
Homework 7 Solutions

Due: Thursday November 8th at 10:00am in Physics P-124

Please write your solutions legibly; the TA may disregard solutions that are not readily
readable. All solutions must be stapled (no paper clips) and have your name (first name
first) and HW number in the upper-right corner of the first page.

Problem 1: Definition: A subset K ⊂ V of a vector space V is convex if for each p1, p2 ∈ K,
we have that tp1 + (1− t)p2 ∈ K for each t ∈ [0, 1] (I.e. the line joining p1 and
p2 is contained in K).

Let (V, 〈, 〉) be a Hilbert space and let K ⊂ V be a closed convex subset. Let
x ∈ V . Show that there exists a unique point p ∈ K satisfying

‖x− p‖ ≤ inf{‖p′ − x‖ : p′ ∈ K}.

Hint: we proved this statement when K was a subspace.

Solution: Let L = inf{‖p′ − x‖ : p′ ∈ K}. Choose a sequence (pj)n∈N, so
that ‖pn − x‖ converges to L as n tends to infinity. Then by the parallelogram
identity, we have

‖pn− pm‖2 = ‖(pn−x)− (pm−x)‖2 = 2‖(pn−x)‖2 + 2‖pm−x‖2−‖pn−x+ pm−x‖2

= 2‖(pn−x)‖2+2‖pm−x‖2−4‖1

2
(pn+pm)−x‖2 ≤ 2‖(pn−x)‖2+2‖pm−x‖2−4L2 → 0

as n,m → ∞. Hence (pn)n∈N is Cauchy. Therefore there exists a point p ∈ V
so that pn → p ∈ V as n → ∞. Since K is closed, p ∈ K. Also ‖p − x‖ =
limn→∞ ‖pn − x‖ = L.

We now need to show that p is unique. Suppose p′ ∈ K also satisfies ‖p′−x‖ =
L. Then by the parallelogram identity,

‖p− p′‖2 = ‖(p− x)− (p′ − x)‖2 = 2‖(p− x)‖2 + 2‖p′ − x‖2 − ‖p− x+ p′ − x‖2

= 2‖(p− x)‖2 + 2‖p′ − x‖2 − 4‖1

2
(p+ p′)− x‖2 ≤ 2‖(p− x)‖2 + 2‖p′ − x‖2 − 4L2 = 0

Hence p = p′.

Problem 2: For which p ∈ [1,∞] is the sequence

fn : R −→ R, fn(x) = x−
1
3 1[n,n4], n ∈ N

a Cauchy sequence in Lp(R,M,m)?

Solution: For p <∞ satisfying p 6= 3 and each n ≤ m, we have
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=
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=
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This tends to 0 as n,m → ∞ if 1 − p
3
< 0. In other words, this sequence is

Cauchy if p > 3.
If 1 ≤ p < 3, then (n3)1−

p
3 tends to infinity as n tends to infinity. Hence if

n,m are large enough so that

(n3)1−
p
3 > 1

and so that m > n4, then the above equality tells us
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=
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which tends to infinity as n,m tends to infinity. Hence this sequence is not
Cauchy.

What happens when p = 3? Then

‖fn − fm‖p =

(∫ min{n4,m}

n

x−
p
3dx+

∫ m4

max{n4,m}
x−

p
3dx

) 1
p

=

(
[log(x)]min{n4,m}

n + [log(x)]m
4

max{n4,m}

) 1
p

=(
log(min{n4,m})− log(n)) + log(m4)− log(max{n4,m})

) 1
p .

If m ≥ n4, then this is equal to

(3 log(n) + 3 log(m))
1
p

which tends to infinity as n,m tend to infinity. Hence this sequence is not
Cauchy.

Problem 3: For each distinct q, p ∈ [1,∞] show that Lp(E) is not contained in Lq(E) where
E = (0,∞) (cases p =∞ or q =∞ may require separate treatment).

Solution: We have four cases:
(1) p, q <∞ and q < p.
(2) p, q <∞ and p < q,
(3) p =∞, q <∞,



3

(4) q =∞, p <∞.

(1) Suppose p, q <∞ and q < p. Define

f : E −→ R, f(x) := x−
2

p+q 1[1,∞).

Then∫
E

|f |pdm =

∫ ∞
1

x−
2p
p+q dm =

[
x−

2p
p+q

+1

− 2p
p+q

+ 1

]∞
1

=
limx→∞ x

− 2p
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+1 − 1

− 2p
p+q

+ 1
=

−1

− 2p
p+q

+ 1
.

since − 2p
p+q

+ 1 < 0. However,∫
E

|f |qdm =

∫ ∞
1

x−
2q
p+q dm =

[
x−

2q
p+q

+1

− 2q
p+q

+ 1

]∞
1

=
limx→∞ x

− 2q
p+q

+1 − 1

− 2q
p+q

+ 1
=∞

since − 2q
p+q

+ 1 > 0. Hence f ∈ Lp(E) but not Lq(E).

(2) Suppose p, q <∞ and p < q. Define

f : E −→ R, f(x) := x−
2

p+q 1(0,1].

Then∫
E

|f |pdm =

∫ ∞
1

x−
2p
p+q dm =

[
x−

2p
p+q

+1

− 2p
p+q

+ 1

]1
0

=
1− limx→0+ x

− 2p
p+q

+1

− 2p
p+q

+ 1
=

1

− 2p
p+q

+ 1
.

since − 2p
p+q

+ 1 > 0. However,∫
E

|f |qdm =

∫ ∞
1

x−
2q
p+q dm =

[
x−

2q
p+q

+1

− 2q
p+q

+ 1

]1
0

=
1− limx→0+ x

− 2q
p+q

+1

− 2q
p+q

+ 1
=∞

since − 2q
p+q

+ 1 < 0. Hence f ∈ Lp(E) but not Lq(E).

(3) Now suppose p =∞ and q <∞. Define

f : E −→ R, f := 1(0,∞).

Then f is bounded and hence f ∈ Lp(E) = L∞(E). However,
∫
E
f qdm =∫∞

0
1dm =∞ and so f /∈ Lq(E). Hence Lp(E) is not contained in Lq(E).

(4) Finally suppose q =∞ and p <∞. Define

f : E −→ R, f(x) := x−
1
2p 1(0,1].

Then ∫
E

|f |pdm =

∫ 1

0

1√
x
dm =

[
2
√
x
]1
0

= 1 <∞.

However, esssup(|f |) = ∞ since f−1((a,∞)) = (0, a−2p) has positive mea-
sure for each a > 0.
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Problem 4: Definition: A subset E of a metric space (X, d) is dense if for each ε > 0 and
x ∈ X, there exists e ∈ E satisfying d(x, e) < ε.

Show that L∞(R) does not have a countable dense subset.

Solution: Let E be a dense subset of L∞(R). Define ε := 1
4
.

Define
fr : R −→ R, fr := 1(0,r)

for each r ∈ (0,∞). These are all elements of L∞(R) since they are bounded
measurable functions. Also ‖fr1 − fr2‖∞ = 1 for each distinct r1, r2. Hence the
subset S := {fr : r ∈ (0,∞)} ⊂ L∞(R) is uncountable. Since E is dense by
assumption, for each fr ∈ S, there exists er ∈ E satisfying ‖fr − er‖ < ε. If
er1 = er2 for some r1, r2 then

‖fr1 − fr2‖∞ ≤ ‖fr1 − er1‖∞ + ‖fr2 − er2‖∞ + ‖er1 − er2‖∞ <
1

4
+

1

4
= ε.

Hence r1 = r2 since ‖fr′1 − fr′2‖∞ = 1 > 1
2

for distinct r′1, r
′
2. Therefore the map

S −→ E, fr −→ er

is injective. Since S is uncountable, we get that E is uncountable. Hence L∞(R)
cannot have an uncountable dense subset.


