
Homework 9 Solutions

Due: Thursday November 29th at 10:00am in Physics P-124

Please write your solutions legibly; the TA may disregard solutions that are not readily
readable. All solutions must be stapled (no paper clips) and have your name (first name
first) and HW number in the upper-right corner of the first page.

Problem 1: Compute ∫
f d(m×m)

where
f : R2 −→ R, f(x, y) := e−|x|−|y|.

Show your working.

Solution: By Fubini’s theorem,∫
R×R

f d(m×m) =

∫
R
φfdm

where

φf : R −→ R, φf (x) :=

∫
R
fx dm

and
fx : R −→ R, fx(y) := f(x, y).

Now
∫
R fx dm = e−|x|

∫∞
−∞ e

−|y| dy = e−|x|2
∫∞

0
e−ydy = 2e−|x|. Hence∫

R×R
f d(m×m) =

∫
R

2e−|x|dm = 4.

Problem 2: Let Ω be a set and 2Ω the set of subsets of Ω.

Definition: An outer measure is a function µ∗ : 2Ω −→ [0,∞] satisfying
(a) µ∗(∅) = 0.
(b) µ∗(A) ≤ µ∗(B) for all A,B ∈ 2Ω satisfying A ⊂ B.
(c) µ∗(∪∞i=1Ai) ≤

∑∞
i=1 µ

∗(Ai) for all sequences of elements (Ai)
∞
i=1 in 2Ω.

A subset E ⊂ Ω is µ∗-measurable if

µ∗(A) = µ∗(E ∩ A) + µ∗(Ec ∩ A), ∀ A ⊂ Ω.

Fix an outer measure µ∗ on Ω and let F ⊂ 2Ω be the set of µ∗-measurable
subsets of Ω.

(i) Show that for each E,F ∈ F and each A ∈ 2Ω,

µ∗(A) = µ∗(A ∩ E ∩ F ) + µ∗(A ∩ E ∩ F c) + µ∗(A ∩ Ec ∩ F ) + µ∗(A ∩ Ec ∩ F c)

≥ µ∗(A ∩ (E ∪ F )) + µ∗(A ∩ (E ∪ F )c).

(ii) Show that any finite union or intersection of elements of F are in F. Also
show that E − F ∈ F for each E,F ∈ F.
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(iii) For any E1, · · · , En ∈ F satisfying Ei ∩ Ej = ∅ for each i 6= j, and each
A ∈ 2Ω show that

µ∗(A ∩ ∪n
i=1Ei) =

n∑
i=1

µ∗(A ∩ Ei).

(iv) For any sequence of elements (Ei)
∞
i=1 in F satisfying Ei ∩Ej for each i 6= j,

and each A ∈ 2Ω show that

µ∗(A ∩ (∪∞i=1Ei)) =
∞∑
i=1

µ∗(A ∩ Ei).

(v) Show that (Ω,F, µ|F) is a measure space (I.e. show that F is a σ-field and
µ|F is a measure).

Solution:
(i) We have

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec) =

µ∗(A ∩ E ∩ F ) + µ∗(A ∩ E ∩ F c) + µ∗(A ∩ Ec ∩ F ) + µ∗(A ∩ Ec ∩ F c).

Since

A ∩ (E ∪ F ) = (A ∩ E ∩ F c) ∪ (A ∩ E ∩ F ) ∪ (A ∩ Ec ∩ F )

and since A ∩ (E ∪ F )c = A ∩ Ec ∩ F c, we have by (c) that

µ∗(A ∩ E ∩ F ) + µ∗(A ∩ E ∩ F c) + µ∗(A ∩ Ec ∩ F ) + µ∗(A ∩ Ec ∩ F c)

≥ µ ∗ (A ∩ (E ∪ F )) + µ∗(A ∩ (E ∪ F )c).

(ii) By (i), we have that

µ∗(A) ≥ m∗(A ∩ (E ∪ F )) +m∗(A ∩ (E ∪ F )c)

for each E,F ∈ F. Also by (c),

µ∗(A) ≤ m∗(A ∩ (E ∪ F )) +m∗(A ∩ (E ∪ F )c)

and hence

µ∗(A) = m∗(A ∩ (E ∪ F )) +m∗(A ∩ (E ∪ F )c).

By induction this implies that any finite union of elements of F is in F.
If E ∈ F then Ec ∈ F because m∗(A) = m∗(E ∩ A) + m∗(Ec ∩ A) =
m∗(Ec ∩ A) +m∗((Ec)c ∩ A) for all A ∈ 2Ω.
If E,F ∈ F then E ∩ F = (Ec ∪ F c)c ∈ F by previous arguments. Hence
by induction any finite intersection is in F.
Also if E,F ∈ F then E − F = E ∩ F c ∈ F.

(iii) If n = 2, then by (i) with A replaced by A ∩ (E1 ∪ E2) and E,F replaced
with E1, E2,

µ∗(A ∩ (E1 ∪ E2)) =

µ∗(A ∩ (E1 ∪ E2) ∩ E1 ∩ E2) + µ∗(A ∩ (E1 ∪ E2) ∩ E1 ∩ Ec
2)+

µ∗(A ∩ (E1 ∪ E2) ∩ Ec
1 ∩ E2) + µ∗(A ∩ (E1 ∪ E2) ∩ Ec

1 ∩ Ec
2)

µ∗(A ∩ E1) + µ∗(A ∩ E2). (1)
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Now suppose (by induction) we have shown

µ∗(A ∩ (∪k−1
i=1Ei)) =

k−1∑
i=1

µ∗(A ∩ Ei)

for some k > 2. Then by Equation (1) with E1 replaced by ∪k−1
i=1Ei and E2

replaced with Ek, we have

µ∗(A ∩ (∪k
i=1Ei)) = µ∗(A ∩ (∪k−1

i=1Ei)) + µ∗(A ∩ Ek)

=
k−1∑
i=1

µ∗(A ∩ Ei) + µ∗(A ∩ Ek) =
k∑

i=1

µ∗(A ∩ Ei).

(iv) By (b) and (iii),

µ∗(A ∩ (∪∞i=1Ei)) ≥ µ∗(A ∩ (∪ni=1Ei)) =
n∑

i=1

µ∗(A ∩ Ei)

for each n ∈ N. Taking the limit as n goes to infinity gives us:

µ∗(A ∩ ∪n
i=1Ei) ≥

n∑
i=1

µ∗(A ∩ Ei).

The inequality

µ∗(A ∩ ∪∞i=1Ei) ≤
∞∑
i=1

µ∗(A ∩ Ei)

follows from (c). Hence

µ∗(A ∩ ∪∞i=1Ei) =
∞∑
i=1

µ∗(A ∩ Ei).

(v) We will first show that F is a σ-field.
(α) Let A ∈ 2Ω. Then by (a), m∗(A) = m∗(Ω ∩ A) + m∗(A ∩ ∅) =

m∗(Ω ∩ A) +m∗(A ∩ Ωc) and hence Ω ∈ F.
(β) If E ∈ F then Ec ∈ F by (ii).
(γ) Suppose (Ai)

∞
i=1 are elements of F and let A ∈ 2Ω. Define A′i :=

Ai − ∪i−1
j=1Aj for each i ∈ N. Define B := Ω− ∪∞i=1Ai. Then

µ∗(A) = µ∗(A ∩ (B ∪
∞⋃
i=1

A′i))
(iv)
= µ∗(A ∩B) +

∞∑
i=1

µ∗(A ∩ A′i)

(c)

≥ µ∗(A ∩B) + µ∗(A ∩ (∪∞i=1A
′
i)) = µ∗(A ∩ (∪∞i=1Ai)) + µ∗(A ∩ (∪∞i=1Ai)

c).

Hence ∪∞i=1Ai ∈ F.
Therefore F is a σ-field. Also µ := µ∗|F is additive on countable unions of
disjoint sets by (iv). Hence (Ω,F, µ|F) is a measure space.
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Problem 3: Let (Ω,F, µ), (Ω′,F′, µ′) be σ-finite measure spaces. Let σ(F × F′) be the
smallest σ-field containing all sets of the form A×B, A ∈ F, B ∈ F′. Let ν be
a measure on σ(F × F′) satisfying

ν(A×B) = µ(A)µ′(B), ∀ A ∈ F, B ∈ F′

Show that ν is equal to the product measure µ× µ′.

Solution: Since (Ω,F, µ), (Ω′,F′, µ′) are σ-finite, there is a sequence of mea-
sure rectangles (Ri)i∈N in σ(F × F′) satisfying

Ri ⊂ Ri+1, (µ× µ′)(Ri) <∞,∀ i ∈ N, ∪i∈NRi = Ω× Ω′.

Let

G := {E ∈ σ(F × F′) : ν(E ∩Ri) = (µ× µ′)(E ∩Ri), for each i ∈ N}.
We first need to show that G is a σ-field containing all measure rectangles. Since
(Ω × Ω′) ∩ Ri is a measure rectangle for each i ∈ N, we have that Ω × Ω′ ∈ G.
Now let E ∈ G. Then since ν(Ri) = (µ× µ′)(Ri) is finite for each i ∈ N,

ν(Ec ∩Ri) = ν(Ri)− ν(E ∩Ri) =

(µ× µ′)(Ri)− (µ× µ′)(E ∩Ri) = (µ× µ′)(Ec ∩Ri)

for each i ∈ N. Hence Ec ∈ G. If (Ei)i∈N are elements of G then

ν(∪j∈NEj ∩Ri) = lim
j→∞

ν(∪jk=1Ek ∩Ri) = lim
j→∞

(µ× µ′)(∪jk=1Ek ∩Ri) =

(µ× µ′)(∪j∈NEj ∩Ri)

for each i ∈ N and hence ∪∞j=1Ej ∈ G. Therefore G is a σ-algebra containing all
measure rectangles and hence G ⊃ σ(F × F′). Hence

ν(E ∩Ri) = (µ× µ′)(E ∩Ri)

for each E ∈ σ(F × F′) and each i ∈ N. Hence

ν(E) = lim
i→∞

ν(E ∩Ri) = lim
i→∞

(µ× µ′)(E ∩Ri) = (µ× µ′)(E)

for each E ∈ σ(F × F′).

Problem 4: Definition: A cuboid in Rn is a product C =
∏n

j=1 Ij ⊂ Rn where I1, · · · , In
are intervals in R. The volume Vol(C) of C is the product

∏n
j=1 l(Ij) where

l(Ij) is the length of the interval Ij for each j.

Define
m∗ : 2Rn −→ [0,∞]

m∗(E) := inf

{
∞∑
i=1

Vol(Ci) : (Ci)i∈N are cuboids satisfying E ⊂ ∪∞i=1Ci

}
.

Let Mn be the product σ-field σ(M×· · ·×M) on Rn and we let mn = m×· · ·m
be the product measure on Mn..
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(i) Show that m∗ is an outer measure as in Problem 2.
(ii) Show that mn(E) ≤ m∗(E) for each E ∈Mn.

(iii) Show that mn(E) = m∗(E) for each measure rectangle E.
(iv) Show that mn(∪∞i=1Ei) = m∗(∪∞i=1Ei) for any collection (Ei)

∞
i=1 of measure

rectangles satisfying Ei ∩ Ej = ∅.
(v) Show that E ⊂ 2Rn

is m∗-measurable if and only if

m∗(C) = m∗(E ∩ C) +m∗(Ec ∩ C)

for all cuboids C.
(vi) Show that every measure rectangle is m∗-measurable.

(vii) Therefore show that every element of Mn is m∗-measurable and hence show
that the measure spaces (Rn,Mn,mn) and (Rn,Mn,m∗|Mn) coincide.

Solution:
(i) First of all m∗(∅) = 0 since the empty set admits a countable cuboid cover

consisting of empty cuboids which all have volume 0. Let A ⊂ B then
for any cuboid cover (Ci)i∈N of B is a cuboid cover of A. Hence m∗(A) ≤
sup∞i=1 Vol(Ci). Taking the infimum of all such cuboid covers of B gives us
m∗(A) ≤ m∗(B).
Finally, suppose (Ai)i∈N are subsets of Rn. Let ε > 0. Let (Ci,j)j∈N be a
cuboid cover of Ai for each i ∈ N satisfying

m∗(Ai) +
ε

2i+1
≥

∞∑
j=1

Vol(Ci,j)

for each i ∈ N. Then (Ci,j)i,j∈N is a cuboid cover of ∪∞i=1Ai. Hence

m∗(∪∞i=1Ai) ≤
∞∑
i=1

∞∑
j=1

Vol(Ci,j) ≤
∞∑
i=1

m∗(Ai) +
ε

2i+1
= ε+

∞∑
i=1

m∗(Ai).

Since this holds for all ε > 0, we have m∗(∪∞i=1Ai) ≤
∑∞

i=1m
∗(Ai). Hence

m∗ is an outer measure.
(ii) Suppose (Ci)i∈N is a cuboid covering of E. Then

1E ≤
∞∑
i=1

1Ci

and hence

mn(E) =

∫
1E dm ≤

∫ ∞∑
i=1

1Ci
dm

MCT
=

∞∑
i=1

∫
1Ci

dmn =
∞∑
i=1

Vol(Ci).

Hence taking the infimum of
∑∞

i=1 Vol(Ci) over all such cuboid coverings
(Ci)i∈N gives us

mn(E) ≤ m∗(E).
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(iii) By (ii), it is sufficient to show that mn(E)(1+ε)n ≥ m∗(E) for each measure
rectangle E =

∏n
i=1Ei, E1, · · · , En ∈ M and each ε > 0. Fix such E and

ε. Choose an interval cover (Ii,j)
∞
j=1 of Ei so that

∞∑
j=1

l(Ii,j) < m(Ei)(1 + ε)

for each i = 1, · · · , n. Then (
∏n

i=1 Ii,ji)j1,··· ,jn∈N is a cuboid covering of E
and ∑

j1,··· ,jn∈N

Vol

(
n∏

i=1

Ii,ji

)
=

∑
j1,··· ,jn∈N

n∏
i=1

l(Ii,ji)

=
n∏

i=1

(
∞∑
j=1

l(Ii,j)

)
<

n∏
i=1

(m(Ei)(1 + ε)) = m(E)(1 + ε)n.

(iv)

mn(∪∞i=1Ei) =
∞∑
i=1

mn(Ei)
(iii)
=

∞∑
i=1

m∗(Ei) ≥ m∗(∪∞i=1Ei).

Also mn(∪∞i=1Ei) ≤ m∗(∪∞i=1Ei) by (ii). Hence mn(∪∞i=1Ei) = m∗(∪∞i=1Ei).
(v) If E is measurable then

m∗(C) = m∗(E ∩ C) +m∗(Ec ∩ C)

holds for each cuboid C by definition.
Now suppose that

m∗(C) = m∗(E ∩ C) +m∗(Ec ∩ C)

for every cuboid C. We wish to show that E is measurable. Let A ⊂ R be
any subset. Since m∗ is an outer measure, it is sufficient to show that

m∗(E ∩ A) +m∗(A ∩ Ec) ≤ m∗(A) + ε (2)

for each ε > 0. Therefore, fix ε > 0. Choose an countable cuboid covering
(Ci)i∈N of A so that

∑
i∈N Vol(Ci) < m∗(A) + ε. Now

m∗(A) + ε >
∞∑
i=1

Vol(Ci)
(iii)
=

∞∑
i=1

m∗(Ci) =

∞∑
i=1

(m∗(E ∩ Ci) +m∗(Ec ∩ Ci)) =

∞∑
i=1

m∗(E ∩ Ci) +
∞∑
i=1

m∗(Ec ∩ Ci) ≥

m∗(∪i∈N(E ∩ Ci)) +m∗(∪i∈N(Ec ∩ Ci)

≥ m∗(E ∩ (∪i∈NCi)) +m∗(Ec ∩ (∪i∈NCi))

≥ m∗(E ∩ A) +m∗(Ec ∩ A).

Hence Equation (2) holds and we are done.
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(vi) Let C be a cuboid and let E be a measure rectangle. Then E ∩ C is a
measure rectangle and Ec∩C is a disjoint union of 2n−1 measure rectangles.
Hence mn(C) = m∗(C), mn(E ∩ C) = m∗(E ∩ C) and mn(Ec ∩ C) =
m∗(Ec ∩ C) by (iv). Therefore

m∗(C) = mn(C) = mn(E ∩ C) +mn(Ec ∩ C) = m∗(E ∩ C) +m∗(Ec ∩ C).

Hence E is m∗-measurable by (v).
(vii) Let F be the set of m∗-measurable sets. Then F is a σ-field by Problem

2 and induction on n. Also F contains all measure rectangles by (vi).
Therefore Mn ⊂ F. Hence every element of Mn is m∗-measurable.
Now Rn is an increasing union of measure rectangles in Mn of finite mn-
measure and m∗-measure. Hence (Rn,Mn,mn) and (Rn,Mn,m∗|Mn) are
σ-finite measure spaces. Therefore since mn and m∗ agree on the subset of
measure rectangles in Mn, we have by Problem 3 and induction on n that
mn = m∗|Mn . Hence

(Rn,Mn,mn) = (Rn,Mn,m∗|Mn).


