 . By 2.17,

SH∗(K
k
4 ) =

∏k
i=0 SH∗(M

′). Hence if i(M ′) is finite, i(Kk
4 ) = i(M ′)k where

i(M) denotes the number of idempotents of SH∗(M) for any Stein manifold

M . So in order to distinguish these manifolds, we need to show that 1 <

i(M ′) <∞. LetM ′′ := C
4\V where V is defined in section 5.1. By Theorem

4.20, we have that SH∗(M
′′) = SH∗(M

′). We have that 1 < i(M ′′) <∞ by

the main results in section 9.3, hence 1 < i(M ′) <∞.

5.3. Proof of the theorem in dimensions greater than 8. Let Kn :=

K1
n. For each n > 4 we need to show that 1 < i(Kn) < ∞ in order to

distinguish Kk
n. This is done by induction. Suppose that 1 < i(Kn) < ∞
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for some n, then we wish to show that 1 < i(Kn+1) < ∞. We have by

Theorem 4.20, that SH∗(Kn+1) ∼= SH∗(Kn × C
∗). Let B := Kn × C

∗. Let

SHcontr

∗ (C∗) be the subring of SH∗(C
∗) with H1 grading 0.

One can check that SHcontr

∗ (C∗) is a subring isomorphic to H1−∗(C∗). In

particular SHcontr

1 (C∗) ∼= Z/2. By the Künneth formula (see [26]), we have

that

SH(n+1)+∗(B) ∼= SHn+∗(Kn) ⊗ SH1+∗(C
∗).

This ring is naturally graded by H1(C
∗). Hence any idempotent must be an

element of

SHn+∗(Kn) ⊗ SHcontr

1+∗ (C∗) ⊂ SHn+∗(Kn) ⊗ SH1+∗(C
∗)

by Lemma 9.6. The ring SHcontr

1+∗ (C∗) is naturally graded by the Robbin-

Salamon index because c1(C
∗) = 0. This means that any idempotents must

live in:

SHn+∗(Kn) ⊗ SHcontr

1 (C∗) ∼= SHn+∗(Kn) ⊗ Z/2 ∼= SHn+∗(Kn).

Hence i(Kn+1) = i(Kn). This means that by induction we have 1 < i(Kn) <

∞ for all n > 3 as we proved 1 < i(K3) <∞ in section 5.2. This proves our

theorem.

6. Lefschetz fibration proofs

Here is the statement and proof of Theorem 4.5: Let (E, π) be a compact

convex Lefschetz fibration. There exists a constant K > 0 such that for all

k ≥ K we have: ω := Ω + kπ∗(ωS) is a symplectic form, and the ω-dual λ

of θ := Θ + kπ∗θS is transverse to ∂E and pointing outwards.

Proof. We letK be a large constant so that ω := Ω+π∗(Kω′
S) is a symplectic

form (see [30, Lemma 1.5]). Let θ′S := KθS and ω′
S = dθ′S and λ′S be the

ωS-dual of θS . Let U × V be some trivialisation of π around some point

p ∈ π−1(∂S) where U ⊂ F and V ⊂ S. We let V be some small half disk

around π(p) and U is some small open ball. Let π1 : U × V ։ U be the

natural projection. Let λF be the Ω|F -dual of Θ|F , and λQ be the horizontal

lift of λ′S . The ω-dual of Θ is equal to:

λF +W
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where W is ω-orthogonal to the vertical fibres and is equal to 0 near the

horizontal boundary of E. The ω-dual of Kπ∗θ′S is equal to:

GλQ

where G is some function on U × V . This means that the ω-dual of θ is:

λ = λF +W +GλQ.

Because W = 0 near the horizontal boundary and because the horizontal

subspaces are tangent to the horizontal boundary, we have that λ is trans-

verse to the horizontal boundary. In order to show that λ is transverse to

the vertical boundary we need to ensure that we can make G very large

compared to λF +W . This can be done by making K sufficiently large.

�

7. A cofinal family compatible with a Lefschetz fibration

In this section we construct a family of Hamiltonians Hk : Ê → R which

behave well with respect to the Lefschetz fibration, so that

SH l
∗(E) := lim−→

k

SH∗(E,Hk, J) = SH∗(E).

This would be obvious ifHk belonged to the “usual” class (i.e. linear of slope

k on the contact cone) but our Hk looks like a product near the codimension

2 corner of E. Throughout this section, (E, π) is a compact convex Lefschetz

fibration. We let Θ,Ω, θ, ω be defined as in section 4.1.

Theorem 7.1. Let H : Ê → R be Lefschetz admissible for E with non-

degenerate orbits. Then the space of regular almost complex structures Jreg(Ê,H)

is of second category in the space Jh(Ê) of admissible almost complex struc-

tures with respect to the C∞ topology.

This theorem comes from using results in [16]. This ensures that the

moduli spaces of Floer trajectories are manifolds. For non-generic (H,J),

SH∗(H,J) is defined via small perturbations, and is independent of choice

of small perturbation via continuation map techniques. We also need a

maximum principle to ensure that the Floer moduli spaces have compacti-

fications.

Let W be a connected component of ∂S where S is the base. Now Ŝ

has a cylindrical end W × [0,∞). Let rS be the coordinate for [1,∞). Let

u : D → Ê satisfy Floer’s equations for some J ∈ JhÊ and some admissible
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Hamiltonian H. Here D is the unit disk parametrized by coordinates (s, t).

We can write H = π∗HS + π∗1HF as in definition 4.10. We assume that

HF = 0 on F .

Lemma 7.2. The function f := rS ◦π◦u cannot have an interior maximum

for rS large.

Proof. Let f have an interior maximum at q ∈ D. Let U be a small neigh-

bourhood of u(q). The symplectic form ω on Ê splits the tangent space of

E into vertical planes and horizontal planes. Let V be the vertical plane

field, and let P be the horizontal plane field (the ω-orthogonal of vertical

tangent spaces of π). Let ωS be the symplectic form on the base S, then

ωP := π∗ωS|P is non-degenerate. This means that there exists a function

g : π−1(W × [0,∞)) → (0,∞)

such that gωP = ω|P . We may assume that J(P ) ⊂ P because J is compat-

ible with Ê if rS is large. Let p be the natural projection TE → P induced

by the splitting TE = V
⊕
P .

Floer’s equation for u splits up into a horizontal part associated to P and

a vertical part associated to V . The horizontal part can be expressed as:

p(
∂u

∂s
) + Jp(

∂u

∂t
) = −J 1

g
G

where G is a vector field on P which is the ωP -orthogonal to dπ∗HS |P in P .

Hence u′ := π ◦ u satisfies the equation:

∂u′

∂s
+ j

∂u′

∂t
= −j 1

u∗(g)
XHS

where j is the complex structure of S, and XHS
is the Hamiltonian vector

field of HS in S. Rearranging the above equation gives:

u∗(g)
∂u′

∂s
+ ju∗(g)

∂u′

∂t
= −jXHS

.

Now locally around the point q, we can choose a reparameterisation of the

coordinates (s, t) to new coordinates (s′, t′) so that u′ satisfies:

∂u′

∂s′
+ j

∂u′

∂t′
= −jXHS

(i.e. ∂s′

∂s = ∂t′

∂t = 1
u∗(g) and ∂t′

∂s = ∂s′

∂t = 0 ). The above equation is Floer’s

equation which doesn’t have a maximum by [25, Lemma 1.5]. This gives us

a contradiction as we assumed f had a maximum at q. �
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The same argument above holds if u satisfied the parametrized Floer

equations as well. Note we also have a maximum principle in the vertical

direction as well. We have that the region A as defined in 4.10 looks like

∂F × [1,∞) × Ŝ. Let rF be the coordinate for [0,∞) in this product. Let

π1 : A ։ ∂F × [1,∞) be the natural projection. If a Floer trajectory u has

an interior maximum with respect to rF for rF large, then π1 ◦ u satisfies

Floer’s equations on F and hence has no maximum by [25, Lemma 1.5].

This gives us a contradiction. Hence rF ◦ u has no maximum for rF large.

The above maximum principles and the regularity result from 7.1 ensures

that SH∗(Ê,H) is well defined.

We also need the 1-forms of our Lefschetz fibration to behave well at

infinity. We have that π−1(W ) is diffeomorphic to the mapping torus Tβ

of some Θ|π−1(w)-exact symplectomorphism β, where w ∈ W . Write Tβ =

([0, 1]×F )/{∼} where ∼ identifies {0}×F and {1}×F via β. Let s be the

coordinate for [0, 1]. Let ΘF := Θ|π−1(w). On Tβ , let R be a 1-form which

is equal to:

(1 − g(s))ΘF + g(s)β∗ΘF

where g : [0, 1] → R and near 0, g = 0 and near 1, g = 1. Also, g has

non-negative derivative.

Lemma 7.3. There is a family of 1-forms Θt in E such that Θ0 = Θ,

θ1|Tβ
= R, and Θt induces a compact convex Lefschetz fibration structure on

(E, π).

Proof. Θ1 can be constructed as follows: We first extend Θ as in definition

4.6 so that it is defined on Ê. On Ŝ, we have a cylindrical end C correspond-

ing to W which is symplectomorphic to [1,∞)×W . Let B := π−1(C). Then,

Θ|W = q∗Θ|Tβ
where q : B → Tβ is the natural projection onto Tβ . Let

f : C → R be a function which is 0 on ∂S and equal to 1 just a bit further

out. Then we define Θ′ := (1−f)Θ+fR. Let S′ be a surface with boundary

in Ŝ such that ∂S′ is contained in f−1(1). We can choose S′ so that there

is a diffeomorphism e : S → S′ such that it lifts to a diffeomorphism h from

π−1(S) to π−1(S′). Define Θ1 := h∗Θ′.

To construct our deformation from Θ to Θ1 we first deform Θ to h∗Θ

(note, h∗Θ is well defined because Θ extends to Ê and hence to π−1(S′)).

This deformation comes from a smooth family of embeddings et : S → Ŝ,

where e1 = l ◦ e where l : S′ → Ŝ is the embedding of S′ into Ŝ and e0 is

the embedding of S into Ŝ.
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The deformation from h∗Θ to Θ1 is just Θt := (1− t)h∗Θ + tΘ1 t ∈ [0, 1].

This is sufficient because h∗Θ and Θ′ agree when restricted to each fibre of

π.

�

Definition 7.4. (E, π) is said to be in standard form when Θ is con-

structed in the same way as Θ1 as in Lemma 7.3 for all boundary components

of S.

From now on we assume that (E, π) is of standard form. The completion

Ê has Θ equal to some Θ1 for every level set of W × [1,∞).

Definition 7.5. Let M be a manifold with contact form α. Let

S : {Reeb orbits} → R, S(o) :=
∫
o α. Then the period spectrum S(M) is

the set im(S) ⊂ R. We say that the period spectrum is discrete and injective

if the map S is injective and the period spectrum is discrete in R.

Definition 7.6. Let H be a Hamiltonian on a symplectic manifold M . Then

the action spectrum S(H) of H is defined to be:

S(H) := {AH(o) : o is a 1-periodic orbit of XH} .

AH is the action defined in section 2.2.

We let F be a smooth fibre of (E, π) and ΘF := Θ|F . Also we let S be the

base of this fibration. Let rS and rF be the “cylindrical” coordinates on Ŝ

and F̂ respectively (i.e. ωS = d(rSθS) on the cylindrical end at infinity and

similarly with rF ). Let W be some connected component of the boundary

of S. Let C := π−1(W ) × [1,∞). Note: we will sometimes write rS instead

of π∗rS so that calculations are not so cluttered. We hope that this will

make things easier to understand for the reader.

Being in standard form means that Θ is of the form:

(1 − g(s))ΘF + g(s)β∗ΘF

in C. Let H be a Lefschetz admissible Hamiltonian of the form H =

π∗(HS)+π∗1(HF ) as in definition 4.10. Our symplectic form is ω := dΘ+π∗dq

for some sufficiently positive 2-form dq. On the cylindrical end C we assume

that:

π∗q = rSds.

Let v(s) := g′(s)(β∗ΘF − ΘF ) be a closed 1-form on π−1(s). In order

to prove theorem 4.11 we need to do some action calculations. Here is a
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Lemma containing some of these. The proof of this Lemma also sets up

some notation which will be used in the proof of 4.11.

Lemma 7.7. Let H be a Lefschetz admissible Hamiltonian of the form H =

π∗(HS) + π∗1(HF ) as in definition 4.10. Let π∗(HS) be equal to k(rS) on C.

The action of an orbit γ of H in C is given by:

AH(γ) =

∫

γ
{(−XHF

− k′(rS)Xv(s))Θ + rSk
′(rS)} − π∗1HF − k(rS).

XHF
and Xv(s) are vector fields in W which we will describe in the proof.

Proof. Recall W = ([0, 1]×F )/{∼} where ∼ identifies {0}×F and {1}×F

via β. Also, XHF
is the Hamiltonian vector field for HF in the fibre F .

Because HF is invariant under β we have that XHF
is invariant under β.

Hence this vector field lifts to the product ([0, 1] × F ) and then descends

to the quotient W . Remember that s is the coordinate for [0, 1]. We have

that Xv(a) is the Hamiltonian vector field of v(a) in the fibre s = a in W .

Hence the family of vector fields Xv(a) parametrized by a ∈ [0, 1] lifts to a

universal vector field Xv(s) in the product ([0, 1]×F ) and it descends to the

quotient W . On the cylindrical end C we have:

θ = π∗q + Θ,

ω = dΘ + π∗dq = dΘF + ds ∧ v + drS ∧ ds
because β∗dΘF = dΘF and

dH = d(π1 ◦HF ) + k′(rS)drS .

Hence, the Hamiltonian vector field of H is:

XH = XHF
− k′(rS)

∂

∂s
+ k′(rS)Xv(s) +XHF

(v)
∂

∂rS
.

Because u has support in F and HF = 0 in F , we have XHF
(v) = 0. Finally

the action of an orbit γ of H in C is given by:

AH(γ) =

∫

γ
{(−XHF

− k′(rS)Xv(s))Θ + rSk
′(rS)} − π∗1HF − k(rS).

�

Theorem 7.8. Let Hp : Ê → R be Lefschetz admissible for E with slope

p on the base and the fibre. We have that by Theorem 4.5 that (Ê, θ) is
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a convex symplectic manifold. Then there is a cofinal family of admissi-

ble Hamiltonians Kp : Ê → R with respect to the above convex symplectic

structure (not the Lefschetz fibration structure) such that:

(1) The periodic orbits of Kp of positive action are in 1-1 correspon-

dence with the periodic orbits of Hp. This correspondence preserves

index. Also the moduli spaces of Floer trajectories are canonically

isomorphic between respective orbits.

(2) Kp < 0 on E ⊂ Ê.

(3) Kp|E tends to 0 in the C2 norm on E as p tends to infinity.

This theorem means that:

(1) lim−→
p

SH
[0,∞)
∗ (Kp) = lim−→

p

SH∗(Hp)

SH
[0,∞)
∗ (Kp) := SH∗(Kp)/SH

(−∞,0)
∗ (Kp) where SH

(−∞,0)
∗ is the symplectic

homology group generated by orbits of negative action. We also have:

(2) lim−→
p

SH∗(Kp) = lim−→
p

SH
[0,∞)
∗ (Kp)

This is because there exists a cofinal family of Hamiltonians Gp such that:

(1) Gp < 0 on E ⊂ Ê.

(2) Gp|E tends to 0 in the C2 norm on E as p tends to infinity.

(3) All the periodic orbits of Gp have positive action.

Using the fact that both Kp and Gp are cofinal, tending to 0 in the C2 norm

on E and are non-positive on E, there exist sequences pi and qi such that:

Kpi
≤ Gqi

≤ Kpi+1

for all i. Hence:

lim−→
p

SH
[0,∞)
∗ (Gp) = lim−→

p

SH
[0,∞)
∗ (Kp).

Property (3) implies:

lim−→
p

SH
[0,∞)
∗ (Gp) = lim−→

p

SH∗(Gp).

This gives us equation 2. Combining this with equation 1 gives:

lim−→
p

SH∗(Kp) = lim−→
p

SH∗(Hp).

This proves Theorem 4.11. Note: the Lefschetz fibration in Theorem 4.11

may not be in standard form, but we can deform it using Lemma 7.3 to
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a Lefschetz fibration in standard form. This induces an isomorphism be-

tween respective symplectic homology groups associated to each Lefschetz

fibration.

Proof. of Theorem 7.8. We will slightly modify the proof of a related result in

[26]. Also, we will use the notation set up already in 7.7. We assume that the

period spectra of ∂F and ∂S are discrete and injective. The Hamiltonians

HF and HS have slope λ /∈ S(S)∪S(F ). We assume HF = 0 (resp. HS = 0)

in F (resp. S) and HF = hF (rF ) (resp. HS = hS(rS)) for rF ≥ 1 (resp.

rS ≥ 1). For rF ≥ 1 + δ
λ , h′F = λ and for rS ≥ 1 + δ

λ h′S = λ. We choose

δ > 0 to be a small constant. We can deform Hp into H := π∗HS + π∗1HF .

Let NE be a neighbourhood of E which contains all orbits of H. What we

want to do is to is choose a Hamiltonian H3 : Ê → R so that there exist

constants c, ǫ such that:

(1) H3 = H on NE.

(2) Any curve in Ê with each end converging to an orbit inNE satisfying

a Floer type equation (e.g Floer trajectory or pair of pants) is entirely

contained in NE.

(3) Outside some large compact set we have that H3 is linear of slope λ
1

4

with respect to the cylindrical end of the convex symplectic structure

associated to Ê.

(4) Any additional orbits of H3 (i.e. orbits outside NE) have negative

action.

We will achieve this in 4 sections (a)− (d). The function H3 will be con-

structed in 3 stages in sections (a),(b),(c) respectively (i.e. we first construct

H1 from H in (a) and then H2 from H1 in (b) and then H3 from H2 in (c)).

In section (a) we will construct a Hamiltonian HF,1 : F̂ → R so that:

(1) on NF , HF,1 is equal to HF where NF is a small neighbourhood of

F which contains all the orbits of HF .

(2) on rF ≥ A, HF,1 is constant for some A to be defined later.

(3) HF,1 is a function of rF on the cylindrical end of F .

We also construct a similar Hamiltonian HS,1 which is associated with HS.

Finally in this section, we show that the orbits of

H1 := π∗(HS,1) + π∗1(HF,1)
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outside NE have negative action. We already know that the orbits inside

NE are the same as the orbits of H because H = H1 inside NE.

In section (b) we will construct a Hamiltonian H2 such that:

(1) H2 = H1 on rS ≤ A, rF ≤ A.

(2) H2 is constant outside rS ≤ B, rF ≤ B for some constant B > A.

(3) Any orbit of H2 outside rS ≤ A, rF ≤ A has negative action. This

ensures that all the orbits of H2 of positive action are the same as

the orbits of H.

In section (c) we will finally construct H3. We choose some admissible

Hamiltonian K with respect to the convex symplectic structure (E, θ) which

is equal to 0 on rS ≤ C, rF ≤ C for some chosen C > B. Then we let

H3 := H2 +K. We also ensure that K has slope proportional to
√
λ which

ensures that the additional orbits created on top of the orbits of H2 have

negative action.

In section (d) we will show that no Floer trajectory of H3 connecting

orbits inside E can intersect rF = C or rS = C. If we combine this fact

with the maximum principle in Lemma 7.2 and also a maximum principle

from [25, Lemma 1.5] we find that any Floer trajectory connecting orbits

inside E must be contained in E. This ensures that the Floer trajectories

connecting orbits inside E are identical to the Floer trajectories of H and

hence we get that:

SH
[0,∞)
∗ (H3) = SH∗(H).

And this gives us our result if we set H3 = Kp where we view λ as a function

of p which tends to infinity as p tends to infinity.

Define:

µλ := dist(λ,S(S) ∪ S(F )).

(a) We first modify a construction due to Herman in [20] which takes some

normal admissible Hamiltonian on a finite type convex symplectic manifold

and makes it constant near infinity so that the only additional periodic

orbits have negative action. We need to modify this argument because we

need greater control over the Hamiltonian flow Xπ∗HS
. From now on we will

assume that HS = 0 on S and is equal to k(rS) for rS ≥ 1. Similarly we

assume that HF = 0 on F and is a function of rF on rF ≥ 1. The first thing

we need to do is to modify HS and HF to HS,1 : S → R and HF,1 : F → R so

that they are constant at infinity and such that the additional orbits added
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to H1 := HF,1 + π∗HS,1 have negative action. We will use all the notation

as in the proof of 7.7. Define:

Rs := sup|Xv(s)(ΘF )|,

R := sup{Rs : s ∈ [0, 1]}.
Define:

A = A(λ) := (6 +R)λ/µλ > 1.

We can assume that A > 1 because we can choose µλ to be arbitrarily small.

We define HF,1 to be equal to HF on rF < A− ǫ
λ . Hence on the interior of F ,

HF,1 is 0. Set HF,1 = hF,1(rF ) for rF ≥ 1 with non negative derivative. We

define hF,1 as follows: h′F,1(rF ) is equal to λ on [1 + ǫ
λ , A− ǫ

λ ] For rF,1 ≥ A

set hF (rF ) to be constant and equal to C where C is arbitrarily close to

λ(A − 1). The Hamiltonian HF,1 takes values in [−ǫ, ǫ] for rF ∈ [1, 1 + ǫ
λ ]

and in [λ(A− 1) − 2ǫ, λ(A − 1)] for rF ≥ A− ǫ
λ . Here is a picture:

Figure 7.9.

��������������

C

A− ǫ
λ A1 1+ ǫ

λ

HF,1

λ

For notational convenience we will write HF,1 instead of π∗1HF,1. Assume

that HS,1 is a Hamiltonian such that on the cylindrical end C we have

that HS,1 is equal to k(rS). We define HS,1 so that it behaves in a similar

way to HF,1. (i.e. we have that the graph of k(rS) is the same as the

graph in figure 7.9). We want to show that the additional orbits of H1 :=

HF,1 + π∗HS,1 only have negative action. These additional orbits lie in the

region rS ∈ (A− ǫ
λ , A) and rF ∈ (A− ǫ

λ , A). We will first consider the orbits

in rS ∈ (A− ǫ
λ , A). The orbits of HF,1 have action at most λ because h′F ≤ λ,

i.e.
∫
orbit−XHF,1

ΘF ≤ λ. Let p be a point on some orbit o. Remember

that the smallest distance between λ and the period spectrum of ∂F is ≥ µλ.

Hence near p we have |k′(rS)| < λ− µλ. Hence |k′(rS)Xv(s)Θ| ≤ R(λ− µλ)

and rSk
′(rS) ≤ A(λ − µλ). Also, because HF,1(v) = 0, we have that the
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orbit stays in rS ∈ (A − δ
λ , A). Hence the action of an orbit of H1 near

rS = A in the region rF ≤ 1 is less than or equal to:

λ+ (R +A)(λ− µλ) − C,

≤ (R+ 1 + 1 +A−A− (6 +R))λ ≤ −3λ→ −∞.

Now the case for orbits near rF = A is exactly the same as in Oancea’s

paper [26]. Near rF = A we have that v = 0, hence the action is at most:

λ+A(λ− µλ) −C

≤ (1 +A−A+ 1 − (6 +R))λ ≤ −3λ→ −∞.

Hence all the additional orbits of H1 have actions tending to −∞.

(b) Now we modify H1 so that it is constant and equal to 2C outside

the compact set {rS ≤ B, rF ≤ B} with B = A
√
λ. This is true already on

{rS ≥ A}∩{rF ≥ A}, so we only need to consider the case {rS ≥ A}∩{rF ≤
A} and {rF ≥ A} ∩ {rS ≤ A} . Now the case {rF ≥ A} ∩ {rS ≤ A} is

exactly the same as the case Oancea dealt with in [26, section (c)]. (Note:

in Oancea’s paper, A = 5λ/µλ instead of (6 + R)λ/µλ but this makes no

difference.) In Oancea’s paper he deals with this case by modifying π∗1HF,1

to some new Hamiltonian HF,2. We will mimic Oancea’s paper for the case

{rS ≥ A, rF ≤ A}. This will involve modifying the Hamiltonian π∗HS to

some new Hamiltonian HS,2. Let:

HS,2 : W × [A,∞) −→ R,

HS,2 = (1 − ρ(rS))HF,1 + ρ(rS)C

where x is a point in F and s parameterises [0, 1]. Also, ρ : [A,∞) → [0, 1]

with ρ = 0 on [A, 2A], ρ = 1 for rS ≥ B − ǫ, ρ strictly increasing on

[2A,B − ǫ], and ρ′ = const ∈
[

1
B−2A−ǫ ,

1
B−2A−3ǫ

]
on [2A + ǫ,B − 2ǫ]. The

graph of ρ is:
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ρ(rS)

We also have:

dHS,2 = (1 − ρ(rS))dHF,1 + (C −HF,1)ρ
′(rS)drS ,

XHS,2
= (1− ρ(rS))(XHF,1

+XHF,1
(v)

∂

∂rS
) + (C −HF,1)ρ

′(rS)(Xv(s) −
∂

∂s
).

Let H2 := HS,2 + HF,2. We have assumed earlier that XHF
(v) = 0, and

hence XHF,1
(v) = 0. This means that projecting orbits down to the base S

produces orbits of the Hamiltonian HS . In particular we can assume that

the orbits of H2 on rS ≥ 1 stay in each level set rS = const. For some orbit

o of H2, let:

A1 := −
∫

o

[
(1 − ρ(rS))(XHF,1

) + (C −HF,1)ρ
′(rS)(Xv(s))

]
(Θ),

A2 :=

∫

o

[
(C −HF,1)ρ

′(rS)rS
]
.

The action of this orbit o is equal to:

A1 +A2 − (C −HF,1)ρ(rS) − C

(Remember HF,2 = C on {rS ≥ A, rF ≤ A}). We first consider orbits

where v 6= 0 on some part of the orbit. Now these orbits are located in the

interior of each fibre F . Hence, we can assume that HF is 0. Also we may

assume that XHF,1
(Θ) is bounded above by ǫ. Because XHF,1

(v) = 0, the rS

coordinate of the orbit is constant, hence we only need to consider 3 cases

(i,ii,iii) for these orbits:

(i) rS ∈ [A, 2A] ∪ [B − ǫ
λ ,∞) Now, ρ′ = 0 and XHF,1

Θ is 0. Hence the

action is bounded above by −C.

(ii) rS ∈ [2A, A+B
2 ] ρ′ ≤ 1

B−2A−3ǫ . S is bounded above by A+B
2 +1. Also,

|Xv(s)(Θ)| is bounded above by the constant R. For large enough λ we also
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have that A+B
2

1
B−2A−3ǫ is bounded above by 3

4 because this expression tends

to 1
2 as λ → ∞. Also, we can ensure that ǫ+ C. 1

B−2A−3ǫ .R ≤ 1
8C for large

enough λ. Hence our action is bounded above by:

ǫ+ C.
1

B − 2A− 3ǫ
.R+ C.

A+B

2

1

B − 2A− 3ǫ
− C

≤ −1

8
C

for large enough λ.

(iii) rS ∈ [A+B
2 , B − ǫ

λ ] In this case we have ρ ∈ [12 , 1]. Hence for λ big

enough we have that the action is bounded above by:

C.
1

B − 2A− 3ǫ
.R+ C.

1

B − 2A− 3ǫ
.B −C.

1

2
− C

≤ −1

8
C.

Hence all orbits which pass through v 6= 0 have negative action in W ×
[A,∞). Now, when v = 0 the action of the orbits are the same as in Oancea’s

paper [26] (although A = 5λ/µλ instead of (6 + R)λ/µλ, but this doesn’t

matter). Hence, these orbits also have action tending to −∞ as well. Hence

we have a Hamiltonian which is equal to H on E and is constant and equal

to 2C further out, and such that the only additional orbits have negative

action.

(c)Finally we need to make this Hamiltonian cofinal by choosing some

contact boundary and forcing H to be linear at this contact boundary, and

such that the only additional orbits have negative action as well.

Let Z be the Liouville vector field which is ω-dual to θ := Θ +π∗q. Then

this vector field is expressed as:

Z := Z ′ + (rS − Z ′(v))(
∂

∂rS
)

where Z ′ is the Liouville vector field in F associated to Θ|π−1(y). We assume

that λ is big so that A
√
λ = B > |Z ′(v)|. Consider the sets:

I = ∂S × [1,∞) × ∂F × [1,∞),

II = S × ∂F × [1,∞),

III = W × [1,∞).

We define a hypersurface Σ ⊂ Ê such that:

rS|Σ∪III = α > 1,
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rS|Σ∪I ∈ [1, α],

rF |Σ∪II = β > 1,

rF |Σ∪I ∈ [1, β].

We can ensure that Z is transverse to this hypersurface, and hence the flow

of Z gives us a map:

Ψ : Σ × [1,∞) → Ê

which gives us a cylindrical end for Ê. Let r be the radial coordinate for

this cylindrical end. Here is a diagram illustrating these regions:

III

I

II

Σ = {r = 1}

rF = B

rF = 1

rS = 1 α rS = B r = B

β

(see Oancea’s paper: [26, figure 3]).

Then Ψ−1({rS ≥ B} ∪ {rF ≥ B}) ⊃ {r ≥ B}. H2 is constant and equal

to 2C on {rS ≥ B} ∪ {rF ≥ B}. Let K be a Hamiltonian which is equal to

0 on the region {r < B} and is equal to l(r) in {r ≥ B} where l′(r) ≥ 0 and

for r ≥ B + ǫ we have l′(r) = µ /∈ S(Σ), where µ will be arbitrarily close to

λ
1

4 . The point is that K = 0 on the region

{rS ≤ B} ∩ {rF ≤ B}.

This means that the orbits lie in the region where H2 is constant and equal

to 2C. Define:

H3 := H2 +K.
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Now the actions of the orbits of K are bounded above by BV λ
1

4 for some

constant V . Hence the orbits of H3 inside {r ≥ B+ ǫ} have action bounded

above by:

(B + ǫ)V λ
1

4 − 2C = V λ
3

4A+ V ǫλ
1

4 − λ(A− 1).

For large enough λ we have that this quantity is negative. Hence the actions

of the additional orbits are negative.

(d) Finally using [26, Lemma 1], we have that any curve u passing through

{rS ∈ [A, 2A]} must have area greater than cA for some constant c (i.e. π◦u
has area less than the area of u, so we can use [26, Lemma 1]). The actions

of orbits inside E are bounded above by Pλ where P is some constant. This

means that for small enough µλ (i.e. so that Pλ < cA) we have ensured

that no Floer trajectory between orbits of positive action can pass through

{rS ∈ [A, 2A]}. We have a similar statement for rF .

Hence by the maximum principle (cf. Lemma 7.2 and [25, Lemma 1.5])

we have that any Floer trajectory connecting orbits of positive action stays

within {rS ≤ 1, rF ≤ 1} (this uses the fact that on {rF ≤ 2A} ∩ {rS ≤ 2A}
we have that our Hamiltonian H3 is equal to H1 = π∗HS,1 +π∗1HF,1). Note:

Lemma 1 requires that the Hamiltonian be equal to 0 on {rS ∈ [A, 2A]}
which means that it cannot have non-degenerate orbits. This problem can be

solved as follows: Let Hk be a sequence of Hamiltonians with non-degenerate

orbits and let Jk be a sequence of almost complex structures such that

SH∗(E,Hk, Jk) is well defined and (Hk, Jk) C2 converges to (H,J) as k →
∞. If there is a Floer trajectory passing through {rS ∈ [A, 2A]} for some

sequence of (Hk, Jk)’s converging to (H,J) then by Gromov compactness

(see [4]) we have that there is a holomorphic curve passing through {rS ∈
[A, 2A]} as H = 0 in this region (it can’t be a Morse flow line because we can

ensure that the Morse flow lines of Hk travel in the wrong direction). But

this is impossible, hence for some large enough k we have no Floer trajectory

passing through {rS ∈ [A, 2A]}. We can use an identical argument with the

pair of pants surface satisfying Floer type equations. �

7.1. A better cofinal family for the Lefschetz fibration. In this sec-

tion we will prove Theorem 4.13. We consider a compact convex Lefschetz

fibration (E, π) fibred over the disc D. Basically the cofinal family is such

that HF = 0. This means that the boundary of F does not contribute to

symplectic homology of the Lefschetz fibration. The key idea is that near
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the boundary of F the Lefschetz fibration looks like a product D×nhd(∂F )

and because symplectic homology of the disc is 0 we should get that the

boundary contributes nothing. Statement of Theorem 4.13:

SH∗(E) ∼= SHlef
∗ (E).

From now on we will use the same notation as established in the proof of

lemma 7.7. Before we prove Theorem 4.13, we will write a short lemma on

the Z grading of SH∗(E).

Lemma 7.10. Let F̂ := π−1(a) ⊂ Ê (a ∈ D). Suppose we have triv-

ialisations of K bE
and KbS

(these are the canonical bundles for Ê and Ŝ

respectively); these naturally induce a trivialisation of K bF
away from F . If

we smoothly move a, then this smoothly changes the trivialisation.

Proof. of Lemma 7.10.

We choose a J ∈ Jh(E). The bundle E away from Ecrit has a connection

induced by the symplectic structure. Let A ⊂ Ê be defined as in 4.10. Let

U be a subset of A where

(1) π is J holomorphic.

(2) U is of the form r ≥ K where r is the coordinate for [1,∞) in A (see

definition 4.10).

This means that in U , we have that the horizontal plane bundle H is J

holomorphic. Choose a global holomorphic section of KbS and lift this to a

section s of H. Choose a global holomorphic section t of K bE. The tangent

bundle of F̂ is isomorphic to the ω-orthogonal bundle T of H. This is also

a holomorphic bundle. There exists a unique holomorphic section w of T

such that s ∧ w = t. Hence, w is our nontrivial holomorphic section of T in

U ∪ F̂ . This can be extended to A ∪ F̂ by property (2). �

In the following proof, whenever we talk about indices of orbits of F̂

outside F , we do this with respect to the trivialisation of Lemma 7.10 above.

We do not deal with orbits inside F so this trivialisation is sufficient.

Proof. of Theorem 4.13. We start with a Lefschetz admissible Hamiltonian

H = π∗HS + π∗1HF . The idea is to consider the actions of the respective

orbits. We assume that the period spectrum of ∂F is discrete and injective.

We assume that HF = 0 on F and is equal to hF (rF ) outside F with h′F > 0.

The orbits of HF consist of constant orbits in F and S
1 families of orbits

corresponding to periodic Reeb orbits outside F . We can perturb HF by a

very small amount outside F so that each S
1 family of Reeb orbits becomes
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a pair of non-degenerate orbits (see [25, Section 3.3]). Hence, we have a

Hamiltonian HF which is equal to 0 inside F and all its orbits outside F

are non-degenerate. These perturbations can be made so that the action

spectrum of HF | bF\F is discrete and injective. We set the slope of HF at

infinity to be equal to λ /∈ S(∂F ). Also we assume HS = 0 on D and is equal

to hS(rS) on the cylindrical end C \D with h′S > 0. We perturb HS slightly

so that all its orbits are non-degenerate and such that the action spectrum

of HS is discrete and injective. This perturbation is done explicitly in [25,

Section 3.3]. The outcome is that we have a periodic orbit corresponding to

a fixed point of HS at the origin of index 1; then we have pairs of orbits of

index 2l, 2l + 1 (l ≥ 1) which came from perturbing the S
1 families of Reeb

orbits of ∂D.

Let m be an integer greater than the maximal modulus of the Robbin-

Salamon index of orbits of HF . We think of m as an integer which depends

on λ. We also assume that m tends to infinity as λ tends to ∞. Note that

all the orbits of HS are exact (i.e. of the form δ(x) where x is an SH∗-chain

for D) except possibly the orbit o of highest index. We can assume that the

slope of HS is steep enough so o has index > 2m. This means that all the

orbits in HS of index ≤ 2m are exact. The periodic orbits of H are:

(1) fixed points from the interior E.

(2) fixed points of τn for each n where τ : F → F is the monodromy

symplectomorphism of the loop ∂S. (This isn’t quite true, they are

actually fixed points in τn counted twice modulo a Z/nZ action. See

lemma 7.7 to see the flow.)

(3) periodic orbits on A.

What we want to do, roughly, is to show that all the orbits in A are exact

in the chain complex and hence they do not contribute to SH∗(E). In fact

what we do is construct a long exact sequence where one of the terms is

chain isomorphic to the Floer chain complex of H, another term is chain

isomorphic to the Floer chain complex of π∗HS + π∗1KF where KF is some

admissible Hamiltonian on F̂ which is equal to 0 on F and has a very small

slope at infinity. In fact the slope is smaller than the smallest action value of

S(∂F ) which means there are no periodic orbits of K outside F . This chain

complex is used in the definition of Lefschetz symplectic homology. The third

term in this long exact sequence is shown to be equal to 0. Hence, taking

direct limits (and showing the direct limit structures are compatible) gives

us our isomorphism between Lefschetz symplectic homology and normal
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symplectic homology. Let CF be the closure of F̂ \ F in F̂ . Then CF =

∂F × [1,∞). By abuse of notation we assume that rF is the coordinate

for the [1,∞) part of CF . Now, A = CF × Ŝ and H|A = π∗HS + π∗1HF .

Hence, orbits of H|A come in pairs (γ,Γ) where γ is an orbit of HS and

Γ is an orbit of HF . These orbits are non-degenerate as both γ and Γ

are non-degenerate. Let Q be the highest value in the action spectrum of

HS. Also, let L be the highest value in the action spectrum of H. Choose

an almost complex structure J ∈ Jh(E) such that J |CF is invariant under

translations rF → rF + const. Then by [26, Lemma 1] there exists a K > 0

such that any J holomorphic curve which intersects rF = 1 and rF = K

has volume ≥ max(2Q,L + 1). Let ǫ be the smallest positive difference in

action between two orbits of HF . Let Fb ⊂ F̂ be equal to {rF ≤ b}. The

function HF is a function of (rF , a) where a is a point in ∂F . Let Hb
F be

a Hamiltonian on F̂ which is equal to zero on Fb and which is equal to

HF (rF /b, a) outside Fb. The Hamiltonian Hb
F has the same orbits as HF

except that the smallest difference in action between two orbits is equal to

ǫb. Choose b such that ǫb ≥ max(2Q,L + 1) and such that b ≥ K. Define a

new Hamiltonian Hb to be the same as H except that we replace HF with

Hb
F (i.e. Hb = π∗HS + π∗1H

b
F ). This Hamiltonian has the same orbits as H

except that the actions of the orbits near ∂hE have changed. Let

B := {rF ≥ b} ⊂ Ê, B′ := Ê \B.

The Hamiltonian Hb has degenerate periodic orbits. We wish to construct

a Hamiltonian Hb
k with some Jk ∈ Jh(Ê,Hb

k) with the following properties:

(1) Hb
k has non-degenerate periodic orbits

(2) all the orbits have positive action.

(3) Hb
k|B = Hb|B

(4) The (Hb
k, Jk) Floer trajectories starting at orbits inside B′ cannot

intersect rF = K.

This is done as follows: Let Hb
k be a sequence of Lefschetz admissible Hamil-

tonians which C2 converge to Hb as k → ∞ and such that they have non-

degenerate periodic orbits. We can assume that

Hb
k|B = Hb|B

because Hb already has non-degenerate periodic orbits in this region. We

can assume that on the region {rF ∈ [1, b]}, Hb
k has no periodic orbits

(e.g it could be equal to δ
k (rF − 1) for some very small δ; the Hb

k still C2
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converge to Hb as Hb = 0 on this region). As a result we can assume

that the actions of the orbits of Hb
k in the region B′ have action ≤ L. Let

Jk ∈ Jh(Ê,Hb
k) be such that Jk C

∞ converges to J as k → ∞. Hence all we

need to show is that for large enough k, condition (4) is satisfied. Suppose

for a contradiction, that there is a sequence ki → ∞ such that we have

a sequence of Floer trajectories ui in the region B′ and passing through

rF = K. Then because Hb
ki

already satisfies condition (2) and all the orbits

inside B′ have action ≤ L we have that the areas of the ui are bounded.

Then, by Gromov compactness (see [4]) we have that there is a (Hb, J) Floer

trajectory u starting inside B′ and passing through rF = K. All the orbits

of Hb in B′ are actually outside {rF ≥ 1}, hence u intersects {rF = 1} and

{rF = K}. Also π1 ◦u is holomorphic in rF ∈ [1,K] and hence u has volume

≥ max(2Q,L+1). But this is impossible as the maximum action of an orbit

in B′ must be L as Hb = H in B′. Hence there exists a k ≥ 0 such that

(Hb
k, Jk) satisfies conditions (1) to (4).

Let O1 be the set of periodic orbits of Hb
k inside B′ and O2 the set of peri-

odic orbits inside B. Linear combinations of orbits in O1 form a subcomplex

C1∗ of the Floer complex CFl := CF∗(H
b
k, Jk) by property (4) mentioned

earlier. Also, we have a quotient complex C2∗ := CFl/C1∗. This gives us a

short exact sequence of complexes:

0 → C1∗ → CFl∗ → C2∗ → 0.

We wish to show that all the homology groups of C2∗ of index ≤ m are 0.

This will give us our isomorphism between Lefschetz symplectic homology

and ordinary symplectic homology as C1∗ contributes to the chain complex

for Lefschetz symplectic homology and CFl∗ is the chain complex associated

to a Lefschetz admissible Hamiltonian. This is done as follows: Let CFla∗
be the subcomplex of CFl∗ generated by orbits of action ≤ a. For a ≥ L we

have that C2
a
∗ is the subcomplex of C2∗ equal to CFla∗/C1∗. The Hamiltonian

Hb
k looks like a product Hamiltonian in the region A. This means that

periodic orbits come in pairs (γ,Γ) where γ is a periodic orbit of HS and

Γ is a periodic orbit of Hb
F in the region {rF ≥ b} ⊂ F̂ . Suppose that

the action difference between two orbits (γ,Γ) and (γ′,Γ′) of Hb
k in B is

≤ Q. Then, Γ = Γ′. This is because the minimum action difference between

any two orbits of Hb
F outside F b is 2Q and the maximum action difference
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between two orbits of HS is Q. Choose constants a0 < a1 < · · · < ap such

that:

(1) a0 = L

(2) Any orbit in B has action ≤ ap.

(3) For any 0 < i ≤ p, there exists a Γi such that the only orbits of

action in the region (ai−1, ai) are of the form (γ,Γi) for some γ.

Here is a picture illustrating the situation:

0

Orbits forming the entire complex CFl∗.

Orbits of the form (γ, Γ2).

Orbits of the form (γ, Γ1).

Orbits of the form (γ, Γ3).

a1 a2
Action

a0 = L

a3

Orbits in B′ forming the complex C1∗.

Orbits in B.

This means we have a filtration of CFl∗ as follows:

C1∗ = CFla0

∗ ⊂ CFla1

∗ ⊂ CFla2

∗ ⊂ · · · ⊂ CFl
ap
∗ = CFl∗.

Hence we get a filtration of C2∗:

0 = C2
a0

∗ ⊂ C2
a1

∗ ⊂ C2
a2

∗ ⊂ · · · ⊂ C2
ap
∗ = C2∗.

Let

CGi
∗ := C2

ai+1

∗ /C2
ai
∗

∼= CFl
ai+1

∗ /CFlai
∗ .

Let Gi
∗ := H∗(CG

i). We have a spectral sequence converging to H∗(C2)

with E1 term equal to E1
i+1,j = Gi

i+j . In order to show that Hj(C2) = 0

for all j ≤ m it is sufficient to show that Gi
j = 0. Let Qi

∗ be the vector

subspace of CFl
ai+1

∗ generated by orbits of the form (γ,Γi+1). As a vector

space, CFl
ai+1

∗ splits as a direct sum Qi
∗

⊕
CFlai

∗ . Because the orbits in Qi
∗

have higher action, our differential ∂ is of the form:

(
∂1 ∂2

0 ∂3

)

where ∂1 : Qi
∗ → Qi

∗, ∂2 : Qi
∗ → CFlai

∗ and ∂3 : CFlai
∗ → CFlai

∗ . Hence

the quotient chain complex CGi
∗ is isomorphic to the chain complex Qi with
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differential ∂1. In order to prove our theorem, all we need to show now is

that the chain complex Qi is isomorphic to CS∗+f where CS∗ is the Floer

chain complex of HS and f is some integer of modulus ≤ m. This is because

Hj+f(CS∗) = 0 for |j| ≤ m because |j + f | ≤ 2m.

The differential ∂1 is described by counting Floer trajectories connect-

ing two orbits of Qi
∗. Any Floer trajectory connecting some (γ,Γi) with

(γ′,Γi) must have volume ≤ Q. This means that any Floer trajectory of

Hb
k connecting these orbits must be contained in A by using [26, Lemma 1]

and Gromov compactness as before (i.e. by considering a sequence of Hb
k’s

tending to ∞). Now our Hamiltonian is equal to π∗HS + π∗1HF in A and

we also have a product almost complex structure on A. This means that

a Floer trajectory connecting (γ,Γi) and (γ′,Γi) must be of the form (u, v)

where u is a Floer trajectory of HS and v is a trivial Floer trajectory of HF

connecting Γi with itself. In particular this gives us our chain isomorphism

between CS∗+f and Qi.

Hence we have shown that

(3) SHj(Ê, L) ∼= SHj(Ê,H
b
k, Jk) ∼= SHj(Ê,H)

for j ≤ m and where L is equal to H on B′ and L = π∗HS + K where

K has slope δ
k . This means that L is Lefschetz admissible. Also H and L

have slopes which are functions of λ which tend to infinity as λ tends to ∞
(Remember that m tends to ∞ as λ tends to ∞.). We can also describe the

above isomorphism in the following way: There is a monotone increasing

family of Lefschetz admissible Hamiltonians joining L to Hb
k by increasing

the slope of L near the horizontal boundary. There is also a monotone in-

creasing family of Lefschetz admissible Hamiltonians joining Hb
k to H by

letting b tend to 1. These two families can be joined together to create a

monotone increasing family of Hamiltonians joining L to H. Using continu-

ation maps, this gives us a natural map SH∗(L) → SH∗(H). Using energy

arguments from [26, Lemma 1] we can show that these continuation maps

induce the same isomorphism 3. This means that the above isomorphism

is compatible with the pair of pants product. Hence when we take direct

limits, we get a ring isomorphism:

SH∗(E) ∼= SHlef
∗ (E).

�
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8. SHlef
∗ (Ê) and the Kaliman modification

In this section we prove theorem 4.14. Throughout this section we assume

that E′ and E′′ are Lefschetz fibrations as described in section 4.2. We recall

the situation:

(1) E′′ is a subfibration of E′ over the same base.

(2) The support of the parallel transport maps of E′ are contained in

the interior of E′′.

(3) There exists a complex structure JF ′ (coming from a Stein domain)

on F ′ such that any JF ′-holomorphic curve in F ′ with boundary in

F ′′ must be contained in F ′′.

We wish to prove that SHlef
∗ (E′) ∼= SHlef

∗ (E′′) as rings.

Proof. of Theorem 4.14. Fix λ > 0. The value λ is going to be the slope

of some Hamiltonian, we can always perturb λ slightly so that it isn’t in

the action spectrum of the boundary. By Theorem 11.1 we can choose an

almost complex structure JF ′,1 on F̂ ′ after a convex deformation away from

F ′ such that it is convex with respect to some cylindrical end at infinity and

such that any JF ′,1-holomorphic curve in F ′ with boundary in F ′′ must be

contained in F ′′. The reason is because we can ensure that JF ′,1 = JF ′ in

F ′ ⊂ F̂ ′ and that any JF ′,1-holomorphic curve with boundary in F ′′ ⊂ F ′ is

contained in F ′ by Theorem 11.1 hence is contained in F ′′ by property (3)

above. Supposing we have a Hamiltonian HF ′ which is of the form hF ′(rF ′)

on the cylindrical end where rF ′ is the radial coordinate and h′ ≥ 0 and

HF ′ = 0 elsewhere. Then, any curve (Floer cylinder or pair of pants) with

boundary in F ′′ satisfying Floer’s equations with respect to HF ′ and JF ′,1

must be contained in F ′′. We choose h′ small enough so that HF ′ has no

periodic orbits in the region rF ′ > 1. The convex deformation mentioned

in Theorem 11.1 fixes F ′ ⊂ F̂ ′ hence it induces a convex deformation on

Ê. This is because the region where we deform Ê looks like a product

C× (F̂ ′ \F ′). From now on we assume that the fibres of Ê have this almost

complex structure JF ′,1 with this cylindrical end.

A neighbourhood of ∂F ′′ in F ′ is symplectomorphic to L := (−ǫ, ǫ)×∂F ′′

with the symplectic form d(rα′′). Here, r is a coordinate in (−ǫ, ǫ) and

α′′ is the contact form for ∂F ′′. We also choose ǫ small enough so that

L is disjoint from the support of the parallel transport maps in F ′. Let

F̄ ′′ := F ′′ \ ((−ǫ/3, 0] × ∂F ′′). We can choose an almost complex structure

J ′ ∈ J(F̂ ′) with the following properties:
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(1) There exists a δ > 0 such that any holomorphic curve meeting both

boundaries of [−ǫ,−ǫ/2] × ∂F ′ has area greater than δ.

(2) J ′ = JF ′,1 on F̂ ′ \ F̄ ′′. This means that any curve (cylinder or pair of

pants) satisfying Floer’s equations with respect to HF ′ and J ′ with

boundary in F ′′ is contained entirely in F ′′.

Construct an almost complex structure J on Ê′ as follows: The parallel

transport maps on F̂ ′ \ F̄ ′′ are trivial, hence there is a region W of Ê′

symplectomorphic to C × (F̂ ′ \ F̄ ′′). We set J |W to be the product almost

complex structure JC × J ′ where JC is the standard complex structure on

C. We then extend J |W to some J compatible with the symplectic form ω′

such that π′ is J-holomorphic outside some large compact set. Let H be a

Hamiltonian of the form π∗K + π∗1HF ′ where K is admissible of slope λ on

the base C and π1 : W ։ F̂ ′ \ F̄ ′′ is the natural projection map. J has the

following properties:

(1) Any curve u satisfying Floer’s equations with respect to H passing

through ∂E′′ must have energy ≥ δ. (u can be a cylinder or a pair

of pants).

(2) Any such u connecting orbits inside E′′ must be entirely contained

in E′′.

Property (2) is true because: Let u be a curve satisfying Floer’s equations

connecting orbits in E′′, then composing u|u−1(W ) with the natural projec-

tion W ։ F̂ ′ \ F̄ ′′ gives us a curve w with boundary in F ′′. This means

that w is contained in F ′′, and hence u is contained in E′′. Also if u passes

through ∂E′′, then the projected curve w has energy ≥ δ which means that

u has energy ≥ δ. Hence Property (1) is true.

We perturb HF ′ : F̂ ′ → R slightly so that:

(1) It is equal to 0 in F ′′.

(2) The only periodic orbits of HF ′ are constant orbits.

(3) The action spectrum of H|cF ′\F ′′
is discrete and injective.

(4) We leave HF ′ alone on the cylindrical end.

(5) All the orbits in F̂ ′ \ F ′′ are of negative action and non-degenerate.

Let δ1 be the smallest positive difference in action between two orbits of

HF ′. Here we fix some integer m > 0. We can assume that the critical

points of our Lefschetz fibration in C form a regular polygon with centre

the origin. Draw a straight line from the origin to each critical point and

let G be the union of these lines. Let X := r
2

∂
∂r be an outward pointing
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Liouville flow. We choose a loop l around G so that the disc V with ∂V = l

has volume v where v can be chosen arbitrarily small, and such that X is

transverse to this loop. This forms a new cylindrical end for C. Now let HV
λ

be a Hamiltonian on V with slope λ. We assume that HV
λ has the following

properties:

(1) All the orbits are non-degenerate.

(2) The action of any orbit is less than 2vλ.

(3) All orbits of index ≤ m + n are exact. (2n is the dimension of our

symplectic manifold)

(4) 2vλ < min(δ, δ1).

We letKλ = π∗(HV
λ )+π∗1HF ′ . LetB := C×(F̂ ′\F ′′) ⊂ Ê′. The Hamiltonian

Kλ is of the form π∗(HV
λ )+π∗1HF ′′ on B. Hence the orbits on B come in pairs

(γ,Γ), where γ corresponds to a periodic orbit of HV
λ and Γ is a constant

periodic orbit of HF ′′ . The action of the orbit is ≤ 2vλ ≤ δ due to property

(5) for HF ′ and properties (2) and (4) for HV
λ . This implies that any Floer

trajectory connecting orbits (γ1,Γ1) and (γ2,Γ2) inside B must stay inside

B, due to property (1) from the properties of J .

Hence we have a subcomplex Cλ
B generated by orbits in B. We also have

a quotient complex Cλ
E′′ := Cλ

E′/Cλ
B where Cλ

E′ is the the complex generated

by all orbits. Let Cλ,a
B be the subcomplex of Cλ

B generated by orbits of

action ≤ a. There exist constants a0 < a1 < · · · < ak such that:

(1) a0 is smaller than the smallest action of an orbit in B.

(2) Any orbit in B has action ≤ ak.

(3) For any 0 ≤ i < p, there exists a Γi such that the only orbits of

action in the region (ai, ai+1) are of the form (γ,Γi) for some γ.

Here is a picture illustrating the situation:

0

Orbits in B forming the complex Cλ
B.

Orbits forming the entire complex Cλ
E

Orbits of the form (γ, Γ1).
Orbits of the form (γ, Γ2).

a0 a1 a2 a3

Orbits of the form (γ, Γ3).

Orbits outside B.

Action
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Hence we get a filtration:

0 = Cλ,a0

B ⊂ Cλ,a1

B ⊂ · · · ⊂ Cλ,ak

B = Cλ
B

of Cλ
B . We can use a spectral sequence argument as in the proof of Theorem

4.13 to show that:

lim−→
λ

H∗(C
λ
B) = 0.

In this argument we need to show that ind(γ,Γi) = ind(γ) + ind(Γi) where

(γ,Γi) is described in property (3) above. But this is obvious because Γ is

a constant orbit, so it has a canonical Robbin-Salamon index. This in turn

shows us that:

lim−→
λ

H∗(C
λ
E′′) ∼= lim−→

λ

H∗(C
λ
E′) ∼= SHlef

∗ (E′).

Also, because no curve satisfying Floer’s equation connecting orbits inside

E′′ can escape E′′, we have that:

lim−→
λ

H∗(C
λ
E′′) ∼= SHlef

∗ (E′′).

This gives us our isomorphism:

SHlef
∗ (E′′) ∼= SHlef

∗ (E′).

�

9. Brieskorn Spheres

In this section we will mainly be studying the variety V as constructed in

section 5.1 and also the variety M ′′ := C
4 \ V .

9.1. Parallel transport. There is a natural symplectic form on C
4 (in-

duced from an ample line bundle on its compactification P
4). We have a

holomorphic map P := z7
0 + z2

1 + z2
2 + z2

3 with one singular point at 0. We

can view P as a fibration which is compatible with this symplectic form.

We have P−1(0) = V . We prove:

Theorem 9.1. Parallel transport maps are well defined for P .

Proof. We first of all compactify C
4 to P

4. We let P ′ be a holomorphic

section of E := OP4(7):

P ′([z0 : · · · : z4]) := z7
0 + z5

4z
2
1 + z5

4z
2
2 + z5

4z
2
3 .
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This is equal to P on the trivialisation z4 = 1. We also have another section

Q defined by

Q([z0 : · · · : z4]) := z7
4 .

The map P can be extended to a rational map P ′′ : P
4 99K P

1, where

P ′′ = P ′

Q . Fix an identification C
4 = P

4 \Q−1(0). We now have that

P =
P ′

Q
.

Let ‖.‖E be a positive curvature metric on the ample bundle E. We have a

symplectic structure and Kähler form defined in terms of the plurisubhar-

monic function

φ = − log ‖Q‖2
E .

In order to show that P has well defined parallel transport maps we need to

construct bounds on derivatives similar to the main theorem in [17, section

2]. We take the vector field ∂z on the base C. It has a unique lift with

respect to the Kähler metric which is:

ξ :=
∇P

‖∇P‖2
.

Here ‖.‖ is the Kähler metric and ∇P is the gradient of P with respect to

this metric. Take a point p on D := {z4 = 0}. We can assume without loss

of generality that this lies in the chart {z1 = 1}. In this chart we have that

the metric ‖.‖E = eσ|.| where σ is a smooth function and |.| is the standard

Euclidean metric with respect to this chart. Then:

φ = − log ‖Q‖2 = − log |Q|2 − σ.

The notation . means that one term is less than or equal to some constant

times the other term. Hence we get:

(4)

B :=
∣∣ξ.φ

∣∣ ≤ |〈∇P,∇σ〉|
||∇P ||2 +

2|Q| · |〈∇Q,∇P 〉|
||∇P ||2 · |Q|2

.
1

||∇P || +
||∇Q||

||∇P || · |Q|
We get similar equations to 4 in the other charts {zi = 1}. If we can show

that for any compact set T ⊂ C the function B is bounded above by a

constant K in the region T1 := P−1(T ) \ A where A = {|z0|, |z1|, |z2|, |z3| ≤
1}, then we have well defined parallel transport maps. This is because we

get similar bounds if we lift other vectors of unit length (i.e. c∂z where

c ∈ U(1)). Hence if we have a path, then
∣∣ξ.φ

∣∣ is bounded above by a
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constant on this path. This ensures that the transport maps do not escape

to infinity. In the chart {z3 = 1}, we have that for 1 ≤ i ≤ 2,

∂iP = 2zi/z
2
4 ,

∂0P = 7z6
0/z

7
4 .

We have the following bounds on derivatives:

|∇Q| .
|Q|
|z4|

.

Combining this with equation 4 gives:

B .
1 + |z4|

|z4|
(∑4

j=0,j 6=3 |∂iP |
)

. C := (1 + |z4|)/
[
7|z0|6
|z4|6

+
2|z1|
|z4|

+
2|z2|
|z4|

+ |∂4P ||z4|
]

. (1 + |z4|)/
(
|z0|6/|z4|6 + |z1|/|z4| + |z2|/|z4|

)
.

Hence on the chart {z4 = 1},

(5) B . (1 + |z3|−1)/
(
|z0|6 + |z1| + |z2|

)

By symmetry we also have

(6) B . (1 + |z2|−1)/
(
|z0|6 + |z1| + |z3|

)

(7) B . (1 + |z1|−1)/
(
|z0|6 + |z2| + |z3|

)

In the chart {z0 = 1} we have:

B .
1 + |z4|

|z4|
(∑4

j=1 |∂iP |
)

. (1 + |z4|)/
[
2|z1|
|z4|

+
2|z1|
|z4|

+
2|z2|
|z4|

+ |∂4P ||z4|
]
.

So:

B . (1 + |z4|)|z4|/ (|z1| + |z2| + |z3|)
so in the chart {z4 = 1}, we get a bound:

(8) B . (1 + |z0|−1)/ (|z1| + |z2| + |z3|)

Suppose for a contradiction that there is a sequence of vectors (zi
0, z

i
1, z

i
2, z

i
3)

lying in T1 such that B tends to infinity as i tends to infinity. If (after

passing to a subsequence) zi
0 tends to infinity, then equation 8 tells us that
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zi
1, z

i
2, z

i
3 are all bounded. But this is impossible as (zi

0, z
i
1, z

i
2, z

i
3) lies in

T1 which means that zi
0 is bounded. Similarly, using equations 5,6,7 we

get that zi
j is bounded. Hence B is bounded away from the compact set

{|z0|, |z1|, |z2|, |z3| ≤ 1}. This means that B is bounded when restricted to

T1, so we have well defined parallel transport maps. �

Let (C4, θ) be the convex symplectic manifold induced by the compactifi-

cation C
4 →֒ P

4. Because parallel transport maps for P are well defined we

can use ideas from [31, section 19b] to deform the 1-form θ on C
4 through

a series of 1-forms θt such that:

(1) each ωt := dθt is compatible with P and θt is a convex symplectic

deformation on C
4.

(2) (P,ω1) has trivial parallel transport maps at infinity. This means

that near infinity, P looks like the natural projection C × C ։ C

where C is the complement of some compact set in V .

(3) For a smooth fibre F of P , (F, θ1) is exact symplectomorphic to

(F, θ0).

We have that M ′′ = C
4 \ P−1(0), so we can restrict P to a fibration

P ′′ = P |M ′′ : M ′′ → C
∗. Let θS be a convex symplectic structure on C

∗ with

the property that θM ′′,t := θt|M ′′ + P ′′∗θS is a convex symplectic structure

for M ′′. Let θ′′ be a convex symplectic structure on M ′′ constructed as in

example 2.9. It is convex deformation equivalent to (M ′′, θM ′′,0) as follows:

Let F be a fibre of P ′′, then (F, θM ′′,0|F ) is convex deformation equivalent

to (F, θ′′|F ) by [32, Lemma 4.4] as both convex structures come from Stein

structures constructed algebraically as in Example 2.9. This deformation is

(1−t)θM ′′,0|F +tθ′′|F . The following family of 1-forms Θt := (1−t)θM ′′,0+tθ
′′

induces a convex symplectic deformation (we might have to add π∗θ′S to

θM ′′,0 and θ′′ where θS is a convex symplectic structure on C
∗ and dθS is

sufficiently large). The reason why it is a convex symplectic deformation

is as follows: We can ensure that θS comes from a Stein function φS on

C
∗. Also, θ0 comes from some Stein function φ : C

4 → R, hence θM ′′,0

comes from a Stein function φ0 := φ|M ′′ + P ′′∗φS . The 1-form θ′′ comes

from a Stein function φ1. Hence Θt comes from a Stein function of the form

φt := (1 − t)φ0 + tφ1. The set of singular points of φt|F for all t lie inside

a compact set KF (independent of t) for each fibre F . Let K be the union

of all the compact sets KF for each fibre F in M ′′. We can choose θS large

enough so that outside some annulus A in C
∗, φt has no singularities in
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K ∩ P ′′−1(C∗ \ A). Also, there are no singularities of φt outside K. Hence,

all the singularities of φt stay inside some compact set independent of t.

This means that φt is a Stein deformation. This means that (M ′′, θM ′′,1) is

convex deformation equivalent to (M ′′, θM ′′,0) which is convex deformation

equivalent to (M ′′, θ′′).

Hence on (M ′′, θ′′), we have that the parallel transport maps of P ′′ are

trivial at infinity after a convex symplectic deformation to (M ′′, θM ′′,1).

9.2. Indices. Let P ′′ : M ′′ → C
∗, P ′′(z) = P (z). Let F be a smooth fibre

of P ′′. This fibre has a natural exhausting plurisubharmonic function φ

as in example 2.9. We can modify φ to an exhausting plurisubharmonic

function φ′ which is complete by [34, Lemma 6]. We denote this new Stein

manifold by F̂ . The following theorem is about indices of a cofinal family

of Hamiltonians on F̂ .

Theorem 9.2. There is a cofinal family of Hamiltonians Hλ on F̂ with the

following properties:

(1) There exists some convex symplectic submanifold T of F such that

T̂ (the symplectic completion of T ) is symplectomorphic to F̂ .

(2) Hλ = 0 on T .

(3) if y is a periodic orbit of Hλ not in T then it has Robbin-Salamon

index ≥ 2.

(4) For each k ∈ Z there exists an N > 0 (independent of λ) such that

the number of periodic orbits of Hλ of index k is bounded above by

N .

(5) If we don’t count critical points from the interior, then there is ex-

actly one orbit of index 2 and one orbit of index 3 such that the

action difference between these two orbits tends to 0 as λ tends to

infinity. Also the number of Floer cylinders connecting these orbits

is even.

This theorem is proved by analysing the Conley-Zehnder indices of a Reeb

foliation on the Brieskorn sphere V ∩ S, where S is the unit sphere in C
4.

This result needs the following two lemmas:

Lemma 9.3. F̂ is the completion of some convex symplectic submanifold T

with boundary the Brieskorn sphere V ∩ S.

Proof. of Lemma 9.3. By 9.1, we have that V \ 0 is symplectomorphic to

F \K where K is a compact set. Hence there exists a cylindrical end of F̂
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which is symplectomorphic to the cylindrical end of V induced by flowing

V ∩ S by parallel transport. �

Lemma 9.4. There is a contact form on the Brieskorn sphere V ∩ S such

that all the Reeb orbits are non-degenerate and they have Conley-Zehnder

indices ≥ 2. Also, there is exactly one orbit of index 2 and no orbits of index

3.

Proof. In [37] Ustilovsky constructs a contact form such that all the Reeb

orbits are non-degenerate and such that their reduced Conley-Zehnder index

is ≥ 2(n−2) where n = 3 in our case. Ustilovsky defines the reduced Conley-

Zehnder index to be equal to the Conley-Zehnder index +(n−3). This means

that the Reeb orbits have Conley-Zehnder index ≥ n−1 = 2. He also shows

for each k ∈ Z, there are finitely many orbits of Conley-Zehnder index k.

He shows that there are no orbits of odd index and the orbit of lowest index

has index 2. �

Proof. of Theorem 9.2.

By Lemma 9.3 F̂ has a convex cylindrical end which is symplectomorphic

to [1,∞)×Σ where Σ is the Brieskorn sphere V ∩S. We choose a Hamiltonian

which is constant on the interior of F and equal to h(r) on the cylindrical

end, where r parameterises [1,∞). We also assume that h′(r) is constant

and not in the period spectrum of B at infinity. Also, near each orbit in

the cylindrical end, we assume that h′′ > 0. The flow of the Hamiltonian

at the level r = k is the same as the flow of XH := −h′(k)R, where R is

the Reeb flow. The Conley-Zehnder indices from Lemma 9.4 are computed

by trivialising the contact plane bundle. We can trivialise the symplectic

bundle by first trivialising the contact plane bundle and then trivialising its

orthogonal bundle. We trivialise the orthogonal bundle by giving it a basis

( ∂
∂r , R). The symplectic form restricted to this basis is the standard form:

(
0 1

−1 0

)
.

The Hamiltonian flow in this trivialisation is the matrix:(
1 0

h′′t 1

)

along the orthogonal bundle. This is because R is invariant under this flow

and the Lie bracket of XH = −h′R with ∂
∂r is h′′R. The Robbin-Salamon

index of this family of matrices is 1
2 . We calculate this index by perturbing
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this family of matrices by a function ξ : [0, 1] → R where ξ(0) = ξ(1) = 0 as

follows: (
1 ξ(t)

h′′t 1

)
.

Choosing ξ so that its derivative is non-zero whenever ξ = 0 ensures that the

path is generic enough to enable us to compute its Robbin-Salamon index.

Remember that the Robbin-Salamon index of an orbit is equal to the

Conley-Zehnder index taken with negative sign. Lemma 9.4 tells us the

Conley-Zehnder indices of all the Reeb orbits. The flow XH = −h′R of the

Hamiltonian has orbits in the opposite direction to Reeb orbits. Hence the

Robbin-Salamon index (restricted to the contact plane field) of an orbit of

XH = −h′R is the same as the Conley-Zehnder index of the corresponding

Reeb orbit. Hence the Robbin-Salamon index of some orbit of the Hamil-

tonian on the level set r = k is equal to C+ 1
2 where C is the Conley-Zehnder

index of the associated Reeb orbit as calculated in Lemma 9.4. Hence the

indices of these orbits are ≥ 2 + 1
2 .

The problem is that these orbits are degenerate. This is why their index

is not an integer. As in [25, section 3] we can perturb each circle of orbits

to a pair of non-degenerate orbits. Let C ′ be a circle of orbits. We choose a

Morse function f on C ′. If we flow f along XH (the Hamiltonian flow of H)

we get a time dependent Morse function ft = f ◦φ−t (φt is the Hamiltonian

flow). Extend ft so that it is defined as a function on a neighbourhood of

C ′. Let H+ft be our new Hamiltonian. The orbits near C ′ now correspond

to critical points p of f . The Robbin-Salamon index of such an orbit is:

i(C ′) +
1

2
sign(∇2

pf)

where i(C ′) is the Robbin-Salamon index of the manifold of orbits. The

symbol ‘sign’ means the number of positive eigenvalues minus the number

of negative eigenvalues. In our case we can choose f so that it has 2 critical

points p1, p2 such that

sign(∇2
p1
f) = 1, sign(∇2

p2
f) = −1.

Hence, if the Conley-Zehnder index of a Reeb orbit C is k, then we can

perturb H so that the associated Hamiltonian orbits have Robbin-Salamon

index (or equivalently Conley-Zehnder index taken with negative sign) k+0

and k+1. This means all the non-constant orbits of H have Robbin-Salamon

index ≥ 2.
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We now need to show that there are a finite number of orbits in each

degree. This follows directly from Lemma 9.4 which says that there are

finitely many Reeb orbits in each degree. Finally this same lemma says

that there is only one Reeb orbit with Conley-Zehnder index 2 and no Reeb

orbits with Conley-Zehnder index 3. So the Hamiltonian H has one orbit

of Robbin-Salamon index 2 and one orbit of index 3. We can also ensure

that the actions of these orbits are arbitrarily close by letting the associated

Morse function f be C2 small. There are an even number of Floer cylinders

connecting the orbit of index 3 with the orbit of index 2 by [9, Proposition

2.2]. �

Lemma 9.5. We have H i(M ′′) = 0 for i ≥ 2.

Proof. M ′′ = C
4 \ V . Theorem 5.1 tells us that V is homeomorphic to R

6.

This means that there is a neighbourhood B of V which retracts onto V

whose boundary ∂B satisfies H i(∂B) = 0 for i ≥ 2. The Mayor-Vietoris

sequence involving B, M ′′ and B ∪M ′′ = C
4 ensures that H i(M ′′) = 0 for

i ≥ 2. �

9.3. Symplectic homology of these varieties. We wish to show that

the symplectic homology of the variety M ′′ := C
4 \V has only finitely many

idempotents using the results of the previous two sections. We will then

show that it has at least two idempotents: 0 and 1. First of all we need the

following lemma:

Lemma 9.6. Let R =
⊕

g∈GRg be an algebra over Z/2 which is graded by

some finitely generated abelian group G. If a is an idempotent in R then

a ∈⊕g∈Gn
Rg where Gn is the subgroup of torsion elements of G.

Proof. We have a = ag1
+ · · · + agn where gi ∈ G and agi

∈ Rgi
. Suppose

for a contradiction we have that a = a2 and g1 is not torsion. Then a2 =

a2
g1

+ · · ·+ a2
gn

. The group G/Gn is a free Z algebra, hence there is a group

homomorphism p : G → G/Gn → Z such that p(g1) 6= 0. The map p gives

R a Z grading. Let b be an element of R. It can be written uniquely as

b = b1 + · · · + bk where bi are non-zero elements of R with grading qi ∈ Z.

We can define f(b) as minj∈{i|qi 6=0}|qj|. Note that f(b) is well defined only

if at least one of the qi’s are non-zero. Because p(g1) 6= 0, we have that f(a)

is well defined and positive. We also have that f(a2) ≥ 2f(a) which means

that a2 6= a. This contradicts the fact that a is an idempotent. �
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The vector space SH4+∗(M
′′) is a ring bi-graded by the Robbin-Salamon

index and the first homology group. We write 4+∗ here because the unit has

Robbin-Salamon index 4. The previous lemma shows us that any idempotent

must have grading 4 in SH∗(M
′′) and be in a torsion homology class.

We have a map P ′′ : M ′′ → C
∗. At the end of section 9.1 we had a convex

symplectic structure (M ′′, θM ′′,1). Let A be a large annulus in the base C
∗

which is a compact convex symplectic manifold. Let (F ′′, θM ′′,1) be a fibre of

P ′′. Choose a compact convex symplectic manifold (with corners) M̄ ′′ such

that (M̄ ′′, P̄ ′′ := P ′′|M̄ ′′ , θM ′′,1) is a compact convex Lefschetz fibration with

fibres F̄ ′′ and base A ⊂ C
∗. We can also ensure that ∂F̄ ′′ is transverse to

λ1 (the associated Liouville vector field of F
′′) and there are no singularities

of λ1 outside F̄ ′′ in F ′′. Hence the completion of M̄ ′′ is M̂ ′′.

Let (Ê′′, π′′) be the completion of (M̄ ′′, P̄ ′′, θM ′′,1) (so that ̂̄M ′′ = Ê′′).

We wish to use the results of section 7 to show that SH∗(E
′′) has finitely

many idempotents, and hence SH∗(M
′′) has finitely many idempotents. Let

H be a Lefschetz admissible Hamiltonian for Ê′′. Let C be the cylindrical

end of F̂ ′′. We may assume that this cylindrical end is of the form (SV ×
[1,∞), rFαF ) where (SV , αF ) is the Brieskorn sphere described in 9.2 and

rF is the coordinate for [1,∞). The Hamiltonian H is of the form π′′∗HS′′ +

π′′1
∗HF ′′ as in definition 4.10. By Lemma 9.6, we have that any idempotent

must come from a linear combination of orbits of H in torsion homology

classes as long as H is large enough (i.e. it is large enough in some cofinal

sequence of Lefschetz admissible Hamiltonians). Away from C×C
∗ ⊂ Ê′′ we

have that the Hamiltonian flow of H is the same as the flow of L := π′′∗HS′′ .

Let X be the Hamiltonian vector field associated to L, and let XS′′ be the

Hamiltonian vector field in C
∗ associated to HS′′ . Then the value of X at a

point p is some positive multiple of the horizontal lift of XS′′ to the point p.

We can assume thatHS′′ has exactly two contractible periodic orbits of index

0 and 1 corresponding to Morse critical points of HS′′ (as any Reeb orbit

of C
∗ is not contractible). We can also make HS′′ C2 small away from the

cylindrical ends of C
∗ so that the only Floer cylinders connecting contractible

orbits correspond to Morse flow lines. Hence, any contractible orbit of X

must project down to a constant orbit of XS′′ . We let HF ′′ be a Hamiltonian

as in Lemma 9.2 above in Section 9.2. We let our almost complex structure

J when restricted to C × C
∗ ⊂ Ê′′ be equal to the product almost complex

structure JF × JC∗ where JF is an admissible almost complex structure on

F̂ and JC∗ is the standard complex structure on C
∗. The contractible orbits
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in this cylindrical end come in pairs (Γ, γ) where Γ is an orbit in F̂ and γ

is a contractible orbit in C
∗. Because there are only 2 contractible orbits in

C
∗ and there are finitely many orbits in each degree in F̂ , we have finitely

many contractible orbits of index 4 for H. Hence:

Theorem 9.7. The ring SH4+∗(M
′′) has only finitely many idempotents.

We now wish to show that SH∗(M
′′) has at least 2 idempotents. To do

this we show that SH∗(M
′′) 6= 0, and hence has a unit by [32, Section 8].

This means that SH∗(M
′′) has 0 and 1 as idempotents. The Hamiltonian H

has non-degenerate orbits in C ×C
∗ ⊂ Ê′′, so we perturb H away from this

set to make all its orbits non-degenerate. In E′′ ⊂ Ê′′ we can ensure that H

is C2 small and J is independent of t, hence the only orbits in this region are

critical points of H and the only Floer cylinders correspond to Morse flow

lines. The orbits corresponding to critical points of H have Robbin-Salamon

index ≥ 3 because H i(M ′′) = 0 for i > 1 by Lemma 9.5. Hence all orbits

have index ≥ 2. There is only one orbit of index 2. This orbit is in the

cylindrical end C×C
∗ ⊂ Ê′′. Hence the orbit is of the form (Γm, γm) where

γm has index 0 and Γm has index 2. This orbit is closed because there are no

orbits of lower index. Suppose for a contradiction this orbit is exact, then

there exists a Floer cylinder connecting an orbit β of index 3 with (Γm, γm).

This orbit β must be contractible, so it is either a critical point, or it is of

the form (Γ1, γ1) in C ×C
∗ ⊂ Ê′′. The action of (Γm, γm) is larger than the

action of a critical point and hence β cannot be a critical point. Hence β is

of the form (Γ1, γ1). Suppose that the index of Γ1 is 3. We have γm = γ1

and by Theorem 9.2 we can ensure that the action difference between Γ1

is arbitrarily close to Γm. Similarly if γ1 has index 1 then we can ensure

that Γm = Γ1 and the action difference between γm and γ1 is arbitrarily

small. This means that the action difference between (Γm, γm) and (Γ1, γ1)

is arbitrarily small. This means that if we have a Floer cylinder connecting

(Γm, γm) and (Γ1, γ1) then Gromov compactness ensures that it must stay

in the region C × C
∗ ⊂ Ê′′ (Because the action of (Γm, γm) tends to the

action of (Γ1, γ1), we get a sequence of Floer cylinders converging to a Floer

cylinder of energy 0 which cannot exit C ×C
∗ ⊂ Ê′′). Because all the Floer

cylinders stay inside C×C
∗ ⊂ Ê′′, the number of Floer cylinders connecting

(Γm, γm) and (Γ1, γ1) is equal to the number of Floer cylinders connecting

Γm and Γ1 multiplied by the number of Floer cylinders connecting γm and
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γ1. We need to show that the number of Floer cylinders connecting (Γ1, γ1)

and (Γm, γm) is even and by the previous comment, this means we only need

to show that the number of Floer cylinders connecting Γ1 and Γm is even

or the number of Floer cylinders connecting γ1 and γm is even. But the

number of Floer cylinders connecting Γ1 and Γm is even if Γ1 has index 3

(by part (5) of 9.2) and similarly γ1 is closed if it has index 1 (so there are an

even number of Floer cylinders connecting γ1 and γm). Hence the number

of Floer cylinders connecting these two orbits is even and so (Γm, γm) is not

exact. Hence SH∗(M
′′) 6= 0.

This completes the proof of the second theorem 1.2 subject to checking

ring addition under end connect sums.

10. Appendix A: Lefschetz fibrations and the Kaliman

modification

Let X,D,M be as in example 2.9. Let Z be an irreducible divisor inX and

q ∈ (Z ∩M) a point in the smooth part of Z. We assume there is a rational

function m on X which is holomorphic on M such that m−1(0) is reduced

and irreducible and Z = m−1(0). Let M ′ := Kalmod(M, (Z ∩M), {q}), and

let M ′′ := M \ Z. Suppose also that dimCX ≥ 3. Here is the statement of

theorem 4.21: There exist Lefschetz fibrations E′′ ⊂ E′ respectively satisfying

the conditions of Theorem 1.4 such that E′ (resp. E′′) is convex deformation

equivalent to M ′ (resp. M ′′).

The rest of this section is used to prove this theorem. We will start with

several preliminary lemmas.

Lemma 10.1. There are Stein functions φ′ (resp. φ′′) on M ′ (resp. M ′′)

such that M ′′ becomes a symplectic submanifold of M ′.

Proof. Let m′ be the pullback of m to BlqX. Let Z ′ be the divisor defined

by the zero set of m′. Let Z ′′ be the divisor defined by the zero set of 1
m′ ,

so that Z ′ is linearly equivalent to Z ′′. By abuse of notation, we write D as

the total transform of D in BlqX.

Let Z̃ be the proper transform of Z. We can choose an effective ample

divisor D′ with support equal to Z̃∪D (as a set) so that D′−Z ′′ is effective.

We have that Y1 := D′ and Y2 := Y1−Z ′′+Z ′ are linearly equivalent effective

ample divisors. Let E be a line bundle associated to Y1 and let s1, s2 be

sections so that s−1
i (0) = Yi. There is a metric ‖.‖ of positive curvature on

E. We define φ′ := −ddc log(s1) and φ′′ := −ddc log(s2). �
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Moving the point q within the smooth part of Z ∩ M induces a Stein

deformation of M ′ and M ′′ by a slight modification of the above lemma.

We now need a technical lemma involving convex symplectic manifolds of

finite type. Let (M,θ1), (M,θ2) be convex symplectic manifolds. Suppose

that θ1 = θ2 inside some codimension 0 submanifold C such that (C, θ1) is

a compact convex symplectic manifold.

Lemma 10.2. If all the singular points of θ1 and θ2 are contained in C,

then (M,θ1) is convex deformation equivalent to (M,θ2).

Proof. The interior Co of C has the structure of a finite type non-complete

convex symplectic manifold constructed as follows: The boundary of C has

a collar neighbourhood in C of the form N := (−ǫ, 1] × ∂C, with θ1 = rα.

Here r is the coordinate on (−ǫ, 1], and α is a contact form on ∂C. We

let ψ : Co → R be an exhausting function, which is of the form h(r) on

N and such that h(r) → ∞ as r → 1. For some N ≫ 0, we have that

ψ−1(l) is transverse to the associated Liouville field λ1 for all l ≥ N . Let

φ1 be the function associated to the convex symplectic structure (M,θ1).

We may assume that φ−1
1 (l) is transverse to λ1 for all l ≥ N as well. We

can smoothly deform the function φ1 into the function ψ through a series of

exhausting functions φt (the domain of φt smoothly changes within M as t

varies) such that φ−1
t (N+k) is transverse to λ1 for each k ∈ N. This induces

a convex symplectic deformation from (M,θ1) to (Co, θ1|Co). Similarly we

have a convex symplectic deformation from (M,θ2) to (Co, θ1|Co). Hence,

(M,θ1) is convex deformation equivalent to (M,θ2). �

We need another similar lemma about deformation equivalence.

Lemma 10.3. Suppose (M,θ1) and (M,θ2) are convex symplectic mani-

folds such that θ1 = θ2 + dR for some function R, then (M,θ1) is convex

deformation equivalent to (M,θ2).

Proof. Let φ1 (resp. φ2) be the function associated with the convex sym-

plectic structure (M,θ1) (resp. (M,θ2)). Choose constants c1 < c2 < · · ·
and d1 < d2 < · · · tending to infinity such that M1

i := φ−1
1 (−∞, ci] (resp.

M2
i := φ−1

2 (−∞, ci]) are compact convex symplectic manifolds. Also we

assume that:

M1
i ⊂M2

i ⊂M1
i+1 ⊂M2

i+1

for all i. Let R′ : M → R be a function such that R′ = 0 on a neighbourhood

of ∂M1
i and R′ = R on a neighbourhood of ∂M2

i for all i. Let θ3 :=
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θ1+dR
′. We will show that both (M,θ1) and (M,θ2) are convex deformation

equivalent to (M,θ3). Let Rt : M → R be a family of functions such that

Rt = 0 on a neighbourhood of ∂M1
i for all i and such that R0 = 0 and

R1 = R′. Then (M,θ1 + dRt) is a convex deformation from (M,θ1) to

(M,θ3) because (M1
i , θ1 + dRt) is a compact convex symplectic manifold

for all i. Also let R′
t : M → R be a family of functions such that R′

t = R

on a neighbourhood of ∂M2
i and such that R′

0 = R and R′
1 = R′. Then

(M,θ1+dR
′
t) is a convex deformation from (M,θ2) to (M,θ3). Hence (M,θ1)

is convex deformation equivalent to (M,θ2). �

We let E be an ample line bundle on X, and s, t sections of E. We

assume that s is non-zero on M . Let t be a holomorphic section of E, and

let p := t/s be a map from M to C.

Definition 10.4. We call (M,p) an algebraic Lefschetz fibration if:

(1) t−1(0) is smooth, reduced and intersects each stratum of D transver-

sally.

(2) p has only nondegenerate critical points and there is at most one of

these points on each fibre.

An algebraic Lefschetz fibration (M,p) has a symplectic form ω con-

structed as in example 2.9. This means that ω is compatible with p. These

are not exact Lefschetz fibrations since the horizontal boundary is not trivial,

but they are very useful since our examples arise in this way.

Theorem 10.5. Parallel transport maps for an algebraic Lefschetz fibration

are well defined.

This is basically proved in [17, section 2], but, there is a subtle distinction

between the above theorem and theirs. In [17, section 2], the Stein structure

and the Lefschetz fibration are constructed from the same compactification

(X,D) of M . In our case they come from different compactifications. The

proof can be easily adjusted to this case. This is due to the fact that if we

have two different metrics on M induced from compactifications (X1,D1)

and (X2,D2), then the C2 distance between them is bounded.

We need the following technical theorem so that we can relate algebraic

Lefschetz fibrations with ordinary Lefschetz fibrations. We let (E′, π′),

(E′′, π′′) be algebraic Lefschetz fibrations such that π′′|E′′ = π′. Let θ′

(resp. θ′′) be a convex symplectic structure on E′ (resp. E′′) constructed as

in example 2.9 such that dθ′′ = dθ′|E′′ .
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Lemma 10.6. Suppose that all the singular points of π′ are contained in

E′′. Then: there exists a convex symplectic structure θ′1 (resp. θ′′1) on E′

(resp. E′′) such that:

(1) (E′, π′, θ′1) (resp. (E′′, π′′, θ′′1)) are Lefschetz fibrations without

boundary.

(2) dθ′1|E′′ = dθ′′1 .

(3) All the parallel transport maps are trivial on a neighbourhood N of

E′ \ E′′. We can ensure that E′ \ N is relatively compact when

restricted to each fibre.

(4) For each smooth fibre F ′ of π′, θ′|F ′ = θ′1|F ′ +dR for some compactly

supported function R. We have a similar statement for (E′′, π′′).

(5) (E′, θ′1) (resp. (E′′, θ′′1)) is convex symplectic deformation equivalent

to (E′, θ′) (resp. (E′′, θ′′)).

Proof. of Theorem 10.6 We divide this proof into 3 sections. In the first

section we construct the Lefschetz fibration without boundary (E′, π′, θ′1).

In the second section we construct (E′′, π′′, θ′′1). In section 3 we show that

(E′, θ′1) (resp. (E′′, θ′′1)) is convex deformation equivalent to (E′, θ′) (resp.

(E′′, θ′′)).

Step 1 We will use ideas from [31, section 19b]. The map π′ has well

defined parallel transport maps by Theorem 10.5. We have the same for

(E′′, π′′). Suppose without loss of generality that 0 ∈ C is a regular point of

these fibrations. Let Q′ := π′−1(0), Q′′ := Q ∩ E′′. Consider the family of

radial lines in C coming out of 0. Let L be one of these radial lines which

passes through a critical value l of π′. We can write L = L1 ∪ L2 where L1

is the line joining 0 and l, and L1 ∩ L2 = {l}.
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Origin 0

L1

L2

Critical value

The critical value l

Radial lines coming from the origin

We now have vanishing thimbles V1 and V2 of l covering L1 and L2. Let V

be the union of all such thimbles for all radial lines passing through critical

values of π′. We can use this to construct a map ρ : E′\V → C×Q′. The map

is constructed as follows: Let x be a point in E′ \ V . Then we can parallel

transport x along a radial line to a point a in Q′. Then ρ(x) := (π′(x), a).

Let X = V ∩ Q′ and W := Q′ \ X. Then ρ|E′\V : E′ \ V → C ×W is a

diffeomorphism. Let ̟ := (ρ|E′\V )−1. Let θQ′ := θ′|Q′ . From now on, if we

have a differential form q on C×W , then we will just write q instead of ρ∗q

to clean up notation.

Because parallel transport maps are exact, we have: θ′|E′\V = θQ′ + κ′ +

dR′ where κ′ is a 1-form satisfying i∗κ′ = 0 for all maps i where i is the

inclusion map of any fibre of π′ into E′, and R is some function on C ×W .

Let f̄ : W → R be a function which is equal to 1 nearX and is 0 outside some

relatively compact neighbourhood of X. We extend f̄ by parallel transport

along these radial lines to a map g : E′ \ V → R. Then we extend g to a

map f : E′ → R as g is constant near V . We will also assume that g is

only non-zero inside E′′ because parallel transport maps are well defined for

(E′′, π′′, θ′′), hence V ⊂ E′′. We define

θ′f := θQ′ + gκ′ + d(gR′).

This form extends over V because θ′f = θ′ near V (where g = 1). The 1-form

θ′f makes π′ into a Lefschetz fibration without boundary where each of the

fibres have a convex symplectic structure. We define θ′1 := θ′f .
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Step 2 Let Q′′ := π′′−1(0) ⊂ E′′. We also have that:

θ′′ = θQ′′ + κ′′ + dR′′.

Here, κ′′ is a 1-form on E′′ satisfying i∗κ′′ = 0 for all maps i where i is

the inclusion map of a fibre of π′′ into E′′, and R′′ is some function on

E′′ ∩ (C ×W ). Because dθ′′ = dθ′, we have that dκ′ = dκ′′. This means

that β := κ′ −κ′′ is a closed 1-form in E′′. We can also show that β is exact

as follows: Let l : S
1 → E′′ be a loop. Because we are in dimension 4 or

higher (dimension 2 is trivial and irrelevant for this thesis), we can perturb

the loop so that it doesn’t intersect the radial vanishing thimbles described

above. We can then deform l using parallel transport to a loop l′ contained

in a smooth fibre F . We have β|F = 0 which means that
∫
l β =

∫
l′ β = 0.

Hence β = dL for some L : E′′ → R. We define:

θ′′f := θQ′′ + gκ′ + d(gL) + d(gR′).

We have dθ′′f = dθ′f , hence this makes (E′′, π′′) into a well defined symplectic

subfibration of E′. We define θ′′1 := θ′′f .

Step 3 We can deform f̄ through functions which are trivial at infinity

to some f̄ ′ where f̄ ′ = 0 outside some large compact set, and (f̄ ′)−1(1)

contains an arbitrarily large compact set K ⊂ F . We can construct f ′ :

E′ → R using f̄ ′ in the same way that we constructed f from f̄ and the

deformation from f̄ to f̄ ′ induces a deformation from f to f ′. We can

choose a convex symplectic structure θS on the base so that (E′, θ′f +π′∗θS)

and (E′, θ′f ′ + π′∗θS) are convex symplectic manifolds. Hence θ′f + π′∗θS is

convex deformation equivalent to θ′f ′ + π′∗θS . If we choose K large enough

we get that θ′f ′ +π′
∗θS is convex deformation equivalent to (E′, θ′+π′∗θS) by

Lemma 10.2 and Lemma 10.3, and hence is convex deformation equivalent

to (E′, θ′).

Because θ′′f is described in a very similar way to θ′f , we can use exactly

the same argument as above to show that (E′′, θ′′) is convex deformation

equivalent to (E′′, θ′′f + π∗θS,1). The 1-form θS,1 is a convex symplectic

structure on the base making θ′′f +π∗θS,1 into a convex symplectic structure.

�

Let X,D,M be as in Theorem 4.21. This means that Z is an irreducible

divisor in X and q ∈ (Z ∩M) is a point in the smooth part of Z. There is

a rational function m on X which is holomorphic on M such that m−1(0) is
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reduced and irreducible and Z = m−1(0). We have M ′ := Kalmod(M, (Z ∩
M), {q}), and M ′′ := M \ Z. We also have dimCX ≥ 3.

Lemma 10.7. There exist algebraic Lefschetz fibrations

p′ : M ′ → C, p′′ : M ′′ → C

such that p′′ is a subfibration of p′ (i.e p′ ◦ (inclusion) = p′′). Also, if F ′

(resp. F ′′) is a page of p′ (resp. p′′), then F ′ is the proper transform of F ′′

in BlqX. The singularities of p′ are contained in M ′′.

Proof. Let Q be an effective ample line bundle on X with support equal to

D and such that Q′′ := m−1(0) + Q is ample. Let s′′, t′′ be sections of Q′′

such that s′′−1(0) = m−1(0) +Q. We choose t′′ such that

p′′ =
t′′

s′′
: M ′′ → C

is some algebraic Lefschetz fibration on M ′′. Let F̄ ′′ be the closure of one

of the smooth fibres of p′′ in M . We can move the point p to somewhere

in the smooth part of F̄ ′′ ∩ Z as the smooth part of Z is connected (as Z

is irreducible); M ′ is unchanged up to Stein deformation. NB here we use

dimCX ≥ 2.

Remember b is the blowdown map b : BlqX → X. Let s′ := b∗s′′ and t′ :=

b∗t′′. Let ∆ be the exceptional divisor b−1(p). The divisor s′−1(0) is equal

to ∆ + other divisors. We can choose an effective divisor K ′ with support

equal to the boundary divisor D′ of M ′ in BlqX such that K ′′ := K ′ −∆ is

ample. Hence, we can choose a meromorphic section h of K ′′ whose zero set

is contained inD′, and such that h has a pole of order 1 along the exceptional

divisor and such that h is holomorphic away from D′ ∪∆. Let L be the line

bundle associated to K ′′. This means that s′ ⊗ h ∈ H0(O(L ⊗ b∗Q′′)) is

non-zero away from D′. We let p′ := t′⊗h
s′⊗h . This means that p′|M ′′ = p′′.

Because q is in the smooth locus of F̄ ′′ ∩ Z and F̄ ′′ is transverse to Z, we

have that the closure of any smooth fibre of p′ intersects each stratum of D′

transversally.

We can choose holomorphic coordinates z1 · · · zn on an open set U of p

and a holomorphic trivialisation of Q′′ such that s′′ = z1 and t′′ = z2. We

then blow up at the point p. Locally around p, we have a subvariety of

U × P
n defined by Xixj = Xjxi where X1 · · ·Xn are projective coordinates

for P
n. We choose the chart Z1 = 1. This has local holomorphic coordinates

z1, Z2, Z3, · · · , Zn. We can choose a trivialisation of K ′′ so that the section h
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is equal to 1/z1. This means that locally b∗s′′ = Z1 and b∗t′′ = Z2z1. Hence

locally, s′ = 1 and t′ = Z2 which means that p′ = Z2. This means that p′ has

no singular points near ∆. Hence p′ is also an algebraic Lefschetz fibration

which coincides with p′′ away from ∆ and such all the singular points of p′

are the same as the singular points of p′′. �

Lemma 10.8. Let F ′ (resp. F ′′) be a fibre of p′ (resp. p′′). Let K be a

compact set in F ′′. There is a Stein structure J on F ′ (depending on K)

such that any J-holomorphic u : T → F ′, where T is a compact Riemann

surface with boundary, has the property that u(T ) ⊂ F ′′ if u(∂T ) ⊂ F ′′.

Proof. Let G be the closure of F ′′ in M ′. Then F ′ is biholomorphic to

kalmod(G,G ∩ Z, {q}). Let φG be a Stein function for G. The compact set

K is contained in φ−1
G (C) for some large C. Let q′ be a point outside φ−1

G (C)

which is contained in the smooth part of G ∩ Z. Because dimCG ∩ Z ≥ 2,

we can assume that q and q′ are in the same irreducible component U of

G∩Z. This is where we use the assumption that dimCX ≥ 3. The manifold

G′ := kalmod(G,G∩Z, {q′}) is naturally an Stein manifold by example 2.9.

By the comment after Lemma 10.1, we have that G′ is Stein deformation

equivalent to F ′ such that it also induces a Stein deformation on M ′′. The

Stein deformation is induced from moving q′ smoothly down to q inside the

smooth part of U ⊂ G ∩ Z (Note: U is irreducible, hence the smooth part

of U is connected). This induces a Stein homotopy of M ′ and M ′′ which in

turn induces a Stein homotopy of F ′ and F ′′.

From now on we assume that the symplectic structures on F ′ and G′

are complete by [34, Lemma 6]. We can also ensure that the above Stein

deformation between F ′ and G′ is complete and finite type by the same

lemma, hence by [34, Lemma 5] we have a symplectomorphism h : F ′ → G′

induced by this Stein deformation. Let JG′ be the natural complex structure

on G′. Let J := h∗JG′ . Then if T is a J-holomorphic curve in F ′ with

boundary inside K then h(T ) is a holomorphic curve in G′ with boundary

in h(K). We can blow down this curve to give a holomorphic curve T ′ in

G with boundary in b(h(K)). If T passes through the blowup of q, then T ′

passes through q′. This means that φG ◦T ′ has an interior maximum outside

φ−1
G (C), but this is impossible. Hence the curve T must be contained in

F ′′. �

We can now apply the above lemmas to prove 4.20. We can apply theorem

10.6 to p′ and p′′ to get symplectic fibrations (M ′, p′, θ′1) and (M ′′, p′′, θ′′1).
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These fibrations are Lefschetz without boundary. We can cut down the

fibres to Stein domains F̄ ′ and F̄ ′′ where F̄ ′′, F̄ ′ are large enough so that the

support of all the monodromy maps of (M ′, p′, θ′1) are contained in F̄ ′′ and

F̄ ′′ ⊂ F̄ ′. We can also remove the cylindrical end from the base. This will

make p′ and p′′ into Lefschetz fibrations (E′, π′) and (E′′, π′′) respectively.

Note that if we have a holomorphic curve T in F̄ ′ with boundary in F̄ ′′,

Lemma 10.8 implies that it is contained in F ′′ ∩ F̄ ′. The Stein maximum

principle [25, Lemma 1.5] ensures that T is contained in F̄ ′′. Hence we get

that Theorem 4.20 is a consequence of Lemma 10.6 and Lemma 10.8.

11. Appendix B: Stein structures and cylindrical ends

The problem with Stein structures is that the complex structure asso-

ciated with them does not behave well with respect to cylindrical ends.

Cylindrical ends here means that near infinity, the convex symplectic mani-

fold is exact symplectomorphic to (∆× [1,∞), rα) where r ∈ [1,∞) and α is

a contact form on ∆. The almost complex structure is convex with respect

to this cylindrical end if dr ◦J = −α. We will deal with this problem in this

section.

Let (M,J, φ) be a complete finite-type Stein manifold with θ = −dcφ and

ω = dθ. Let c≫ 0 be greater than the highest critical value of φ.

Theorem 11.1. There exists a complete finite type convex symplectic struc-

ture (M,θ1) with the following properties:

(1) It has a cylindrical end with an almost complex structure J1 which

is convex at infinity.

(2) J1 = J and θ1 = θ in the region {φ ≤ c}.
(3) Any J1 holomorphic curve with boundary in {φ = c} is contained in

{φ ≤ c}.
(4) It is convex deformation equivalent to (M,θ) via a convex deforma-

tion (M,θt) where θt|{φ≤c} = θ|{φ≤c} for t ∈ [0, 1].

Proof. Let λ := ∇φ and ∆ := φ−1(c+1). We define G : M → R, G = 1
‖∇φ‖2

where ‖.‖ is the norm defined using the metric ω(·, J ·). Let λ′ := Gλ.

Let Ft : M → M be the flow of λ′. This exists for all time because φ is

unbounded and Lλ′φ = 1 which implies that φ increases linearly with t (L

here means Lie derivative). We have an embedding Φ : ∆ × [1,∞) → M

defined by Φ(a, r) = Flog r(a) where a ∈ ∆ ⊂ M and r ∈ [1,∞). Also,
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Lλ′θ = Gθ. Hence, Φ∗(θ) = fα where f : ∆ × [1,∞) → R, f(a, r) :=

1 +
∫ r
0 (G ◦ Φ)(a, t)dt and α is the contact form θ|∆ on ∆.

We will now deform the 1-form fα to a 1-form f ′α such that f ′ = f near

r = 1 and f ′ = r near infinity. We define θ1 to be equal to f ′α in this

cylindrical end and equal to θ away from this end. This means that for r

large, we have a cylindrical end with 1-form f ′α = rα. If we have a function

g : ∆× [1,∞) → R, then d(gα) is non-degenerate if and only if ∂g
∂r > 0. Also,

the Liouville vector field associated to gα is (g/∂g
∂r ) ∂

∂r , and hence we have

that this Liouville vector field is transverse to every level set {r = const} and

pointing outwards. If (g/∂g
∂r ) is bounded above by any polynomial, then the

respective Liouville vector field is complete. We define f ′ : ∆ × [1,∞) → R

such that f ′ = f near r = 1, f ′ = r near infinity and ∂f ′

∂r > 0. This gives a

complete finite type convex symplectic structure θ1 on M as we can extend

f ′α outside M as f ′ = f near r = 1. We can join f to f ′ via a smooth

family of functions with ft (t ∈ [0, 1]) where ∂ft

∂r > 0 and such that ft = f

near r = 1. This gives us a convex deformation from θ to θ′.

We now need to construct our almost complex structure J1. We have

Lλ′φ = Gdφ(∇φ) = 1. This means that Φ∗(φ) = log r so the level sets of

φ coincide with the level sets of log r. By abuse of notation we will just

write J for the pullback Φ∗J and we will write φ for log r. We have two

orthogonal symplectic vector subbundles of the tangent bundle Φ∗(TM) =

T (∆× [1,∞)) whose direct sum is the entire tangent bundle (the symplectic

structure we are dealing with here is θ1). These are: V1 := Ker(θ1)∩Ker(dr)

and V2 := Span( ∂
∂r ,Xr) where Xr is the Hamiltonian flow of r. The problem

is that J is not necessarily compatible with dθ1, so we need to deform it so

that it is. However, near r = 1, J is in fact compatible with dθ1 because

θ = θ1 in some region Ξ := {r ≤ 1+ǫ}. Inside Ξ, we have that: J |V1
and J |V2

are holomorphic subbundles of Φ∗(TM). There exists a complex structure

JV1
(resp. JV2

) on the vector bundle V1 (resp. V2) compatible with dθ1|V1

(resp. dθ1|V2
) such that, JV1

= J |V1
(resp. JV2

= J |V2
) when restricted to Ξ.

Because V1
⊕
V2 = Φ∗(TM), this gives us an almost complex structure J1

on Φ∗(TM) compatible with dθ1 which is equal to J in the region Ξ. We can

choose JV1
and JV2

so that JV2
( ∂

∂r ) = −1
rXr for r ≫ 0 and JV1

is invariant

under the flow of ∂
∂r for r ≫ 0. This ensures that J1 is convex at infinity.

Also, we have that r is plurisubharmonic with respect to J1 hence any J1

holomorphic curve with boundary in {r = 1} is contained in {r ≤ 1}. Hence

property (3) is satisfied. �
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12. Appendix C: Transfer maps and handle attaching

The purpose of this section is to show that symplectic homology is additive

as a ring under end connect sums. This was already done by Cieliebak in [6]

but without taking into account the ring structure. Throughout this section,

let (M,θ), (M ′, θ′) be compact convex symplectic manifolds such that M ′

is an exact submanifold of M of codimension 0. We let C := N × [1,∞) be

a cylindrical end of M where θ = rα, α is a contact form on N , and r is

the coordinate for [1,∞). Similarly we have a cylindrical end C ′ of M ′. Let

H : M → R be an admissible Hamiltonian with an almost complex structure

J , convex at infinity. Let SH
(−∞,a)
∗ (M,H, J) be the group generated by

orbits of action < a. For b ≥ a, we define

SH
[a,b)
∗ (M,H, J) := SH

(−∞,b)
∗ (M,H, J)/SH

(−∞,a)
∗ (M,H, J).

12.1. Weak cofinal families.

Definition 12.1. We say that the pair (H,J) is weakly admissible if

there exists an f : N → R and a constant b such that for r ≫ 0, H = re−f +b

and d(re−f ) ◦ J = −θ.

Every admissible pair (H,J) is weakly admissible with f = const. Sym-

plectic homology SH∗(M) is defined as a direct limit of SH∗(M,H, J) with

respect to admissible pairs ordered by ≤. We wish to replace “admissible”

with “weakly admissible”. The reason why we wish to do this is because

in section 12.3 we carefully construct a cofinal family of weakly admissible

pairs to show that symplectic homology behaves well under end connect

sums. We construct a partial order ≤ on weakly admissible pairs as follows:

(H0, J0) ≤ (H1, J1) if and only if H0 ≤ H1. We will show that:

SH∗(M) := lim−→
(H,J)

SH∗(M,H, J)

where the direct limit is taken over weakly admissible pairs (H,J) ordered

by ≤. Note that a family of weakly admissible Hamiltonians (Hs, Js) is

cofinal with respect to ≤ if the corresponding functions fs : N → R tend

uniformly to −∞ as s tends to ∞. In order to ensure that this direct limit

exists, we will show that if (H0, J0) ≤ (H1, J1), then there is a natural map

of rings SH∗(M,H0, J0) → SH∗(M,H1, J1).

This map will be a continuation map. In order for a continuation map

to be well defined, we need a family of Hamiltonians Ts joining H0 and H1

such that solutions of the parameterised Floer equation ∂su+Jt∂tu = ∇gtTs
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joining orbits of H0 and H1 stay inside some compact set. To ensure this,

we flatten Hi so that it is constant outside some large compact set, and so

that all the additional orbits created have very negative action. We do this

as follows:

Let D be a constant such that any orbit of H0 or H1 has action greater

than D. Then SH∗(M,Hi, Ji) ∼= SH
[D,∞)
∗ (M,Hi, Ji). Near infinity, we have

that Hi = Ri + bi where Ri = re−fi . We wish to create a new Hamiltonian

Ki such that Ki = Hi on Ri ≤ B where B ≫ 0, and such that Ki is

constant in {Ri > B + 1} where all the additional orbits have action less

than D. We assume that all the orbits of H0 and H1 lie in a compact set. We

have a cylindrical end Ci := Ni × [K,∞) where Ni is the contact manifold

{re−fi = 1} with contact form θ|Ni
and Ri is the coordinate for [K,∞). So,

Hi is linear with slope 1 on this cylindrical end. Because all the orbits of

Hi lie in a compact set, there are no Reeb orbits of length 1 in the contact

manifold Ni. Choose ǫ > 0 such that the length of any Reeb orbit of N0 or

N1 is of distance more than ǫ from 1. We assume that B is large enough

so that Hi is linear with respect to the cylindrical end Ci in Ri ≥ B and

such that Bǫ > −bi − D for i = 0, 1. Finally we let Ki be equal to Hi in

the region {Ri ≤ B}, and Ki = ki(Ri) where ki is constant for Ri ≥ B + 1,

and ki = Ri + bi near B and k′i ≤ 1. This means that the orbits of Ki in

{Ri ≤ B} are the same as the orbits of Hi, and the orbits of Ki in {Ri > B}
have action

Rik
′
i − ki < Ri(1 − ǫ) −Ri − bi < −Bǫ− bi < D.

Hence all the orbits of Ki of action greater than D are the same as the orbits

of Hi.

Let V > 0 be a constant which is greater than the maximum action

difference between any two orbits of K0 or K1. By [26, Lemma 1], there

exists a B1 > B such that any Ji-holomorphic curve crossing both Ri = B+1

and Ri = B1 has area greater than 2V . We now wish to create an almost

complex structure J0
i as follows: we let J0

i = Ji for Ri ≤ B1 and forRi ≫ B1,

we let J0
i be convex with respect to the cylindrical end C (i.e. dr ◦J = −θ).

Let u be a cylinder or pair of pants satisfying Floer’s equation ([32, Formula

8.1]) with respect to (Ki, J
0
i ) such that each cylindrical end of u limits to

a periodic orbit (or multiple of a periodic orbit in the pair of pants case)

inside {Ri ≤ B}. By [26, Lemma 1], u is contained in {Ri ≤ B1}. Then
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using [25, Lemma 1.5] we have that u is contained in {Ri ≤ B}. Hence

SH∗(M,Hi, Ji) ∼= SH
[D,∞)
∗ (M,Hi, J

0
i ) ∼= SH

[D,∞)
∗ (M,Ki, J

0
i ).

We wish to create a continuation map:

SH
[D,∞)
∗ (M,K0, J

0
0 ) → SH

[D,∞)
∗ (M,K1, J

0
1 ).

There exists a family of Hamiltonians As connecting K0 and K1, and such

that As is monotonically increasing and As is constant at infinity. We now

need to carefully construct a family of almost complex structures J0
s con-

necting J0
0 and J0

1 . The continuation map is defined by counting solutions

of:

∂su(s, t) + J∂tu(s, t) = ∇tAs

where ∇t is the gradient with respect to an S
1 family of metrics of the form

ω(·, J0
s ·). We assume that J0

s is convex with respect to the cylindrical end C

for all s. We get compactness as usual from the maximum principle in [25,

Lemma 1.5] because u(s, t) is holomorphic where all the As’s are constant.

Note that a standard parameterised continuation map argument shows that

this map is independent of choices of As.

If f0 and f1 are equal to 0, then we have a monotone increasing family of

admissible Hamiltonians H1
s joining H0 and H1, and almost complex struc-

tures Js joining J0 and J1. The standard continuation map SH∗(M,H0, J0) →
SH∗(M,H1, J1) involves counting solutions of a parameterised Floer equa-

tion with respect to (Hs, Js). We wish to show that this map is the same as

the above continuation map from K0 to K1. The Hamiltonians H1
s are of

the form hs(r) for r ≥ P where h′s is constant. We assume that the almost

complex structures Js are convex with respect to the cylindrical end C for

r ≥ P . Hence [25, Lemma 1.5] ensures all the Floer trajectories with respect

to (Hs, Js) stay inside the compact set r ≤ P . Also there is a constant P ′

such that Ki is a function of r for r ≥ P ′ ≥ P . The definition of Ki depends

on a parameter B which can be arbitrarily large. We can choose B large

enough so that Ki = Hi in the region r ≤ P ′. We choose the functions As

joining K0 and K1 so that As is a function of r for r ≥ P ′. We can also

assume that J0
s = Js. In order to show that the maps are the same, we need

to show that any Floer trajectory associated to (As, J
0
s ) connecting orbits

inside {r ≤ P} is contained in {r ≤ P}. This follows from [25, Lemma 1.5].
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12.2. Transfer maps. In this section we will construct a natural ring ho-

momorphism: SH∗(M) → SH∗(M
′). We say that H is called transfer ad-

missible if H ≤ 0 on M ′. We have: SH∗(M) = lim−→
(H,J)

SH∗(M,H, J) where

the direct limit is taken over transfer admissible Hamiltonians ordered by

≤.

Lemma 12.2. We have an isomorphism of rings,

lim−→
(H,J)

SH
[0,∞)
∗ (M,H, J) ∼= SH∗(M

′)

where the direct limit is taken over transfer admissible Hamiltonians.

Proof. We construct a particular cofinal family of transfer admissible Hamil-

tonians Hi and show the above isomorphism of rings. We can embed M̂ ′

into M̂ by Lemma 2.6. Our cylindrical end C ′ is then a subset of M . We

assume that the action spectrum S := S(∂M ′) is discrete and injective. Let

k : N → R \ S be a function such that k(i) tends to infinity as i tends to

infinity. Let µ : N → R be defined by dist(k(i),S) (dist(a,B) is the shortest

distance between a and B). From now on we just write k instead of k(i),

and similarly for µ.

Define:

A = A(i) := 6k/µ > k > 1.

We can assume that A > k > 1 because we can choose k(i) to make µ(i)

arbitrarily small whilst k(i) is large. We also let ǫ := ǫ(i) tend to 0 as

i tends to infinity. We assume that Hi|M ′ ≤ 0, and has slope k(i) on

1 + ǫ/k ≤ r′ ≤ A− ǫ/k. We also assume that on 1 ≤ r′ ≤ A, Hi = h(r′) for

some function h where h has non-negative derivative ≤ k. For A ≤ r′ ≤ 2A,

we assume that Hi is constant. Let B be this constant. B is arbitrarily

close to k(A − 1). We can assume that B /∈ S. We now describe Hi on the

cylindrical end C. We keep Hi constant until we reach r = 2A + P where

P is some constant large enough so that {r′ ≤ 1} ⊂ {r ≤ P}. This means

that {r′ ≤ A} ⊂ {r ≤ 2A + P} as long as we embed C ′ in the same way

as Lemma 2.6. We then let Hi be of the form f(r) for r ≥ 2A + P where

f ′ < 1
4k and has slope 1

4k for r > 2A+ P + ǫ/k.

Here is a picture of what we have:
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Figure 12.3.
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The action of an orbit on a level set r′ = a is h′(a)a − h(a). The orbits

near r′ = 1 have positive action less than or equal to k. Let p be a point on

an orbit o lying in the region A − ǫ/k ≤ r′ ≤ A. The slope h′(r′) of Hi at

p is ≤ k − µ. Hence, the orbits near r′ = A have action ≤ (k − µ)A− B =

−µA + k → −∞ as i → ∞. So, we can assume that these orbits have

negative action. Also all the orbits in {r′ ≥ 2A, r ≤ 2A + P} are fixed

points, so have action −B < 0. Finally, the orbits in r > 2A + P have

action: ≤ 1
4k.(2A+P )−B = −1

2kA+k+ 1
4Pk → −∞ as i→ ∞. Hence, we

can assume that all the orbits of Hi of non-negative action lie in r′ < 1+ǫ/k.

We now need to show that any differential connecting two orbits of non-

negative action is contained entirely in r′ < 1+ ǫ/k. By [26, Lemma 1] there

exists a K > 0 such that any J holomorphic curve which intersects r′ = A

and r′ = 2A has area greater than KA. Any differential connecting two

orbits of non-negative action must have area ≤ k < KA for i large enough.

This means any differential connecting orbits of non-negative action must

be contained in r′ ≤ 2A. By the maximum principle in [25, Lemma 1.5] we

have that no trajectory or pair of pants can have a maximum in 1 ≤ r′ ≤ 2A.

This means that we have maps SH
[0,∞)
∗ (M,Hi, J) ∼= SH∗(M

′,H ′
i, J

′), where

H ′
i : M̂ ′ → R has slope k. Taking direct limits gives us a vector space

isomorphism

lim−→
(H,J)

SH
[0,∞)
∗ (M,H, J) ∼= SH∗(M

′).

We need to show it is also a ring isomorphism. The pants product gives us

a map:

SH
[0,∞)
∗ (M,Hi, J) ⊗ SH

[0,∞)
∗ (M,Hi, J) → SH

[0,∞)
∗ (M, 2Hi, J).
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If we have a pair of pants u associated to the above product connecting orbits

of non-negative action, then it has area ≤ 2k < KA for i large enough. In

the region A ≤ r′ ≤ 2A, u is holomorphic. This means that it cannot cross

r′ = 2A by [26, Lemma 1], and a maximum principle as before means that

in fact it cannot have a maximum in r′ > 1. �

This lemma enables us to define a transfer map:

SH∗(M) ∼= lim−→
(H,J)

SH∗(M,H, J) → lim−→
(H,J)

SH
[0,∞)
∗ (M,H, J) ∼= SH∗(M

′).

A Hamiltonian is called weakly transfer admissible if it is weakly

admissible and is negative when restricted to M ′. We can combine the above

results with the results of section 12.1 to construct the above transfer map

using a cofinal family of weakly transfer admissible Hamiltonians. We will

need to construct a cofinal family of weakly transfer admissible Hamiltonians

in section 12.3 to show that a particular transfer map is an isomorphism of

rings.

Here is an application of the transfer map:

Lemma 12.4. If SH∗(M) = 0, then SH∗(M
′) = 0.

Proof. We have a commutative diagram:

Hn−∗(M) Hn−∗(M ′)

SH∗(M) SH∗(M
′)

//

//
�� ��

a

c

b d

Suppose for a contradiction SH∗(M
′) 6= 0. Then [32, Section 8] says that

the map d is non-zero in degree n. Also the map a is an isomorphism in

degree n. Hence d ◦ a is non-zero, and so c ◦ b = d ◦ a is non-zero. This

means that SH∗(M) 6= 0 and we get a contradiction. �

Corollary 12.5. If M is subcritical and SH∗(M
′) 6= 0, then M ′ cannot be

embedded in M as an exact codimension 0 submanifold. In particular, if

H1(M
′) = 0 then M ′ cannot be symplectically embedded into M .

Proof. By one of the applications of [26], we have that SH∗(M) = 0 because

M is subcritical. The result follows from the above lemma. �
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12.3. Handle attaching. We will now describe handle attaching in detail

as in [6, Section 2.2]. The paper [10] or [7, Theorem 9.4] ensures that this

construction corresponds to attaching a Stein 1-handle. We will define φ,

pi, qi, X, ω, ψ(x, y) as in [6, Section 2.2]. We will now remind the reader

what these variables are: We set k = 1, so we are describing 1-handles only.

We let R
2n have coordinates (p1, q1, . . . , pn, qn).

ω :=
∑

i

dpi ∧ dqi,

φ :=
1

4

n−1∑

i=1

(
q2i + p2

i

)
+ q2n − 1

2
p2

n,

X := ∇φ =
1

2

n−1∑

i=1

(
∂

∂qi
+

∂

∂pi

)
+ 2

∂

∂qn
− ∂

∂pn
.

ψ is a function of x and y where:

x :=

n−1∑

i=1

(
Aiq

2
i +Bip

2
i

)
,

y := Bnp
2
n,

and Ai, Bi > 0 are constants. It satisfies X.ψ > 0 provided that:

∂ψ

∂x
≥ 0,

∂ψ

∂y
≤ 0,

∂ψ

∂x
(x, 0) > 0,

∂ψ

∂y
(y, 0) < 0,

and the partial derivatives are not simultaneously 0. We can choose ψ so

that the level sets {φ = −1} and {ψ = 1} agree outside some compact

set. This ensures that when we glue the handle onto our convex symplectic

manifold, it still has a smooth boundary so we don’t have to smooth the

handle once we have attached it.

The handle H = H2n
1 := {φ ≥ −1} ∩ {ψ ≤ 1}. We define ∂−H to be

the boundary {φ = −1}. We can ensure that the only 1-periodic orbit of ψ

is the critical point at the origin by [6, Section 2.2]. We wish to construct

a family of 1-handles (constructed in the same way as H) (Hl)l∈N with the

following properties:

(1) Hl+1 ⊂ Hl

(2) The attaching region ∂−Hl+1 is a subset of ∂−Hl

(3) As l tends to infinity, Hl converges uniformly to the core of the

handle.

This can be done by shrinking ψ.
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Thinner and thinner attaching regions.

Core

H3H2

H1

φ = −1

Let M be a compact convex symplectic manifold. After a deformation, we

can assume that the boundary ofM has a region A which is contactomorphic

to the attaching region ∂−H1. We can also ensure that the period spectrum

of ∂M is discrete and injective (we might have to deform the region A and

φ slightly and hence all the handles). We can use the region A to attach

the handle Hl to M to create a new compact convex symplectic manifold

Ml := M ∪∂−Hl
Hl. We have that Ml+1 ⊂Ml and the boundary of each Ml

is transverse to the Liouville vector field on M1. Let K be an admissible

Hamiltonian on M̂ . We assume that K has slope S in a neighbourhood of

∂M . We choose l large enough so that the attaching region P := ∂−Hl has

the property that a Reeb flowline outside P intersecting P twice has length

greater than S. We can now extend the Hamiltonian K to a Hamiltonian

K ′ : Ml → R using the function Bψ where B is some constant. Hence ∂Ml

is a level set of K ′ and K ′ is linearly increasing on a neighbourhood of ∂Ml.

Hence we can extend K ′ to an admissible Hamiltonian on M̂l. The periodic

orbits ofK ′ are the same as the periodic orbits ofK with an extra fixed point

at the origin of the 1-handle. We can ensure that the index of the extra fixed

point at the origin of the 1-handle has index strictly increasing as S increases

(see the last part of the proof of Theorem 1.11 in [6, Section 3.4]). Because

∂Ml is transverse to the Liouville field of ∂M1, we have that M̂1 = M̂l

and K ′ is weakly admissible. Hence we have a cofinal family of weakly

transfer admissible Hamiltonians K ′. The only orbit outside M ⊂ M̂1 has
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arbitrarily large index, hence these K ′’s induce a transfer isomorphism of

rings SH∗(M) → SH∗(M1).
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