1. COMPUTATIONS IN A SMOOTH MANIFOLD

Definition 1.1. Let M be a smooth submanifold of a smooth manifold X. Let NxM =
TX|y/TM be the normal bundle of M in X. A tubular neighborhood of M in X is a
smooth map ¥ : N — X which is a diffeomorphism onto its image where

(1) N C NxM is an open set containing M,
(2) ¥(z) =z for all x € M where M is identified with the zero section.
(3) Let Q : TX|p — NxM be the natural quotient map. For all v € Nx M,

o (oo (L] ))-o

In other words, the derivative of ¥ along M is the identity map.

Theorem 1.2. Every smooth submanifold M C X has a tubular neighborhood.

Proof. 1t is sufficient for us to construct a map ¥ : Nx M — X so that properties (2) and (3)
hold. The implicit function theorem then tells us that for some open N C Nx M containing
M, we have that ¥|y is an embedding and hence a tubular neighborhood.

Choose a complete metric g on X. Let N* C TX|y be the set of vectors which are
orthogonal to TM. I.e.

NL={VeT,X|y : €M, gV,IW)=0VW € T,M}).

This is a subbundle of TX|; and the natural quotient map Q|y. : N* — Nx M is a bundle
isomorphism. Let Q' : Nx M — N1t be the inverse of this bundle isomorphism.
Let Exp: TX — X be the exponential map with respect to g. Define

UV:NxM — X, ¥(v)=EzpoQ.
Since DExp(4(w)|i=o) = w for all w € TX, properties (2) and (3) hold. O

Corollary 1.3. H*(X, X — M;A) = H*(NxM,NxM — M;A).

Proof. . Excision tells us that both of these groups are isomorphic to H*(N, N — M;A) =
H*(U(N),¥(N)— M,A). O

The above isomorphism does not depend on the choice of tubular neighborhood W. This
is because if we had another map ¥’ then we can smoothly interpolate between ¥ and ¥’ in
the following way. Let g be a complete metric and let Exp : T X — X be the corresponding
exponential map. There is a small open set

T°X={Vel,X : zeX, g(V,V) <d(z)} cTX

where § : X — (0,00) is smooth and so that Exp|y x~rsy is a diffeomorphism onto its
image by the implicit function theorem. By property (3) of ¥ and ¥’, we have a small
neighborhood N” € Nx M containing M so that the distance between ¥(z) and ¥'(x) is less
than §(¥(x)). For each v € Nx M, define

Ly : Ty X NT°X — X, L, = Baply, ., xorsx-
For each t € [0, 1], define

Uy N" — X, ¥y(v) = Exp (tL, (V' (v))) .
1



2

Then ¥, satisfies (2) and (3) for all t € [0,1]. Hence there is a smaller open neighbor-

hood N C Nx M containing M so that Wy is a tubular neighborhood for all ¢ € [0, 1].

Therefore W, is a smooth family of tubular neighborhoods joining Wy and W}|ym.
Therefore the maps in Corollary 1.3 do not depend on the choice of tubular neighborhood.

Definition 1.4. Let M C X be a smooth submanifold of codimension k. We define
€' (M, X;7/27) to be the image of the unoriented fundamental class

e(NxM;7/2Z) € H*(Nx M, M;7/2Z)
under the isomorphism
HY( X, M;7/27) = H*(Nx M, M;7/27).

We call this the unoriented fundamental cohomology class of M C X.
If Nx M is an oriented vector bundle then we define

d(NxM) € H¥(X, M;7)
to be the image of the fundamental class
eNxM) e H¥NxM, M;Z)
under the isomorphism
HY(X,M;Z) = H*(NxM,M:7).
We call this the fundamental cohomology class of M C X.

Theorem 1.5. Let M C X be a smooth submanifold of codimension k. The image of
¢(M,X;7/27Z) € H*(X, M;7/27) under the composition:
H*(X,M;2/22) — H*(X;7/27) — H*(M;7/27)
is wk(NxM) = G(NxM; Z/QZ).
If Nx M is oriented then the image of ¢'(M, X) € H*(X, M;Z) under the composition
H*(X,M;7) — H"(X;Z) — H"(M;7Z)
is the Euler class e(Nx M) of Nx M.

Proof. Let ¥ : N — X be a tubular neighborhood of M inside X. Let F be equal to Z or
7,/27. Our theorem now follows by looking at the commutative diagram:

H¥(X, M;F)—— HF(X;F) — H*(M;TF)

e e

H*(N, M;F)—— H*(N;F)—— H*(M;F)

% I

HE(Nx M, M;F)— H*¥(NxM;F)— HF(M;F) O

Definition 1.6. Let M C X be a smooth submanifold of X of codimension k. The image
of &(M,X;7/27) € H*(M, X;7/27) inside H*(X;Z/27Z) is called the dual cohomology
class to the submanifold M in X.

If Nx M is oriented then the image of € (M, X) € H*(M,X;Z) inside H*(X;Z) is also
called the dual cohomology class to the submanifold M in X.
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Corollary 1.7. If M C R¥ is a smooth n-dimensional submanifold of R"** where n > 0.
Then wy(Ngntr M) = 0.

If Ngntr M is oriented then the Euler class of the normal bundle vanishes (I.e. e(Ngnx M) =
0).

Proof. This is because these classes are the image of the dual cohomology class to M inside
R™** which must be zero since H"(R"**) = 0. O
As a result, if a smooth n-manifold M can be smoothly embedded in R"** then @y, (T M) =
0. Compare this with our earlier result which said that if M was immersed into R"** then
wi(TM) =0 for all j > k.
Recall that if n = 2" then

WRPY) =14a+---+a" L

Hence RP™ cannot be embedded into R?*~!. Note that it can be immersed into R?*~!. Hence
we cannot weaken the above theorem so that M is an immersion. Also Whitney showed that
every smooth n-manifold can be smoothly embedded into R?”. As a result this is the most
efficient embedding theorem.

It is essential that M is a closed submanifold of M. For instance the Mobius band B can
be embedded in R? in a non-closed way. But it cannot be embedded into R? as a closed
submanifold since w; (7T'B) # 0.

It would be nice to a have a slightly more geometric interpretation of the dual cohomology
class of a smooth submanifold M C X of a manifold X.
Recall that the cap product is defined (on the chain level) as follows:

N Ci(X) © C5(X) — Ci(X),
bNo = (—1)"U=Ip(back i face of o).(front j — i face of b).

If pupar € Hy(X) is the fundamental class of a compact n-manifold X then Poincaré duality
says that

Dx : H'(X) — Hp—i(X), Du(b)=b0py

is an isomorphism.

Definition 1.8. If M C X is a compact submanifold of a manifold X of dimension k then
we write [M] € Hi(X) to be the image of the fundamental class puy € Hi(M) in X.

Recall that an orientation on a manifold M is a choice of class u, € H,(M,M — z;Z)
for each x € M so that for all € M there is a neighborhood N, C M of z and a class
pun € Hy(M, M — N;Z) whose restriction to Hy, (M, M — y;Z) is p, for all y € M.

Lemma 1.9. There is a natural 1-1 correspondence between orientations on a manifold M
and orientations on its tangent bundle.

Proof. We will show the correspondence between orientations on M and homological ori-
entations on T'M. This is done using the exponential map Ezp : TM — M with re-
spect to some complete metric on M. Let v, € H,(TM,TM — 0;Z) be a homological
orientation on T'M. Then we also have corresponding neighborhoods NN, of x and classes
vN, € Hy(TNy; TNy — Ny; Z) We define p, = Exps(pg) and pn, = Erps(un,). This gives
us our 1 — 1 correspondence. ]
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Lemma 1.10. Let M C X be an oriented smooth submanifold of an oriented compact
smooth manifold X. Then NxM is oriented in a natural way since NxM & TM = TX |y
and TM and TX are oriented by the previous lemma. Then Dx(e(M,X;Z)) = [M]. Le.
the dual cohomology class of M is Poincaré dual to the fundamental class of M inside X.

Proof. Let n = dim(X),k = dim(M). Let ¥ : N — X, N C Nx be a tubular neighbor-
hood of M in X. Recall that for any oriented k-manifold A (not necessarily compact) with
orientation p4 € Hy(A, A—x;7) we can find classes 4 € Hy(A, A— B;Z) for any relatively
compact set B C A whose restriction to Hi(A, A — x;7Z) is the orientation p, for all x € B.

Let p : NxM — M be the natural projection map. Note that Nx M is an oriented
manifold since Nx M is oriented as a vector bundle and hence the pullback p*Nx M is oriented,
and hence TNxM 2 (p*Nx M @ p*T M) is oriented. Therefore we have natural classes ul; €
Hy(N,N—M;Z) and 3} € H,(Nx, Nx —M;Z). The image of 3™ in H,(N; N —M;Z)
is pud;. The class p}; is the image of the fundamental class p3f € H, (M;Z) of M under the
natural map

-1
Hy(M;Z) — Ho(X; X — M;Z) 2= H,(N; N — M;Z).

Therefore it is sufficient for us to show that e(NxM) N ug\\ff M is equal to the image of the
fundamental class pys € Hi(M;Z) of M inside Nx M. Let iy € Hi(NxM;Z) be this image.

Let n, € H"(M, M — z;7) be the unique class satisfying n,(u2?) = 1 for all z € M. Let
e € H*NxM,NxM — p~(x);Z) be equal to p*n, for all x € X. Now iy is uniquely
determined by the property that 7, (iys) = 1 for all z € M. Therefore it is sufficient for us to
show that 7,(e(NxM) N ,ug\\fj(M) =1 for all z € M. This is equal to (7; U ’é(NX))(ug\\rj‘) for
all x € M.

Let v; € HY(R\, R — 0;Z), p; € H;(R*,R® — 0;Z) be the natural generators satisfying
vi(u;) =1 for all i € N.

Choose a small neighborhood U of x where NxM has a trivialization 7 : Nx M|y —
U x R"*_ We identify U with R* so that the orientations coincide. Then (771)*¢(Nx M) is
equal to €(U x R"™™) which in turn is equal to priv™~* where pry : U x R*™% — R"=F g
the natural projection map. Also (771)*7, = privF and

T i M = i € Ho(U x R*5 U x R"F — 7(2)) = H,(R* x R" RF x R"™* — 0).

Hence: (771)* (7, U (77 1)*e(Nx)) (ruph¥) = 1 and so (7, Ue(Nx)) () for all z € M. O

Lemma 1.11. Let M C X be a smooth closed submanifold of a manifold X. Then there is
a complete metric on X making M into a totally geodesic submanifold. (I.e. all geodesics
starting in M and tangent to M at their initial point are contained inside M).

Proof. (Sketch) Let g be a complete metric on X. Let ¥ : N — X be a tubular neighborhood
of M. The bundle

NxM=TM*+={VeT,X :zecM, gW,V)=0 YW eT,X}

has a natural metric induced by g. Therefore it is an SO(n — k) bundle where n = dim(X)
and k = dim(M). Therefore it admits a natural SO(n — k) action. Shrink N so that it is
invariant under this SO(n — k) action. Now choose a new metric g so that g is invariant
under the natural SO(n — k) action on W(N)). To extend g beyond this neighborhood of M,
you might need to shrink N slightly.
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To show that M is totally geodesic, it is sufficient to show that for any two sufficiently
close points p1,p2 on M, the unique shortest geodesic passing through p; and po is contained
inside M.

If p; is close enough to py, one can assume that any such geodesic is contained inside
W(N). If this geodesic v was not contained inside M, then any element A € SO(n— k) would
push forward this geodesic to a new one A,(y). But this is impossible since there is a unique
shortest such geodesic. Contradiction. Hence M is totally geodesic. O

Corollary 1.12. Let M, My C X be smooth transverse closed submanifolds so that Nx M
is oriented. Then there is a tubular neighborhood ¥ : N — X of M; so that Uy, -
N|ayynn, — My is a tubular neighborhood of M; N My inside M.

Proof. Choose a metric making Ms totally geodesic. Then Nx M; = TMlL (the set of vectors
orthogonal to Ty, ). Then our regularization comes from the exponential map restricted to
TMi-. O

Lemma 1.13. Let M7, Ms C X be two closed smooth submanifolds of a smooth manifold
X that intersect transversely. The e(M1, X)|ar, = e(M1 N My, My).

Proof. Choose a tubular neighborhood ¥ : N — X of M; as in the previous corol-
lary. Now e(NxMi)|ar,nne, = €(Nx Mi|annar ) since these classes are uniquely determined
by the restrictions to the fibers (Wi)l(Ml (a:),wi)l(Ml () — 0). Since NxMi|p,nnm, is iso-
morphic to Nz, (M; N M), we then get e(NxMi|annng) = €Nag (M N My)).  Since:
\Il*
H*(X,X — My; Z) ——— H*(N,N — M;; Z)

\I/*

H*(M27X - (Ml N M2); Z) H*(N|M1QM2’N‘M1QM2 - (Ml N MQ); Z)

commutes, we then get our result. O

Lemma 1.14. Let 7 : E — B be a smooth oriented vector bundle over an oriented base B.
Let s be a smooth section of E which is transverse to 0. Then e(E) is the dual cohomology
class of the oriented submanifold s~1(0). Hence e(E) is Poincaré dual to s~1(0).

Proof. Since E is an oriented vector bundle with oriented base, we get that E is naturally
an oriented manifold. By definition, é(FE) is the dual cohomology class of B C E. The
oriented submanifold s(B) is smoothly isotopic to B via the smooth family of embeddings
ts: B — E,t € [0,1]. Hence e(E) is also the dual cohomology class of s(B). Therefore
by the previous lemma, e(E) is the dual cohomology class of s71(0) = s(B) N B. Which by
Lemma 1.10 is Poincaré dual to [s(B) N B] inside H,(B). O

Theorem 1.15. Let 7 : E — B be a smooth vector bundle over a compact manifold B.
Then for any section s of E, there is a smooth family of sections s;,t € RN of E for some
large N > 0 and a dense subset D C RY so that s = s¢ and s; is transverse to 0 for all t € D.

In particular any smooth section is smoothly homotopic to a smooth section transverse to
0.
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Proof. Let U;,i € I be a finite open cover of B so that E|y, is trivial for all ¢ € I. Choose a
smooth partition of unity p; : B — [0, 1], € I for B. Let 7; : E|y, — U; x R™ be a smooth
trivialization. Let eq,--- , e, be the standard basis for R™. Define

k k _
o'; Ui — Ely,, oi(z)= T; 1(:Jc,ek)

foralli € I,k € {1,--- ,n}. Define o¥ be the smooth section of E which is equal to a’f inside
U; and 0 outside U;.

Define N = |I| xn and [n] = {1,--- ,n}. Then RY = R/*[", Hence all elements ¢t € R/*["]
as maps from I x [n] to R. We define

5:BxRP S B G t)=s+ Z t(i, k)or.
i€l ,ke(n]

Let prg : U; x R* — R™ be the natural projection map. Then 0 € R" is a regular value
of the map

G Uy x R R G = pryoryo(s|y,).

Hence @; '(0) is a submanifold of U; x R/*["] for all i € I. Since a@; !(0) = 371(0) N U; for all
i € I, we get that 3-1(0) is a smooth submanifold of B x R*[",
Let prg : B x RIX[" — U; be the natural projection map. Then by Sard’s theorem, the

regular values of priy = prpls-1(p) form a dense subset D C R/ of B.
Define

ait Ui — R",  aj(z) =ai(x,t)

)

and
st: B— E, si(z)=35(z,t).

Forallt € DNU; and all x € a;tl (0) we have that the derivative of @; is surjective at x,¢ and

the derivative of pr/; is surjective. This implies that the derivative of a;; is surjective at i, ¢

for all ¢ € D and hence a;, tl (0) is transverse to 0 for all ¢ € D. Therefore s; is transverse to

0 for all t € D. N
A very similar proof gives us the following result:

Theorem 1.16. (Exercise) Let m : £ — B be a smooth vector bundle over a compact
manifold B and let H C E be a smooth submanifold. Then for any section s of E, there is a
smooth family of sections s;,t € RV of E for some large N > 0 and a dense subset D C RV
so that s = sp and s;(B) is transverse to H for all t € D.

In particular any smooth section is smoothly homotopic to a smooth section transverse to
H.

Corollary 1.17. Let M, M’ C X be two smooth submanifolds. Then there is a smooth
family of manifolds M;,t € RY for some N > 0 and a dense subset D C RY so that My = M
and M; is transverse to M’ for all t € D.

In particular any smooth submanifold M is smoothly homotopic to smooth submanifold
transverse to any fixed submanifold M’.

This follows from the previous theorem by using the tubular neighborhood theorem on M
(Exercise).



Lemma 1.18. Let M be a smooth manifold. Let

Ay ={(z,z) : ze M} CMxM
be the diagonal. Then there is a canonical bundle isomorphism

TM = NysmAm
covering the diffeomorphism
M — Ay, z— (z,2).
Proof. Define
A ={(X,-X) e Tpo(MxM)=T,MxT,M : xeM, XeT,M.}

Let Q : T(M xM)|a,, — NarxarAps be the natural quotient map. Then since A]\jﬂTAM =
Ays and the rank of Aj; is dimg (M), we get that

Q' =Qlay A — Narxm Ay
is an isomorphism.
We also have a bundle isomorphism:
W:TM — AL, W(X)=(X,-X).
Hence
Q,O W.:TM — NMXMAM

is our natural isomorphism. ]

As a consequence of the above discussion if M is an oriented manifold then T'M and hence
NarxarApy is oriented. This means that we have fundamental cohomology class e(Aps, M X
M) of the diagonal Ay; C M x M inside M x M. The restriction of this class to H" (A, Z) =
H™(M;Z) is the Euler class of M.

This fundamental cohomology class has the following unique characterization:

Lemma 1.19. Define
Jo: (M, M —x) — (M x M, M — Ay, 32(y) = (z,9).

Let pg,z € M and e(Apr, M x M) be as above. Let u* € H"(M; M —x;Z) be the unique class
satisfying < p®, p, >= 1. Then e(Apr, M x M) is the unique cohomology class satisfying
Ji(e(Apr, M x M)) = p” for all x € M.

Proof. Choose a complete metric on M and let Fxp : TM — M be the exponential map.
Define:
E:TM — M x M, E(X)=(x,Ezp(X))eMx M, YacM.
Also let
E,:T,— M

be the restriction of the exponential map to M. Then E*(e(M x M,Ayr)) = e(T'M) and
Ey(1®) = e(TM)|gn (1, M, M—0;z) for all @ € M. The Thom isomorphism theorem says
that e(T'M) is uniquely characterized by its restrictions to H™(T,M,T,M — 0;Z) for each
x € M. Hence E*(e(Apr, M x M) is uniquely characterized by the fact that its restriction
to H"(T,M, T, M — 0;Z) is EX(u”®) for all x € M. Since j, o E, = E|1,m, and since

(Ey)* - HY(M; M — z;Z) — H"(T;M; T, M — 0;Z)
E*: HM(M x M; M x M — Ayy) —s HNTM; TM — M;7)
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are isomorphisms, we get that e(Aps, M x M) is uniquely characterized by the fact that
ji(e(Apry, M x M)) = p® for all x € M. O

Definition 1.20. The image of e(A s, M x M; A) inside H"™ (M x M; A) is called the diagonal
cohomology class in H"(M x M;A) for any commutative ring A.

We would like a nice expression for this class at least when A is a field.

Lemma 1.21. Let M be a smooth compact connected oriented manifold. Let P : H*(M;A) —
H"™(M;A) = A be the natural projection map and let Q : H*(M;A) ® H*(M;A) — A
be the composition of the cup product map with A. Let by,--- ,by € H*(M;A) be a ba-
sis for the A vector space H*(M;A). Since @ is non-degenerate, we have a dual basis
1,0, bp € H*(M;A).

Then e(Apr, M x M;A) =L b; @ bF € H*(M; A) @ H*(M; A) = H*(M x M;A).

Proof. First of all, changing the basis does not change the class b = 22:1 b;@b;. Therefore we
can assume that by is the generator of H°(M; A) and hence b} is the generator of H™(M; A)
and that b; € H(M; A) for some positive i € N for each j = 1,---,1.

By the previous lemma it is sufficient for us to show that j%(b) = u* for all x € M. For
degree reasons we have that jX(b; ® b)) is zero for all j > 1. Hence j;(b) = ji(bi ® b]) =
by = p* € H"(M; M — z) for all z € M. Therefore e(Ap, M x M;A) = 22:1 b @b €
H*(M;A)® H*(M;A) = H*(M x M;A). O



