
1. Computations in a smooth manifold

Definition 1.1. Let M be a smooth submanifold of a smooth manifold X. Let NXM ≡
TX|M/TM be the normal bundle of M in X. A tubular neighborhood of M in X is a
smooth map Ψ : N −→ X which is a diffeomorphism onto its image where

(1) N ⊂ NXM is an open set containing M ,
(2) Ψ(x) = x for all x ∈M where M is identified with the zero section.
(3) Let Q : TX|M −→ NXM be the natural quotient map. For all v ∈ NXM ,

Q

(
DΨ

(
d

dt
(tv)

∣∣∣∣
t=0

))
= v.

In other words, the derivative of Ψ along M is the identity map.

Theorem 1.2. Every smooth submanifold M ⊂ X has a tubular neighborhood.

Proof. It is sufficient for us to construct a map Ψ : NXM −→ X so that properties (2) and (3)
hold. The implicit function theorem then tells us that for some open N ⊂ NXM containing
M , we have that Ψ|N is an embedding and hence a tubular neighborhood.

Choose a complete metric g on X. Let N⊥ ⊂ TX|M be the set of vectors which are
orthogonal to TM . I.e.

N⊥ ≡ {V ∈ TxX|M : x ∈M, g(V,W ) = 0 ∀W ∈ TxM}).

This is a subbundle of TX|M and the natural quotient map Q|N⊥ : N⊥ −→ NXM is a bundle
isomorphism. Let Q′ : NXM −→ N⊥ be the inverse of this bundle isomorphism.

Let Exp : TX −→ X be the exponential map with respect to g. Define

Ψ : NXM −→ X, Ψ(v) ≡ Exp ◦Q′.

Since DExp( ddt(w)|t=0) = w for all w ∈ TX, properties (2) and (3) hold. �

Corollary 1.3. H∗(X,X −M ; Λ) = H∗(NXM,NXM −M ; Λ).

Proof. . Excision tells us that both of these groups are isomorphic to H∗(N,N −M ; Λ) =
H∗(Ψ(N),Ψ(N)−M,Λ). �

The above isomorphism does not depend on the choice of tubular neighborhood Ψ. This
is because if we had another map Ψ′ then we can smoothly interpolate between Ψ and Ψ′ in
the following way. Let g be a complete metric and let Exp : TX −→ X be the corresponding
exponential map. There is a small open set

T δX ≡ {V ∈ TxX : x ∈ X, g(V, V ) < δ(x)} ⊂ TX

where δ : X −→ (0,∞) is smooth and so that Exp|TxX∩T δX is a diffeomorphism onto its
image by the implicit function theorem. By property (3) of Ψ and Ψ′, we have a small
neighborhood N ′′ ⊂ NXM containing M so that the distance between Ψ(x) and Ψ′(x) is less
than δ(Ψ(x)). For each v ∈ NXM , define

Lv : TΨ(v)X ∩ T δX −→ X, Lv ≡ Exp|TΨ(v)X∩T δX .

For each t ∈ [0, 1], define

Ψt : N ′′ −→ X, Ψt(v) ≡ Exp
(
tL−1

v (Ψ′(v))
)
.
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Then Ψt satisfies (2) and (3) for all t ∈ [0, 1]. Hence there is a smaller open neighbor-
hood N ′′′ ⊂ NXM containing M so that Ψt|N ′′′ is a tubular neighborhood for all t ∈ [0, 1].
Therefore Ψt is a smooth family of tubular neighborhoods joining Ψt|N ′′′ and Ψ′t|N ′′′ .

Therefore the maps in Corollary 1.3 do not depend on the choice of tubular neighborhood.

Definition 1.4. Let M ⊂ X be a smooth submanifold of codimension k. We define
ẽ′(M,X;Z/2Z) to be the image of the unoriented fundamental class

ẽ(NXM ;Z/2Z) ∈ Hk(NXM,M ;Z/2Z)

under the isomorphism

Hk(X,M ;Z/2Z) ∼= Hk(NXM,M ;Z/2Z).

We call this the unoriented fundamental cohomology class of M ⊂ X.
If NXM is an oriented vector bundle then we define

ẽ′(NXM) ∈ Hk(X,M ;Z)

to be the image of the fundamental class

ẽ(NXM) ∈ Hk(NXM,M ;Z)

under the isomorphism
Hk(X,M ;Z) ∼= Hk(NXM,M ;Z).

We call this the fundamental cohomology class of M ⊂ X.

Theorem 1.5. Let M ⊂ X be a smooth submanifold of codimension k. The image of
ẽ′(M,X;Z/2Z) ∈ Hk(X,M ;Z/2Z) under the composition:

Hk(X,M ;Z/2Z) −→ Hk(X;Z/2Z) −→ Hk(M ;Z/2Z)

is wk(NXM) = e(NXM ;Z/2Z).
If NXM is oriented then the image of ẽ′(M,X) ∈ Hk(X,M ;Z) under the composition

Hk(X,M ;Z) −→ Hk(X;Z) −→ Hk(M ;Z)

is the Euler class e(NXM) of NXM .

Proof. Let Ψ : N −→ X be a tubular neighborhood of M inside X. Let F be equal to Z or
Z/2Z. Our theorem now follows by looking at the commutative diagram:

Hk(X,M ;F) Hk(X;F) Hk(M ;F)

Hk(N,M ;F) Hk(N ;F) Hk(M ;F)

Hk(NXM,M ;F) Hk(NXM ;F) Hk(M ;F)

Ψ∗ Ψ∗∼=

∼=

�

Definition 1.6. Let M ⊂ X be a smooth submanifold of X of codimension k. The image
of ẽ′(M,X;Z/2Z) ∈ Hk(M,X;Z/2Z) inside Hk(X;Z/2Z) is called the dual cohomology
class to the submanifold M in X.

If NXM is oriented then the image of ẽ′(M,X) ∈ Hk(M,X;Z) inside Hk(X;Z) is also
called the dual cohomology class to the submanifold M in X.
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Corollary 1.7. If M ⊂ Rk is a smooth n-dimensional submanifold of Rn+k where n > 0.
Then wk(NRn+kM) = 0.

If NRn+kM is oriented then the Euler class of the normal bundle vanishes (I.e. e(NRn+kM) =
0).

Proof. This is because these classes are the image of the dual cohomology class to M inside
Rn+k which must be zero since Hn(Rn+k) = 0. �

As a result, if a smooth n-manifold M can be smoothly embedded in Rn+k then wk(TM) =
0. Compare this with our earlier result which said that if M was immersed into Rn+k then
wj(TM) = 0 for all j > k.

Recall that if n = 2r then

w(RPn) = 1 + a+ · · ·+ an−1.

Hence RPn cannot be embedded into R2n−1. Note that it can be immersed into R2n−1. Hence
we cannot weaken the above theorem so that M is an immersion. Also Whitney showed that
every smooth n-manifold can be smoothly embedded into R2n. As a result this is the most
efficient embedding theorem.

It is essential that M is a closed submanifold of M . For instance the Möbius band B can
be embedded in R3 in a non-closed way. But it cannot be embedded into R3 as a closed
submanifold since w1(TB) 6= 0.

It would be nice to a have a slightly more geometric interpretation of the dual cohomology
class of a smooth submanifold M ⊂ X of a manifold X.

Recall that the cap product is defined (on the chain level) as follows:

∩ : Ci(X)⊗ Cj(X) −→ Cj−i(X),

b ∩ σ = (−1)i(j−i)b(back i face of σ).(front j − i face of b).

If µM ∈ Hn(X) is the fundamental class of a compact n-manifold X then Poincaré duality
says that

DX : H i(X) −→ Hn−i(X), DM (b) ≡ b ∩ µM
is an isomorphism.

Definition 1.8. If M ⊂ X is a compact submanifold of a manifold X of dimension k then
we write [M ] ∈ Hk(X) to be the image of the fundamental class µM ∈ Hk(M) in X.

Recall that an orientation on a manifold M is a choice of class µx ∈ Hn(M,M − x;Z)
for each x ∈ M so that for all x ∈ M there is a neighborhood Nx ⊂ M of x and a class
µN ∈ Hn(M,M −N ;Z) whose restriction to Hn(M,M − y;Z) is µy for all y ∈M .

Lemma 1.9. There is a natural 1-1 correspondence between orientations on a manifold M
and orientations on its tangent bundle.

Proof. We will show the correspondence between orientations on M and homological ori-
entations on TM . This is done using the exponential map Exp : TM −→ M with re-
spect to some complete metric on M . Let νx ∈ Hn(TM, TM − 0;Z) be a homological
orientation on TM . Then we also have corresponding neighborhoods Nx of x and classes
νNx ∈ Hn(TNx;TNx −Nx;Z) We define µx ≡ Exp∗(µx) and µNx ≡ Exp∗(µNx). This gives
us our 1− 1 correspondence. �
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Lemma 1.10. Let M ⊂ X be an oriented smooth submanifold of an oriented compact
smooth manifold X. Then NXM is oriented in a natural way since NXM ⊕ TM = TX|M
and TM and TX are oriented by the previous lemma. Then DX(e(M,X;Z)) = [M ]. I.e.
the dual cohomology class of M is Poincaré dual to the fundamental class of M inside X.

Proof. Let n = dim(X), k = dim(M). Let Ψ : N −→ X, N ⊂ NX be a tubular neighbor-
hood of M in X. Recall that for any oriented k-manifold A (not necessarily compact) with
orientation µAx ∈ Hk(A,A−x;Z) we can find classes µAB ∈ Hk(A,A−B;Z) for any relatively
compact set B ⊂ A whose restriction to Hk(A,A− x;Z) is the orientation µx for all x ∈ B.

Let p : NXM −→ M be the natural projection map. Note that NXM is an oriented
manifold since NXM is oriented as a vector bundle and hence the pullback p∗NXM is oriented,
and hence TNXM ∼= (p∗NXM ⊕ p∗TM) is oriented. Therefore we have natural classes µNM ∈
Hn(N,N−M ;Z) and µNXMM ∈ Hn(NX ,NX−M ;Z). The image of µNXMM in Hn(N ;N−M ;Z)

is µNM . The class µNM is the image of the fundamental class µMM ∈ Hn(M ;Z) of M under the
natural map

Hk(M ;Z) −→ Hn(X;X −M ;Z)
Ψ−1
∗−→ Hn(N ;N −M ;Z).

Therefore it is sufficient for us to show that ẽ(NXM) ∩ µNXMM is equal to the image of the
fundamental class µM ∈ Hk(M ;Z) of M inside NXM . Let iM ∈ Hk(NXM ;Z) be this image.

Let ηx ∈ Hn(M,M − x;Z) be the unique class satisfying ηx(µMx ) = 1 for all x ∈ M . Let
η̃x ∈ Hn(NXM,NXM − p−1(x);Z) be equal to p∗ηx for all x ∈ X. Now iM is uniquely
determined by the property that η̃x(iM ) = 1 for all x ∈M . Therefore it is sufficient for us to

show that η̃x(ẽ(NXM) ∩ µNXMM ) = 1 for all x ∈ M . This is equal to (η̃x ∪ ẽ(NX))(µNXM ) for
all x ∈M .

Let νi ∈ H i(Ri,Ri − 0;Z), µi ∈ Hi(Ri,Ri − 0;Z) be the natural generators satisfying
νi(µi) = 1 for all i ∈ N.

Choose a small neighborhood U of x where NXM has a trivialization τ : NXM |U −→
U ×Rn−k. We identify U with Rk so that the orientations coincide. Then (τ−1)∗ẽ(NXM) is
equal to ẽ(U × Rn−m) which in turn is equal to pr∗2ν

n−k where pr2 : U × Rn−k −→ Rn−k is
the natural projection map. Also (τ−1)∗ν̃x = pr∗1ν

k and

τ∗µ
NXM
M = µn ∈ Hn(U × Rn−k, U × Rn−k − τ(x)) = Hn(Rk × Rn−k,Rk × Rn−k − 0).

Hence: (τ−1)∗(η̃x ∪ (τ−1)∗ẽ(NX))(τ∗µ
NX
M ) = 1 and so (η̃x ∪ ẽ(NX))(µNXM ) for all x ∈M . �

Lemma 1.11. Let M ⊂ X be a smooth closed submanifold of a manifold X. Then there is
a complete metric on X making M into a totally geodesic submanifold. (I.e. all geodesics
starting in M and tangent to M at their initial point are contained inside M).

Proof. (Sketch) Let g be a complete metric onX. Let Ψ : N −→ X be a tubular neighborhood
of M . The bundle

NXM = TM⊥ ≡ {V ∈ TxX : x ∈M, g(W,V ) = 0 ∀W ∈ TxX }

has a natural metric induced by g. Therefore it is an SO(n − k) bundle where n = dim(X)
and k = dim(M). Therefore it admits a natural SO(n − k) action. Shrink N so that it is
invariant under this SO(n − k) action. Now choose a new metric g̃ so that g̃ is invariant
under the natural SO(n− k) action on Ψ(N)). To extend g beyond this neighborhood of M ,
you might need to shrink N slightly.
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To show that M is totally geodesic, it is sufficient to show that for any two sufficiently
close points p1, p2 on M , the unique shortest geodesic passing through p1 and p2 is contained
inside M .

If p1 is close enough to p2, one can assume that any such geodesic is contained inside
Ψ(N). If this geodesic γ was not contained inside M , then any element A ∈ SO(n−k) would
push forward this geodesic to a new one A∗(γ). But this is impossible since there is a unique
shortest such geodesic. Contradiction. Hence M is totally geodesic. �

Corollary 1.12. Let M1,M2 ⊂ X be smooth transverse closed submanifolds so that NXM1

is oriented. Then there is a tubular neighborhood Ψ : N −→ X of M1 so that Ψ|M1∩M2 :
N |M1∩M2 −→M2 is a tubular neighborhood of M1 ∩M2 inside M2.

Proof. Choose a metric making M2 totally geodesic. Then NXM1 = TM⊥1 (the set of vectors
orthogonal to TM1). Then our regularization comes from the exponential map restricted to
TM⊥1 . �

Lemma 1.13. Let M1,M2 ⊂ X be two closed smooth submanifolds of a smooth manifold
X that intersect transversely. The e(M1, X)|M2 = e(M1 ∩M2,M2).

Proof. Choose a tubular neighborhood Ψ : N −→ X of M1 as in the previous corol-
lary. Now ẽ(NXM1)|M1∩M2 = ẽ(NXM1|M1∩M1) since these classes are uniquely determined
by the restrictions to the fibers (π−1

NXM1
(x), π−1

NXM1
(x) − 0). Since NXM1|M1∩M2 is iso-

morphic to NM2(M1 ∩ M2), we then get ẽ(NXM1|M1∩M1) = ẽ(NM2(M1 ∩ M2)). Since:

H∗(X,X −M1;Z) H∗(N,N −M1;Z)

H∗(M2, X − (M1 ∩M2);Z) H∗(N |M1∩M2 , N |M1∩M2 − (M1 ∩M2);Z)

Ψ∗

Ψ∗

commutes, we then get our result. �

Lemma 1.14. Let π : E −→ B be a smooth oriented vector bundle over an oriented base B.
Let s be a smooth section of E which is transverse to 0. Then e(E) is the dual cohomology
class of the oriented submanifold s−1(0). Hence e(E) is Poincaré dual to s−1(0).

Proof. Since E is an oriented vector bundle with oriented base, we get that E is naturally
an oriented manifold. By definition, ẽ(E) is the dual cohomology class of B ⊂ E. The
oriented submanifold s(B) is smoothly isotopic to B via the smooth family of embeddings
ts : B −→ E, t ∈ [0, 1]. Hence ẽ(E) is also the dual cohomology class of s(B). Therefore
by the previous lemma, e(E) is the dual cohomology class of s−1(0) = s(B) ∩ B. Which by
Lemma 1.10 is Poincaré dual to [s(B) ∩B] inside H∗(B). �

Theorem 1.15. Let π : E −→ B be a smooth vector bundle over a compact manifold B.
Then for any section s of E, there is a smooth family of sections st, t ∈ RN of E for some
large N ≥ 0 and a dense subset D ⊂ RN so that s = s0 and st is transverse to 0 for all t ∈ D.

In particular any smooth section is smoothly homotopic to a smooth section transverse to
0.
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Proof. Let Ui, i ∈ I be a finite open cover of B so that E|Ui is trivial for all i ∈ I. Choose a
smooth partition of unity ρi : B −→ [0, 1], i ∈ I for B. Let τi : E|Ui −→ Ui×Rn be a smooth
trivialization. Let e1, · · · , en be the standard basis for Rn. Define

σ′
k
i : Ui −→ E|Ui , σ′

k
i (x) = τ−1

i (x, ek)

for all i ∈ I, k ∈ {1, · · · , n}. Define σki be the smooth section of E which is equal to σ′ki inside
Ui and 0 outside Ui.

Define N ≡ |I|×n and [n] ≡ {1, · · · , n}. Then RN ∼= RI×[n]. Hence all elements t ∈ RI×[n]

as maps from I × [n] to R. We define

s̃ : B × RI×[n] −→ E, s̃(x, t) ≡ s+
∑

i∈I,k∈[n]

t(i, k)σki .

Let pr2 : Ui × Rn −→ Rn be the natural projection map. Then 0 ∈ Rn is a regular value
of the map

ãi : Ui × RI×[n] −→ Rn, ãi ≡ pr2 ◦ τi ◦ (s|Ui).

Hence ã−1
i (0) is a submanifold of Ui × RI×[n] for all i ∈ I. Since ã−1

i (0) = s̃−1(0) ∩ Ui for all

i ∈ I, we get that s̃−1(0) is a smooth submanifold of B × RI×[n].

Let prB : B × RI×[n] −→ Ui be the natural projection map. Then by Sard’s theorem, the
regular values of pr′B ≡ prB|s̃−1(0) form a dense subset D ⊂ RI×[n] of B.

Define

ai,t : Ui −→ Rn, ai,t(x) ≡ ãi(x, t)

’ and

st : B −→ E, st(x) ≡ s̃(x, t).

For all t ∈ D∩Ui and all x ∈ a−1
i,t (0) we have that the derivative of ãi is surjective at x, t and

the derivative of pr′B is surjective. This implies that the derivative of ai,t is surjective at i, t

for all t ∈ D and hence a−1
i,t (0) is transverse to 0 for all t ∈ D. Therefore st is transverse to

0 for all t ∈ D. �
A very similar proof gives us the following result:

Theorem 1.16. (Exercise) Let π : E −→ B be a smooth vector bundle over a compact
manifold B and let H ⊂ E be a smooth submanifold. Then for any section s of E, there is a
smooth family of sections st, t ∈ RN of E for some large N ≥ 0 and a dense subset D ⊂ RN
so that s = s0 and st(B) is transverse to H for all t ∈ D.

In particular any smooth section is smoothly homotopic to a smooth section transverse to
H.

Corollary 1.17. Let M,M ′ ⊂ X be two smooth submanifolds. Then there is a smooth
family of manifolds Mt, t ∈ RN for some N > 0 and a dense subset D ⊂ RN so that M0 = M
and Mt is transverse to M ′ for all t ∈ D.

In particular any smooth submanifold M is smoothly homotopic to smooth submanifold
transverse to any fixed submanifold M ′.

This follows from the previous theorem by using the tubular neighborhood theorem on M
(Exercise).
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Lemma 1.18. Let M be a smooth manifold. Let

∆M ≡ {(x, x) : x ∈M} ⊂M ×M
be the diagonal. Then there is a canonical bundle isomorphism

TM ∼= NM×M∆M

covering the diffeomorphism

M −→ ∆M , x −→ (x, x).

Proof. Define

∆⊥M ≡ {(X,−X) ∈ Tx,x(M ×M) = TxM × TxM : x ∈M, X ∈ TxM.}
Let Q : T (M×M)|∆M

−→ NM×M∆M be the natural quotient map. Then since ∆⊥M∩T∆M =

∆M and the rank of ∆⊥M is dimR(M), we get that

Q′ ≡ Q|∆⊥M : ∆⊥M −→ NM×M∆M

is an isomorphism.
We also have a bundle isomorphism:

W : TM −→ ∆⊥M , W (X) ≡ (X,−X).

Hence
Q′ ◦W : TM −→ NM×M∆M

is our natural isomorphism. �

As a consequence of the above discussion if M is an oriented manifold then TM and hence
NM×M∆M is oriented. This means that we have fundamental cohomology class e(∆M ,M ×
M) of the diagonal ∆M ⊂M×M inside M×M . The restriction of this class to Hn(∆M ;Z) =
Hn(M ;Z) is the Euler class of M .

This fundamental cohomology class has the following unique characterization:

Lemma 1.19. Define

jx : (M,M − x) −→ (M ×M,M −∆M ), jx(y) ≡ (x, y).

Let µx, x ∈M and e(∆M ,M×M) be as above. Let µx ∈ Hn(M ;M−x;Z) be the unique class
satisfying < µx, µx >= 1. Then e(∆M ,M ×M) is the unique cohomology class satisfying
j∗x(e(∆M ,M ×M)) = µx for all x ∈M .

Proof. Choose a complete metric on M and let Exp : TM −→ M be the exponential map.
Define:

E : TM −→M ×M, E(X) ≡ (x,Exp(X)) ∈M ×M, ∀x ∈M.

Also let
Ex : Tx −→M

be the restriction of the exponential map to M . Then E∗(e(M ×M,∆M )) = e(TM) and
E∗x(µx) = e(TM)|Hn(TxM,TxM−0;Z) for all x ∈ M . The Thom isomorphism theorem says
that e(TM) is uniquely characterized by its restrictions to Hn(TxM,TxM − 0;Z) for each
x ∈ M . Hence E∗(e(∆M ,M ×M) is uniquely characterized by the fact that its restriction
to Hn(TxM,TxM − 0;Z) is E∗x(µx) for all x ∈M . Since jx ◦ Ex = E|TxM , and since

(Ex)∗ : Hn(M ;M − x;Z) −→ Hn(TxM ;TxM − 0;Z)

E∗ : Hn(M ×M ;M ×M −∆M ) −→ Hn(TM ;TM −M ;Z)
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are isomorphisms, we get that e(∆M ,M × M) is uniquely characterized by the fact that
j∗x(e(∆M ,M ×M)) = µx for all x ∈M . �

Definition 1.20. The image of e(∆M ,M×M ; Λ) inside Hn(M×M ; Λ) is called the diagonal
cohomology class in Hn(M ×M ; Λ) for any commutative ring Λ.

We would like a nice expression for this class at least when Λ is a field.

Lemma 1.21. LetM be a smooth compact connected oriented manifold. Let P : H∗(M ; Λ) −→
Hn(M ; Λ) = Λ be the natural projection map and let Q : H∗(M ; Λ) ⊗ H∗(M ; Λ) −→ Λ
be the composition of the cup product map with Λ. Let b1, · · · , bl ∈ H∗(M ; Λ) be a ba-
sis for the Λ vector space H∗(M ; Λ). Since Q is non-degenerate, we have a dual basis
b∗1, · · · , b∗l ∈ H∗(M ; Λ).

Then e(∆M ,M ×M ; Λ) =
∑l

i=1 bi ⊗ b∗i ∈ H∗(M ; Λ)⊗H∗(M ; Λ) = H∗(M ×M ; Λ).

Proof. First of all, changing the basis does not change the class b ≡
∑l

i=1 bi⊗b∗i . Therefore we
can assume that b1 is the generator of H0(M ; Λ) and hence b∗1 is the generator of Hn(M ; Λ)
and that bj ∈ H i(M ; Λ) for some positive i ∈ N for each j = 1, · · · , l.

By the previous lemma it is sufficient for us to show that j∗x(b) = µx for all x ∈ M . For
degree reasons we have that j∗x(bi ⊗ b∗i ) is zero for all j > 1. Hence j∗x(b) = j∗x(b1 ⊗ b∗1) =

b∗1 = µx ∈ Hn(M ;M − x) for all x ∈ M . Therefore e(∆M ,M ×M ; Λ) =
∑l

i=1 bi ⊗ b∗i ∈
H∗(M ; Λ)⊗H∗(M ; Λ) = H∗(M ×M ; Λ). �


