Homework 2

(1) Find the critical points of the following functional:

$$
\mathcal{P} \rightarrow \mathbb{R}, f \rightarrow \int_{0}^{1} x f^{\prime}(x)-\left(f^{\prime}(x)\right)^{2} d x
$$

where \mathcal{P} is the space of smooth functions $f:[0,1] \rightarrow \mathbb{R}$ satisfying $f(0)=0$ and $f(1)=1$.
(2) (Arnold page 58). Give examples functionals

$$
\Phi(\gamma)=\int_{t_{0}}^{t_{1}} L(\mathbf{x}, \dot{\mathbf{x}}, t) d t
$$

that have many critical points and others that have none.
(3) (Arnold page 59). Let x_{0}, x_{1} be points in \mathbb{R}^{n} and let $\Omega_{x_{0}, x_{1}}$ be the space of smooth paths $\gamma:[0,1] \longrightarrow \mathbb{R}^{n}$ joining x_{0} and x_{1}. Consider the functional

$$
\Phi: \Omega_{x_{0}, x_{1}} \longrightarrow \mathbb{R}, \quad \Phi(\gamma):=\int_{0}^{1}|\dot{\gamma}(t)|^{2} d t
$$

Show that it has exactly one extremal value and that this is the unique minimum of Φ.
(4) (Arnold, page 65). Let

$$
\begin{equation*}
f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad f\left(x_{1}, \cdots, x_{n}\right):=\sum_{i, j=1}^{n} f_{i j} x_{i} x_{j} \tag{0.1}
\end{equation*}
$$

be a convex quadratic function. Show that its Legendre transform is also a convex quadratic function

$$
\begin{equation*}
g: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad g\left(p_{1}, \cdots, p_{n}\right)=\sum_{i, j=1}^{n} g_{i j} p_{i} p_{j} \tag{0.2}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
g(p(x))=f(x), \quad f(x(p))=g(p) \tag{0.3}
\end{equation*}
$$

where $x(p)$ is the unique point maximizing $x p-f(x)$ and $p(x)$ is the unique point maximizing $p x-g(p)$.
(5) Suppose we have a system satisfying Hamilton's equations with an autonomous Hamiltonian $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$. What happens to the phase curves if we replace H with H^{2} ?
(6) (Arnold page 74) Optional. Consider the first digit of the numbers $2^{n}, n \in \mathbb{N}$. Does the digit 7 appear in the sequence? Does the digit 8 appear more often than 7 ? Use Poincaré recurrence somewhere in your solution (you might also need some results from measure theory).
(7) (Arnold page 90). Suppose we have a uniform helical line

$$
x=\cos (\phi), y=\sin (\phi), z=c \phi
$$

in which a current is running through it. Consider the motion of a charged particle of mass m in the magnetic field generated by this line. Find one parameter family of symmetries of this system and compute the corresponding first integral.

