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Abstract. A central question in dynamics is whether the topology of a system

determines its geometry. This is known as rigidity. Under mild topological

conditions rigidity holds for many classical cases, including: Kleinian groups,
circle diffeomorphisms, unimodal interval maps, critical circle maps, and circle

maps with a break point. More recent developments show that under similar

topological conditions, rigidity does not hold for slightly more general systems.
In this paper we state a conjecture which describes how topological classes are

organized into rigidity classes.

1. Introduction

One of the aims of dynamics is to understand whether two dynamical systems are
“topologically” the same. This is determined by the existence of a homeomorphism
which conjugates the two systems. A related question is then to ask when two
systems are “geometrically” the same. That is, when is the conjugacy differentiable?

This geometrical equivalence question has been studied in the last forty years
in the case of circle diffeomorphisms, unimodal maps, critical circle maps, etc. (see
Example 3.1). It turns out that, under mild topological restrictions, the conjugacy
between two systems is differentiable as soon as it exists. In other words, the topol-
ogy of a system determines its geometry. This is called the rigidity phenomenon.

One cannot expect the rigidity phenomenon in all generality. The mild topo-
logical restrictions are essential. For example, there is no rigidity in the context of
circle diffeomorphisms when the rotation number is of strongly unbounded type,
[1, 13]. We will discuss the rigidity phenomenon only in the situation of bounded
combinatorics. This is done with the purpose of stressing the fact that even in this
simplest situation the rigidity phenomenon is more intricate than the classical case
where “topology determines geometry.”

Only in the last few years, further studies about the geometry of dynamical
systems with bounded combinatorics have revealed classes for which the rigidity
phenomenon does not hold. Non-rigidity occurs in natural classes of dynamical
systems, such as: circle maps with a flat interval, Lorenz maps in one dimension and
in Hénon maps in two dimensions. The geometrical equivalence of these systems is
not solely determined by their topology. However, the rigidity phenomenon does not
break down completely. Instead, the geometrical equivalence classes, called rigidity
classes, are well organized inside the topological ones. The observed structures are

• foliations by rigidity classes,
• the coexistence phenomenon,
• probabilistic rigidity.
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These notions are described in more detail in Sections 2 and 3.
The above examples and the structures that they revealed are what urged us

to come up with a conjecture which describes the relation between the topological
and geometric properties of a system. In Section 2 we discuss the resulting Rigidity
Conjecture and in Section 3 we give examples supporting it.

2. The Rigidity Conjecture

In this section we present the basic notions needed to state the Rigidity Con-
jecture. The aim is to determine the geometry of the attractor of a system. The
systems are smooth maps on manifold and the attractors are attractors in the sense
of Milnor [26].

Two maps are in same topological class if they are conjugated on their attrac-
tors. Similarly, two maps are in same rigidity class if they are C1+α–conjugated
on their attractors, for some α > 0. A third notion of equivalence is given by
so-called probabilistic rigidity. An attractor carries a dynamically relevant mea-
sure and we say that two maps are in the same probabilistic rigidity class if
the conjugacy is C1+α almost everywhere with respect to this measure, for some
α > 0. The topological class determines the topological properties of the attractor,
whereas the rigidity class determines the attractor’s geometrical properties.

We restrict our discussion to topological classes which are of bounded combi-
natorics. This topological property is well understood for one-dimensional systems
and for infinitely renormalizable Hénon maps. For example, in case of circle diffeo-
morphisms bounded combinatorics is the same as saying that the rotation number
is of bounded type. However, the topology of two and higher dimensional sys-
tems is still in the very beginning of its development. Part of the study of the
rigidity phenomenon is to describe the topological restrictions needed for rigidity.
At this moment our understanding of the topology of higher dimensional systems
is too rudimentary to anticipate the general condition needed for rigidity. These
topological restrictions will have the nature of being bounded.

Finally, a stratification of a topological class is a partition of the topological
class into finite codimension submanifolds. The submanifolds can have different
codimensions. Some of them can form a foliation.

Rigidity Conjecture. The topological class is a finite codimension manifold which
is stratified by probabilistic rigidity classes.

The heuristic reasoning behind the conjecture is as follows. The rigidity classes
determine the geometrical properties of the attractor on a small scale. The tool for
studying small-scale properties of an attractor is renormalization. Renormalization
allows us to zoom in on any point of the attractor.1 If the renormalizations of two
maps at any point of the attractor converge exponentially fast then the conjugacy
is C1+α, with α > 0. For the one-dimensional setting see [5, 16] and for the con-
servative Hénon case see [8]. Two maps are in the same rigidity class if and only
if the renormalizations at any point of the attractor converge exponentially fast.
This relies on the restriction of bounded combinatorics [2, 5, 6, 14–16]. Roughly
speaking, the rigidity classes have finite codimension because the derivatives of the
renormalization are compact operators. The rigidity classes are then determined

1Usually the renormalization is done around one specific point. Nevertheless the same proce-
dure can be used for any point of the attractor.
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by the asymptotic behavior of the renormalizations, which in turn strongly depend
on the specific properties of the topological class. Different phenomena can occur.
Here are the known phenomena which led us to state the conjecture:

(1) The same asymptotic convergence for the whole topological class. In this
case the topological class coincides with the rigidity class, see Example 3.1.

(2) Finitely many geometrical invariants which describe the asymptotics of the
renormalization. In this case the rigidity classes foliate the topological class,
see Examples 3.2 and 3.8.

(3) Existence of open parts of the topological class in which the asymptotics of
renormalization is determined by finitely many geometrical invariants. This
happens in the coexistence phenomenon in Example 3.4. The number and
the type of the geometrical invariants is not necessarily the same in different
open parts. In this case the topological class is stratified by rigidity classes.
The boundaries of the open parts also form strata. See also Example 3.5.

(4) Convergence of the renormalization only occurs at certain points of the
attractor. This is a purely higher-dimensional phenomenon which gives
rise to probabilistic rigidity, see Example 3.7.

3. Examples

Here we list the examples that were used to formulate the Rigidity Conjecture.

3.1. Classical cases. Rigidity is known to hold for many classes of systems with
bounded combinatorics and sufficient smoothness. For example: Kleinian groups
[27], circle diffeomorphisms [13,33], critical circle homeomorphisms [6,10,11,31,32],
unimodal maps [7, 17–19,24,25,29], circle maps with breakpoints [14,15].

3.2. Flat circle maps I. For circle maps with a flat interval, critical exponent
l < 2 and rotation number of Fibonacci type the topological class is a codimension-1
manifold and it is foliated by rigidity classes which are codimension-3 submanifolds
[22]. Three geometrical invariants describe the leaves. Invariant Cantor sets of uni-
modal maps of Fibonacci type with critical exponent l = 2 have one characterizing
geometrical invariant [20].

3.3. Flat circle maps II. Let f and g be two circle maps with a flat interval
having critical exponents l1 > l2 > 2 and the same rotation number of bounded
type. Both maps have a priori bounds [9]. A priori bounds imply that f and g are
quasi-symmetrically conjugate on their attractors [28]. However, f and g are not
smoothly conjugate since their critical exponents differ.

3.4. Lorenz maps I. Fix a critical exponent l > 1. Lorenz maps of sufficiently
high monotone combinatorial type exhibit the coexistence phenomenon [23]. That
is, there are maps f and g of the same topological type such that f has bounded
geometry and g has degenerate geometry. In particular, f and g are not quasi-
symmetrically conjugate despite having the same topological type and the same
critical exponent. It is conjectured that there is a codimension-1 stable manifold
inside the topological class and that the rest of the topological class is foliated by
finite codimension rigidity classes. The codimensions may vary.
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3.5. Lorenz maps II. Fix a critical exponent l > 1. Based on numerical experi-
ments it is conjectured that the Lorenz operator has both a fixed point and a (strict)
period-two point for some low monotone combinatorics [30]. The fixed point and
the period-two point have a priori bounds and they are quasi-symmetrically conju-
gate, but they are not smoothly conjugate. The complement of the stable sets of
the fixed point and the period-two point is laminated by finite codimension rigidity
classes.

3.6. Hénon maps I. Infinitely renormalizable period-doubling Hénon maps with
different average Jacobian are not smoothly conjugated on their attractors. These
maps are rigid when the average Jacobian b = 0 (the unimodal case) and when
b = 1 (the area-preserving case) [3,8]. It is conjectured that period-doubling Hénon
maps are foliated by codimension-1 rigidity classes determined by the average Ja-
cobian b. It is know that the conjugacy classes of infinitely renormalizable period-
doubling Hénon maps are not of finite codimension. In particular there are no
finite-dimensional families which intersect all conjugacy classes of infinitely renor-
malizable period-doubling Hénon maps [12]. The essential part of the dynamics
of these maps is the Cantor attractor which exists for infinitely renormalizable
maps. Hence the topologically relevant property is infinite renormalizability. The
conjugacy classes do not play a topological role in this setting. The infinitely renor-
malizable maps form a codimension-1 manifold while the conjugacy classes are very
small.

3.7. Hénon maps II. The Cantor attractor of an infinitely renormalizable period-
doubling Hénon map is uniquely ergodic. The conjugacy between the Cantor at-
tractors of two such maps is almost everywhere C1+α which respect to the unique
invariant measure, for some α > 0 [21]. Recall that if the average Jacobians are
different then the maps are not smoothly conjugate. This phenomenon is called
probabilistic rigidity.

3.8. Affine interval exchange transformations. Almost all topological classes
(which are the conjugacy classes) in the space of affine interval exchange transfor-
mations is foliated by rigidity classes which are one-dimensional subspaces [4].

4. Observations on quasi-symmetry and a priori bounds

Let us close with the following observations. A system has a priori bounds if
the successive renormalizations do not degenerate. In the context of bounded com-
binatorics and a priori bounds in one-dimensional dynamics, the topological class
coincides with the quasi-symmetric rigidity classes. The conjugacy between two
maps is quasi-symmetric on the attractors. This played a crucial role in the study
of the convergence of renormalization. However, quasi-symmetry does not charac-
terize geometry. The simplest indication of this is when two equivalent systems
have both a priori bounds but different critical exponent. This is illustrated in
Example 3.3 where changing the critical exponent does not break quasi-symmetry
even though the geometry changes. A more subtle reason is given by Example 3.5
where both the period-two point and the fixed point of renormalization have a priori
bounds. Hence there is quasi-symmetry but the geometry of these points cannot
coincide because of their different renormalization periods.
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