
Homework 5 Solutions

Due: Thursday October 4th at 10:00am in Physics P-124

Please write your solutions legibly; the TA may disregard solutions that are not readily
readable. All solutions must be stapled (no paper clips) and have your name (first name
first) and HW number in the upper-right corner of the first page.

Problem 1: Let (Ω,F, µ) be a measure space and let f, g : Ω −→ R be non-negative measur-
able functions whose integrals are finite. Show that f ≤ g almost everywhere
iff
∫
E
f dµ ≤

∫
E
g dµ for each E ∈ F.

Solution: Suppose that f ≤ g almost everywhere. Then there is a null set
N so that f1Ω−N ≤ g1Ω−N . Since µ(N) = 0, we have that f1N and g1N are
equal to 0 almost everywhere and hence∫

f1E1N =

∫
g1E1N = 0

since f1E1N and g1E1N is equal to 0 almost everywhere. Hence∫
E

fdµ =

∫
f1E1Ω−N + f1E1N dµ

=

∫
f1E1Ω−N dµ+

∫
f1E1N dµ =

∫
f1E1Ω−N

≤
∫
g1E1Ω−N dµ =

∫
g1E1Ω−N dµ+

∫
g1E1N dµ

=

∫
g1E1Ω−N + g1E1N dµ =

∫
g1E dµ =

∫
E

g dµ.

Conversely suppose that ∫
E

f dµ ≤
∫
E

g dµ (1)

for each E ∈ F. Define

Qn :=

{
x ∈ Ω : f(x) ≥ g(x) +

1

n

}
for each n ∈ N. Then since f − g is measurable, we have that

Qn = (f − g)−1([1/n,∞]) ∈ F

for each n ∈ N. Now∫
Qn

f dµ ≥
∫
Qn

g +
1

n
dµ =

∫
Qn

g dµ+
1

n
µ(Qn).

Hence by our assumption (1) and since the integrals of f and g over Qn are
finite,

0 ≤ 1

n
µ(Qn) ≤

∫
Qn

fdµ−
∫
Qn

gdµ ≤ 0.
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Hence µ(Qn) = 0. Therefore

{x ∈ Ω : f(x) > g(x)} = ∪n∈NQn

has µ-measure 0 by subadditivity of µ. Hence f ≤ g almost everywhere.

Problem 2: Construct a sequence of sequence of non-negative measurable functions (fn)n∈N
on R so that ∫

lim inf
n→∞

fndm < lim inf
n→∞

∫
fndm.

Solution:
Define fn := n1(0, 1

n
]. Then limn→∞ fn = 0, but

∫
R fn = 1 for each n.

Problem 3: Let (Ω,F, µ) be a measure space and let f : Ω −→ R be a non-negative mea-
surable function.
(1) Show that

sn :=
22n∑
k=0

k

2n
1f−1([ k

2n
, k+1
2n )), n ∈ N

pointwise converges to f .
(2) Therefore show ∫

f dµ =

sup

{
k∑
i=1

aiµ(f−1([ai, bi])) : k ∈ N, [a1, b1], · · · , [ak, bk] disjoint intervals in R

}
. (2)

Solution:
(a) If x ∈ f−1(

[
2k

2n+1 ,
2k+1
2n+1

)
) for some k ∈ {0, · · · , 22n}, then sn(x) = sn+1(x) =

k
2n

. If x ∈ f−1(
[

2k+1
2n+1 ,

2k+2
2n+1

)
) for some k ∈ {0, · · · , 22n}, then sn(x) = 2k

2n+1

and sn+1(x) = 2k+1
2n+1 and hence sn(x) < sn+1(x). Hence sn ≤ sn+1 for each

n ∈ N.
If x ∈ f−1(

[
k

2n
, k+1

2n

)
) for some k ∈ {0, · · · , 22n}, then sn(x) = k

2n
and

f(x) ∈
[
k

2n
, k+1

2n

)
. Therefore 0 ≤ f(x) − sn(x) < 1

2n
for each x ∈ Ω and

each n ≥ log2(f(x)). Hence for each ε > 0, |f(x) − sn(x)| < ε for each
n > max(log2(1

ε
), log2(f(x)). Therefore for each x ∈ Ω, (sn(x))n∈N is a

non-decreasing sequence converging to f(x). Hence sn pointwise converges
to f .

(b) Let P be the right hand side of Equation (2). Since

k∑
i=1

aiµ(f−1([ai, bi])) =

∫ k∑
i=1

ai1f−1([ai,bi])

and since
∑k

i=1 ai1f−1([ai,bi]) ≤ f , we get that
∫
f dµ ≥ P .
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Now define

sn,m :=
22

n∑
k=0

k

2n
1
f−1

([
k
2n
,
k+1− 1

m
2n

]), n,m ∈ N.

Then sn,m pointwise converges to sn as m → ∞. Also sn,m ≤ sn,m+1 for
each n,m ∈ N and hence by the monotone convergence theorem∫

sn dµ =

∫
lim
m→∞

sn,m dµ = lim
m→∞

∫
sn,m dµ

lim
m→∞

22
n∑

k=0

k

2n
µ

(
f−1

([
k

2n
,
k + 1− 1

m

2n

]))
≤ P.

Hence limn→∞
∫
sn dµ ≤ P . By the monotone convergence theorem and

by (a), ∫
f dµ =

∫
lim
n→∞

sn dµ = lim
n→∞

∫
sn dµ ≤ P.

Hence Equation (2) holds.

Problem 4: Let f : R −→ R be a non-negative measurable function satisfying
∫
f dm <∞.

Define

F : [0,∞) −→ R, F (x) :=

∫
f1[0,x] dm.

Show that F is continuous.

(Hint: Prove this in the case when f is bounded first, and then look at the
general case).

Solution (without using dominated convergence theorem): For x, y ≥
0 satisfying x ≤ y, we have

F (y) =

∫
f1[0,y] dm =

∫
f1[0,x] dm+

∫
f1(x,y] dm

and hence

F (y)− F (x) =

∫
f1(x,y] dm. (3)

Now let x ∈ [0,∞) and let (xn)n∈N be a sequence of non-negative real numbers
converging to x. Define In := (x, xn] if xn ≥ x and In := (xn, x] if xn < x for
each n ∈ N. Define I ′n := In − {x} for each n ∈ N. Then by Equation (5),

|F (x)− F (xn)| =
∫
f1In dm =

∫
f1I′n (4)

since f1In = f1I′n almost everywhere. Define fn := f − f1I′n for each n ∈ N.
Then ∫

f dm =

∫
fn + f1I′n dm =

∫
fn dm+

∫
f1I′n dm
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for each n ∈ N. Hence∫
f1I′n dm =

∫
f dm−

∫
fn dm

for each n ∈ N. Therefore since fn is a non-decreasing sequence of non-negative
functions pointwise converging to f and

∫
f dm <∞, we have:

lim
n→∞

∫
f1I′n dm = lim

n→∞

(∫
f dm−

∫
fn dm

)
=

∫
f dm− lim

n→∞

∫
fn dm

=

∫
f dm−

∫
lim
n→∞

fn dm =

∫
f dm−

∫
f dm = 0

by the monotone convergence theorem. Hence by Equation (6),

lim
n→∞

|F (x)− F (xn)| = lim
n→∞

∫
f1I′n dm = 0.

Therefore F is continuous.

Solution (using dominated convergence theorem): For x, y ≥ 0 satis-
fying x ≤ y, we have

F (y) =

∫
f1[0,y] dm =

∫
f1[0,x] dm+

∫
f1(x,y] dm

and hence

F (y)− F (x) =

∫
f1(x,y] dm. (5)

Now let x ∈ [0,∞) and let (xn)n∈N be a sequence of non-negative real numbers
converging to x. Define In := (x, xn] if xn ≥ x and In := (xn, x] if xn < x for
each n ∈ N. Define I ′n := In − {x} for each n ∈ N. Then by Equation (5),

|F (x)− F (xn)| =
∫
f1In dm =

∫
f1I′n (6)

since f1In = f1I′n almost everywhere. Now |f1I′n| ≤ |f | and hence by the
dominated convergence theorem

lim
n→∞

|F (x)− F (xn)| = lim
n→∞

∫
f1I′n dm =

∫
lim
n→∞

f1I′n dm = 0.

Therefore F is continuous.


