Homework 3

- (1) Show that a 2-form ω on a smooth manifold is non-degenerate if and only if ω^m is a volume form for some $m \in \mathbb{N}$.
- (2) Show that a submanifold of a symplectic manifold is Lagrangian if and only if it is both isotropic and coisotropic.
- (3) Show that a submanifold V is symplectic if and only if $TV \oplus TV^{\perp} = TM|_V$.
- (4) Construct two 2-dimensional linear symplectic subspaces W_1, W_2 of \mathbb{R}^4 so that (a) $W_1 \oplus W_2 = \mathbb{R}^4$,
 - (b) W_1 and W_2 are symplectic submanifolds of $(\mathbb{R}^4, \omega_{\text{std}})$
 - (c) and the orientation on $W_1 \oplus W_2$ induced by $\pi_1^*(\omega_{\text{std}}|_{W_1}) \wedge \pi_2^*(\omega_{\text{std}}|_{W_2})$ is minus the natural orientation induced by $\omega_{\text{std}} \wedge \omega_{\text{std}}$ on \mathbb{R}^4 where $\pi_1 : W_1 \oplus W_2 \longrightarrow W_1$ and $\pi_2 : W_1 \oplus W_2 \longrightarrow W_2$ are the natural projection maps.
- (5) Let V be a closed submanifold of a smooth closed manifold M and let ω , ω' two symplectic forms on M agreeing along $TM|_V$. Show that there is a diffeomorphism $\phi: M \to M$ fixing V and a neighborhood U of V so that $\phi^*(\omega|_U) = \omega'|_{\phi^{-1}(U)}$.
- (6) Let $S^{2n+1} \subset \mathbb{C}^{n+1}$ be the unit sphere and let the group U(1) of units in \mathbb{C} act diagonally on \mathbb{C}^{n+1} by multiplication.
 - (a) Show that $\omega_{\text{std}}|_{S^{2n+1}}$ is U(1) invariant and that the orbits of this smooth group action are one dimensional submanifolds of S^{2n+1} .
 - (b) Show that each vector $v \in T_p S^{2n+1}$, $p \in S^{2n+1}$, tangent to one of these orbits satisfies $\omega_{\text{std}}(v, w) = 0$ for each vector $w \in T_p S^{2n+1}$.
 - (c) Hence show there is a unique 2-form ω_{FS} (called the *Fubini-Study form*) on $\mathbb{C}P^n = S^{2n+1}/U(1)$ whose pullback is ω_{std} .
- (7) Show that the Hamiltonian symplectomorphism group of a symplectic manifold M acts transitively on M.