## Homework 1

(1) Consider system with one degree of freedom with potential energy:

$$
U(x)=\frac{x^{4}}{4}-x^{3}+x^{2}
$$

Sketch the phase curves of this system.
Definition: A periodic orbit of a system with $n$ degrees of freedom is a phase curve $\gamma:[0, T] \longrightarrow \mathbb{R}^{2 n}$ satisfying $\gamma(0)=\gamma(T)$. The period of $\gamma$ is $T$. A simple periodic orbit is a periodic orbit $\gamma$ as above with the property that $\left.\gamma\right|_{[0, T)}$ is injective.
(2) Optional: (Arnold page 20) Let $E$ be the energy of a system with one degree of free$\operatorname{dom}$ and let $a \in \mathbb{R}$. Assume that $E$ is a smooth function. Suppose that $E^{-1}((-\infty, e])$ is compact with area $S(e)$ for $e \leq a$. If $C$ is a simple periodic orbit with image $E^{-1}(e)$ for some $e<a$, then show that the period of this phase curve is equal to $\left.\frac{d S(y)}{d y}\right|_{y=e}$.
(3) (Arnold Page 20) Let $\xi$ be a local minimum of the potential function $U$ of a system with one degree of freedom. Suppose that $U^{\prime \prime}(\xi) \neq 0$. Let $T(e)$ be the period of a simple periodic orbit near $\xi$ of energy $e$. Compute $\lim _{e \rightarrow E(\xi)^{+}} T(e)$.
(4) (Arnold Page 28) Consider a system with two degrees of freedom whose potential energy is given by

$$
\frac{1}{2} x_{1}^{2}+\frac{1}{2} \omega^{2} x_{2}^{2}
$$

for some $\omega \in \mathbb{R}$. What are the periods of its simple periodic orbits?
(5) Optional: Suppose we have a system with $n$ degrees of freedom whose potential energy is

$$
\sum_{i=1}^{n} \omega_{i} x_{i}^{2}
$$

for some $\omega_{1}, \cdots, \omega_{n} \in \mathbb{R}$. What are the periods of its simple periodic orbits?
(6) Show that the field

$$
f\left(x_{1}, x_{2}\right)=\left(\frac{x_{2}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}, \frac{-x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}\right)
$$

on $\mathbb{R}^{2}-\{0\}$ is not conservative.
Definition: A phase curve $\gamma: \mathbb{R} \longrightarrow \mathbb{R}^{n}$ is Liapunov stable if for each phase curve $\check{\gamma}$ starting near $\gamma(0)$, we have that $\gamma(t)$ is close to $\check{\gamma}(t)$ for all $t$.
(7) Write out the definition above rigorously using epsilons and deltas.
(8) (Arnold page 36): Suppose we have system with two degrees of freedom whose potential energy is $U=r^{\alpha},-2 \leq \alpha<\infty$ where $r$ is the distance from the origin. Consider a phase curve for which $r$ is constant along this curve. For which $\alpha$ is this curve Liapunov stable?
(9) What is the shape of an unbounded orbit in Kepler's problem?

