## Homework 3

(1) (Arnold page 100). Given an example of a phase curve in equilibrium position coming from a system with one degree of freedom which is Liapunov unstable.
(2) (Arnold page 100) Optional: Suppose we have a system with one degree of freedom which is analytic (I.e. the potential function is an analytic function). Let $\gamma$ be a phase curve in equilibrium position. Show that $\gamma$ is Liapunov stable if and only if it is a local minimum. Also, show that such a statement is false if the system in question is not analytic.
(3) (Arnold page 100:) Show that the linearization of a system with $n$-degrees of freedom at an equilibrium point does not depend on the choice of coordinate system.
(4) (Arnold page 109): Consider the following planar double pendulum:


What are its characteristic oscillations near its stable equilibrium position?
(5) (Arnold page 113). Let $T_{1}, T_{2}: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be two positive definite quadratic forms so that $T_{1}(x)<T_{2}(x)$ for each $x \neq 0$ and let $U: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a smooth function. Let

$$
L_{i}: \mathbb{R}^{2 n} \longrightarrow \mathbb{R}, \quad L_{i}(\mathbf{q}, \dot{\mathbf{q}}):=T_{i}(\dot{\mathbf{q}})-U(\mathbf{q}), \quad i=1,2
$$

be two Lagrangians. Let $\mathbf{q}_{\mathbf{0}} \in \mathbb{R}^{n}$ be an equilibrium point of both of these systems. Let $\omega_{1} \leq \cdots \leq \omega_{n}$ be the characteristic frequencies of $L_{1}$ and $\eta_{1} \leq \cdots \leq \eta_{n}$ the characteristic frequencies of $L_{2}$. Show that $\omega_{i}<\eta_{i}$ for each $i=1, \cdots, n$.
(6) (Arnold page 128). Show that the most general position of a rigid body described by a helical movement, i.e., it is given by the composition of a rotation by angle $\phi$ about an axis (not necessarily through the origin) followed by a translation by a vector $h$ where $h$ is parallel to this axis.
(7) Optional:
(a) $G$ be the group of isometries of $\mathbb{R}^{3}$. Show that this is naturally a manifold.
(b) Show that the multiplication operation $G \times G \longrightarrow G$ is smooth and also that the inverse operation

$$
G \longrightarrow G, \quad g \longrightarrow g^{-1}
$$

is smooth. (Hence $G$, by definition, is a Lie group)
(c) What are the Lagrangians $L: T G \longrightarrow \mathbb{R}$ that are left invariant under $G$ ? I.e. which Lagrangians $L$ satisfy:

$$
L\left(D l_{g}(x)\right)=L(x), \quad \forall x, g \in G
$$

where $l_{g}: G \longrightarrow G$ is defined by $l_{g}(h):=g h$ for each $h \in G$.'
(d) If I have a phase curve of $L$, what physical system does it describe?

