Homework 4

(1) Let V be a vector space over \mathbb{R} and let \langle,$\rangle be a non-degenerate bilinear form on V$.
(a) Choose an appropriate basis of V (and hence of $\wedge^{k} V$) and compute the Hodge star operator $*$ corresponding to \langle,$\rangle using this basis.$
(b) Compute $*^{2}$.

Definition: A Poincaré transformation is a diffeomorphism $\phi: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ preserving the pseudometric $\eta_{\mu \nu} d x^{\mu} \otimes d x^{\nu}$ where $\eta_{\mu \nu}=\operatorname{diag}(-1,1,1,1)$.
(2) Show that each Poincaré transformation transformation sends a solution of Maxwell's equations to another solution of Maxwell's equations possibly with different charge and current density.
(3) (a) Suppose that charge density ρ is $q \delta(0)$ for some $q \in \mathbb{R}$ and the current density j is zero. Write down a solution E, B of Maxwell's equations with such ρ and j.
(b) Consider the Lorenz transformation given by the matrix:

$$
\left(\begin{array}{cccc}
\cosh (\zeta) & -\sinh (\zeta) & 0 & 0 \\
-\sinh (\zeta) & \cosh (\zeta) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

What happens to ρ, j, E and B above under this transformation?
(4) The Lorenz Force law states that a particle with small charge q experiences a force

$$
F=q(E+v \times B)
$$

where v is its velocity.
Suppose this particle has fixed mass m. Show that a particle is subject to the Lorenz force law if and only if its Lagrangian is given by

$$
L(x, \dot{x})=\frac{m}{2} \dot{x}^{2}+q A \cdot \dot{x}-q \phi
$$

where A, ϕ are the vector and scalar potentials respectively.
(5) Let M be a smooth manifold and G a smooth Lie group. Let $\left(U_{i}\right)_{i \in I}$ be an open cover of M and

$$
\phi_{i j}: U_{i} \cap U_{j} \rightarrow G, \quad i, j \in I
$$

a collection of smooth maps satisfying the cocycle condition. Show that there exists a principal G-bundle $\pi: P \rightarrow M$ together with local trivializations

$$
\tau_{i}: \pi^{-1}\left(U_{i}\right) \longrightarrow U_{i} \times G
$$

so that the associated transition maps $\tau_{i j}$ satisfy $\tau_{i j}(x)=\left(x, \phi_{i j}(x)\right)$ for each $x \in$ $U_{i} \cap U_{j}$ and $i, j \in I$.
(6) Let P be a smooth manifold with a smooth free right G-action by a compact Lie group G. Show that P / G is naturally a smooth manifold and the quotient map $P \rightarrow P / G$ has the structure of a principal G-bundle.
(7) (Optional). Answer the previous question in the case when G is non-compact and the action is proper, which means that the map

$$
M \times G \rightarrow M \times M, \quad(x, g) \rightarrow(x, x g)
$$

is proper. Give an example of a free non-proper action where $P \rightarrow P / G$ is not a principal G-bunlde.

