1. COHOMOLOGY OF (GRASSMANNIAN.

We will first compute the cohomology ring in the case when n = 1 (this is in the homework)
Lemma 1.1. We have the following graded algebra isomorphism
H*(Gr1(R*),Z/27) = H*(RP*>;Z/2Z) = (Z/2Z)]al
where a € H?(RP>,Z/27) has degree 2.

Proof. RPF is constructed as a CW complex by attaching a k — 1 to RP*~! via the double
covering map S¥~! — RP*~!. The cellular cohomology with Z/27Z coefficients is then the
vector space. Hence we just need to compute the ring structure. This follows from the

following commutative diagram where ¢ + j = n:
U

HY(RP™; Z/27) x HI(RP™Y; Z/27) H™(RPY; Z/27)
[ = s | =
H(RP™; RP" — RP/; Z/27) x HI(RP"; RP" — RP}; Z/2Z)— H"(RP";RP" — RP’; Z/27)

| = ] | =

H{R";R" —R/; Z/27) x H (R R" — R'; Z/27y——— H"(R";R" — 0; Z/27)
| = . =

H{(R, R —0;Z/27) x H (R, RV —0; Z/22) H™(R";R"™ — 0; Z/2Z)

O

Corollary 1.2. H*((RP>)") = (Z/2Z)[a1,- - , ay].
Note that (RP*°)" classifies vector bundles of the form @ ;7; where ~; is a line bundle

up to isomorphism which preserve the direct sum decomposition and the ordering of the line
bundles v1,-- -, Vn.

Theorem 1.3 (Leray Hirsch Theorem). Let 7 : E — B be a fiber bundle (all our spaces
are CW complexes). Let ¢ : FF — FE be the natural inclusion map of the fiber and suppose
that there is a linear map
s: H*(F;A) — H*(E;A)
satisfying ¢* o s = idp+(r). Then the natural linear map
H*(F;A)® H*(B;A) — H*(E;A), a®p— s(a)Un*s

is an isomorphism.
In particular the natural map
7 H(B;A) — H*(E;A)
is injective.
Later on we will also need a proof of a relative version of the Leray-Hirsch theorem.
Theorem 1.4 (Relative Leray Hirsch Theorem). Let 7 : E — B be a fiber bundle
(all our spaces are CW complexes) and let Ey C E be a subbundle. Let « : FF — E be the

natural inclusion map of the fiber and let Fy C F be the fiber of Ey. Suppose that there is a
linear map

s: H*(F, Fo; \) — H*(E, Ey; A)
1
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satisfying ¢* o s = idy+(F ). Then the natural linear map
H*(F,Fo; A) @ H*(B;A) — H*(E,Ep;A), a®p — s(a)Un™p
is an isomorphism.

We will only prove the Leray-Hirsch theorem as the relative version of this theorem has
exactly the same proof.

Proof. This argument would be straightforward if we knew about spectral sequences, but we
don’t. As a result we will do this a different (but directly related) way. Now B is a direct
limit of compact sets Ko C K1 C ---. Therefore is sufficient for us to show that

H*(F;A) @ H(Ki; A) — H*(Elk,;A), a®p — s(a)Un™p

is an isomorphism for all 4.

So from now on we will assume that B is compact. Let Uy, --- ,U,, be open subsets of B
so that E|y, is trivial. Define Uo; = U;j<;U;. Suppose (by induction) we have shown that the
map

Foi : H(F;A) @ H (Uci; A) — H*(Ely_;; ), Fei(a® p) =s(a)Un*p

is an isomorphism for some i. We now wish to show that the corresponding map F; 1 is an
isomorphism. Consider the following commutative diagram:

a®B = (s(a)|lu;nu; ) UB T
H*(F;A) @ H (Usy N Uy A) H*(Ely_,nvis: M)
T a®B®a @B = (s(a)lu ) UB® (s(@)|u,,;) U b’ T

H*(Fi 8) ® H* (Usii A) @ H*(F; A) © H*(Ups1; A——H*(E

Ucis A) S H*(E’Ui+1; A)

I 6 ®B = (s(e)lusyy) UB I
H*(F;A) @ H*(Uciy1; A) H*(Elu 15 A)

I I

The vertical arrows form a Mayor-Vietoris long exact sequence. Also the horizontal arrows
are isomorphisms at the top and the bottom for all . Hence by the five lemma we get our
isomorphism. O

We have the following corollary of the Leray-Hirsch theorem:

Theorem 1.5. Thom Isomorphism Theorem over Z/2 Let 7 : E — B be a rank n
vector bundle and define Eg = E — B where B C FE is the zero section. Then there is a class
a € H"(E, Ey; Z/2Z) so that the map

H*(B;Z/27) — H*™™(E,Ey;Z/2Z), B — BU«
is an isomorphism.

This theorem is true over any coefficient field if we assumed that E is an oriented vector
bundle.

Definition 1.6. The unoriented Euler class of a vector bundle 7 : E — B as above is
a class e(E;Z/27) € H"(FE;7/27) given by the image of the class « under the composition
H"(E, Eo; A) — H™(E; ) — H™(B; A).
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Note that if F is an oriented vector bundle then we can define the Euler class e(E; A) over
any coefficient ring A. Usually when people talk about the Euler class, they are talking about
e(E;Z) (we will call this the Euler class) and we will write e(E).

Proof. We will only prove our theorem when the coefficient field is Z/2Z. The proof is exactly
the same if we have oriented vector bundles and another coefficient ring.

Our fiber is F' = R™ and the fiber of 7|g, is Fp = R™ — 0. By the relative Leray-Hirsch
theorem it is sufficient to show that there is a class « € H"(FE, Ey; A) whose restriction to
H*(R™,0;Z/2Z) = 7Z/2Z is the unit 1 € Z/27Z. We assume that B is connected.

Let (U;);en be an open cover by relatively compact sets where E|y, is trivial. Define U.; =
Uj<iU;. We'll suppose that U.; and U; is connected for all i € N and that F' = R" C E|y,.
Suppose (by induction) there is a class o; € H"(E|v_,; Eolu.,: Z/2Z) whose restriction to
H"(R™;R™ —0;Z/27Z) is 1. Consider the Mayor-Vietoris sequence:

— H"(Elu_,.,; Eolv_,: Z/2Z) =

b
Hn(E|U<¢; EO‘U<¢;Z/QZ)@H11(E|U¢ ; E0|U' Z/ZZ) — Hn(E‘U<¢ﬁUi+1;EO’U<iﬂU¢+1;Z/QZ)'

419 i1
Since
H*(E\u, ,; Eolv,,,;Z/2Z) = H* (Uiy1;Z/2Z) @ H*(R",0; Z/27Z) = H* " (Uj+1;Z]2) = /27

i1 +17

we get a class o/ € H*(E|y, ;s Eolu,,,;Z/2Z) mapping to 1 under the above isomorphism
and hence whose restriction to H*(R",0;Z/2Z) is 1. Also since E|y_,v,,, is trivial, we get
get using similar reasoning that the images of a,, and o/ in H*(E|y_,v,,,) are equal. Hence
b(a; ® ') = 0. Hence there is a class a1 € H"(E|y_,,,; Eolu.,.,;Z/2Z) so that a(a; ® o).

This class maps to 1 € H*(R",0;Z/27Z). O

The Euler class satisfies the following properties:

(1) (Functoriality) If 7 : E — B is isomorphic to f*E’ for some other bundle 7’ :
E' — B’ and function f: B — B’ then e(E;A) = f*(e(E'; A)).

(2) (Whitney Sum Formula) If 7 : E — B and 7’ : E/ — B are two vector bundles
over the same base then e(E @ E'; A) = e(E;A) Ue(E"; A).

(3) (Normalization) If F admits a nowhere zero section then e(E; A) = 0.

(4) (Orientation) If E is an oriented vector bundle and E is the same bundle with the

opposite orientation then e(E) = —e(E).

The following is a geometric interpretation of the Euler class when the base is a compact
manifold. We need a definition first.

Definition 1.7. Let M7, M5 be submanifolds of a manifold X. Then M; is transverse to
My if for every point x € M7 N My, we have that

codim(T, My NT, My C T, X) = codim(T,M; C T, X) + codim(T, My C T, X).

Let 7 : B — B be a smooth vector bundle over a smooth compact manifold B. A smooth
section s : B — F is transverse to 0 if the submanifold s(B) C E is transverse to the zero
section B C FE.

Note that if M; intersects Ms transversely then M; N Ms is a manifold. Also if X, M;
and My are oriented (in other words T X, TM; and T M, are oriented) then M; N My has an
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orientation defined as follows: Let N(M; N My), NM; and NMs be the normal bundles of
My N Ms, My and M> inside X. Then we have isomorphisms

TM; & NMy = TX|a, TMs® NMo 2 TX| s,
T(Ml N MQ) ) N(M1 N Mg) = TX‘MlﬂMQ}
N(Ml) © N(MQ) = NM1|M1QM2 ©® NM1|M1I'-1M2'

The first two isomorphisms give us an orientation on NM; and N Ms and the last one gives
us an orientation on N(Mj; N Mj). The third isomorphism then gives us an orientation on
T(M; N Ma) called the intersection orientation.

Also note that any compact manifold M (whether oriented or not) has a fundamental class
[M] € H"(M;Z/2Z) over Z/2Z.

It turns out that a ‘generic’ section is transverse (‘generic’ will be defined precisely later
in the course). I won’t prove this for the moment (maybe later).

Lemma 1.8. Let 7 : £ — B be a smooth vector bundle over a smooth compact manifold
B with a smooth section s transverse to 0. Then e(E;Z/2Z) is Poincaré dual to [s71(0)] €
H*(B;Z)27Z).

If £ and B are oriented then s~!(0) has the intersection orientation and the above lemma,
makes sense in this case over any coefficient field A.

Our goal is to compute the cohomology of Gr,(R*) and so we must continue....

Definition 1.9. Let # : £ — B be a rank n vector bundle. The projective bundle
P(E) — B is the fiber bundle whose fiber at a point b € B is P(7~1(b)) (Le. the set of lines
inside 7=1(b)).

Lemma 1.10. Let 7 : E — B be a rank n vector bundle. The natural map H*(B) —
H*(P(E)) is injective. In fact H*(P(E)) = H*(RP" ') ® H*(B) and the natural map
H*(B) — H*(P(E)) is the inclusion map into the first factor.

Proof. Now PP(E) as a canonical line bundle vz whose fiber at a point « € E is the line
| passing through z inside 7—!(w(x)). Let f : P(E) — RP* be the classifying map for
this line bundle. Recall that H*(RP>;Z/2Z) = (Z/2Z)]a] where a € H*(RP>®) — 0. We
will also write H*(RP" 1) = (Z/2Z)[b]/(b"). Recall that our fiber F is equal to RP" 1.
Since « restricted to each fiber is O(—1), we get that f*a restricted to the fiber FF = RP"~!
is b. Hence f*(a™)|r = b™ which implies that that map H*(F) — H*(F') is surjective.
Hence by the Leray-Hirsch theorem, H*(P(E)) & H*(RP"!) ® H*(B) and the natural map
H*(B) — H*(P(E)) is the inclusion map into the first factor. O

Definition 1.11. Let 7 : £ — B be a real vector bundle. A splitting map for E is
amap f: B — B so that f*E = @& ;7 where ~; are line bundles over B’ and where
f*: H*(B) — H*(B’) is injective.

Lemma 1.12. Let 7 : E — B be a vector bundle. Let P : P(E) — B be the associated
projective bundle. Then there is a line subbundle v C P*E.

Proof. Here ~y is defined to be the line in P*E which sends a point 2 € P(FE) to the corre-
sponding line in F. O

Lemma 1.13. Every real vector bundle 7 : E — B of rank n has a splitting map.
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Proof. Suppose (inductively) we have constructed a map Py : By — B for some 0 < k < n
so that P}(E) =V @ @®F_ 7 where V is a vector bundle and ~; are line bundles and so that
P} : H*(B) — H*(By) is injective. Define By = P(V) and let p : P(V) — B’ be the
natural map. Then by Lemma 1.12 we have that p*(V) = V' & ;11 where y;11 is a line
subbundle of V. Define

Pyy1: By — B, Py =Piop.
Then P E = V' @artly. Also p* : H*(By) — H*(Byy1) is injective by Lemma 1.10.

1=
Hence P | : H*(B) — H*(Bjy1) is injective. Therefore we are done by induction.
([l

Definition 1.14. A polynomial p(ay,--- ,ay) € (Z/2Z)[a1,- - ,ay] is symmetricif p(ay,--- ,a,) =
p(a(1), 5 Ao(n)) for any permutation o of {1,--- ,n}.
The nth symmetric function o; € (Z/2Z)[a1,- - ,ay] is the polynomial

> H ajy.

0<j1<jo<-<ji<n k=1
We have the following lemma (which we won’t prove):

Lemma 1.15. The subring R C R = (Z/27Z)[a1,- - - , a,] of symmetric polynomials is freely
generated by elementary symmetric functions o1, --- ,0,. Hence

R=(Z/)2Z)[o1,--- ,00] C (Z/2Z)]a1,- - , an)-

Theorem 1.16. Let
hy @ (RP)" — G, (R™)
be the classifying map for the rank n bundle @} ;7{°. Then

RY - H*(Grp(R®)) — H*((RP>®)") 22 (Z/2Z)[ay, - , ay]

is injective and its image is the free algebra generated by the elementary symmetric functions
01, ,Op.
Hence
H*(Gry(R™)) = (Z/2Z)|oy, - -+ , on]
for natural classes
o1 € HY(Grp(R®)),--- 0, € H"(Grp,(R™®)).

Proof. First of all the natural map A} : H*(Grp(R*)) — H*((RP*>)") is injective for the
following reason:

Let f : B — Gr,(R*) be the splitting map. Let g : B — (RP>°)" be the corresponding
classifying map for f*yo°. Then since (gohy,)*yo° = f*4>° and since Gry,(R™) is a classifying
space, we can homotope f so that f = goh,,. Since f*: H*(Gr,(R*)) — H*(B) is injective,
we get that k) : H*(Gr,(R*)) — H*((RP>)") is injective.

The image of the map must be contained inside (Z/2Z)[o1,- - - , 0y] since permuting linear
bundles does not change the isomorphism type of their direct sum decomposition. This means
that if we compose h,, with a map permuting the factors inside (RP)"™, we get a map which
is homotopic to h,,.

Hence it is sufficient for us to show that o; is in the image of A}, for all 7. This is done in the
following way: We have that hf(e(75°)) = e(®l-175°) =[], a; = 0. Hence o, € Im(h}).



We have: H*((RP"1)"=1) = (2/2Z)[d},--- ,d!,_,]. Let o}, € H*((RP"1)»~1) be the kth

symmetric function in af,--- ,al,_;.

Now suppose (by induction) that the image of
Bt 2 H*(Grp_1(R®)) — H*(RP>®)"~1

contains o, for all k.
Consider the commutative diagram:

h*
H* (RP®)"1)2H* (Gry 1 (R))
PZ—l W
n
H*((RP®)") (G, (R™)))

Consider the restricted map:

A= [‘271’(2/22)[01,"' On—1] * (Z/QZ) [017 T 7071—1] — (Z/QZ) [0/17 T

’ O';Lfl]'

This is an isomorphism since ¢} _; (a,) = 0. Since o}, € Im(h}_,) we then get that o}, € Im(h})

n—1

by looking at the above commutative diagram and the fact that A’ is an isomorphism. Hence

by induction we have that Im(h}) = (Z/2Z)[o1,- - , On—1, 0n].

O



