Homework 2

(1) (Arnold page 58) Give examples functionals

$$
\Phi(\gamma)=\int_{t_{0}}^{t_{1}} L(\mathbf{x}, \dot{\mathbf{x}}, t) d t
$$

that have many extremals and others that have none.
(2) (Arnold page 59) Let x_{0}, x_{1} be points in \mathbb{R}^{n} and let $\Omega_{x_{0}, x_{1}}$ be the space of smooth paths $\gamma:[0,1] \longrightarrow \mathbb{R}^{3}$ joining x_{0} and x_{1}. Consider the functional

$$
\Phi: \Omega_{x_{0}, x_{1}} \longrightarrow \mathbb{R}, \quad \Phi(\gamma):=\int_{0}^{1}|\gamma(t)|^{2} d t
$$

Show that it has exactly one extremal value and that this is the unique minimum of Φ.
(3) (Arnold page 64) Let V be a vector space over \mathbb{R} and V^{*} its dual. Show that the Legendre transform gives us a well defined map from convex functions on V to convex functions on V^{*}.
(4) What is the Legendre transform of the quadratic form whose associated Hessian is:

$$
\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & -2
\end{array}\right) ?
$$

(5) Suppose we have a system satisfying Hamilton's equations with Hamiltonian H. What happens to the phase curves if we replace H with H^{2} ?
(6) (Arnold page 74) Optional - difficult: Consider the first digit of the numbers 2^{n}, $n \in \mathbb{N}$. Does the digit 7 appear in the sequence? Does the digit 8 appear more often than 7 ? Use Poincaré recurrence in your solution (you might also need some results from your measure theory course).
(7) (Arnold page 83): Show that the derivative $f_{*}: T M \longrightarrow T N$ of a smooth function $f: M \longrightarrow N$ gives us a well defined smooth map between the manifolds $T M$ and TN.
(8) (Arnold page 90) Suppose we have a uniform helical line

$$
x=\cos (\phi), y=\sin (\phi), z=c \phi
$$

in which a current is running through it. Consider the motion of a charged particle of mass m in the magnetic field generated by this line. Find a continuous symmetry of this system and compute the corresponding first integral.
(9) (Arnold page 90) Optional: Which quantities are conserved under the motion of a heavy rigid body fixed at some point 0 ? What happens if the body is symmetric about some axis through 0 ?
(10) (Arnold page 90) Optional: Extend Noether's theorem to non-autonomous Lagrangian systems (see the hint in Arnolds book). What is the expression for the corresponding conserved quantity?

