Homework 4

(1) (a) Let

 $D^{n} := \{ x \in \mathbb{R}^{n} : |x| \le 1 \}, \quad S^{n} := \{ x \in \mathbb{R}^{n+1} : |x| = 1 \}$

be the unit ball and sphere respectively. Let $f: S^n \longrightarrow S^n$ be a degree k map. Compute homology of the space

$$S^n \sqcup D^{n+1} / \sim, \quad x \sim y, \ \forall \ x \in S^n, \ y \in \partial D^{n+1}, \ f(y) = x$$

(I.e. the space obtained by gluing D^{n+1} to S^n via the map f).

- (b) For any sequence of finitely generated abelian groups $(A_p)_{p \in \mathbb{N}}$, construct a topological space X satisfying $H_p(X) \cong A_p$ for each p > 0.
- (2) Compute the homology groups of the 2-sphere S^2 with the north and south pole identified. More generally, compute the homology of S^2/\sim where we identify k-disjoint points in S^2 with a single point.
- (3) Construct a CW complex homeomorphic to $\mathbb{R}P^n$ and then compute $H_*(\mathbb{R}P^n)$.
- (4) (a) Let M, N be two connected oriented smooth n-manifolds. The connect sum of M and N is the manifold M#N constructed as follows: Let Dⁿ be the closed unit ball as above and let (Dⁿ)^o be its interior. Take two embeddings

$$i: D^n \hookrightarrow M, \quad j: D^n \hookrightarrow N$$

of the unit disk D^n which respect orientation. Then

$$M \# N = (M - i((D^n)^o)) \sqcup (M - j((D^n)^o)) / \sim$$

where we identify i(x) with j(x) for all $x \in \partial D^n$. Compute the $H_*(M \# N)$ in terms of $H_*(M)$ and $H_*(N)$ (You may assume the fact that any smooth oriented *n*-manifold X is homeomorphic to a CW complex and that $H_n(X) \cong \mathbb{Z}$ if X is closed and connected).

- (b) Use the above computation combined with the classification of closed 2-manifolds to compute the homology of any oriented closed 2-manifold from that of the torus.
- (5) Define the *Euler Characteristic* of a topological space X to be

$$\chi(X) := \sum_{p=0}^{\infty} (-1)^p \operatorname{rank}(H_p(X)).$$

Let A, B be open subspaces of a topological space X and suppose

$$\oplus_{p\in\mathbb{N}}H_p(A\cap B), \ \oplus_{p\in\mathbb{N}}H_p(A), \ \oplus_{p\in\mathbb{N}}H_p(B), \ \oplus_{p\in\mathbb{N}}H_p(X)$$

all have finite rank. Compute $\chi(X)$ in terms of $\chi(A)$, $\chi(B)$ and $\chi(A \cap B)$.