
1. Cohomology of Grassmannian.

We will first compute the cohomology ring in the case when n = 1 (this is in the homework)

Lemma 1.1. We have the following graded algebra isomorphism

H∗(Gr1(R∞),Z/2Z) = H∗(RP∞;Z/2Z) ∼= (Z/2Z)[a]

where a ∈ H2(RP∞,Z/2Z) has degree 2.

Proof. RPk is constructed as a CW complex by attaching a k − 1 to RPk−1 via the double
covering map Sk−1 −→ RPk−1. The cellular cohomology with Z/2Z coefficients is then the
vector space. Hence we just need to compute the ring structure. This follows from the
following commutative diagram where i+ j = n:

H i(RPn;Z/2Z)×Hj(RPn;Z/2Z) Hn(RPn;Z/2Z)

H i(RPn;RPn − RPj ;Z/2Z)×Hj(RPn;RPn − RPi;Z/2Z) Hn(RPn;RPn − RP0;Z/2Z)

H i(Rn;Rn − Rj ;Z/2Z)×Hj(Rn;Rn −Ri;Z/2Z) Hn(Rn;Rn − 0;Z/2Z)

H i(Ri;Ri − 0;Z/2Z)×Hj(Rj ;Rj − 0;Z/2Z) Hn(Rn;Rn − 0;Z/2Z)

∪

∪

∪∪

×

∼=

∼=

∼=

∼=

∼=

∼=

�

Corollary 1.2. H∗((RP∞)n) ∼= (Z/2Z)[a1, · · · , an].

Note that (RP∞)n classifies vector bundles of the form ⊕ni=1γi where γi is a line bundle
up to isomorphism which preserve the direct sum decomposition and the ordering of the line
bundles γ1, · · · , γn.

Theorem 1.3 (Leray Hirsch Theorem). Let π : E −→ B be a fiber bundle (all our spaces
are CW complexes). Let ι : F −→ E be the natural inclusion map of the fiber and suppose
that there is a linear map

s : H∗(F ; Λ) −→ H∗(E; Λ)

satisfying ι∗ ◦ s = idH∗(F ). Then the natural linear map

H∗(F ; Λ)⊗H∗(B; Λ) −→ H∗(E; Λ), α⊗ β −→ s(α) ∪ π∗β
is an isomorphism.

In particular the natural map

π∗ : H∗(B; Λ) −→ H∗(E; Λ)

is injective.

Later on we will also need a proof of a relative version of the Leray-Hirsch theorem.

Theorem 1.4 (Relative Leray Hirsch Theorem). Let π : E −→ B be a fiber bundle
(all our spaces are CW complexes) and let E0 ⊂ E be a subbundle. Let ι : F −→ E be the
natural inclusion map of the fiber and let F0 ⊂ F be the fiber of E0. Suppose that there is a
linear map

s : H∗(F, F0; Λ) −→ H∗(E,E0; Λ)
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satisfying ι∗ ◦ s = idH∗(F,F0). Then the natural linear map

H∗(F, F0; Λ)⊗H∗(B; Λ) −→ H∗(E,E0; Λ), α⊗ β −→ s(α) ∪ π∗β

is an isomorphism.

We will only prove the Leray-Hirsch theorem as the relative version of this theorem has
exactly the same proof.

Proof. This argument would be straightforward if we knew about spectral sequences, but we
don’t. As a result we will do this a different (but directly related) way. Now B is a direct
limit of compact sets K0 ⊂ K1 ⊂ · · · . Therefore is sufficient for us to show that

H∗(F ; Λ)⊗H∗(Ki; Λ) −→ H∗(E|Ki ; Λ), α⊗ β −→ s(α) ∪ π∗β

is an isomorphism for all i.
So from now on we will assume that B is compact. Let U1, · · · , Um be open subsets of B

so that E|Ui is trivial. Define U<i ≡ ∪j<iUi. Suppose (by induction) we have shown that the
map

F<i : H∗(F ; Λ)⊗H∗(U<i; Λ) −→ H∗(E|U<i ; Λ), F<i(α⊗ β) ≡ s(α) ∪ π∗β

is an isomorphism for some i. We now wish to show that the corresponding map F<i+1 is an
isomorphism. Consider the following commutative diagram:

H∗(F ; Λ)⊗H∗(U<i ∩ Ui+1; Λ)

H∗(F ; Λ)⊗H∗(U<i; Λ)⊕H∗(F ; Λ)⊗H∗(Ui+1; Λ)

H∗(F ; Λ)⊗H∗(U<i+1; Λ)

H∗(E|U<i∩Ui+1 ; Λ)

H∗(E|U<i ; Λ)⊕H∗(E|Ui+1 ; Λ)

H∗(E|U<i+1 ; Λ)

α⊗ β → (s(α)|U<i∩Ui+1
) ∪ β

α⊗ β ⊕ α′ ⊗ β′ → (s(α)|U<i
) ∪ β ⊕ (s(α′)|U<i

) ∪ β′

α⊗ β → (s(α)|U<i+1
) ∪ β

The vertical arrows form a Mayor-Vietoris long exact sequence. Also the horizontal arrows
are isomorphisms at the top and the bottom for all i. Hence by the five lemma we get our
isomorphism. �

We have the following corollary of the Leray-Hirsch theorem:

Theorem 1.5. Thom Isomorphism Theorem over Z/2 Let π : E −→ B be a rank n
vector bundle and define E0 ≡ E −B where B ⊂ E is the zero section. Then there is a class
α ∈ Hn(E,E0;Z/2Z) so that the map

H∗(B;Z/2Z) −→ H∗+n(E,E0;Z/2Z), β −→ β ∪ α

is an isomorphism.

This theorem is true over any coefficient field if we assumed that E is an oriented vector
bundle.

Definition 1.6. The unoriented Euler class of a vector bundle π : E −→ B as above is
a class e(E;Z/2Z) ∈ Hn(E;Z/2Z) given by the image of the class α under the composition
Hn(E,E0; Λ) −→ Hn(E; Λ) −→ Hn(B; Λ).
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Note that if E is an oriented vector bundle then we can define the Euler class e(E; Λ) over
any coefficient ring λ. Usually when people talk about the Euler class, they are talking about
e(E;Z) (we will call this the Euler class) and we will write e(E).

Proof. We will only prove our theorem when the coefficient field is Z/2Z. The proof is exactly
the same if we have oriented vector bundles and another coefficient ring.

Our fiber is F = Rn and the fiber of π|E0 is F0 = Rn − 0. By the relative Leray-Hirsch
theorem it is sufficient to show that there is a class α ∈ Hn(E,E0; Λ) whose restriction to
H∗(Rn, 0;Z/2Z) ∼= Z/2Z is the unit 1 ∈ Z/2Z. We assume that B is connected.

Let (Ui)i∈N be an open cover by relatively compact sets where E|Ui is trivial. Define U<i ≡
∪j<iUj . We’ll suppose that U<i and Ui is connected for all i ∈ N and that F = Rn ⊂ E|U0 .
Suppose (by induction) there is a class αi ∈ Hn(E|U<i ;E0|U<i ;Z/2Z) whose restriction to
Hn(Rn;Rn − 0;Z/2Z) is 1. Consider the Mayor-Vietoris sequence:

−→ Hn(E|U<i+1 ;E0|U<i+1 ;Z/2Z)
a−→

Hn(E|U<i ;E0|U<i ;Z/2Z)⊕Hn(E|Ui+1 ;E0|Ui+1 ;Z/2Z)
b−→ Hn(E|U<i∩Ui+1 ;E0|U<i∩Ui+1 ;Z/2Z).

Since

H∗(E|Ui+1 ;E0|Ui+1 ;Z/2Z) = H∗(Ui+1;Z/2Z)⊗H∗(Rn, 0;Z/2Z) ∼= H∗−n(Ui+1;Z/2) = Z/2Z

we get a class α′ ∈ H∗(E|Ui+1 ;E0|Ui+1 ;Z/2Z) mapping to 1 under the above isomorphism
and hence whose restriction to H∗(Rn, 0;Z/2Z) is 1. Also since E|U<i∩Ui+1 is trivial, we get
get using similar reasoning that the images of αn and α′ in H∗(E|U<i∩Ui+1) are equal. Hence
b(αi ⊕α′) = 0. Hence there is a class αi+1 ∈ Hn(E|U<i+1 ;E0|U<i+1 ;Z/2Z) so that a(αi ⊕α′).
This class maps to 1 ∈ H∗(Rn, 0;Z/2Z). �

The Euler class satisfies the following properties:

(1) (Functoriality) If π : E −→ B is isomorphic to f∗E′ for some other bundle π′ :
E′ −→ B′ and function f : B −→ B′ then e(E; Λ) = f∗(e(E′; Λ)).

(2) (Whitney Sum Formula) If π : E −→ B and π′ : E′ −→ B are two vector bundles
over the same base then e(E ⊕ E′; Λ) = e(E; Λ) ∪ e(E′; Λ).

(3) (Normalization) If E admits a nowhere zero section then e(E; Λ) = 0.
(4) (Orientation) If E is an oriented vector bundle and E is the same bundle with the

opposite orientation then e(E) = −e(E).

The following is a geometric interpretation of the Euler class when the base is a compact
manifold. We need a definition first.

Definition 1.7. Let M1,M2 be submanifolds of a manifold X. Then M1 is transverse to
M2 if for every point x ∈M1 ∩M2, we have that

codim(TxM1 ∩ TxM2 ⊂ TxX) = codim(TxM1 ⊂ TxX) + codim(TxM2 ⊂ TxX).

Let π : E −→ B be a smooth vector bundle over a smooth compact manifold B. A smooth
section s : B −→ E is transverse to 0 if the submanifold s(B) ⊂ E is transverse to the zero
section B ⊂ E.

Note that if M1 intersects M2 transversely then M1 ∩M2 is a manifold. Also if X, M1

and M2 are oriented (in other words TX,TM1 and TM2 are oriented) then M1 ∩M2 has an
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orientation defined as follows: Let N(M1 ∩M2), NM1 and NM2 be the normal bundles of
M1 ∩M2, M1 and M2 inside X. Then we have isomorphisms

TM1 ⊕NM1
∼= TX|M1 , TM2 ⊕NM2

∼= TX|M2 ,

T (M1 ∩M2)⊕N(M1 ∩M2) ∼= TX|M1∩M2 ,

N(M1)⊕N(M2) ∼= NM1|M1∩M2 ⊕NM1|M1∩M2 .

The first two isomorphisms give us an orientation on NM1 and NM2 and the last one gives
us an orientation on N(M1 ∩M2). The third isomorphism then gives us an orientation on
T (M1 ∩M2) called the intersection orientation.

Also note that any compact manifold M (whether oriented or not) has a fundamental class
[M ] ∈ Hn(M ;Z/2Z) over Z/2Z.

It turns out that a ‘generic’ section is transverse (‘generic’ will be defined precisely later
in the course). I won’t prove this for the moment (maybe later).

Lemma 1.8. Let π : E −→ B be a smooth vector bundle over a smooth compact manifold
B with a smooth section s transverse to 0. Then e(E;Z/2Z) is Poincaré dual to [s−1(0)] ∈
H∗(B;Z/2Z).

If E and B are oriented then s−1(0) has the intersection orientation and the above lemma
makes sense in this case over any coefficient field Λ.

Our goal is to compute the cohomology of Grn(R∞) and so we must continue....

Definition 1.9. Let π : E −→ B be a rank n vector bundle. The projective bundle
P(E) −→ B is the fiber bundle whose fiber at a point b ∈ B is P(π−1(b)) (I.e. the set of lines
inside π−1(b)).

Lemma 1.10. Let π : E −→ B be a rank n vector bundle. The natural map H∗(B) −→
H∗(P(E)) is injective. In fact H∗(P(E)) ∼= H∗(RPn−1) ⊗ H∗(B) and the natural map
H∗(B) −→ H∗(P(E)) is the inclusion map into the first factor.

Proof. Now PP(E) as a canonical line bundle γE whose fiber at a point x ∈ E is the line
l passing through x inside π−1(π(x)). Let f : P(E) −→ RP∞ be the classifying map for
this line bundle. Recall that H∗(RP∞;Z/2Z) = (Z/2Z)[a] where a ∈ H2(RP∞) − 0. We
will also write H∗(RPn−1) = (Z/2Z)[b]/(bn). Recall that our fiber F is equal to RPn−1.
Since γ restricted to each fiber is O(−1), we get that f∗a restricted to the fiber F = RPn−1
is b. Hence f∗(am)|F = bm which implies that that map H∗(E) −→ H∗(F ) is surjective.
Hence by the Leray-Hirsch theorem, H∗(P(E)) ∼= H∗(RPn−1)⊗H∗(B) and the natural map
H∗(B) −→ H∗(P(E)) is the inclusion map into the first factor. �

Definition 1.11. Let π : E −→ B be a real vector bundle. A splitting map for E is
a map f : B′ −→ B so that f∗E ∼= ⊕ni=1γi where γi are line bundles over B′ and where
f∗ : H∗(B) −→ H∗(B′) is injective.

Lemma 1.12. Let π : E −→ B be a vector bundle. Let P : P(E) −→ B be the associated
projective bundle. Then there is a line subbundle γ ⊂ P ∗E.

Proof. Here γ is defined to be the line in P ∗E which sends a point x ∈ P(E) to the corre-
sponding line in E. �

Lemma 1.13. Every real vector bundle π : E −→ B of rank n has a splitting map.
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Proof. Suppose (inductively) we have constructed a map Pk : Bk −→ B for some 0 ≤ k < n
so that P ∗k (E) = V

⊕
⊕ki=1γi where V is a vector bundle and γi are line bundles and so that

P ∗k : H∗(B) −→ H∗(Bk) is injective. Define Bk+1 ≡ P(V ) and let p : P(V ) −→ B′ be the
natural map. Then by Lemma 1.12 we have that p∗(V ) ∼= V ′ ⊕ γk+1 where γk+1 is a line
subbundle of V . Define

Pk+1 : Bk+1 −→ B, Pk+1 ≡ Pk ◦ p.

Then P ∗k+1E = V ′
⊕
⊕k+1
i=1 γi. Also p∗ : H∗(Bk) −→ H∗(Bk+1) is injective by Lemma 1.10.

Hence P ∗k+1 : H∗(B) −→ H∗(Bk+1) is injective. Therefore we are done by induction.
�

Definition 1.14. A polynomial p(a1, · · · , an) ∈ (Z/2Z)[a1, · · · , an] is symmetric if p(a1, · · · , an) =
p(aσ(1), · · · , aσ(n)) for any permutation σ of {1, · · · , n}.

The nth symmetric function σi ∈ (Z/2Z)[a1, · · · , an] is the polynomial∑
0≤j1<j2<···<ji≤n

i∏
k=1

ajk .

We have the following lemma (which we won’t prove):

Lemma 1.15. The subring Rσ ⊂ R ≡ (Z/2Z)[a1, · · · , an] of symmetric polynomials is freely
generated by elementary symmetric functions σ1, · · · , σn. Hence

R ∼= (Z/2Z)[σ1, · · · , σn] ⊂ (Z/2Z)[a1, · · · , an].

Theorem 1.16. Let

hn : (RP∞)n −→ Grn(R∞)

be the classifying map for the rank n bundle ⊕ni=1γ
∞
1 . Then

h∗n : H∗(Grn(R∞)) −→ H∗((RP∞)n) ∼= (Z/2Z)[a1, · · · , an]

is injective and its image is the free algebra generated by the elementary symmetric functions
σ1, · · · , σn.

Hence

H∗(Grn(R∞)) ∼= (Z/2Z)[σ1, · · · , σn]

for natural classes

σ1 ∈ H1(Grn(R∞)), · · · , σn ∈ Hn(Grn(R∞)).

Proof. First of all the natural map h∗n : H∗(Grn(R∞)) −→ H∗((RP∞)n) is injective for the
following reason:

Let f : B −→ Grn(R∞) be the splitting map. Let g : B −→ (RP∞)n be the corresponding
classifying map for f∗γ∞n . Then since (g◦hn)∗γ∞n

∼= f∗γ∞n and since Grn(R∞) is a classifying
space, we can homotope f so that f = g◦hn. Since f∗ : H∗(Grn(R∞)) −→ H∗(B) is injective,
we get that h∗n : H∗(Grn(R∞)) −→ H∗((RP∞)n) is injective.

The image of the map must be contained inside (Z/2Z)[σ1, · · · , σn] since permuting linear
bundles does not change the isomorphism type of their direct sum decomposition. This means
that if we compose hn with a map permuting the factors inside (RP)n, we get a map which
is homotopic to hn.

Hence it is sufficient for us to show that σi is in the image of h∗n for all i. This is done in the
following way: We have that h∗n(e(γ∞n )) = e(⊕ni=1γ

∞
1 ) =

∏n
i=1 ai = σn. Hence σn ∈ Im(h∗n).
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We have: H∗((RPn−1)n−1) = (Z/2Z)[a′1, · · · , a′n−1]. Let σ′k ∈ H∗((RPn−1)n−1) be the kth
symmetric function in a′1, · · · , a′n−1.

Now suppose (by induction) that the image of

hn−1 : H∗(Grn−1(R∞)) −→ H∗(RP∞)n−1

contains σ′k for all k.
Consider the commutative diagram:

H∗(Grn(R∞)))

H∗(Grn−1(R∞))H∗((RP∞)n−1)

H∗((RP∞)n)

ι∗n−1

h∗n−1

h∗n

Consider the restricted map:

A′ ≡ ι∗n−1|(Z/2Z)[σ1,··· ,σn−1] : (Z/2Z)[σ1, · · · , σn−1] −→ (Z/2Z)[σ′1, · · · , σ′n−1].
This is an isomorphism since ι∗n−1(an) = 0. Since σ′k ∈ Im(h∗n−1) we then get that σk ∈ Im(h∗n)
by looking at the above commutative diagram and the fact that A′ is an isomorphism. Hence
by induction we have that Im(h∗n) = (Z/2Z)[σ1, · · · , σn−1, σn].

�


