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Chapter 1

Introduction

The study of time evolution of the systems under consideration plays an important role

in many natural sciences. Experiments and simulations in these fields often show very

complicated, chaotic behavior. However, a rigorous understanding of chaotic dynamical

systems are far from complete.

There are not many real world systems which can be modeled by one dimensional

dynamical systems. That is, systems described by iteration of a map of the interval.

Nevertheless, during the last forty years an extensive and rather complete theory has

been developed to explain their dynamics. The surprising fact is that many of the one

dimensional phenomena are observed in nature. Although one dimensional systems are

very simple models, they contain mechanisms which are relevant for real world systems.

The natural strategy is to explore, how far we can extend the one dimensional theory and

get a better understanding of higher dimensional systems.

The central theme of the one-dimensional theory is the geometric rigidity of the at-

tractors. The main technique is renormalization. Renormalization is a method to study

the microscopic geometric properties of attractors. It was introduced into dynamics in the

late seventies by P. Coullet and C.P. Tresser (Coullet and Tresser 1978) and independently

M.J. Feigenbaum (Feigenbaum 1978). Initially the goal was to study the dynamics at the

accumulation of period doubling. Systems which are at the accumulation of period dou-

bling have very specific combinatorial behavior. This behavior occurs when a system is at

transition to chaos, when it is at the boundary of chaos in the space of systems.

The attractors of the maps at transition to chaos have a special property. They are

Cantor sets and on arbitrarily small scale the attractor can be identified with a rescaled

version of the attractor of another one-dimensional map. This allows to introduce an op-

erator on the set of one-dimensional maps at transition which assigns to a map, the map

which describes its attractor at the smaller scale. This operator acts as a microscope. For

maps at the transition we can describe the dynamics at arbitrarily small scale. That is,

we can apply the renormalization operator infinitely many times to study the dynamics.

It was conjectured in (Coullet and Tresser 1978) and (Feigenbaum 1978), that the maps at

transition form exactly the stable manifold of a unique fixed point f∗ of the renormalization

operator. This conjecture explains why the fine scale structure of the attractor is indepen-

dent of the original map being considered. The microscopic geometry of an attractor at
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transition to chaos is universal. The fine scale geometrical structure can not be deformed.

The attractors are rigid.

During the following thirty years the renormalization idea was extended and applied

to general types of combinatorics of one-dimensional maps. Our understanding of one-

dimensional dynamics is a consequence of the maturity of one-dimensional renormalization.

A general theory for smooth dynamics is still completely out of reach. There are two

natural direction in which one can extend the theory using the results from one-dimensional

smooth dynamics. The first one is one-dimensional dynamics with low smoothness and the

second is dynamics of Hénon maps.

Models of real world systems are usually very high dimensional or even infinite di-

mensional as in fluid dynamics. However, there is a phenomenon of dimension reduction,

the essence of the dynamics happens on low dimensional attractors. On some cases these

attractors can be described, even in terms of one-dimensional systems. This is the rea-

son why one-dimensional dynamical systems are more than just toy models. The theory

for one-dimensional systems is well developed in the case when the systems are smooth.

Unfortunately, the one-dimensional systems which arise from applications are usually not

smooth. In dissipative systems the states are groups in so-called stable manifolds, dif-

ferent states in such a stable manifold have the same future. The packing of the stable

manifold usually does not occur in a smooth way. For example, the Lorenz flow is a flow

on three dimensional space approximating a convection problem in fluid dynamics. The

stable manifolds are two dimensional surfaces packed in a non smooth foliation. This flow

can be understood by a map on the interval whose smoothness is usually below C2.

The first part of the thesis discusses renormalization of one-dimensional maps with low

smoothness. The first group of results deals with maps which are C2. All maps under

consideration will be maps with a quadratic tip. These maps are unimodal, they have

a single maximum at their critical point, it is denoted by c and this maximum is well

approximated by a quadratic polynomial. The collection of unimodal maps with quadratic

tip and a certain smoothness is denoted by U r.

The main results lead to the fact that renormalization on the space of C2 maps is not

hyperbolic and the convergence to the analytic fixed point can be arbitrarily slow.

Theorem 1.0.1 Let dn > 0 be any sequence with dn → 0. There exists an infinitely

renormalizable C2 map f ∈ U2 such that

dist0 (Rnf, fω∗ ) ≥ dn.

The distance is measured in the C0 topology.

Corollary 1.0.2 The analytic unimodal map fω∗ is not a hyperbolic fixed point in the space

of C2 maps.
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We will introduce a type of differentiability of a unimodal map, called C2+|·|, which is the

minimal needed to be able to apply the classical proofs of a priori bounds for the invariant

Cantor sets of infinitely renormalizable maps, see for example (Martens 1994),(Martens

et al. 1988),(de Melo and van Strien 1993). This type of differentiability will allow us to

represent any C2+|·| unimodal map as

f = φ ◦ q,

where q is a quadratic polynomial and φ has still enough differentiability to control cross-

ratio distortion.

Theorem 1.0.3 If f is an infinitely renormalizable C2+|·| unimodal map then

lim
n→∞

dist0 (Rnf, fω∗ ) = 0.

A construction similar to the one provided for C2 unimodal maps leads to the following

result:

Theorem 1.0.4 Let dn > 0 be any sequence with
∑

n≥1 dn <∞. There exists an infinitely

renormalizable C2+|·| unimodal map f such that

dist0 (Rnf, fω∗ ) ≥ dn.

The analytic unimodal map fω∗ is not a hyperbolic fixed point in the space of of C2+|·|

maps.

Our second set of theorems deals with renormalization of C1+Lip unimodal maps with

a quadratic tip.

Theorem 1.0.5 There exists an infinitely renormalizable C1+Lip unimodal map f which

is not C2 but

Rf = f.

The topological entropy of a system defined on a non-compact space is defined to be

the Supremum of the topological entropies contained in compact invariant subsets. As a

consequence of a Theorem of Davie (Davie 1999), we get that renormalization on U2+α has

entropy zero, for any α > 0.

Theorem 1.0.6 The renormalization operator acting on the space of C1+Lip unimodal

maps has infinite entropy.

The last theorem illustrates a specific aspect of the chaotic behavior of the renormal-

ization operator on the space of C1+Lip maps.
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Theorem 1.0.7 There exists an infinitely renormalizable C1+Lip unimodal map f such

that {cn}n≥0 is dense in a Cantor set. Here cn is the critical point of Rnf .

The second possibility is to use the successful one-dimensional renormalization theory

to study two-dimensional dynamics. In the case of dissipative dynamics we should start

with the Hénon family. The maps in this family act on a two-dimensional domain and are

given by

Fa,b(x, y) = (fa(x) − by, x),

where b ≥ 0, is the Jacobian and fa(x) is a unimodal map. This family arises when one

creates chaos from a homoclinic bifurcation in a dissipative system. Strongly dissipative

Hénon maps, b << 1, are perturbations of one dimensional dynamics and one-dimensional

renormalization theory is a powerful starting point for the development of a theory. The

Hénon family has many realistic applications because of its relevance in the creation of

chaos.

Rigorous understanding of Hénon map is fragmented. There are three well understood

phenomena. The first one is the Newhouse phenomenon [N], [PT]. There are smooth

maps (also in the Hénon family) which have periodic attractors of arbitrarily high period.

This behavior is quite different form the chaotic maps constructed by M. Benedicks and

L. Carleson (Benedicks and Carleson 1985). They proved that for a set of parameters

with positive measure the corresponding Hénon map has a non-trivial attractor with an

ergodic invariant measure, describing the statistical long term behavior of typical orbits.

This fundamental work from the late eighties was recently refined by L.S. Young and Q.D.

Wang to apply higher dimensions, Hénon-like maps, [WY] .

The third part of our knowledge of Hénon maps deals with maps in a neighborhood of

the accumulation of period doubling. This is an area in parameter space where chaos is

created. The first study of this area was done by P. Collet, J-P. Eckmann and H. Koch,

(Coullet et al. 1980). They used analytical tools to extend the one-dimensional renor-

malization operator to a space of strongly dissipative Hénon-like maps and proved the

hyperbolicity of the operator. A. de Carvalho, M.Lyubich, and M. Martens constructed

a renormalization operator on the space of strongly dissipative Hénon-like maps using

geometric ingredients, (de Carvalho et al. 2005). The specific construction and the hyper-

bolicity of this renormalization operator allowed to study the geometry of Cantor attractors

of Hénon maps at the accumulation of period doubling. It opened a source of surprising

phenomena. The results obtained discuss the geometric (non)-rigidity of the Cantor at-

tractors of maps at the accumulation of period doubling, the topology of such maps as

well as the bifurcation pattern in a neighborhood of the accumulation of period doubling.

The main theme is that the theory for two-dimensional dissipative dynamics is far from

a straightforward generalization of the one-dimensional theory, even for maps which the



5

simplest combinatorial type, period doubling. However, renormalization is again a very

powerful tool which is able to describe the dynamics of Hénon maps.

The second part of the thesis discusses renormalization for Hénon maps. It is a nu-

merical study. The present renormalization theory deals with strongly dissipative Hénon

maps. These maps form a short curve in parameter space of a generic Hénon family. An

important question is whether the observed phenomena of (non-)rigidity and universality

can be extended to maps which are (not strongly) dissipative and even up to the conserva-

tive maps. Briefly speaking, can we extend the curve of infinitely renormalizable strongly

dissipative Hénon maps up to the conservative maps? The first numerical study shows

that, indeed, the curve extend that far. More importantly, the study describes the combi-

natorial changes which occur along this curve. These changes are denoted by “top down

breaking of the boxes”.

Most of the results for Hénon maps discuss strongly dissipative maps, b << 1. We do

not yet have the tools to study maps which are not strongly dissipative, maps which are

not small perturbations of one-dimensional maps. The numerical description of “top down

breaking of boxes” indicates how one can proceed to rigorously extend the curve up to the

conservative maps.

One-dimensional dynamics is controlled by the critical points of these systems. In-

finitely renormalizable Hénon maps also have a topologically defined critical points which

plays a crucial role. At the present moment we are at the starting point of developing a

renormalization theory for Hénon maps with more general combinatorial types. Part of

the problem is to describe the combinatorial type of Hénon map.

History inspires us to consider maps of Fibonacci type. Unfortunately, the situation

is far more complex than the period doubling case for Hénon maps. There are infinitely

many critical points. However, a numerical study presented in this thesis shows that there

is a curve in the Hénon family whose maps have an invariant Cantor set of Fibonacci type.

This is strong support for the possibility of constructing a renormalization operator for

Hénon maps of Fibonacci type.

Infinitely renormalizable Hénon maps of period doubling type have a Cantor attractor.

This Cantor set has geometrical aspects which are exactly the same as the counter part

in the Cantor attractors of infinitely renormalizable one-dimensional systems. This phe-

nomenon is called universality. Contrary to the one-dimensional situation, these Hénon

Cantor sets are not rigid. There are parts of the Hénon Cantor set where the geometry on

asymptotically small scale is different from the one-dimensional situation. By changing the

Jacobian b one can change the asymptotic geometry of the Cantor set. The non-rigidity

was up to recently an unexpected phenomenon. Strongly dissipative two-dimensional sys-

tems are geometrically different from the one-dimensional world. Although, two and one-

dimensional systems do have some universal geometrical aspects.
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The numerically constructed curve of infinitely renormalizable dissipative Hénon maps

ends in a conservative map. This conservative map has an invariant Cantor set. The

geometry of this Cantor set is not at all similar to the Cantor attractor of the dissipative

maps. Our third numerical study on Hénon maps discusses how the one-dimensional Cantor

set deforms into the Cantor set of the conservative map. To describe this deformation we

studied the invariant line field which is carried on the Cantor set. This line field has zero

characteristic exponent. One could think about this line field as if it was aligned along the

Cantor set. However, one should be careful. It has been shown that this line field is not

continuous for truly two-dimensional Hénon maps (de Carvalho et al. 2005). The Cantor

set does not lie on a smooth curve.

Numerically we studied the distribution of the angles of the lines in the line field

with respect to a fixed direction. Initially, for strongly dissipative maps, the angles are

distributed in a Cantor set. This is not surprising. However, if we consider infinitely

renormalizable maps on the curve closer towards the end with the conservative map, the

distributions are assigning weight to all angles. These distribution of angles in extreme

cases, b = 0 and b = 0.95, are illustrated in Figure 1.1.
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Figure 1.1: Left: the distribution of angles for b = 0.0; Right: b = 0.95

Observe, these Cantor set are always having Hausdorff dimension smaller than one. It

is not filling more and more the space. The appearance of more and more angles is a result

from the more and more complex geometry of the Cantor set. It gets more and more away

from being on a smooth curve.

This refined understanding might play a crucial role in further studies of Hénon maps.

Simple questions like the existence of wandering domains is closely related to the geometry

of the line field. The non-existence of wandering domains is still open.

The short term goals of this thesis is to contribute to our understanding at the accu-

mulation of period doubling and get a complete understanding of this type of dynamics.

The second short term goal is to develop a renormalization theory which can be applied to
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more general types of combinatorics, beyond period doubling and study the corresponding

dynamics. This will provide fundamental pieces of the larger Hénon puzzle.

The long term goal is to understand two-dimensional dynamics. The conjecture which

describes the behavior of smooth dynamics in general was formulated by J. Palis, [P]. It is

the central theme of smooth dynamics. The essence of the conjecture is as follows. Almost

every map in a generic family has finitely many attractors: almost every orbit accumulates

at one of them. Furthermore, each attractor carries an invariant measure which describes

the statistical behavior of a typical orbit in its basin. Systems with zero entropy can

be understood in purely topological terms. Namely, the Morse-Smale systems are dense

among zero entropy systems.

The conjecture has a long history. In particular, it took several decades to observe

that, as well topological as measure theoretical ingredients are necessary to understand

smooth dynamics. The first context in which the Palis Conjecture was proved is unimodal

dynamics on the interval. The main techniques used to prove the Palis Conjecture in one

dimension are centered around renormalization. Indeed, the fine geometrical properties of

unimodal maps are closely related to the phenomena described in the conjecture.

The Palis Conjecture is the long term goal of smooth dynamics. We are still far from

such a general understanding. However, it as been proved in one-dimension.

The natural next step is to go to two-dimensional dynamics, the Hénon family. The

results by M. Benedicks and L. Carleson are the first fundamental steps towards the Palis

Conjecture for Hénon maps. The renormalization work done at the accumulation of period

doubling was used to show that the Morse-Smale maps are dense in the set of strongly

dissipative Hénon maps with entropy zero, (Lyubich and Martens 2008). Although, even

this result on density of Morse-Smale maps is more involved than the one-dimensional

counterpart, renormalization technique are able to deal with the situation.

As in one-dimension, renormalization should become an intrinsic part of a comprehen-

sive picture of two-dimensional dynamics.
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Chapter 2

Chaotic Period Doubling

Abstract

The period doubling renormalization operator was introduced by M. Feigenbaum and

by P. Coullet and C. Tresser in the nineteen-seventieth to study the asymptotic small

scale geometry of the attractor of one-dimensional systems which are at the transi-

tion from simple to chaotic dynamics. This geometry turns out to not depend on

the choice of the map under rather mild smoothness conditions. The existence of

a unique renormalization fixed point which is also hyperbolic among generic smooth

enough maps plays a crucial role in the corresponding renormalization theory. The

uniqueness and hyperbolicity of the renormalization fixed point were first shown in

the holomorphic context, by means that generalize to other renormalization operators.

It was then proved that in the space of C2+α unimodal maps, for α > 0, the period

doubling renormalization fixed point is hyperbolic as well. In this work we study what

happens when one approaches from below the minimal smoothness thresholds for the

uniqueness and for the hyperbolicity of the period doubling renormalization generic

fixed point. Indeed, our main results states that in the space of C2 unimodal maps

the analytic fixed point is not hyperbolic and that the same remains true when adding

enough smoothness to get a priori bounds. In this smoother class, called C2+|·| the

failure of hyperbolicity is tamer than in C2. Things get much worse with just a bit

less of smoothness than C2 as then even the uniqueness is lost and other asymptotic

behavior become possible. We show that the period doubling renormalization operator

acting on the space of C1+Lip unimodal maps has infinite topological entropy.

2.1 Introduction

The period doubling renormalization operator was introduced by M. Feigenbaum

(Feigenbaum 1978), (Feigenbaum 1979) and by P. Coullet and C. Tresser (Coullet and

Tresser 1978), (Tresser and Coullet 1978) to study the asymptotic small scale geometry of

the attractor of one-dimensional systems which are at the transition from simple to chaotic

dynamics. In 1978, they published certain rigidity properties of such systems, the small

scale geometry of the invariant Cantor set of generic smooth maps at the boundary of chaos

being independent of the particular map under consideration. Coullet and Tresser treated
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this phenomenon as similar to universality that has been observed in critical phenomena

for long and explained since the early seventieth by Kenneth Wilson (see, e.g., (Ma 1976)).

In an attempt to explain universality at the transition to chaos, both groups formulated

the following conjectures that are similar to what was conjectured in statistical mechanics.

Renormalization conjectures: In the proper class of maps, the period doubling renormal-

ization operator has a unique fixed point that is hyperbolic with a one-dimensional unstable

manifold and a codimension one stable manifold consisting of the systems at the transition

to chaos.

These conjectures were extended to other types of dynamics on the interval and on other

manifolds but we will not be concerned here with such generalizations. During the last 30

years many authors have contributed to the development of a rigorous theory proving the

renormalization conjectures and explaining the phenomenology. The ultimate goal may still

be far since the universality class of smooth maps at the boundary of chaos contains many

sorts of dynamical systems, including useful differential models of natural phenomena and

there even are predictions about natural phenomena in (Coullet and Tresser 1978), which

turned out to be experimentally corroborated. A historical review of the mathematics that

have been developed can be found in (de Faria et al. 2006) so that we recall here only a

few milestones that will serve to better understand the contribution to the overall picture

brought by the present work.

The type of differentiability of the systems under consideration has a crucial influence

on the actual small scale geometrical behavior (like it is the case in the related problem of

smooth conjugacy of circle diffeomorphisms to rotations: compare (Herman 1979, Yoccoz

1984) to (Katznelson and Ornstein 1989) and (Khanin and Sinai 1987)). The first result

dealt with holomorphic systems and were first local (Lanford-III 1984), and later global

(Sullivan 1992), (McMullen 1994), (Lyubich 1999) (a progression similar to what had

been seen in the problem of smooth conjugacy to rotations: compare (Arnol’d 1965) to

(Herman 1979) and (Yoccoz 1984)). With global methods came also means to consider

other renormalizations. Indeed, the hyperbolicity of the unique renormalization fixed point

has been shown in (Lanford-III 1984) for period doubling, and later in (Lyubich 1999) by

means that generalize to other sorts of dynamics. Then it was shown in (Davie 1999) that

the renormalization fixed point is also hyperbolic in the space of C2+α unimodal maps

with α > 0 (using (Lanford-III 1984)). These results were later extended in (de Faria

et al. 2006) to a more general types of renormalization (using (Lyubich 1999)). After the

results of Lanford (Lanford-III 1984), the existence of renormalization fixed points has

been proved in more generality. First Epstein (Epstein 1989) constructed period doubling

fixed points with arbitrary critical behavior. Renormalization fixed points do exist for any

given combinatorics and arbitrary critical behavior, see (Martens 1998).

In this study, we are interested in exploring from below the limit of smoothness that



2.1. Introduction 11

permits hyperbolicity of the fixed point of renormalization. Our main result concern a

new smoothness class, C2+|·|, which is bigger than C2+α for any positive α ≤ 1, and is

in fact wider than C2 in ways that are rather technical as we shall describe later (this

is the bigger class, where the usual method to get a priori bounds for the geometry of

the Cantor set works). We are interested here in the part of hyperbolicity that consists

in the attraction in the stable manifold made of infinitely renomalizable maps (hence the

part covered in (Sullivan 1992), (McMullen 1994) while the expansion along the unstable

manifold comes from (Lyubich 1999) as far as the global theory is concerned: see (Lanford-

III 1984), (Eckmann and Wittwer 1987) for the local picture). We show that in the space of

C2+|·| unimodal maps the analytic fixed point is not hyperbolic for the action of the period

doubling renormalization operator. We also show that nevertheless, the renormalization

converges to the analytic generic fixed point (here generic means that the second derivative

at the critical point is not zero), proving it to be globally unique, a uniqueness that was

formerly known in classes smaller than C2+|·| (that is assuming more smoothness). The

convergence might only be polynomial as a concrete sign of non-hyperbolicity. The failure

of hyperbolicity happens in a more serious way in the space of C2 unimodal maps since

there the convergence can be arbitrarily slow. The uniqueness of the fixed point in this

case, remains an open question. The uniqueness was known to be wrong in a serious way

among C1+Lip unimodal maps since a continuum of fixed points of renormalization could be

produced (Tresser 1991). Here we show that the period doubling renormalization operator

acting on the space of C1+Lip unimodal maps has infinite topological entropy.

After this informal discussion of what will be done here and how it relates to universality

theory, we now give some definitions, which allow us next to turn to the precise formulation

of our main results.

A unimodal map f : [0, 1] → [0, 1] is a C1 mapping with the following properties.

• f(1) = 0,

• there is a unique point c ∈ (0, 1), the critical point, where Df(c) = 0,

• f(c) = 1.

A map is a Cr unimodal maps if f is Cr. We will concentrate on unimodal maps of the

type C1+Lip, C2, and C2+|·|. This last type of differentiability will be introduced in § 3.1.

The critical point c of a C2 unimodal map f is called non-flat if D2f(c) 6= 0. A critical

point c of a unimodal map f has a quadratic tip if there exists a sequence of points xn → c

and constant A > 0 such that

lim
n→∞

f(xn) − f(c)

(xn − c)2
= −A.
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The set of Cr unimodal maps with a quadratic tip is denoted by U r. We will consider

different metrics on this set denoted by distk with k = 0, 1, 2 (in fact the usual Ck metrics).

A unimodal map f : [0, 1] → [0, 1] with quadratic tip c is renormalizable if

• c ∈ [f 2(c), f 4(c)] ≡ I1
0 ,

• f(I1
0 ) = [f 3(c), f(c)] ≡ I1

1 ,

• I1
0 ∩ I1

1 = ∅.

The set of renormalizable Cr unimodal maps is denoted by U r
0 ⊂ U r. Let f ∈ U r

0 be a

renormalizable map. The renormalization of f is defined by

Rf(x) = h−1 ◦ f 2 ◦ h(x),

where h : [0, 1] → I1
0 is the orientation reversing affine homeomorphism. This map Rf is

again a unimodal map. The nonlinear operator R : U r
0 → U r defined by

R : f 7→ Rf

is called the renormalization operator. The set of infinitely renormalizable maps is denoted

by

W r =
⋂

n≥1

R−n(U r
0 ).

There are many fundamental steps needed to reach the following result by Davie, see

(Davie 1999). For a brief history see (de Faria et al. 2006) and references therein.

Theorem 2.1.1 (Davie) There exists α < 1 such that the following holds. In the space of

U2+α, there exists a unique renormalization fixed point fω∗ , with the following properties

• fω∗ is analytic,

• fω∗ is a hyperbolic fixed point of R : U2+α
0 → U2+α,

• the codimension one stable manifold of fω∗ coincides with W 2+α,

• fω∗ has a one dimensional unstable manifold which consists of analytic maps.

In our discussion we only deal with period doubling renormalization. However, there

are other renormalization schemes. The hyperbolicity for the corresponding generalized

renormalization operator has been established in (de Faria et al. 2006).

Our main results deal with R : U r
0 → U r where r ∈ {1 + Lip, 2, 2 + | · |}.
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Theorem 2.1.2 Let dn > 0 be any sequence with dn → 0. There exists an infinitely

renormalizable C2 unimodal map f with quadratic tip such that

dist0 (Rnf, fω∗ ) ≥ dn.

Corollary 2.1.3 The analytic unimodal map fω∗ is not a hyperbolic fixed point of R : U2
0 →

U2.

In § 3.1 we will introduce a type of differentiability of a unimodal map, called C2+|·|,

which is the minimal needed to be able to apply the classical proofs of a priori bounds

for the invariant Cantor sets of infinitely renormalizable maps, see for example (Martens

1994),(Martens et al. 1988),(de Melo and van Strien 1993). This type of differentiability

will allow us to represent any C2+|·| unimodal map as

f = φ ◦ q,

where q is a quadratic polynomial and φ has still enough differentiability to control cross-

ratio distortion. The precise description of this decomposition is given in Proposition 3.1.6.

For completeness we include the proof of the a priori bounds in § 3.3.

Theorem 2.1.4 If f is an infinitely renormalizable C2+|·| unimodal map then

lim
n→∞

dist0 (Rnf, fω∗ ) = 0.

A construction similar to the one provided for C2 unimodal maps leads to the following

result:

Theorem 2.1.5 Let dn > 0 be any sequence with
∑

n≥1 dn <∞. There exists an infinitely

renormalizable C2+|·| unimodal map f with a quadratic tip such that

dist0 (Rnf, fω∗ ) ≥ dn.

The analytic unimodal map fω∗ is not a hyperbolic fixed point of R : U
2+|·|
0 → U2+|·|.

Our second set of theorems deals with renormalization of C1+Lip unimodal maps with

a quadratic tip.

Theorem 2.1.6 There exists an infinitely renormalizable C1+Lip unimodal map f with a

quadratic tip which is not C2 but

Rf = f.

The topological entropy of a system defined on a non-compact space is defined to be

the Supremum of the topological entropies contained in compact invariant subsets: we

will always mean topological entropy when the type of entropy is not specified. As a

consequence of Theorem 2.1.1 we get that renormalization on U2+α
0 has entropy zero.
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Theorem 2.1.7 The renormalization operator acting on the space of C1+Lip unimodal

maps with quadratic tip has infinite entropy.

The last theorem illustrates a specific aspect of the chaotic behavior of the renormal-

ization operator on U1+Lip
0 :

Theorem 2.1.8 There exists an infinitely renormalizable C1+Lip unimodal map f with

quadratic tip such that {cn}n≥0 is dense in a Cantor set. Here cn is the critical point of

Rnf .

The results presented in chapter2 and chapter3 of the thesis work are based on the

following article.

V.V.M.S. Chandramouli, M. Martens, W.De Melo, C.P. Tresser, Chaotic Period Doubling,

Ergodic Theory and Dynamical Systems (Accepted), doi:10.1017/S0143385708000370.

2.2 Notation

Let I, J ⊂ R
n, with n ≥ 1. We will use the following notation.

• cl(I), int(J), ∂I, stands for resp. the closure, the interior, and the boundary of I.

• |I| stands for the Lebesgue measure of I.

• If n = 1 then [I, J ] is smallest interval which contains I and J .

• dist (x, y) is the Euclidean distance between x and y, and

dist (I, J) = inf
x∈I, y∈J

dist (x, y).

• If F is a map between two sets then image(F ) stand for the image of F .

• Define Diffk+ ([0, 1]), k ≥ 1, is the set of orientation preserving Ck−diffeomorphisms.

• |.|k, k ≥ 0, stands for the Ck norm of the functions under consideration.

• distk, k ≥ 0, stands for the Ck distance in the function spaces under consideration.

• There is a constant K > 0, held fixed throughout the context, which lets us write

Q1 ≍ Q2 if and only if
1

K
≤
Q1

Q2

≤ K.

There are two rather independent discussions. One on C1+Lipmaps and the other on

C2 maps. There is a slight conflict in the notation used for these two discussions. In

particular, the notation In1 stands for different intervals in the two parts, but the context

will make the meaning of the symbols unambiguous.
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2.3 Renormalization of C1+Lip unimodal maps

2.3.1 Piece-wise affine infinitely renormalizable maps.

Consider the open triangle ∆ = {(x, y) : x, y > 0 and x+ y < 1}. A point (σ0, σ1) ∈ ∆ is

called a scaling bi-factor. A scaling bi-factor induces a pair of affine maps

σ̃0 : [0, 1] → [0, 1] ,

σ̃1 : [0, 1] → [0, 1] ,

defined by

σ̃0(t) = −σ0t+ σ0 = σ0(1 − t)

σ̃1(t) = σ1t+ 1 − σ1 = 1 − σ1(1 − t).

A function σ : N → ∆ is called a scaling data. For each n ∈ N we set σ(n) = (σ0(n), σ1(n)),

so that the point (σ0(n), σ1(n)) ∈ ∆ induces a pair of maps (σ̃0(n), σ̃1(n)) as we have just

described. For each n ∈ N we can now define the pair of intervals:

In0 = σ̃0(1) ◦ σ̃0(2) ◦ · · · ◦ σ̃0(n)([0, 1]) ,

In1 = σ̃0(1) ◦ σ̃0(2) ◦ · · · ◦ σ̃0(n− 1) ◦ σ̃1(n)([0, 1]) .

I10 I11

I20

I30 I31

I21

c

Figure 2.1:

A scaling data with the property

dist (σ(n), ∂∆) ≥ ǫ > 0

is called ǫ−proper, and proper if it is ǫ−proper for some ǫ > 0. For ǫ−proper scaling data

we have

|Inj | ≤ (1 − ǫ)n
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with n ≥ 1 and j = 0, 1. Given proper scaling data define

{c} = ∩n≥1I
n
0 .

The point c, called the critical point, is shown in Figure 2.1. Consider the quadratic map

qc : [0, 1] → [0, 1] defined as:

qc(x) = 1 −

(

x− c

1 − c

)2

.

I1
0 I1

1

I2
0

I3
0

I2
1

qc

c

fσ

Figure 2.2:

Given a proper scaling data σ : N → ∆ and the set Dσ = ∪n≥1I
n
1 induced by σ, we

define a map

fσ : Dσ → [0, 1]
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In0 In1

In−1
0

xn−1xn−1 xn+1 xn yn xn−2yn+1 ccc

Figure 2.3:

by letting fσ|In
1

be the affine extension of qc|∂In
1
. The graph of fσ is shown in Figure 2.2.

Define x0 = 0, x−1 = 1 and for n ≥ 1

xn = ∂In0 \ ∂In−1
0 ,

yn = ∂In1 \ ∂In−1
0 .

These points are illustrated in Figure 2.3.

Definition 1 A map fσ corresponding to proper scaling data

σ : N → ∆ is called infinitely renormalizable if for n ≥ 1

(i) [fσ(xn−1), 1] is the maximal domain containing 1 on which f 2n−1
σ is defined affinely.

(ii) f 2n−1
σ ([fσ(xn−1) , 1]) = In0 .

Define W = {fσ : fσ is infinitely renormalizable}. Let f ∈ W be given by the proper

scaling data σ : N → ∆ and define

În0 = [qc(xn−1), 1] = [f(xn−1), 1].

Let

hσ, n : [0, 1] → [0, 1]

be defined by

hσ, n = σ0(1) ◦ σ0(2) ◦ · · · ◦ σ0(n).

Furthermore let

ĥσ, n : [0, 1] → În0

be the affine orientation preserving homeomorphism. Then define

Rnfσ : h−1
σ,n(Dσ) → [0, 1]

by

Rnfσ = ĥ−1
σ, n ◦ fσ ◦ hσ, n.
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0 1 0 1

In0 În0

hσ,n ĥσ,n

fσ

Rnf

Figure 2.4:

It is shown in Figure 2.4. Let s : ∆N → ∆N be the shift

s(σ)(k) = σ(k + 1).

The construction implies the following result:

Lemma 2.3.1 Let σ : N → ∆ be proper scaling data such that fσ is infinitely renormaliz-

able. Then

Rnfσ = fsn(σ).

Let next fσ be infinitely renormalizable, then for n ≥ 0 we have

f 2n

σ : Dσ ∩ I
n
0 → In0

is well defined. Define the renormalization R : W → W by

Rfσ = h−1
σ, 1 ◦ f

2
σ ◦ hσ, 1.

The map f 2n−1
σ : În0 → In0 is an affine homeomorphism whenever

fσ ∈W . This implies immediately the following Lemma.

Lemma 2.3.2 Rnfσ : Dsn(σ) → [0, 1] and Rnfσ = Rnfσ.

Proposition 2.3.3 W = {fσ∗} where σ∗ is characterized by Rfσ∗ = fσ∗

Proof: Let σ : N → ∆ be proper scaling data such that fσ is infinitely renormalizable.

Let cn be the critical point of fsn(σ). Then

qcn(0) = 1 − σ1(n) (2.1)

qcn(1 − σ1(n)) = σ0(n) (2.2)

cn+1 =
σ0(n) − cn
σ0(n)

. (2.3)
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We also have the conditions

σ0(n), σ1(n) > 0 (2.4)

σ0(n) + σ1(n) < 1 (2.5)

0 < cn <
1

2
(2.6)

From conditions (2.1), (2.2) and (2.3) we get

σ0(n) =
2c2n − 6c3n + 5c4n − 2c5n

(cn − 1)6
≡ A0(cn) (2.7)

σ1(n) =
c2n

(cn − 1)2
≡ A1(cn) (2.8)

cn+1 =
c6n − 6c5n + 17c4n − 25c3n + 21c2n − 8cn + 1

2c4n − 5c3n + 6c2n − 2cn
≡ R(cn) (2.9)

A0(c)

c

A1(c)

c

A0(c) + A1(c)

c

C

Figure 2.5: The graphs of A0, A1 and A0 + A1

The conditions (2.4), (2.5) and (2.6) reduces to c ∈ (0, 1/2) and

A0(c) + A1(c) < 1. In particular, using Figure 2.5, this defines the feasible domain to

be:

C =

{

c ∈ (0, 1/2) : 0 ≤
c2(3 − 10c+ 11c2 − 6c3 + c4)

(c− 1)6
< 1

}

= [0, 0.35...]
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R

cc

C

C

c∗

Figure 2.6: R : C → R

Notice that the map R : C → R is expanding (see Figure 2.6). It follows readily that

only the fixed point c∗ ∈ C and R(c∗) = c∗ corresponds to an infinitely renormalizable fσ∗ .

Otherwise speaking, consider the scaling data σ∗ : N → ∆ with

σ∗(n) =
(

q2
c∗(0), 1 − qc∗(0)

)

, n ≥ 1.

Then s(σ∗) = σ∗ and Lemma 2.3.1 implies

Rfσ∗ = fσ∗ .

Remark 2.3.4 Let In0 = [xn−1, xn] be the interval corresponding to σ∗ then

fσ∗(xn−1) = qc∗(xn−1).

Hence fσ∗ has a quadratic tip.

Remark 2.3.5 The invariant Cantor set of the map fσ∗ is next in complexity to the well

known middle third Cantor set in the following sense:

- like in the middle third Cantor set, on each scale and everywhere the same scaling

ratios are used,

- but unlike in the middle third Cantor set, there are now two ratios (a small one and

a bigger one) at each scale .

This situation of rather extreme tameness of the scaling data is very different from the

geometry of the Cantor attractor of the analytic renormalization fixed point in which there

are no two places where the same scaling ratios are used at all scales, and where the closure

of the set of ratios is itself a Cantor set (Birkhoff et al. 2003).
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Lemma 2.3.6 Let f∗ = fσ∗ where σ∗ : N → ∆ is the scaling data with σ∗(n)(σ∗
0, σ

∗
1). Then

(σ∗
0)

2 = σ∗
1.

Proof: Let În0 = f∗(I
n
0 ) = [f∗(xn−1), 1] and În+1

1 = f∗(I
n+1
1 ). Then f 2n−1

∗ : În0 → In0 is

affine, monotone and onto. Further, by construction

f 2n−1(În+1
0 ) = In+1

1 .

Hence,
|În+1

0 |

|În0 |
= σ∗

1.

So |In0 | = (σ∗
0)
n and |În0 | = (σ∗

1)
n. Now fσ∗ has a quadratic tip with

fσ∗(xn) = qc∗(xn).

Hence,

σ∗
1 =

|În+1
0 |

|În0 |
=

(

xn − c

xn−1 − c

)2

=

(

|In+1
0 |

|In0 |

)2

= (σ∗
0)

2 .

This completes the proof.

2.3.2 C1+Lip extension

In this sub-section we will extend the piece-wise affine map f∗ to a C1+Lip unimodal map.

Let S : [0, 1]2 → [0, 1]2 be the scaling function defined by

S

(

x

y

)

=

(

−σ∗
0x+ σ∗

0

σ∗
1y + 1 − σ∗

1

)

≡

(

S1(x)

S2(y)

)

and let F be the graph of f∗ = fσ∗ , where fσ∗ : Dσ∗ → [0, 1],

Dσ∗ = ∪n≥1I
n
1 . Then the idea of how to construct an extension g of f∗ is contained in

the following lemma:

Lemma 2.3.7 F ∩ image(S) = S(F ).

Proof: Let ĥ = ĥσ∗,1 and h = hσ∗,1. Let (x, y) ∈ graph(f∗) ∩ image(S). Say

(x, y) = (S1(x
′), S2(y

′)) with S2(y
′) = f∗(S1(x

′)). Since S1(x
′) = h(x′) and S2(y

′) = ĥ(y′),

we can write y′ = ĥ−1 ◦ f∗ ◦ h(x
′). By Lemma 2.3.1

y′ = R1f∗(x
′) = f∗(x

′),

which gives (x′, y′) ∈ graph(f∗). This in turn implies (x, y) ∈ S(graphf∗). By reading the

previous argument backward we prove S(graph f∗) ⊂ F ∩ image(S).
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Lemma 2.3.8 S(graph qc∗) ⊂ graph(qc∗).

Proof: Let S(graph(qc∗)) be the graph of the function q. Since S is linear and qc is quadratic

we get that q is also a quadratic function. Then both qc∗(c
∗) = 1 and q(c∗) = 1, because

of S(c∗, 1) = (c∗, 1). Furthermore, by construction

S(1, 0) = (0, qc∗(0)) = (0, q(0)).

Hence qc∗(0) = q(0). Differentiate twice S2(y) = q(S1(x)) and use (σ∗
0)

2 = σ∗
1 from Lemma

2.3.6, which proves q
′′

(c∗) = q
′′

c∗(c
∗). Now we conclude that the quadratic maps q and qc∗

are equal.

Let F0 be the graph of f∗|I1
1
. Then by Lemma 2.3.7, F = ∪k≥0S

k(F0). Let g be a

C1+Lip extension of f∗ on Dσ∗ ∪ [x1, 1] and G0 = graph (g|[x1, 1]). Then G = ∪k≥0S
k(G0) is

the graph of an extension of f∗. We prove that g is C1+Lip and also has a quadratic tip.

Let Bk = Sk([0, 1]2), where

Bk = [xk−1, xk] × [x̂k−1, 1] for k = 1, 3, 5, . . .

Bk = [xk, xk−1] × [x̂k−1, 1] for k = 2, 4, . . .

where x̂k−1 = qc(xk−1) = 1 − (σ∗
1)
k. Let bn = (xn−1, x̂n−1) = Sn(1, 0).

Remark 2.3.9 Notice that the points bn lie on the graph of qc∗. This follows from Lemma

2.3.8.

....

.

.

.

B0

B1

B2

B3
B4

b1b1

b2

b3
b4

G0

G1

x0 x1x2 x3

x̂0

x̂1

x̂2

Figure 2.7: extension of fσ∗
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Lemma 2.3.10 G is the graph of a C1 extension of f∗.

Proof: Note that Gk = Sk(G0) is the graph of a C1 function on [xk−1, xk+1] for k odd

and on [xk+1, xk−1] for k is even. To prove the Lemma we need to show continuous differ-

entiability at the points bn, where these graphs intersect (see Figure 2.7). By construction

G0 is C1 at b2. Namely, consider a small interval (x1 − δ, x1 + δ). Then on the interval

(x1 − δ, x1), the slope is given by an affine piece of f∗ and on (x1, x1 + δ) the slope is given

by the chosen C1+Lip extension. Let Γ ⊂ G be the graph over this interval (x1 − δ, x1 + δ).

Then locally around bn the graph G equals Sn−1(Γ). Hence G is C1 on [0, 1] \ {c∗}. From

Lemma 2.3.6, notice that the vertical contraction of S is stronger than the horizontal con-

traction. This implies that the slope of Gn tends to zero. Indeed, G is the graph of a C1

function on [0, 1].

Proposition 2.3.11 Let g be the function whose graph is G then g is C1+Lip with a

quadratic tip.

Proof: Since f∗|Dσ
has a quadratic tip, the extension g has a quadratic tip. Because g is

C1 we only need to show that Gn is the graph of a C1+Lip function

gn : [xn−1, xn+1] → [0, 1]

with an uniform Lipschitz bound. That is, for n ≥ 1

Lip(g′n+1) ≤ Lip(g′n).

Assume that gn is C1+Lip with Lipschitz constant Lipn for its derivative. We prove that

Lipn+1 ≤ Lipn, and in particular Lipn ≤ Lip0. For, given (x, y) on the graph of gn there

is (x′, y′) = S(x, y), on the graph of gn+1. Therefore, we can write

gn+1(x
′) = σ∗

1 gn(x) + 1 − σ∗
1.

Since x = 1 −
x′

σ∗
0

, we have

gn+1(x
′) = σ∗

1 gn

(

1 −
x′

σ∗
0

)

+ 1 − σ∗
1.

Differentiate,

g
′

n+1(x
′) =

−σ∗
1

σ∗
0

g
′

n

(

1 −
x′

σ∗
0

)

.

Therefore,

∣

∣g
′

n+1(x
′
1) − g

′

n+1(x
′
2)

∣

∣ =
∣

∣

∣

−σ∗
1

σ∗
0

∣

∣

∣
·
∣

∣

∣
g

′

n

(

1 −
x′1
σ∗

0

)

− g
′

n

(

1 −
x′2
σ∗

0

)

∣

∣

∣

≤
σ∗

1

(σ∗
0)

2
Lip(g

′

n) |x
′
1 − x′2|
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From Lemma 2.3.6 we have
σ∗
1

(σ∗
0
)2

= 1. Hence

Lip(g
′

n+1) ≤ Lip(g
′

n) ≤ Lip(g
′

1).

Which completes the proof.

If fσ is infinitely renormalizable then every extension g of fσ maps I1
0 onto I1

1 and I1
1

monotonically onto I1
0 . Hence, g is renormalizable in the classical sense. Observe that Rg

is an extension of Rfσ. Hence, Rg is renormalizable in the classical sense. Infact, g is

infinitely renormalizable.

Theorem 2.3.12 There exists an infinitely renormalizable C1+Lip unimodal map f with a

quadratic tip which is not C2 but

Rf = f.

2.3.3 Entropy of renormalization

For all φ ∈ C1+Lip, φ : [x1, 1] → [0, 1], which extends f∗ we constructed fφ ∈ C1+Lip in such

a way that

(i) Rfφ = fφ

(ii) fφ has a quadratic tip.

Now choose two C1+Lip functions which extend f∗, say φ0 : [x1, 1] → [0, 1] and φ1 : [x1, 1] →

[0, 1]. For ω = (ωk)k≥1 ∈ {0, 1}N, define

Fn(ω) = Sn (graph φωn
)

and

F (ω) = ∪k≥1Fk(ω).

Use the same argument as was given before to show that the set F (ω) is the graph of a

C1+Lip map with a quadratic tip. Now let

τ : {0, 1}N → {0, 1}N

be the shift map defined by

τ(ω)n = ωn+1,

(so that the map τ acting on the set {0, 1}N is the full 2-shift).

Proposition 2.3.13 For all ω ∈ {0, 1}N

f 2
ω : [0, x1] → [0, x1]

is a unimodal map. In particular fω is renormalizable and

Rfω = fτ(ω).
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Proof: Note that fω : [0, x1] → I1
1 is unimodal and onto. Furthermore, fω : I1

1 → [0, x1] is

affine and onto. Hence fω is renormalizable. The construction also gives

Rfω = fτ(ω).

Theorem 2.3.14 Renormalization acting on the space of C1+Lip unimodal maps has pos-

itive entropy.

Proof: Note that ω → fω ∈ C1+Lip is injective. Hence the domain of R contains a copy

of the full 2-shift (i.e., contains a subset on which the restriction of R is topologically

conjugate to the full 2-shift).

Remark 2.3.15 We can also embedded a full k-shift in the domain of R by choosing

φ0, φ1, . . . , φk−1 and repeat the construction. The entropy of R on C1+Lip is actually un-

bounded.

2.4 Chaotic scaling data

In this section we will use a variation on the construction of scaling data as presented in

§ 2.3 to obtain the following

Theorem 2.4.1 There exists an infinitely renormalizable C1+Lip unimodal map g with

quadratic tip such that {cn}n≥0, where cn is the critical point of Rng, is dense in a Cantor

set.

The proof needs some preparation. For ǫ > 0 we will modify the construction as described

in § 2.3. This modification is illustrated in Figure 2.8. For c ∈ (0, 1
2
) let

σ1(c, ǫ) = 1 − qc(0),

σ0(c, ǫ) = ǫ q2
c (0),

where ǫ > 0 and close to 1. Also let

R(c, ǫ) =
σ0(c, ǫ) − c

σ0(c, ǫ)
= 1 −

c

q2
c (0)

·
1

ǫ
.

In § 2.3 we observed that R(c, 1) has a unique fixed point c∗ ∈ (0, 1
2
) with feasible

σ0(c
∗, 1) and σ1(c

∗, 1). This fixed point is expanding. Although we will not use this, a

numerical computation gives
∂R

∂c
(c∗, 1) > 2.

Now choose ǫ0 > ǫ1 close to 1. Then R(·, ǫ0) will have an expanding fixed point c∗0 and

R(·, ǫ1) a fixed point c∗1. In particular, by choosing ǫ0 > ǫ1 close enough to 1 we will
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*

qc

c

σ0(c, ǫ) σ1(c, ǫ)

q2
c (0)

ǫ q2
c (0)

fσ

Figure 2.8:

get the following horseshoe as shown in Figure 2.9; more precisely there exists an interval

A0 = [c∗0, a0] and A1 = [a1, c
∗
1] such that

R0 : A0 → [c∗0, c
∗
1] ⊃ A0

and

R1 : A1 → [c∗0, c
∗
1] ⊃ A1

are expanding diffeomorphisms (with derivative larger than 2, but larger than one would

suffice to get a horseshoe). Here

R0(c) = R(c, ǫ0)

and

R1(c) = R(c, ǫ1).

Use the following coding for the invariant Cantor set of the horseshoe map

c : {0, 1}N → [c∗0, c
∗
1]

with

c(τω) = R (c(ω), ǫω0
)

where τ : {0, 1}N → {0, 1}N is the shift. Given ω ∈ {0, 1}N define the following scaling

data σ : N → ∆.

σ(n) = (σ0 (c(τnω), ǫωn
) , σ1 (c(τnω), ǫωn

)) .
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R0R0

R1

c∗0

c∗1

A0 A1

Figure 2.9:

Again, by taking ǫ0, ǫ1, close enough to 1, we can assume that σ(n) is proper scaling data

for any chosen ω ∈ {0, 1}N . As in § 2.3 we will define a piece wise affine map

fω : Dω = ∪n≥1I
n
1 → [0, 1].

The precise definition needs some preparation. Use the notation as illustrated in Figure

2.10. For n ≥ 0 let

In0 = [xn, xn−1]

where xn = ∂In0 \ ∂In−1
0 , n ≥ 1 and

In1 = [yn, xn−2]

where yn = ∂In1 \ ∂In−1
0 , n ≥ 1.

*

In0 În0

In+1
0 In+1

1

xn xn−1yn+1 x̂n−1 x̂nŷn+1c 1
qc

În+1
1 În+1

0

Figure 2.10:

Let

În0 = qc([xn−1, 1]) = qc(I
n
0 ) = [x̂n−1, 1]
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where x̂n−1 = qc(xn−1). Finally, let În+1
1 = [x̂n−1, ŷn+1] ⊂ În0 such that

|În+1
1 | = σ0(n) · |În0 |.

Now define fω : In+1
1 → În+1

1 to be the affine homeomorphism such that

fω(xn−1) = qc(xn−1) = x̂n−1.

Lemma 2.4.2 There exists K > 0 such that

1

K
≤

|În0 |

|In0 |
2
≤ K.

Proof: Observe, c(n) = c(τnω) ∈ [c∗0, c
∗
1] which is a small interval around c∗. This

implies that for some K > 0
1

K
≤

|c− xn−1|

|In0 |
≤ K.

Then
|În0 |

|In0 |
2

=
|qc([c, xn−1])|

|In0 |
2

=
(c− xn−1)

2

(1 − c)2
·

1

(In0 )2

which implies the bound.

Let Sn2 : [0, 1] → În0 be the affine orientation preserving homeomorphism and Sn1 :

[0, 1] → In0 be the affine homeomorphism with Sn1 (1) = xn−1. Define

Sn : [0, 1]2 → [0, 1]2

by

Sn
(

x

y

)

=

(

Sn1 (x)

Sn2 (y)

)

.

The image of Sn is Bn.

Let Fn = (Sn)−1(graph fω). This is the graph of a function fn. We will extend

this function (and its graph) on the gap [σ0(n), 1 − σ1(n)]. Notice, that σ0(n), 1 −

σ1(n), Dfn(σ0(n)), and Dfn(1 − σ1(n)) vary within a compact family. This allows us

to choose from a compact family of C1+Lip diffeomorphisms an extension

gn : [σ0(n), 1] → [0, fn(σ0(n))]

of the map fn. The Lipschitz constant of Dgn is bounded by K0 > 0. Let Gn be the graph

of gn and

G = ∪n≥0 S
n(Gn).

Then G is the graph of a unimodal map

g : [0, 1] → [0, 1]
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Figure 2.11:

which extends fω. Notice, g is C1. It has a quadratic tip because fω has a quadratic tip.

Also notice that Sn(Gn) is the graph of a C1+Lip diffeomorphism. The Lipschitz bound Ln
of its derivative satisfies, for a similar reason as in § 2.3,

Ln ≤
|În0 |

|(In0 )|2
·K0.

This is bounded by Lemma 2.4.2. Thus gω is a C1+Lip unimodal map with quadratic tip.

The construction implies that g is infinitely renormalizable and

graph (Rngω) ⊃ Fn.

One can prove Theorem 2.4.1 by choosing ω ∈ {0, 1}N such that the orbit under the shift

τ is dense in the invariant Cantor set of the horseshoe map.

Remark 2.4.3 Let ω = {0, 0, . . . }, then we will get another renormalization fixed point

which is a modification of the one constructed in § 2.3.





Chapter 3

Renormalization of C2+|·| unimodal maps

3.1 C2+|·| unimodal maps

Let f : [0, 1] → [0, 1] be a C2 unimodal map with critical point c ∈ (0, 1). Say, D2f(x) =

E(1 + ε(x)), where

ε : [0, 1] → R

is continuous with ε(c) = 0 and E = D2f(c) 6= 0. Let then

ε̄ : [0, 1] → R

be defined by

ε̄(x) =
1

x− c

∫ x

c

ε(t)dt.

Notice, ε̄ is continuous with ε̄(c) = 0. Furthermore, 1 + ε̄(x) 6= 0 for all x ∈ [0, 1]. Since

Df(x) = E(x− c)(1 + ε̄(x))

and Df(x) equals zero only when x = c. Let the map

δ : [0, 1] → R

defined by

δ(x) = ε(x) − ε̄(x).

Notice that δ is continuous and δ(c) = 0. Finally, define

β : [0, 1] → R

by

β(x) =

∫ x

c

1

t− c
δ(t)dt.

Lemma 3.1.1 The function β is continuous and ε = δ + β.
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Proof: The definition of δ gives ε̄ = ε− δ, which is differentiable on [0, 1] \ {c}, and

ε(x) = ((x− c)(ε− δ)(x))
′

= ε(x) − δ(x) + (x− c)(ε− δ)
′

(x).

Hence,

δ(x) = (x− c)(ε− δ)
′

(x).

This implies

ε(x) = δ(x) +

∫ x

c

1

t− c
δ(t)dt = δ(x) + β(x).

Definition 2 Let f : [0, 1] → [0, 1] be unimodal map with critical point c ∈ (0, 1). We say

f is C2+|·| if and only if

β̂ : x 7−→

∫ x

c

1

|t− c|
|δ(t)|dt

is continuous.

Remark 3.1.2 Every C2+α Hölder unimodal map, α > 0, is C2+|·|.

Remark 3.1.3 If D2f is monotone, then β̂ = β or β̂ = −β. So β̂ is continuous according

to Lemma 3.1.1. Hence, the very weak condition of local monotonicity of D2f is sufficient

for f to be C2+|·|.

Remark 3.1.4 C2+|·| unimodal maps are dense in C2.

Remark 3.1.5 There exists C2 unimodal maps which are not C2+|·|. See also remark

3.7.2.

The non-linearity ηφ : [0, 1] → R of a C1 diffeomorphism φ : [0, 1] → [0, 1] is given by

ηφ(x) = D lnDφ(x),

wherever it is defined.

Proposition 3.1.6 Let f be a C2+|·| unimodal map with critical point c ∈ (0, 1). There

exist diffeomorphisms

φ± : [0, 1] → [0, 1]

such that

f(x) =

{

φ+ (qc(x)) x ∈ [c, 1]

φ− (qc(x)) x ∈ [0, c]

with

ηφ± ∈ L1([0, 1]).
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Proof: It is plain that there exists a C1 diffeomorphism

φ+ : [0, 1] → [0, 1]

such that for x ∈ [c, 1]

f(x) = φ+ (qc(x)) .

We will analyze the nonlinearity of φ+. Observe that:

Df(x) = −2
(x− c)

(1 − c)2
· Dφ+ (qc(x))

and

D2f(x) = 4
(x− c)2

(1 − c)4
· D2φ+ (qc(x)) − 2

1

(1 − c)2
·Dφ+ (qc(x))

= E (1 + ε(x)). (3.1)

As we have seen before, we also have

Df(x) = E (x− c) · (1 + ε̄(x)) .

This implies that

ηφ+
(qc(x)) =

−(1 − c)2

2
·
ε(x) − ε̄(x)

1 + ε̄(x)
·

1

(x− c)2
. (3.2)

Therefore, by performing the substitution u = qc(x), we get:

∫ 1

0

|ηφ(u)| du =

∫ c

1

−2 |ηφ+
(qc(x)) |

x− c

(1 − c)2
dx (3.3)

=

∫ 1

c

|ε(x) − ε̄(x)|

1 + ε̄(x)

1

x− c
dx (3.4)

≤
1

min (1 + ε̄)

∫ 1

c

|δ(x)|

|x− c|
dx < ∞ (3.5)

We have proved ηφ+
∈ L1([0, 1]). Similarly one can prove the existence of a C1 diffeomor-

phism

φ− : [0, 1] → [0, 1]

such that for x ∈ [0, c]

f(x) = φ−(qc(x))

and

ηφ− ∈ L1([0, 1]).



34 3. Renormalization of C2+|·| unimodal maps

3.2 Distortion of cross ratios

Definition 3 Let J ⊂ T ⊂ [0, 1] be open and bounded intervals such that T \ J consists of

two components L and R. Define the cross ratios of these intervals as

D(T, J) =
|J ||T |

|L||R|
.

If f is continuous and monotone on T then define the cross ratio distortion of f as

B(f, T, J) =
D(f(T ), f(J))

D(T, J)
.

If fn|T is monotone and continuous then

B(fn, T, J) =
n−1
∏

i=0

B
(

f, f i(T ), f i(J)
)

.

Definition 4 Let f : [0, 1] → [0, 1] be a unimodal map and T ⊂ [0, 1]. We say that

{

f i(T ) : 0 ≤ i ≤ n
}

has intersection multiplicity m ∈ N if and only if for every x ∈ [0, 1]

#
{

i ≤ n | x ∈ f i(T )
}

≤ m

and m is minimal with this property.

Theorem 3.2.1 Let f : [0, 1] → [0, 1] be a C2+|·| unimodal map with critical point c ∈

(0, 1). Then there exists K > 0, such that the following holds. If T is an interval such that

fn|T is a diffeomorphism then for any interval J ⊂ T with cl(J) ⊂ int(T ) we have,

B(fn, T, J) ≥ exp {−K ·m}

where m is the intersection multiplicity of {f i(T ) : 0 ≤ i ≤ n} .

Proof: Observe that qc expands cross-ratios. Then Proposition 3.1.6 implies

B
(

f, f i(T ), f i(J)
)

>
Dφi(ji) ·Dφi(ti)

Dφi(li) ·Dφi(ri)

where φi = φ+ or φ− depending whether f i(T ) ⊂ [c, 1] or [0, c] and

ji ∈ qc
(

f i(J)
)

,

ti ∈ qc
(

f i(T )
)

,

li ∈ qc
(

f i(L)
)

,

ri ∈ qc
(

f i(R)
)

.
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Thus

ln B(fn, T, J) =
n−1
∑

i=0

ln B
(

f, f i(T ), f i(J)
)

≥

n−1
∑

i=0

(ln Dφi(ji) − ln Dφi(li)) + (ln Dφi(ti) − ln Dφi(ri)) ≥

−
n−1
∑

i=0

|ηφi
(ξ1
i )| |ji − li| + |ηφi

(ξ2
i )| |ti − ri| ≥

−2 m

(∫

|ηφ+
| +

∫

|ηφ− |

)

= −K ·m.

Therefore

B(fn, T, J) ≥ exp {−K ·m}.

The previous Theorem allows us to apply the Real-Koebe-Lemma. See (de Melo and

van Strien 1993) for a proof.

Lemma 3.2.2 (Real-Koebe-Lemma) For each K1 > 0, 0 < τ < 1/4, there exists K < ∞

with the following property:

Let g : T → g(T ) ⊂ [0, 1] be a C1 diffeomorphism on some interval T . Assume that for

any intervals J∗ and T ∗ with J∗ ⊂ T ∗ ⊂ T one has

B(g, T ∗, J∗) ≥ K1 > 0,

for an interval M ⊂ T such that cl(M) ⊂ int(T ). Let L,R be the components of T \M .

Then, if:
|g(L)|

|g(M)|
≥ τ and

|g(R)|

|g(M)|
≥ τ

we have:

∀x, y ∈M,
1

K
≤

|g
′

(x)|

|g′(y)|
≤ K.

Remark 3.2.3 The conclusion of the Real-Koebe-Lemma is summarized by saying that

g|M has bounded distortion.

3.3 A priori bounds

Let f be an infinitely renormalizable C2+|·| unimodal map with quadratic tip at c ∈ (0, 1).

Let In0 = [f 2n

(c), f 2n+1

(c)] be the central interval whose first return map corresponds to the

nth-renormalization. Here, we study the geometry of the cycle consisting of the intervals

Inj = f j(In0 ), j = 0, 1, . . . , 2n − 1.
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Notice that

In+1
j , In+1

j+2n ⊂ Inj , j = 0, 1, . . . , 2n − 1.

Let Inl and Inr be the direct neighbors of Inj for 3 ≤ j ≤ 2n.

Lemma 3.3.1 For each 1 ≤ i < j, There exists an interval T which contains Ini , such

that f j−i : T → [Inl , I
n
r ] is monotone and onto.

Proof: Let T ⊂ [0, 1] be the maximal interval which contains Ini such that f j−i|T is

monotone. Such interval exists because of monotonicity of f j−i|In
i
. The boundary points

of T are a, b ∈ [0, 1]. Suppose f j−i(b) is to the right of Inj . The maximality of T ensures

the existence of k, k < j − i such that fk(b) = c. Because i+ k < j ≤ 2n, we have c /∈ Ini+k
and so fk+1(T ) ⊃ In1 . Moreover, f j−i−(k+1)|fk+1(T ) is monotone. Hence f j−i−(k+1)|In

1
is

monotone. So 1 + j − i− (k + 1) ≤ 2n. This implies that f j−i(T ) contains In1+j−i−(k+1). In

particular f j−i(T ) contains Inr . Similarly we can prove f j−i(T ) contains Inl .

Lemma 3.3.2 (Intersection multiplicity) Let f j−i : T → [Inl , I
n
r ] be monotone and onto

with T ⊃ Ini . Then for all x ∈ [0, 1]

#{k < j − i | fk(T ) ∋ x} ≤ 7.

Proof: Without loss of generality we may restrict ourselves to estimate the intersection

multiplicity at a point x ∈ U , where

U = [Inl , I
n
r ] = [ul, ur].

Let cl ∈ Inl such that f 2n−l(cl) = c and

Cl = [ul, cl] ⊂ Inl .

Similarly, define

Cr = [cr, ur] ⊂ Inr .

Let Tk = fk(T ), k = 0, 1, ....j − i.

Claim: If i+ k /∈ {l, j, r} and Tk ∩ U 6= ∅ then

(i) Ini+k ∩ U = ∅

(ii) U ∩ Tk = Inl or Cl or Inr or Cr.

Let T \ Ini = L ∪ R and then we may assume U ∩ Tk = U ∩ Lk where

Lk = fk(L). This holds because Ini+k ∩ U = ∅. Consider the situation where

Inr ∩ Lk 6= ∅.
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The other possibilities can be treated similarly. Notice that Inr cannot be strictly contained

in Lk. Otherwise there would be a third “neighbor” of Inj in U. Let a = ∂L ∩ ∂T. Notice

that

fk(a) ∈ ∂Lk ∩ I
n
r .

Furthermore,

f j−k(fk(a)) ∈ ∂U.

This means f j−k(fk(a)) is a point in the orbit of c. This holds because all boundary points

of the interval Inj are in the orbit of c. Hence, fk(a) is a point in the orbit of c or fk(a) is

a preimage of c. The first possibility implies fk(a) ∈ ∂Inr . This implies

U ∩ Tk = U ∩ Lk = Inr .

The second possibility implies fk(a) = cr which means

U ∩ Tk = U ∩ Lk = Cr.

This finishes the proof of claim. This claim gives 7 as bound for the intersection multiplicity.

Proposition 3.3.3 For j < 2n, f 2n−j : Inj → In0 has uniformly bounded distortion.

Proof: Step1 : Choose j0 < 2n, such that for all j ≤ 2n, we have

|Inj0| ≤ |Inj |. By Lemma 3.3.1 there exists an interval neighborhood

Tn = L0
n∪ I

n
1 ∪R0

n such that f j−1 : Tn → [Inl , I
n
r ] ⊃ Inj0 is monotone and onto. Lemma 3.3.2

together with Theorem 3.2.1 allow us to apply the Koebe Lemma 3.2.2. So, there exists

τ0 > 0 such that

|L0
n|, |R

0
n| ≥ τ0 |I

n
1 |.

Let Un = In0 , Vn = f−1 (L0
n ∪ I

n
1 ∪R0

n) and let L1
n, R

1
n be the components of Vn \ Un. From

Proposition 3.1.6 we get τ1 > 0 such that

|L1
n|, |R

1
n| ≥ τ1 |Un|.

Step2 : Suppose Wn = [Inln , I
n
rn

], where Inln , I
n
rn

are the direct neighbors of Un. We claim

that Vn ⊂ Wn. Suppose it is not. Then, say Inrn ⊂ int(Vn) implies that f(Inrn) ⊂ int(L1
n).

So, f j0−1|f(In
rn

) is monotone, implies that rn + j0 ≤ 2n and f j0(Inrn) ⊂ int([Inl , I
n
r ]). This

contradiction concludes that Vn ⊂ Wn.

Step3 : Let Ln, Rn be the components of Wn \ Un. Then

|Ln|, |Rn| ≥ τ1 |Un|.

Step4 : For all j < 2n, there exists an interval neighborhood Tj which contains Inj such that

f 2n−j : Tj → Wn is monotone and onto. Now Proposition 3.3.3 follows from the Lemma

3.3.2 together with Theorem 3.2.1 and the Koebe Lemma 3.2.2.
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Corollary 3.3.4 There exists a constant K such that

∣

∣Df 2n

|In
0

∣

∣ ≤ K.

Proof: Let x ∈ In1 . Then from Proposition 3.3.3 we get K1 > 0 such that for some

x0 ∈ In1

|Df 2n−1(x)| =
|In0 |

|In1 |
·

{

Df 2n−1(x)

Df 2n−1(x0)

}

≤
|In0 |

|In1 |
·K1.

Proposition 3.1.6 implies that there exists K2 > 0 such that for x ∈ In0

|Df(x)| ≤ K2 · |x− c|

and

|In1 | ≥
1

K2

· |In0 |
2.

Now for x ∈ In0

|Df 2n

(x)| ≤ K2 · |x− c| ·
|In0 |

|In1 |
·K1

≤ K2 ·K1 ·
|In0 |

2

|In1 |
≤ K2

2 ·K1 = K

Therefore, we conclude that
∣

∣Df 2n

|In
0

∣

∣ ≤ K.

Definition 5 (A priori bounds) Let f be infinitely renormalizable. We say f has a priori

bounds if there exists τ > 0 such that for all n ≥ 1 and j ≤ 2n we have

τ <
|In+1
j |

|Inj |
,

|In+1
j+2n|

|Inj |
(3.6)

τ <
|Inj \

(

In+1
j ∪ In+1

j+2n

)

|

|Inj |
(3.7)

where, In+1
j , In+1

j+2n are the intervals of next generation contained in Inj .

For a general discussion on real a priori bounds, see (de Melo and van Strien 1993) and the

references there in. The proof of the following Proposition follows closely the argument in

(Martens et al. 1988).

Proposition 3.3.5 Every infinitely renormalizable C2+|·| map has a priori bounds.



3.3. A priori bounds 39

Proof: Step1. There exists τ1 > 0 such that
|In+1

0 |

|In0 |
> τ1.

Let In0 = [an, an−1] be the central interval, and so an = f 2n

(c). A similar argument as in

the proof of Corollary 3.3.4 gives K1 > 0 such that

|f 2n

([an, c])| ≤

(

|an − c|

|In0 |

)2

· |In0 | ·K1.

Notice that

f 2n

([an, c]) = In+1
2n .

Thus

|In+1
2n | ≤

|an − c|2

|In0 |
·K1.

Note

f 2n

(In+1
2n ) = In+1

0 ⊃ [an, c].

Therefore, by Corollary 3.3.4

|an − c| ≤ |f 2n

(In+1
2n )| ≤ K · |In+1

2n | ≤ K ·
|an − c|2

|In0 |
·K1.

This implies

|an − c| ≥
1

K
· |In0 |.

Which proves
|In+1

0 |

|In0 |
> τ1.

Step2. There exists τ2 > 0 such that
|In+1

2n |

|In0 |
≥ τ2.

From above we get

τ1|I
n
0 | ≤ |In+1

0 | = |f 2n

(In+1
2n )| ≤ K · |In+1

2n |

This proves
|In+1

2n |

|In0 |
≥ τ2.

Step3. There exists τ3 > 0 such that the following holds.

|In+1
j |

|Inj |
,

|In+1
j+2n|

|Inj |
≥ τ3.

Because

f 2n−j(In+1
j ) = In+1

0 , f 2n−j(Inj ) = In0

and from Proposition 3.3.3 we get a K > 0 such that

|In+1
j |

|Inj |
≥

1

K
·
|In+1

0 |

|In0 |
≥
τ1
K
.
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Hence,
|In+1
j |

|Inj |
≥ τ3. Similarly we prove

|In+1
j+2n|

|Inj |
≥ τ3. Which completes the proof of (3.6).

Step4. To complete the proof of the Proposition, it remains to show that the gap between

the intervals In+1
0 , In+1

2n and as well as In+1
j , In+1

j+2n are not too small. Let

Gn = In0 \
(

In+1
0 ∪ In+1

2n

)

.

We claim that there exists τ4 > 0 such that

|Gn|

|In0 |
≥ τ4.

Let Hn be the image of Gn under f 2n

. Then Hn = f 2n

(Gn) ⊃ In+2
3·2n . The claim follows by

using Corollary 3.3.4 and the bounds we have so far. Namely,

K · |Gn| ≥ |Hn| ≥ |In+2
3·2n | ≥ τ3 · |I

n+1
2n | ≥ τ3 · τ2 · |I

n
0 |.

This implies

|Gn| ≥ τ4 · |I
n
0 |.

Step5. Let Gn
j = Inj \

(

In+1
j ∪ In+1

j+2n

)

, then there exists τ5 > 0 such that

|Gn
j |

|Inj |
≥ τ5.

We have f 2n−j(Gn
j ) = Gn and f 2n−j(Inj ) = In0 . Since f 2n−j has bounded distortion, we

immediately get a constant K > 0 such that

|Gn
j |

|Inj |
≥

1

K
·
|Gn|

|In0 |
≥
τ4
K
.

This implies

|Gn
j | ≥ τ5 · |I

n
j |.

This completes the proof of (3.7).

3.4 Approximation of f |In
j

by a quadratic map

Let φ : [0, 1] → [0, 1] be an orientation preserving C2 diffeomorphism with non-linearity

ηφ : [0, 1] → R. We identify a C2 diffeomorphism with its non-linearity, which is a contin-

uous function. Hence, we identify the set of C2 diffeomorphisms with the vector space of

continuous functions equipped with the C0− norm. In this context

|φ| = |ηφ|0
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becomes a norm (nonlinearity norm), see (Martens 1998). Let [a, b] ⊂ [0, 1] and f : [a, b] →

f([a, b]) be a diffeomorphism. Let

1[a b] : [0, 1] → [a, b]

and

1f([a,b]) : [0, 1] → f([a, b])

be the affine homeomorphisms with 1[a,b](0) = a and 1f([a,b])(0) = f(a). The rescaling

f[a,b] : [0, 1] → [0, 1] is the diffeomorphism

f[a,b] =
(

1f([a,b])

)−1
◦ f ◦ 1[a,b].

We say that 0 ∈ [0, 1] corresponds to a ∈ [a, b].

Proposition 3.4.1 Let f be an infinitely renormalizable C2+|·| map with critical point

c ∈ (0, 1). For n ≥ 1 and 1 ≤ j < 2n we have

fIn
j

= φnj ◦ q
n
j

where

qnj = (qc)In
j

: [0, 1] → [0, 1]

such that 0 corresponds to f j(c) ∈ Inj and φnj : [0, 1] → [0, 1] a C2 diffeomorphism. Moreover

lim
n→∞

2n−1
∑

j=1

|φnj | = 0

Proof: If Inj ⊂ [c, 1] then use Proposition 3.1.6 and define

φnj = (φ+)qc(In
j ) : [0, 1] → [0, 1]

such that 0 ∈ [0, 1] corresponds to qc (f
j(c)) ∈ qc(I

n
j ). In case Inj ∈ [0, c] then let

φnj = (φ−)qc(In
j ) : [0, 1] → [0, 1]

where again 0 ∈ [0, 1] corresponds to qc (f
j(c)) ∈ qc(I

n
j ). Let ηnj be the non-linearity of φnj .

Then the chain rule for non-linearities (Martens 1998) gives

|ηnj (x)| = |qc(I
n
j )| · |ηφ±(1nj (x))|

where 1nj : [0, 1] → qc(I
n
j ) is the affine homeomorphism such that 1nj (0) = qc(f

j(c)). Now

use (3.2) to get

|ηnj |0 ≤ |qc(I
n
j )| ·

(1 − c)2

2
·

1

minx∈In
j

(1 + ǭ(x))
· sup
x∈In

j

|δ(x)|

(x− c)2

≤
1

minx∈[0,1] (1 + ǭ(x))
· |ζnj − c| · |Inj | · sup

x∈In
j

|δ(x)|

|x− c|2
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where

|Dqc(ξ
n
j )| =

|qc(I
n
j )|

|Inj |

and ξnj ∈ Inj . The a priori bounds gives K1 > 0 such that

dist(c, Inj ) ≥
1

K1

· |Inj |.

This implies that for some K > 0

|ηnj | ≤ K · sup
x∈In

j

|δ(x)|

|x− c|
· |Inj |.

Therefore,

2n−1
∑

j=1

|φIn
j
| ≤ K ·

2n−1
∑

j=1

sup
x∈In

j

|δ(x)|

|x− c|
· |Inj |

= K · Zn

Let Λn = ∪2n−1
j=0 I

n
j . The a priori bounds imply that there exists τ > 0 such that

|Λn| ≤ (1 − τ) |Λn−1|.

In particular |Λ| = 0 where Λ∩ Λn is the Cantor attractor. Now we go back to our estimate

and notice that Zn is a Riemann sum for
∫

Λn

|δ(x)|

|x− c|
dx.

Suppose that lim sup Zn = Z > 0. Let n ≥ 1 and m > n. Then we can find a Riemann

sum Σm,n for
∫

Λn

|δ(x)|

|x− c|
dx

by adding positive terms to Zm. Then
∫

Λn

|δ(x)|

|x− c|
dx = lim sup

m→∞
Σm,n ≥ lim sup

m→∞
Zm ≥ Z > 0.

Hence,
∫

Λ

|δ(x)|

|x− c|
dx ≥ Z > 0.

This is impossible because |Λ| = 0. Thus we proved

2n−1
∑

j=1

|φIn
j
| −→ 0.
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3.5 Approximation of Rnf by a polynomial map

The following Lemma is a variation on Sandwich Lemma from (Martens 1998).

Lemma 3.5.1 (Sandwich) For every K > 0 there exists constant B > 0 such that the

following holds. Let ψ1, ψ2 be the compositions of finitely many φ, φj ∈ Diff2
+ ([0, 1]), 1 ≤

j ≤ n;

ψ1 = φn ◦ · · · ◦ φt ◦ . . . φ1

and

ψ2 = φn ◦ · · · ◦ φt+1 ◦ φ ◦ φt ◦ . . . φ1.

If
∑

j

|φj| + |φ| ≤ K

then

|ψ1 − ψ2|1 ≤ B |φ|.

Proof: Let x ∈ [0, 1]. For 1 ≤ j ≤ n let

xj = φj−1 ◦ · · · ◦ φ2 ◦ φ1(x)

and

Dj = (φj−1 ◦ · · · ◦ φ2 ◦ φ1)
′

(x).

Furthermore, for t+ 1 ≤ j ≤ n, let

x′j = φj−1 ◦ · · · ◦ φt+1(φ(xt+1))

and

D′
j = (φj−1 ◦ · · · ◦ φt+1)

′

(x′t+1) φ
′

(xt+1) Dt+1.

Now we estimate the difference of the derivatives of ψ1, ψ2. Namely,

Dψ2(x)

Dψ1(x)
= Dφ(xt+1) ·

∏

j≥t+1

Dφj(x
′
j)

Dφj(xj)
.

In the following estimates we will repeatedly apply Lemma 10.3 from (Martens 1998) which

says,

e−|ψ| ≤ |Dψ|0 ≤ e|ψ|.

This allows us to get an estimate on |Dψ1 −Dψ2|0 in terms of
Dψ2

Dψ1

. Now

Dφj(x
′
j) = Dφj(xj) +D2φj(ζj) (x′j − xj).
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Therefore,

Dφj(x
′
j)

Dφj(xj)
≤ 1 +

|D2φj|0
Dφj(xj)

· |x′j − xj|

= 1 +O(φj) · |x
′
j − xj|

To continue, we have to estimate |x′j−xj|. Apply Lemma 10.2 from (Martens 1998) to get

|x′j − xj| = O
(

|x′t+1 − xt+1|
)

= O(|φ|).

Because
∑

|φj| + |φ| ≤ K there exists K1 > 0 such that

Dψ2(x)

Dψ1(x)
≤ e|φ|

∏

j≥t+1

(1 +O(|φj| |φ|))

≤ e|φ| eK1·
P

|φj | |φ|

Hence,
Dψ2

Dψ1

≤ e|φ|(1+K1·K).

We get a lower bound in similar way. So there exists K2 > 0 such that

e−K2·|φ| ≤
|Dψ2|

|Dψ1|
≤ eK2·|φ|.

Finally, there exists B > 0 such that

|Dψ2(x) −Dψ1(x)| ≤ B |φ|.

Let f be an infinitely renormalizable C2+|·| unimodal map.

Lemma 3.5.2 There exists K > 0 such that for all n ≥ 1 the following holds

∑

1 ≤ j ≤2n−1

|qnj | ≤ K.

Proof: The non-linearity norm of qnj , j = 1, . . . , 2n − 1, is

|qnj | =
|Inj |

dist (Inj , c)
.

Let

Qn =
2n−1
∑

j=1

|qnj |.
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Observe that there exists τ > 0 such that for j = 1, 2, . . . , 2n − 1

|qn+1
j | + |qn+1

j+2n| ≤
|In+1
j | + |In+1

j+2n|

dist (Inj , c)

= |qnj |
|In+1
j | + |In+1

j+2n|

|Inj |

= |qnj |
|Inj −Gn

j |

|Inj |
≤ |qnj |(1 − τ).

Therefore

Qn+1 ≤ (1 − τ) Qn + |qn+1
2n |.

From the a priori bounds we get a constant K1 > 0 such that

|qn+1
2n | ≤

|In+1
2n |

|Gn
2n |

≤ K1.

Thus

Qn+1 ≤ (1 − τ)Qn +K1.

This implies the Lemma.

Consider the map f : In0 → In1 , and rescaled affinely range and domain to obtain the

unimodal map

f̂n : [0, 1] → [0, 1].

Apply Proposition 3.1.6 to obtain the following representation of f̂n. There exists cn ∈ (0, 1)

and diffeomorphisms φn± : [0, 1] → [0, 1] such that

f̂n(x) = φn+ ◦ qcn(x), x ∈ [cn, 1]

and

f̂n(x) = φn− ◦ qcn(x), x ∈ [0, cn].

Furthermore

|φn±| → 0

when n → ∞. Let qn0 = qcn . Use Proposition 3.4.1 to obtain the following representation

for the nth renormalization of f .

Rnf = (φn2n−1 ◦ q
n
2n−1) ◦ · · · ◦ (φnj ◦ q

n
j ) ◦ · · · ◦ (φn1 ◦ qn1 ) ◦ φn± ◦ qn0 .

Inspired by (Avila et al. 2001) we introduce the unimodal map

fn = qn2n−1 ◦ · · · ◦ q
n
j ◦ · · · ◦ q

n
1 ◦ qn0 .
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Proposition 3.5.3 If f is an infinitely renormalizable C2+|·| map then

lim
n→∞

|Rnf − fn|1 = 0.

Proof: Define the diffeomorphisms

ψ±
j = qn2n−1 ◦ · · · ◦ q

n
j ◦ (φnj−1 ◦ q

n
j−1) ◦ · · · ◦ (φn1 ◦ qn1 ) ◦ φn±

with j = 0, 1, 2, . . . 2n. Notice that

Rnf(x) = ψ±
2n ◦ qn0 (x)

and that

fn(x) = ψ±
0 ◦ qn0 (x).

where we use again the ± distinction for points x ∈ [0, cn] and x ∈ [cn, 1]. Apply the

Sandwich Lemma 3.5.1 to get a constant B > 0 such that

|ψ±
j+1 − ψ±

j |1 ≤ B · |φnj |

for j ≥ 1, and also notice that

|ψ±
1 − ψ±

0 |1 ≤ B · |φn±| −→ 0.

We can now apply Proposition 3.4.1 to get

lim
n→∞

|ψ±
2n − ψ±

0 |1 ≤ lim
n→∞

B ·
∑

1 ≤ j ≤2n−1

|φnj | + |φn±| = 0,

which implies that:

lim
n→∞

|Rnf − fn|1 = 0.

3.6 Convergence

Fix an infinitely renormalizable C2+|·| map f .

Lemma 3.6.1 For every N0 ≥ 1, there exists n1 ≥ 1 such that fn is N0 times renormal-

izable whenever n ≥ n1.

Proof: The a priori bounds from Proposition 3.3.5 gives d > 0 such that for n ≥ 1

|(Rnf)i(c) − (Rnf)j(c)| ≥ d

for all i, j ≤ 2N0+1 and i 6= j. Now by taking n large enough and using Proposition 3.5.3

we find

|f in(c) − f jn(c)| ≥
1

2
d
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for i 6= j and i, j ≤ 2N0+1. The kneading sequence of fn (i.e., the sequence of signs of

the derivatives of that function) coincides with the kneading sequence of Rnf for at least

2N0+1 positions. We proved that fn is N0 times renormalizable because Rnf is N0 times

renormalizable.

The polynomial unimodal maps fn are in a compact family of quadratic like maps. This

follows from Lemma 3.5.2. The unimodal renormalization theory presented in (Lyubich

1999) gives us the following.

Proposition 3.6.2 There exists N0 ≥ 1 and n0 ≥ 1 such that fn is N0 renormalizable and

dist1 (RN0fn, W
u) ≤

1

3
· dist1 (fn, W

u).

Here, W u is the unstable manifold of the renormalization fixed point contained in the space

of quadratic like maps (Lyubich 1999). Recall that dist1 stands for the C1 distance.

Lemma 3.6.3 There exists K > 0 such that for n ≥ 1

dist1 (Rnf, W u) ≤ K.

Proof: This follows from Lemma 3.5.2 and Proposition 3.5.3.

Let fω∗ ∈ W u be the analytic renormalization fixed point.

Theorem 3.6.4 If f is an infinitely renormalizable C2+|·| unimodal map. Then

lim
n→∞

dist0 (Rnf, fω∗ ) = 0.

Proof: For every K > 0, there exists A > 0 such that the following holds. Let f, g be

renormalizable unimodal maps with

|Df |0, |Dg|0 ≤ K

then

dist0(Rf, Rg) ≤ A · dist0(f, g). (3.8)

Let N0 ≥ 1 be as in Proposition 3.6.2. Now

dist0(R
n+N0f,W u) ≤ dist0

(

RN0(Rnf), RN0fn
)

+ dist0
(

RN0fn, W
u
)

≤ AN0 · dist0 (Rnf, fn) +
1

3
dist0 (fn, W

u)

Notice,

dist0(fn, W
u) ≤ dist0(fn, R

nf) + dist0(R
nf, W u).
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Thus there exists K > 0,

dist0(R
n+N0f, W u) ≤

1

3
dist0(R

nf, W u) +K · dist0(R
nf, fn).

Let

zn = dist0(R
n·N0f, W u)

and

δn = dist0(R
nf, fn).

Then

zn+1 ≤
1

3
zn +K · δn·N0

.

This implies

zn ≤
∑

j<n

K · δj·N0
· (

1

3
)n−j.

Now we use that δn → 0, see Proposition 3.5.3, to get zn → 0. So we proved that

Rn·N0f converges to W u. Use (3.8) and R(W u) ⊂ W u to get that Rnf converges to W u

in C0 sense. Notice that any limit of Rnf is infinitely renormalizable. The only infinitely

renormalizable map in W u is the fixed point fω∗ . Thus

lim
n→∞

dist0 (Rnf, fω∗ ) = 0.

3.7 Slow convergence

Theorem 3.7.1 Let dn > 0 be any sequence with dn → 0. There exists an infinitely

renormalizable C2 map f with quadratic tip such that

dist0 (Rnf, fω∗ ) ≥ dn.

The proof needs some preparation. Use the representation

fω∗ = φ ◦ qc

where φ is an analytic diffeomorphism. The renormalization domains are denoted by In0
with

c = ∩n≥1I
n
0 .

Each In0 contains two intervals of the (n+ 1)th generation. Namely In+1
0 and In+1

2n . Let

Gn = In0 \
(

In+1
0 ∪ In+1

2n

)

,

Ĝn = qc(Gn) ⊂ În0 = qc(I
n
0 )
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and În+1
2n = qc(I

n+1
2n ). The invariant Cantor set of fω∗ is denoted by Λ. Notice,

qc(Λ) ∩ În0 ⊂
(

În+1
0 ∪ În+1

2n

)

.

The gap Ĝn in În0 does not intersect with Λ. Choose a family of C2 diffeomorphisms

φt : [0, 1] → [0, 1]

with

(i) Dφt(0) = Dφt(1) = 1.

(ii) D2φt(0) = D2φ(1) = 0.

(iii) For some C1 > 0

dist0 (φt, id) ≥ C1 · t.

(iv) For some C2 > 0

|ηφt
|0 ≤ C2 · t.

Let m = min Dφ and tn = 1

m C1 |Ĝ1|
dn. Now we will introduce a perturbation φ̃ of φ. Let

1n : [0, 1] → Ĝn

be the affine orientation preserving homeomorphism. Define

ψ : [0, 1] → [0, 1]

as follows

ψ(x) =

{

x x /∈ ∪n≥0Ĝn

1n ◦ φtn ◦ 1−1
n (x) x ∈ Ĝn.

Let

f = φ ◦ ψ ◦ qc = φ̃ ◦ qc.

Then f is unimodal map with quadratic tip which is infinitely renormalizable and still has

Λ as its invariant Cantor set. This follows from the fact that the perturbation did not

affect the critical orbit and it is located in the complement of the Cantor set. In particular

the invariant Cantor set of Rnf is again Λ ⊂ I1
0 ∪ I

1
1 and G1 is the gap of Rnf . Notice, by

using that fω∗ is the fixed point of renormalization that for x ∈ G1

Rnf(x) = φ ◦ 11 ◦ φtn ◦ 1−1
1 ◦ qc(x)
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Hence,

|Rnf − fω∗ |0 ≥ max
x∈Ĝ1

|Rnf(x) − fω∗ (x)|

≥ max
x∈Ĝ1

m · |
(

11 ◦ φtn ◦ 1−1
1

)

qc(x) − qc(x)|

≥ m · max
x∈Ĝ1

|
(

11 ◦ φtn ◦ 1−1
1

)

(x) − x|

= m · |Ĝ1| · |φtn − id|0

≥ m · |Ĝ1| · C1 · tn = dn.

It remains to prove that f is C2. The map f is C2 on [0, 1] \ {c} because f = φ̃ ◦ qc with

φ̃ = φ◦ψ, where φ is analytic diffeomorphism and ψ is by construction C2 on [0, 1). Notice

that, from (3.1) we have,

D2f(x) = 4 ·
(x− c)2

(1 − c)4
·D2φ̃ (qc(x)) (3.9)

− 2 ·
1

(1 − c)2
·Dφ̃ (qc(x)) .

We will analyze the above two terms separately. Observe

Dψ(x) =

{

1, x /∈ ∪n≥0Ĝn

|Dφtn (1−1
n (x)) |, x ∈ Ĝn.

This implies for x ∈ Gn

Dφ̃ (qc(x)) = Dφ (ψ ◦ qc) ·Dψ(qc(x))

= Dφ(1) ·
(

1 +O(În0 )
)

· (1 +O(tn))

For x /∈ ∪n≥1Gn we have

Dφ̃(qc(x)) = Dφ(qc(x))

This implies that the term

x 7−→ −2 ·
1

(1 − c)2
·Dφ̃(qc(x))

extends continuously to the whole domain. The first term in (3.9) needs more care. Ob-

serve, for u ∈ Ĝn,

D2φ̃(u) = D2φ(ψ(u)) · (Dψ(u))2 +Dφ(ψ(u)) ·D2ψ(u)

= D2φ(1) ·
(

1 +O(În0 )
)

· (1 +O(tn)) +

Dφ(1) ·
(

1 +O(În0 )
)

· (1 +O(tn)) ·D
2ψ(u)

= D2φ(1) ·
(

1 +O(În0 )
)

· (1 +O(tn)) +

Dφ(1) ·
(

1 +O(În0 )
)

· (1 +O(tn)) ·
1

|Ĝn|
·O(tn).
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This implies that

4
(x− c)2

(1 − c)4
·D2φ̃(qc(x)) =

{

O ((x− c)2) +O(tn), x ∈ Ĝn

O ((x− c)2) , x /∈ ∪n≥0Ĝn

In particular, the first term of D2f

x 7−→ 4
(x− c)2

(1 − c)4
·D2φ̃(qc(x))

also extends to a continuous function on [0, 1]. Indeed, f is C2.

Remark 3.7.2 If the sequence dn is not summable (and in particular not exponential

decaying) then the example constructed above is not C2+|·|. This follows from

∫

Ĝn

|ηφ̃(x)|dx ≍ tn.

Thus
∫

|ηφ̃| ≍
∑

dn = ∞.

Now, Proposition 3.1.6 implies that f is not C2+|·|. If the sequence dn is summable, the

previous construction will give an example of a C2+|·| unimodal map whose renormalizations

converges only polynomially. Any reasonable metric used on C2+|·| will be stronger than the

C0 distance in which the polynomial convergence occurs. Hence the renormalization fixed

point cannot be hyperbolic in any space of C2+|·| unimodal maps.
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Chapter 4

Hénon Renormalization

Abstract

There is a short analytic curve in the Hénon-family

Fa, b : (x, y) 7→ (a − x2 − b y, x)

which consists of infinitely renormalizable Hénon-maps of period doubling type. In

this work we study numerically, the extension of this curve in the parameter space

up to the conservative map. In particular, we describe the combinatorial changes

which occurs along this curve and it is called by “top-down break-up process” of

Hénon renormalization. The second part of our study is to describe, how the one-

dimensional Cantor set deforms into the Cantor set of conservative map. To describe

this, we study the invariant line fields aligned along the Cantor set and computed

the distribution of angles of the lines in the direction of line fields. It is known

that for highly dissipative maps, the geometry of the Cantor set is different from

the corresponding unimodal Cantor attractor. We describe here with the help of

distribution of line field, how this geometry would become more complicated for the

maps closer to the conservative maps.

4.1 Introduction

The Renormalization theory for the Hénon family was initiated in the work of Collet, Eck-

mann and Koch (Coullet et al. 1980). It was shown in their work that the one-dimensional

renormalization fixed point f∗ is also a hyperbolic fixed point for nearby dissipative two-

dimensional maps. Later, a subsequent article by Gambaudo, van Strien and Tresser

(Gambaudo et al. 1989) demonstrate that, similar to the one-dimensional situation, the

infinitely renormalizable two-dimensional maps which are close to f∗ have an attracting

Cantor sets O on which the map acts as an adding machine. However, the geometry of the

Cantor sets and global topological properties of these maps are very interesting to study.

Recently, de Carvalho, Lyubich and Martens, (de Carvalho et al. 2005), discovered that

for these maps universality features can coexist with unbounded geometry. This happens

due to the lack of rigidity, which makes it quite different from the familiar one-dimensional
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theory. In this work, we study numerically the approximations of the stable manifold of the

renormalization operator in parameter space and explain numerical computations related

to the geometry of the invariant Cantor set of these maps. The precise statement of the

results are formulated below.

Structure of the problem and Numerical results: This study is organized in the

following way.

In § 4.3, we explain the construction of the locus of period 2n points such that the trace

Tr of the first derivative of the 2nth iterate of Hénon map satisfies Tr = 0. This locus

consists of all (x, y, a, b) such that (x, y) is an attracting period 2n point for the Hénon

map with parameters (a, b). This is a smooth surface which projects to the (a, b) plane

by a local diffeomorphism. We conjecture that, as n → ∞, this locus of period 2n points,

will converge to the space of infinitely renormalizable maps. Furthermore, we show that

graphically this locus of parameters, Γ2n = {(a(b), b) | 0 ≤ b ≤ 1}, will be a curve (smooth)

in the (a, b) parameter plane.

In next section, we discuss the flow of periodic orbits for different period and explain

the crossing of these parameter curves, which are related to the geometry of the Cantor

set of infinitely renormalizable maps. Notice that, the Cantor set will survive all the way

up to the conservative map. These figures are presented in section 4.4.

In § 4.5, we describe the possible extension of renormalization theory for globally in the

parameter space, up to the boundary, where the map become conservative. To describe

this, we use the topological definition of renormalizability, which was introduced in the

work (de Carvalho et al. 2005). In particular, we describe the top-down break-up process

of Hénon renormalization on the curve Γ2n . To show this, we compute numerically the

heteroclinic tangencies for the fixed points and for the periodic points up to the period

2n−1, and explain their asymptotic behavior. Finally, we conjecture that these heteroclinic

tangencies are satisfy the following relation

lim
n→∞

b2n
bn−1

= 1

In the second part of this work we focus on the geometry of the Cantor set of infinitely

renormalizable Hénon-like maps. We notice that, for high b values, the corresponding

Cantor set has a complicated geometry, compare to the situation of the degenerate map,

where the Cantor set lie on a smooth curve. It was shown that, in the work (de Carvalho

et al. 2005), for highly dissipatitive maps, the corresponding Cantor set is not contained

in a smooth curve. We notice that for the maps with high b value, the geometry of Cantor

set turns out to be, more away from the degenerate case. To describe this, we compute

the distribution of angles of line field for various b values on the curve Γ2n and compare
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these distributions with the distribution of degenerate map. These results are presented

with more details in section 4.6.

Finally, in last section 4.7, we construct the renormalization of Hénon boxes around the

point lp, the extreme right most point in the orbit, and compute the average angles versus

b value, in each of zooming level around the point lp. These pictures are illustrated in

Figure 4.35. It has been proved in the work (Lyubich and Martens 2008), that the average

Jacobian b is topologically invariant. This gives, if we take any of other Hénon family and

compute the average angles by constructing the renomalization boxes around the point lp,

one can see the same kind of graph (piece-wise affine graph) as Figure 4.35. From this, we

conjecture that there exists a universal angles on the Cantor set around the point lp. We

call this phenomenon Distributional universality.

4.2 Notation

Let Ωh,Ωv ⊂ C be neighborhoods of [−1, 1] ⊂ R and Ω = Ωh × Ωv.

Let B = [−1, 1]×[−1, 1] and ǫ > 0. Consider the class HΩ(ǫ), consists of maps F : B → B

of the following form.

F (x, y) = (fa(x) − ǫ y, x),

where fa : [−1, 1] → [−1, 1] is a unimodal map which admits a holomorphic extension

to Ωh and ǫ : B → R admits a holomorphic extension to Ω. The critical point c of f is

non-degenerate, if Df(c) < 0. A map F(a,b) ∈ HΩ(ǫ) is said to be Hénon-like map, if F(a,b)

maps vertical lines to horizontal lines.

According to the topological construction, a Hénon map is said to be renormalizable if

there exists a domain D ⊂ B such that F 2 : D → D. The construction of the domain D is

inspired by renormalization of unimodal maps. In particular it is a topological construction.

The precise analytical definition of renormalization can be found in (de Carvalho et al.

2005). Let F (x, y) = (f(x) − ǫ(x y), x) and ǫ > 0. Then the domain, D ⊂ B, is

essentially a vertical strip which is bounded by two curves of the form

f(x) − ǫ(x y) = Const.

The domain D satisfies similar combinatorial properties as the domain of renormalization

of a unimodal map. Namely,

F (D) ∩D = ∅,

and

F 2(D) ⊂ D.
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However, the restriction F 2|D is not a Hénon-like map as it does not map vertical lines

into horizontal lines. Therefore, in (de Carvalho et al. 2005), they introduced a non-linear

change of variables to define the renormalization of F . This is given by

RF = φ−1 ◦ (F 2|U) ◦ φ,

where U is a certain neighborhood of the “critical value” v = (f(0), 0) and φ is an explicit

non-linear change of variables. The set of n−times renormalizable maps is denoted by

Hn
Ω(b) ⊂ HΩ(b). The set of infinitely renormalizable maps is denoted by

WΩ(b) =
⋂

n≥1

Hn
Ω(b)

It was shown that the degenerate map F∗(x, y) := (f∗(x), x), where f∗ is the fixed point

of the one-dimensional renormalization operator, is a hyperbolic fixed point for R with a

one-dimensional unstable manifold. It was also shown that the renormalizations RnF of

infinitely renormalizable maps converge at a super-exponential rate towards the space of

unimodal maps. For any infinitely renormalizable map F , there exists a hierarchical family

of boxes Bn
σ , 2

n on each level, organized by the inclusion in the dyadic tree, such that

O = OF =
⋂

n

⋃

σ

Bn
σ

is the Cantor set on which F acts as an adding machine. Furthermore, the diameters

of the boxes Bn
σ shrink at least exponentially with rate O(λ−n), where λ = 2.6... is the

universal scaling factor of the one-dimensional renormalization theory. This means that the

Hausdorff dimension of the Cantor set is less than one. This makes it possible to control

the distortion of the renormalizations. Ultimately, this leads to the following asymptotic

formula for the renormalizations.

RnF (x, y) = (fn(x) − b2
n

a(x) y (1 +O(ρn)), x ),

where fn → f∗ exponentially fast and

b = bF = exp

∫

O

log JacF dµ,

is the average Jacobian of F . Here µ is the unique invariant measure on O and the Jacobian

is the absolute value of the determinant, ρ ∈ (0, 1) and a(x) is a universal function. This

is a new universality feature of two-dimensional dynamics: as f∗ controls the zeroth order

shape of the renormalization and a(x) gives the first order control. And also in (de Carvalho

et al. 2005), they had noticed striking differences between the one- and two-dimensional

situations. Namely, the Cantor set O is not rigid. That means that if F and G are
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two infinitely renormalizable maps with bF < bG, then a conjugacy h : OF → OG, does

not admit a smooth extension to R
2. Thus, in dimension two, universality and rigidity

phenomena do not necessarily coexist. This non-rigidity phenomenon is also observed in

one-dim unimodal maps, there the influence of the smoothness of the space have been

considered, played a vital role for the non-rigidity, see for more details in (Chandramouli

et al. 2008), where as here in the Hénon-maps, the dimension two.
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4.3 Hénon cycles

4.3.1 Construction of period 2n points

Consider the Hénon family

Fa,b (x, y) 7→ (fa(x) − b y, x)

where 0 ≤ b ≤ 1 and fa(x) is a unimodal map. For these maps the Jacobian bFa,b
= b, is

constant. In the case of degenerate map (for b = 0), there is an unique a∗ for which the

map Fa∗,0 is infinitely renormalizable. This is the accumulation point of period doubling

bifurcations. Here, our numerical computations shows that there is a curve

b 7→ (a(b), b) for b ∈ [0, 1],

which is attached to the point (a∗, 0), in the parameter plane, consisting of infinitely renor-

malizable Hénon-like maps. To show this, we constructed the “attracting period 2n locus”,

consisting of all (x, y, a, b) such that the trace Tr of the first derivative of the 2nth iterate

of the Hénon map satisfies Tr = 0. This means, start with the sequence of one dimensional

quadratic maps which have the critical orbit of period 2n and converge to the Feigenbaum

map. For each of these maps, we extend to a curve in the Hénon parameter plane which

has the most attracting period 2n orbit. We explain this construction in the following.

Algorithm: Consider the Hénon map

Fa,b(x, y) =
(

a− x2 − b y, x
)

(4.1)

where 0 ≤ b ≤ 1. For b = 0, we can easily compute the sequence of parameters

{a21

0 , a
22

0 , a
23

0 , · · · , a
2n

0 · · · },

for the quadratic map fa(x) = a−x2, as strongly contracting periodic points. This means,

those parameters for which the periodic orbit of period 2n satisfies the “trace” condition,

is that trace of the first derivative of f 2n

(x) = 0. We obtain this sequence {a2n

0 }, by solving

the following polynomial

f 2n

a (0) = 0,

for each n = 1, 2, · · · , 15.

The next step is to increment b as bi, where bi = bi−1 + δ, with δ = 10−10 and we compute

the sequence of parameters {a2n

i }, corresponding to the sequence of strongly contracting

periodic points. This means, for each bi we need to find a vector v2n

i =
(

x2n

i , y
2n

i , a
2n

i

)

in
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such away that
(

x2n

i , y
2n

i

)

is a periodic point of period 2n at the parameter (a2n

i , bi), and

also the trace of the first derivative of 2nth map is equals to 0. This leads to the following

equations.

F 2n

(a,b)

(

x

y

)

−

(

x

y

)

= 0 (4.2)

Tr D

(

F 2n

(a,b)

(

x

y

))

= 0 (4.3)

Let X0 = x, Y 0 = y and F i
a,b(x, y) = (X i, Y i). Note that all of the

(

Xk+1, Y k+1
)

=
(

a− (Xk)2 − b Y k, Xk
)

for k ≥ 0, can be expressed explicitly as functions of x, y, and a. Use subscripts to indicate

the partial derivatives,

Xk
x =

∂Xk

∂x
, Xk

y =
∂Xk

∂y
, Xk

a =
∂Xk

∂a
,

and the second derivatives as

Xk
xx, X

k
xy, X

k
xa, X

k+1
yx , Xk+1

yy , Xk+1
ya .

Rewrite the Eqns (4.2), (4.3) as,

φ1 ≡ X2n

−X0 = 0 (4.4)

φ2 ≡ Y 2n

− Y 0 = 0 (4.5)

φ3 ≡ X2n

x + Y 2n

y = 0 (4.6)

We employ the Newton algorithm to solve the above equations. Let u2n

i (t) =
(

x2n

i , y
2n

i , a
2n

i

)

be the initial point such that
(

x2n

i , y
2n

i

)

is a periodic point of period 2n with parameter a2n

i .

Then the updated vector u2n

i (t+ 1) is given by

u2n

i (t+ 1) = u2n

i (t) − (Dφ)−1 · φ
(

u2n

i (t)
)

(4.7)

where

φ =





φ1

φ2

φ3





and

Dφ =





φ1x
φ1y

φ1a

φ2x
φ2y

φ2a

φ3x
φ3y

φ3a
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Computation of Dφ will involve not only the first partial derivative but also the second

derivatives of
(

X2n

, Y 2n)

. We calculate these derivatives recursively. Thus, we have

φ1x
= −2 X2n

X2n

x − b Y 2n

x − 1

φ1y
= −2 X2n

X2n

y − b Y 2n

y

φ1a
= −2 X2n

X2n

a − b Y 2n

a + 1

φ2x
= X2n

x ; φ2y
= X2n

y ; φ2a
= X2n

a

φ3x
= −2 (X2n

x )2 − 2 X2n

X2n

xx − b Y 2n

xx +X2n

xy

φ3y
= −2 X2n

x X2n

y − 2 X2n

X2n

xy − b Y 2n

yx + Y 2n

yy

φ3a
= −2 X2n

a X2n

x − 2 X2n

X2n

ax − b Y 2n

ax +X2n

ay

Once we have these derivatives, it is straightforward to obtain the updated vector u2n

i (t+1),

using the Eqn. (4.7). We continue this process until the error term e2n

i = u2n

i (t + 1) −

u2n

i (t) ≤ 10−13, then the algorithm will stop. Let v2n

i = u2n

i+1 be the final updated vector

obtained from Newton process and it will act as initial vector for the next increment of

bi+1. Suppose that, we start in the attracting basin of period 2n orbit, then one can easily

find the orbit, simply by repeated iteration. Then slowly change b from = bi to bi+ δb, and

compute the corresponding parameter a2n

i , by repeating the above Newton algorithm, so as

to plot the corresponding “most-attracting” curve in the (a, b)−parameter plane. We call

this curve as parameter curve, with period 2n and it is denoted by Γ2n . For n = 1, · · · , 15,

it is shown in Figure 4.1.

For b close to 0, it is shown that these curves Γ2n , as n → ∞ will converge to a fixed

Γ2∞ , which consists of infinitely renormalizable maps (de Carvalho et al. 2005). Figure

4.2, illustrates the fact that these smooth curves, Γ2n , will not intersect each other, for

n ≥ 1. It is difficult to see that these curves Γ2n , for n ≥ 7, are separated each other in

the (a, b) parameter plane. To emphasize this fact, we calculated the ratios of successive

period doubling strongly contracting points of these one dimensional quadratic maps, and

observe that these ratios will converge to the Feigenbaum constant δ as n→ ∞, for all a2n

i

corresponding to each bi, where 0 ≤ bi ≤ 1.

(a2n−1

i − a2n

i )

(a2n

i − a2n+1

i )
→ 4.69920160910299.....

It is very interesting to study the geometry as well as the topological properties of these

maps on this curve Γ2∞ and also the bifurcation pattern that occurs. We discuss these

issues in the next section.
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Figure 4.1: most attraction curve Γ2n in the (a, b) parameter plane

Figure 4.2: zoomed part of periodic curves
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4.3.2 Construction of period k points with Fibonacci combina-

torics

In this section we construct the parameter curves of period k, with Fibonacci combinatorics.

Consider the Hénon map

Fa.b(x, y) = (fa(x) − by, x)

with b ≥ 0 and fa(x) is a unimodal map. The kneading sequence of the uniquely defined

quadratic map fa(x) = a− x2 can be consider as

1, 10, 1001, 1001110, 100111011001, 10011101100101001110,

100111011001010011100100111011001, · · · .

First we compute the sequence of parameters a2n

0 for the quadratic map fa(x) = a− x2, as

strongly contracting periodic points which satisfy the Fibonacci combinatorics. We start

with this known sequence of Fibonacci periodic points of period k and slowly change b value

and we compute the corresponding sequence of period k points, such that the periodic orbit

will follow the above kneading sequence. This is a similar construction, as described in

section § 4.3.1, but here the condition we imposed is that the periodic orbit should satisfy

the Fibonacci combinatorics. We illustrated these curves in Figure 4.3, Figure 4.4, Figure

4.5. We notice that the parameter curves corresponding to the periods 3, 8, 21, 55, · · · , will

move in the backward direction, where as the other alternative periods 2, 5, 13, 34, · · · will

move in the forward direction. We call these curves, good parameter curves. Furthermore,

we conjecture that the sequence of these good parameter curves will converge exponentially

fast to a particular curve, namely, ΓFib, which consists of infinitely renormalizable maps

with Fibonacci combinatorics.

1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

Figure 4.3: Fibonacci parameter curves of periods 2 and 3
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Figure 4.4: Fibonacci parameter curves of periods 5 and 8
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Figure 4.5: Fibonacci parameter curves of periods 13 and 21
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Figure 4.6: The sequence of good parameter curves 2, 5, 13, 34, · · ·
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0.00010
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Figure 4.7: Left: period 5, 13 and 34; Right: Magnification of period 13 and 34

4.4 Flow of periodic orbits

We describe how the periodic orbits move along the curve Γ2n as we vary the parameter

from b = 0 to b = 1. For a Hénon map Fa,b with parameters on this curve Γ2n , we compute

the attracting periodic orbit of length 2n, and project this orbit onto the x− axis, plotting

these points against to the corresponding b values. We call this a flow of periodic orbits.

We illustrated this flow for different periods, in Figure 4.8 and Figure 4.9.

It is known that, for b close to zero, crossings in the periodic flow will happen. This is

shown in Figure 4.8(b). This is because of the occurrence of Hénon renormalization boxes

on top each other. This will lead to the destruction of the geometry of the Cantor set and

so it produces non-rigidity. This was explained more in (de Carvalho et al. 2005).

We notice that, for higher values of b, the same phenomenon will occurs, with even more

crossings happening everywhere in the periodic orbit. This means that the corresponding

renormalization boxes will overlap, in many places in the orbit. This appears to destroy

the geometry of the corresponding Cantor set and produce non-rigidity.
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Figure 4.8: projection of periodic orbit 26 on x− plane

Figure 4.9: projection of periodic orbit 210 on x− plane
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We repeated the same experiment for the Hénon maps with Fibonacci combinatorics.

The projected flow of these periodic orbits are shown in Figure 4.10. These flow of periodic

orbits along on the curve ΓFib indicates that there will still be a Cantor set. At this point,

we do not have a renormalization theory for Hénon maps with Fibonacci combinatorics

(maps on ΓFib). Further research is needed to develop a renormalization theory for the

Hénon maps with Fibonacci combinatorics. This experiments motivates the conjecture

that such a theory can be developed.
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Figure 4.10: projection of periodic orbit 13 and 21 with Fibonacci combinatorics
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4.5 Break-up process of Hénon renormalization boxes

In an attempt to describe a global renormalization theory, we focused on the hetero-

clinic web and we use the topological definition of renormalizability, as was introduced in

(de Carvalho et al. 2005), and considered extending this globally in the parameter domain.

In particular, in this section we discuss the breaking procedure of renormalizability, along

on this curve Γ2n .

Definition 6 A Hénon-like map is said to be 2-renormalizable if it has two saddle fixed

points. One is a regular saddle β0, with positive eigen values and the other is a flip saddle

β1 with negative eigen values, such that the unstable manifold W u(β0) intersects the stable

manifold W s(β1) in a single orbit. It is illustrated in Figure 4.11.

If F is 2−renormalizable then there exists a disc D which is bounded by the local unstable

manifold of the point β0 and local stable manifold of the point β1, such that F 2|D is

invariant.

-1.5 -1 -0.5 0 0.5 1 1.5 2
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β1

W u(β0)

W s(β1)

Figure 4.11: A renormalizable Hénon-like map

When the unstable manifold W u(β0), touches or crosses the stable manifold W s(β1),

then it it not 2−renormalizable. In this case, there is no disk of period 2, hence no period

2 cycle exists. This is illustrated in Figure 4.12 and Figure 4.13.

Definition 7 First bifurcation moment: The unstable manifold W u(β0) touches the stable

manifold W s(β1) at a point p0. This is the point where the first bifurcation moment happens.

It is illustrated in Figure 4.12.
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β0
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p2

W u(β0)

W s(β1)

W s(β1)

W u(β0)

Figure 4.12: Left:first bifurcation moment at b1 on Γ2n ;Right:Magnification around the point,

where the unstable manifold touches the stable manifold
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Figure 4.13: Non 2− renormalizable Hénon-like map

In the previous section 4.3.1 we explained the construction of the periodic curves of

period 2n. Let Γ2n be the fixed periodic curve, as shown in Figure 4.14. For each point

on this curve we have the parameters (ai, bi) of a Hénon map with strongly attracting

periodic point (xi, yi) of period 2n. We slowly change the parameter b along on this curve

and compute the first bifurcation moment. This will happen at some point b1 on Γ2n , such

that at this point the corresponding Hénon map has heteroclinic tangency. This is shown

in the Figure 4.15.

Let Γ1
2n be a piece of curve on Γ2n in such a way that it is the graph over [0, b1]. We

call it as the first window on Γ1
2n . In this window, for any map F ∈ Γ1

2n , then F is infinitely
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b1

b2

b3
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Γ2
2n

Γ3
2n

Γ4
2n

Γ5
2n

Figure 4.14: the curve Γ2n

2−renormalizable. In particular, it has a Cantor attractor OF and a collection of disks

D1 ⊃ D2 ⊃ D3 ⊃ · · · ⊃ Dn

such that

(i) F 2k

(Dk) ⊂ Dk

(ii) F i(Dn) ∩ F
j(Dn) = ∅ for i 6= j, and i, j ≤ 2k.

(iii) These disks are bounded by the pieces of W u
loc(βn−1) and W s

loc(βn).

The orbit of Dn is denoted by Cn, where

Cn = {Dn, F (Dn), F
2(Dn), · · · .F

2n−1(Dn)}.

This is called a cycle. Therefore, the Cantor set OF is

OF =
⋂

n≥1

2n−1
⋃

i=0

F i(Dn)

Note that in this first window Γ1
2n , all maps are infinitely many 2-renormalizable with

the Cantor set OF satisfying

C1 ⊃ C2 ⊃ C3 ⊃ · · · ⊃ OF .
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This means that all cycles will survive in this window Γ1
2n .

Let Γ2
2n be a piece of curve on Γ2n such that it is a graph over [b1, b2], we call it the

second window on Γ2n . Here, b2 is the point where the second heteroclinic tangency occurs.

This means that, the unstable manifold W u(β1) touches the stable manifold W s(β2) in a

single orbit, where β1 is a saddle fixed point and β2 is a period−2 point. This is shown in

Figure 4.16. Notice that, if we flip the second picture in Figure 4.16, it looks like the first

Figure 4.15.

β0

β1

W u(β0)

W s(β1) β1

β2

W u(β0)

W s(β1)

Figure 4.15: first heteroclinic tangency at b1; β0, β1 are fixed points; W u(β0) is unstable manifold

of β0 and W s(β1) is the stable manifold of β1.

β1

β2

W u(β1)

W s(β2)

β2

W u(β1)
W s(β2)

Figure 4.16: second heteroclinic tangency at b2; β1 is a fixed point and β2 is period 2 point;

W u(β1) is unstable manifold of β1 and W s(β2) is the stable manifold of β2.
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Let F be any map in Γ2
2n , then F is not 2−renormalizable but it is 4−renormalizable.

This means that, there exists an invariant disk D4 and a non-affine rescaling φ sucht that

R4F = φ−1F 4|D4
φ.

Furthermore, R4F is infinitely 2−renormalizable.

Observe that, in this window Γ2
2n , there is no cycle of period 2 and therefore, the

invariance of the disk D1 disappears because of the heteroclinic tangency of W u(β0) and

W s(β1). This we call breaking of cycle. However, all the other cycles will survive. Therefore,

C2 ⊃ C3 ⊃ · · · ⊃ OF .

In particular, the Cantor set is

OF =
⋂

n≥2

2n−1
⋃

i=0

F i(Dn)

will survive.

Similarly, there exist b3 on Γ2n , such that the third window Γ3
2n , is the graph over

[b2, b3]. For any map F ∈ Γ3
2n , F is not 2−renormalizable and not 4− renormalizable, but

it is 8−renormalizable. Therefore, there exists a non-affine rescaling

F 8|D8
= R8F

such that R8F is infinitely 2−renormalizable. At this point b3, the unstable manifold

W u(β2) intersect with the stable manifold W s(β3) in a single orbit, where β3 is periodic

point of period 23. This is illustrated in Figure 4.17.

Similarly, as before, observe that there is no period 2 and period 4 cycle. This is because

of the heteroclinic tangency at b3. But the other cycles

C3 ⊃ C4 ⊃ · · · ⊃ OF

will survive with the corresponding Cantor set

OF =
⋂

n≥3

2n−1
⋃

i=0

F i(Dn).

Definition 8 A Hénon like map is said to be 2n−renormalizable if there exists βn, a saddle

of period 2n−1, and there exists βn−1, a saddle of period 2n−2, such that the following holds:

• The unstable manifold W u(βn−1) intersects the stable manifold W s(βn) in a single

orbit.
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(a) (b)

β2

β3

W u(β2)

W s(β3)

Figure 4.17: third heteroclinic tangency at b3; β2 is period 2 point and β3 is period 4 point;

W u(β2) is unstable manifold of β2 and W s(β3) is the stable manifold of β3.

• A piece of local stable manifold of βn and a piece of local unstable manifold of βn−1

bound a disk Dn, which is invariant under F 2n

.

• int (F i(Dn)) are piecewise disjoint, for i = 0, 1, · · · , 2n−1.

Using the above definition, we continue the process of computing the heteroclinic tan-

gencies {bk}, such that for each bk there exists a window Γk2n , is a piece of curves on Γ2n

and moreover it is a graph over [bk−1, bk]. Notice that, in each of these windows, the

cycles Cn, for n = 1, · · · , k will breaks. This process of breaking the cycles corresponding

to the heteroclinic tangency positions are called the top-down break-up process of Hénon

renormalization.

The breaking of these cycles will happen as we continue the process of constructing the

pieces of windows on this curve Γ2n , as n→ ∞, in such a way that

Γ2n =
n

⋃

k=1

Γk2n

⋃

{a∗b=1},

where Γk2n is the graph over [bk−1, bk] and a∗b=1 is the parameter, with strongly contracting

periodic orbit of period 2n, for the corresponding Hénon map with b = 1.

This means that, if any map F is in Γk2n , then F is 2k−renormalizable. In particular

the Cantor set

OF =
⋂

n≥k

2n−1
⋃

i=0

F i(Dn)
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will survive.

We present, these computations up to the 8th heteroclinic tangency position on the

curve Γ2n and illustrated in Figures 4.18; 4.19; 4.20; 4.21 and 4.22. In these pictures the

unstable manifold W u(βn−1) is plotted by constructing the manifold around the periodic

point βn−1 of period 2n−2, by taking 25000 points on each side with in radius of 10−9 on the

line segment in the direction of unstable eigen-vector and extend this manifold by iterating

the Hénon system up to 30 times. To get the stable manifold W s(βn) of the periodic point

βn of period 2n−1, we just computed the unstable manifold of the inverse map by taking

with same measurements as above, but the number of times the manifold extended was

reduced to only two, as the stable manifold grows a lot faster than the unstable manifold.

(a) (b)

β3

β4

W u(β3)

W s(β4)

Figure 4.18: fourth heteroclinic tangency at b4; β4 is period 8 point and β5 is period 16 point;

W u(β4) is unstable manifold of β4 and W s(β5) is the stable manifold of β5.

Note that the degenerate map Fa∗,0 on Γ2∞ has the collection of disks

D1 ⊃ D2 ⊃ D4 ⊃ D8 · · · ⊃ Dn ⊃ · · ·

with F 2n

(Dn) ⊂ Dn and the cycle Cn = Orb(Dn). For small perturbation of the parameter

(a∗, 0) to (a, 0), (it is still a degenerate map), then the map has a period m of disks such

that

D1 ⊃ D2 ⊃ · · · ⊃ Dm.

But there is no domain of period 2k, k ≥ m + 1. This means that the higher boxes will

break first at deep levels for the deformation of degenerate map. This will give the following

observation.
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(a) (b)

β5

W u(β4)

W s(β5)

Figure 4.19: fifth heteroclinic tangency at b5; β5 is period 24 point and β4 is period 23 point;

W u(β5) is unstable manifold of β5 and W s(β4) is the stable manifold of β4.

(a) (b)

β6

W u(β5)

W s(β6)

Figure 4.20: sixth heteroclinic tangency at b6; β6 is period 25 point and β5 is period 24 point;

W u(β6) is unstable manifold of β6 and W s(β5) is the stable manifold of β5.

Observation: This bifurcation process on Γ2∞ is exactly opposite to the bifurcation pro-

cess in the case of the degenerate map, where the cycles of higher period breaks first on

deep levels.

Conjecture The 2n−Renormalization stable manifold of the Hénon map family is an

analytic curve which is attached to the Feigenbaum fixed point (a∗, 0), and that can be

extended all the way up to the boundary of the parameter domain, where the maps become
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(a) (b)

β7

W u(β6)

W s(β7)

Figure 4.21: seventh heteroclinic tangency at b7; β7 is period 26 point and β6 is period 25 point;

W u(β7) is unstable manifold of β7 and W s(β6) is the stable manifold of β6.

(a) (b)

β8 W u(β7)

W s(β8)

Figure 4.22: eighth heteroclinic tangency at b8; β8 is period 27 point and β7 is period 26 point;

W u(β8) is unstable manifold of β8 and W s(β7) is the stable manifold of β7.

conservative (b = 1).

We are interested in computing the heteroclinic tangencies for fixed points as well as

for the periodic points on the curve Γ2n (using Definition 8). These numerical values are

presented in Table 4.1.

On the curve Γ2n , n ≤ 9, we noticed the top-down breaking procedure of the cycles.

This happen at a specific bifurcation moments bi(n) ∈ Γ2n , these are illustrated in the
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bi per 25 per 26 per 27 per 28 per 29

b1 0.0311405 0.03099086 0.03095879 0.03095192 0.03095045

b2 0.1715389 0.16961800 0.16920269 0.16911365 0.16909453

b3 0.4255566 0.41529040 0.41295748 0.41245413 0.41234636

b4 0.6814848 0.65226240 0.64433498 0.64249999 0.64213923

b5 0.8669798 0.82551980 0.80765004 0.80270981 0.80158498

b6 - 0.93085480 0.90799999 0.89849999 0.89589998

b7 - - 0.96499998 0.95309998 -

b8 - - - 0.98224989 -

b9 - - - - -

Table 4.1:

Table 4.1, it indicates a convergence

bi(n) ∈ Γ2n → bi ∈ Γ2∞ .

The breaking of the boxes from top-down seems to be the combinatorial explanation for

the stable manifold of renormalization, which extend up to the conservative map.

Conjecture The points bn, of the heteroclinic tangencies on Γ2n satisfy the following

relation
b2n
bn−1

≈ 1.

Remark 4.5.1 The above conjecture has been verified numerically, for another family of

Hénon-map

Fa, b : (x, y) 7→

(

a− x4 −
1

2
x2 − b y, x

)

.
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4.6 Line fields on the Cantor set

In this section we describe the distribution of the angle of the lines in the invariant line field

of the Cantor attractor. It is known that for the degenerate map, the Cantor attractor OF

lies along a smooth curve. Let F ∈ Γ1
2∞ , be an infinite 2−renormalizable non-degenerate

Hénon map. From the work of (de Carvalho et al. 2005), it possesses the Cantor attractor

O = OF on which it acts as adding machine. Furthermore, they showed that F does not

have a continuous invariant line fields on O. This leads to an interesting consequences

that the attractor O does not lie on a smooth curve, which is contrary to one dimensional

situation. The question raised here is, for high b values (increasingly b close to 1), does

this Cantor set become further a way from the degenerate case? To answer this question,

we describe the line fields on the Cantor set and analyze the distribution of angles of the

line fields on the Cantor set.

Let F be a Hénon map with fixed parameters (a, b) on the curve Γ2∞ and so it is

infinitely 2−renormalizable. Therefore, it has a sequence of invariant disks

D1 ⊃ D2 ⊃ D3, ⊃ · · · Dn · · ·

where F 2n

(Dn) ⊂ Dn. Let βn = (x2n

0 , y
2n

0 ) ∈ Dn be the periodic point of period 2n. One

can easily find the complete orbit of βn, simply by repeated iteration. This orbit is denoted

by

Orb2n(βn) =
2n
⋃

k≥0

F k
a,b

(

x2n

0 , y
2n

0

)

.

Use the algorithm, which is described in section 4.3, one can compute the periodic

point αn = (x2n−1

0 , y2n−1

0 ) ∈ Dn−1 of period 2n−1, which is an immediate neighbor of βn in

combinatorial sense.

We now approximate the line field around the point βn, by constructing a line segment

l(βn, αn), passing through the two periodic points βn and αn. Let θ be the angle between

the line l(βn, αn) with the vertical axes (which is asymptotically equivalent to the local

stable manifold of W s(βn)). We measure this angle by

sin θ =
(x2n

0 − x2n−1

0 )

dist(βn, αn)

where dist(βn, αn) stands for the distance between the two periodic points βn and αn. Next

step is to find the image of this pair (βn, αn) under the Hénon map Fa, b and approximate

the line field around the point Fa,b(βn), compute the corresponding vertical angle. Repeat

this process of approximation of line fields at each point in the orbit Orb2n(βn), with their

corresponding line segments and make a list of these angles θi for i = 1, to 2n. We plot the

histogram for the list of these angles, considering 29 subintervals on [−1, 1] and the number
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of angles present in each sub interval on vertical axes. We call this, distribution of angles.

We compute these distributions for various parameters (a, b) on the curve Γ2n , n = 11,

starting with b = 0 to the maps close to the conservative case. These distributions are

presented in the following Figure 4.23, Figure 4.24, Figure 4.25, Figure 4.26 and Figure

4.27.
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Figure 4.23: distribution of line fields for the Hénon map Fa,b with the parameters (a, b) =

{(1.401155102022464, 0.0), (1.561508978886665, 0.1)}
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Figure 4.24: for the parameters (a, b) = {(1.744828106932014, 0.2), (1.951646371711716, 0.3)}
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Figure 4.25: for the parameters (a, b) = {(2.182768010790645, 0.4), (2.439153110310706, 0.5)}

-0.5 0 0.5 1
0

20

40

60

80

100

120

0.6

-0.5 0 0.5 1
0

20

40

60

80

100

0.7

Figure 4.26: for the parameters (a, b) = {(2.721829067829454, 0.6), (3.031843160671423, 0.7)}
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Figure 4.27: for the parameters (a, b) = {(3.370236565105158, 0.8), (3.933243998542534, 0.95)}

Notice that from these distributions, as the parameter b changes, the distribution be-

coming wider and wider. In case of degenerate map, these angles are distributed in a a

Cantor set. As b increases, the other angles are generated slowly. Finally, for the maps
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close to the conservative case the distribution is weighted with all angles. This means that

more angles are generated compare to the situation of degenerate map. This illustrates the

complexity of the geometry of corresponding Cantor set, indicates that it is not smooth

any more. This type of Cantor set we call it as weighted Cantor set. It is illustrated in

Figure 4.28.

Figure 4.28: Top: distribution of line fields for the degenerate map; Below: for the map with

b = 0.95

The same phenomenon is also described by plotting the list of angles taking time on

horizontal axes and corresponding angles on vertical axes. In these pictures observe that

the dispersion of angles are slowly started, see Figure 4.29 and become more when the

maps are away from the degenerate case, see Figure 4.30 and Figure 4.31. Finally, the

comparisons of the list of angles for degenerate map and the map with high b value are

presented in the Figure 4.32.
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Figure 4.29: time versus angle for b = 0.0 to b = 0.3
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Figure 4.30: time versus angle for b = 0.4 to b = 0.7
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Figure 4.31: time versus angle for b = 0.8 and b = 0.95
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Figure 4.32: comparision of angles; Top:b = 0.0; Below: b = 0.95
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4.7 Distributional Universality

It was discovered that in the work of (de Carvalho et al. 2005), the Cantor set O does

not have bounded geometry and so it is not quasiconformally equivalent to the standard

Cantor set of one-dimensional unimodal map. Moreover, the cantor set O cannot be

embedded into a smooth curve. These properties are so different from their one-dimensional

counterparts, come from a tilting and bending phenomenon: near the “tip” of Hénon-

like maps renormalization boxes are not rectangles but rather slightly tilted and bent

as parallelograms. This tilt significantly affects the b−scale geometry of O. For highly

dissipative maps, the Jacobian b is replaced with b2
n

under the nth renormalization, the

geometry gets affected at arbitrarily small scales.

We calculate the “tilting” of the Hénon renormalization boxes, zooming in the deep

levels around the point βn, which is an approximation of the “tip”. From Definition 8,

the existence of the invariant disk Dn is called Hénon renormalization box. The line

fields constructed in the previous section, are aligned in the direction of these Hénon

renormalization boxes. For each of these boxes, we have the line field distributions. Now at

this point, we separate each distribution as two different distributions, one with the angles

pointing upward direction and other one with the angles pointing downward direction. The

first one we call the distribution with upward angles and the second one as distribution with

downward angles. In each of these distributions we compute the average of the angles. This

average angle gives us, the quantity of tilting of the corresponding boxes. We illustrate this

“tilting phenomenon” by plotting the b value on horizontal axes and corresponding average

angle of the distributions on vertical axes. It is shown in the Figure 4.33. Here, n. lev

indicates that the zoom level of the boxes around the point βn. Notice that, from these

pictures as the b value increases the average angle is also increases, this can be observed

only after the 4th zoom level of the boxes. This emphasize the fact that for high b value

the “tilt” will happen more.

Similar phenomenon is also observed, if we construct the renormalization boxes around

the point lp. It is illustrated in Figure 4.34. Here, the zooming of the boxes considered

around the point lp, which is the right most periodic point of the projected orbit on x−axes.

Figure 4.34, is magnified for the period 213 and illustrated in Figure 4.35 and Figure 4.36.
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Figure 4.33: b versus average for downward angles; “n lev” indicates the nth zoom level around

the point βn
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Figure 4.34: b versus average for downward angles; “n lev” indicates the nth zoom level around

the point lp;
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Figure 4.35: b versus average for downward angles

Figure 4.36: b versus average for upward angle

It has been proved that in the work of (Lyubich and Martens 2008), the average Jaco-

bian b is topologically invariant. So, from the above Figure 4.35, 4.36, one can conclude

that, if we take any of other Hénon family and compute the average angles by constructing

the distributions in the corresponding renormalization boxes around the point lp, which is

the right most periodic point in the orbit then we get a similar graph “piece-wise affine”, as

above. This means that, these angles are universal. We call this phenomenon Distributional

universality.



Chapter 5

Summary

One-dimensional smooth dynamics has become a refined theory. The central theme of this

theory is the geometric rigidity of the attractors. The main technique is renormalization. A

general theory for smooth dynamics is still completely out of reach. There are two natural

direction in which one can extend the theory using the results from one-dimensional smooth

dynamics. The first one is one-dimensional dynamics with low smoothness and the second

is dynamics of Hénon maps.

Renormalization is a method to study microscopic geometrical properties of attractors.

This microscope is an operator on some space of one-dimensional systems. Given a one-

dimensional systems its renormalization is a similar system which describes the dynamics at

a smaller scale. Infinitely renormalizable systems are the ones for which you can repeatedly

apply the renormalization operator and study the dynamics at arbitrarily small scales.

The most important property of the renormalization operator is that it is hyperbolic.

In particular, the fine scale geometry of maps of the simplest non trivial combinatorial

type, the so-called period doubling type, is described completely in terms of one single

hyperbolic fixed point of the renormalization operator. If you zoom in to a spot in the

attractor the geometry will converge to geometry of the equivalent spot in the attractor of

the renormalization fixed point. In particular, these fine scale geometrical properties are

independent of the original system. This phenomenon is called Universality. The attractors

can not be deformed on small scale. Their microscopic geometry is rigid.

These universality and rigidity phenomena are rigorously understood for smooth sys-

tems. Smooth means C2+α. The thesis discusses renormalization for one-dimensional

systems whose smoothness is still C2 and systems whose smoothness is C1+Lip, just below

C2. The main results is that hyperbolicity of renormalization in C2 breaks down although

there is still slow convergence to the renormalization fixed point. In C1+Lip the situation

changes completely. Even one can study renormalization for period doubling, the simplest

combinatorial type, and can see the chaotic behavior of the geometry on smaller and smaller

scale. One more interesting result is that, the period doubling renormalization is chaotic,

even it has infinite entropy. There is no universality and rigidity when the smoothness gets

below C2.

The second possibility to use the successful one-dimensional renormalization theory is to

study two-dimensional dynamics. In the case of dissipative dynamics we should start with
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the Hénon family. Strongly dissipative Hénon maps are perturbations of one-dimensional

dynamics and one-dimensional renormalization theory is a powerful starting point for the

development of a theory. The Hénon family has many realistic applications because of its

relevance in the creation of chaos.

Our rigorous understanding of Hénon maps is fragmented. There are three well under-

stood phenomena. The first is the Newhouse phenomenon. Secondly, there are the chaotic

maps constructed by M. Benedicks and L. Carleson. The third part of our knowledge of

Hénon maps deals with maps in a neighborhood of the accumulation of period doubling.

This is an area in parameter space where chaos is created. A. de Carvalho, M.Lyubich,

and M. Martens constructed a renormalization operator on the space of strongly dissipative

Hénon-like maps using geometric ingredients. The specific construction and the hyperbol-

icity of this renormalization operator allowed to study the geometry of Cantor attractors

of Hénon maps at the accumulation of period doubling. It opened a source of surprising

phenomena. The main theme is that the theory for two-dimensional dissipative dynamics

is far from a straightforward generalization of the one-dimensional theory, even for maps

which the simplest combinatorial type, period doubling. However, renormalization is again

a very powerful tool which is able to describe the dynamics of Hénon maps.

The second part of the thesis is devoted to the renormalization for Hénon maps. It is

mainly a numerical study. The present renormalization theory deals with strongly dissipa-

tive Hénon maps. These maps form a short curve in parameter space of a generic Hénon

family. The first numerical study shows that the curve actually extends up to the conser-

vative systems. More importantly, the study describes the combinatorial changes which

occur along this curve. These changes are denoted by “top down breaking of the boxes”.

One-dimensional dynamics is controlled by the critical points of these systems. In-

finitely renormalizable Hénon maps also have a topologically defined critical points which

plays a crucial role. At the present moment we are at the starting point of developing a

renormalization theory for Hénon maps with more general combinatorial types. History

inspires us to consider maps of Fibonacci type. Unfortunately, the situation is far more

complex than the period doubling case for Hénon maps. There are infinitely many critical

points. However, a numerical study presented in this thesis shows that there is a curve

in the Hénon family whose maps have an invariant Cantor set of Fibonacci type. This

is strong support for the possibility of constructing a renormalization operator for Hénon

maps of Fibonacci type.

Infinitely renormalizable Hénon maps of period doubling type have a Cantor attractor.

This Cantor set has geometrical aspects which are exactly the same as the counter part

in the Cantor attractors of infinitely renormalizable one-dimensional systems. This phe-

nomenon is called universality. Contrary to the one-dimensional situation, these Hénon

Cantor sets are not rigid. There are parts of the Hénon Cantor set where the geometry on

asymptotically small scale is different form the one-dimensional situation. The non-rigidity
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was up to recently an unexpected phenomenon. Even, strongly dissipative two-dimensional

systems are geometrically different from the one-dimensional world. Although, two and

one-dimensional systems do have some common universal geometrical aspects.

The numerically constructed curve of infinitely renormalizable dissipative Hénon maps

ends in a conservative map. This conservative map has an invariant Cantor set. The geom-

etry of this Cantor set is not at all similar to the Cantor attractor of the dissipative maps.

Our third numerical study on Hénon maps describe that, how the one-dimensional Cantor

set deforms into the Cantor set of the conservative map. To describe this deformation we

studied the invariant line field which is carried on the Cantor set. This line field has zero

characteristic exponent. One could think about this line field as if it was aligned along

the Cantor set. However, one should be careful. It has been shown that this line field is

not continuous for truly two-dimensional Hénon maps. The Cantor set does not lie on a

smooth curve.

Numerically we studied the distribution of the angles of the lines in the line field with

respect to a fixed direction. Initially, for strongly dissipative maps, the angles seem to

be distributed in a Cantor set. This is not surprising. However, if we consider infinitely

renormalizable maps on the curve closer towards the end with the conservative map, the

distributions are assigning weight to all angles. It gets more and more away from being on

a smooth curve.

This refined understanding might play a crucial role in further studies of Hénon maps.

Simple questions like the existence of wandering domains is closely related to the geometry

of the line field. The non-existence of wandering domains is still open.





Chapter 6

Samenvatting

Renormalizatie en non-rigiditeit

Een-dimensionale dynamica van differentieerbare systemen is een ver ontwikkelde the-

orie. Het centrale thema in deze theorie is de rigiditeit van attractoren. De belangrijkste

techniek is renormalizatie. Dynamica in hogere dimensies is lang niet zover ontwikkeld.

Men kan zeggen, vergeleken met een-dimensionale dynamica, dat het nog in de kinderschoe-

nen staat. Er zijn twee mogelijken richtingen waarin we de een-dimensional theorie kunnen

gebruiken om hoger dimensionale systemen te begrijpen. De eerste is een-dimensionale

dynamica met lage differentieerbaarheid. Het komt voor dat hoog dimensionale system

beschreven kunnen worden met behulp van een-dimensionale systemen. Helaas zijn die

dan vaak niet erg glad. Een tweede mogelijke richting is twee-dimensionale dissipatieve

dynamica, in het bizonder afbeeldingen in de Hénon familie.

Renormalizatie is een methode om miscroscopische meetkundige eigenschappen van at-

tractoren te bestuderen. Deze miscroscoop is een operator op een bepaalde ruimte van

een-dimensionale systemen. De renormalizatie van een gegeven systeem is een nieuw

vergelijkbaar systeem dat de meetkunde op een kleinere schaal van het oorspronkelijke

systeem beschrijft. Oneindig renormalizeerbare systemen zijn die waar je dieper en dieper

kan inzoemen door de renormalizatie operator herhaaldelijk toe te passen.

De belangrijkste eigenschap van de renormalizatie operator is zijn hyperboliciteit. Dit

heeft als gevolg dat de microscopische meetkunde van systemen met de simpelste combi-

natorische eigenschappen volledig beschreven kan worden door het enige dekpunt van de

renormalizatie operator. In het bizonder zijn deze microscopische meetkundige eigenschap-

pen onafhangkelijk van het oorspronkelijke systeem. Dit verschijnsel heet meetkundige

universaliteit. De attractoren kunnen niet vervormd worden, ze zijn rigide.

Universaliteit en rigiditeit zijn goed begrepen voor systemen die voldoende glad zijn,

C2+α. Dit proefschrift bestudeert het gedrag van de renormalizatie operator als die wordt

toegepast op systemen die minder glad zijn. De belangrijkste resultaten zijn dat in C2

er nog steeds convergentie van de meetkunde op miscroscopische schaal is. In C1+Lip is

de situatie heel anders. Er zijn voorbeelden van afbeeldingen waar de meetkunde zich

chaotisch gedraagt als men inzoemt. Renormalizatie heeft zelfs oneindige entropy op de

ruimte van C1+Lip systemen. Men kan zeker niet meer van universaliteit en rigiditeit
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spreken.

De tweede richting om een-dimensionale renormalizatie toe te passen in hoger dimen-

sionale systemen is in de context van dissipatieve systemen in dimensie twee. In het

bizonder verdient de Hénon family aandacht. Sterk dissipatieve Hénon afbeeldingen zijn

twee-dimensionale perturbaties van een-dimensionale systemen. Er is daarom een mogeli-

jkheid om de een-dimensionale theorie uit te breiden. De Hénon familie heeft een grotere

kring van toepassingen. Ze speelt een grote rol op momenten dat chaos onstaat.

De theorie voor Hénon systemen is nog niet erg ver ontwikkeld en is nog fragmentarisch.

Er zijn drie stukken theorie. Het eerste is het Verschijnsel van Newhouse. Het tweede zijn

de resultaten van Benedics en Carleson die daadwerkelijk chaotisch gedrag beschrijven in

de Hénon familie. Het derde stuk is een studie rond het onstaan van chaos voor zeer

dissipatieve Hénon afbeeldingen. Deze afbeeldingen zijn van het periode verdubbelings

type. A. de Carvalho, M. Lyubich en M. Martens hebben een renormalizatie operator

geintroduceerd die in staat is om de meetkundige verschijnselen van deze systemen te

beschrijven. Het is een bron van nieuwe verschijnselen. Het centrale thema is dat zelfs sterk

dissipatieve twee dimensionale systemen van het periode verdubbelings type niet direct

kunnnen worden begrepen als generalisaties van een dimensionale systemen. Ondanks

dat is renormalizatie een sterk genoeg stuk gereedschap dat toch instaat is om de nieuwe

verschijnselen te beschrijven.

Het tweede gedeelte van het proefschrift bestudeert renormalizatie van Hénon afbeeldin-

gen. Het is voornamelijk een numerieke studie. De hedendaagse theorie voor oneindig

renormalizeerbare Hénon systemen is toepasbaar wanneer de systemen erg dissipatief zijn.

Zulke systemen vormen korte krommen in het parameter domein van generieke Hénon fam-

ilies. Het eerste deel van de numerieke studie laat zien dat deze kromme zich laat uitbreiden

en eindigt met een conservatieve Hénon afbeelding. Belangrijker is dat de studie de combi-

natorische veranderen beschrijft die langs deze krommen plaatsvinden. Deze veranderingen

worden beschreven met “top down breaking of the boxes”.

Een-dimensionale systemen worden bestuurd door de critieke punten van zulke sys-

temen. Oneindig renormalizeerbare Hénon afbeeldingen hebben ook goed gedefinieerde

critieke punten die de dynamica sterk beinvloeden. We staan op het punt om een renor-

malizatie theorie te formuleren voor Hénon afbeeldingen met algemenere combinatorische

eigenschappen. Niet alleen periode verdubbeling. De geschiedenis verteld ons dat syste-

men met Fibonnacci type aandacht verdienen. De situatie is dan ineens veel complexer.

Hénon afbeeldingen met algemenere combinatorische eigenschappen hebben oneidig veel

critieke punten. Het tweede deel van de numerieke studie laat zien dat men daadwerkelijk

kan spreken van Hénon afbeeldingen van Fibonnacci type. Zij schijnen ook een kromme te

vormen in de Hénon familie die eindigt met een conservatieve afbeelding. Deze Fibonnacci

Hénon afbeeldigen hebben ook een invariante Cantor verzameling van Fibonnacci type.

Dit resultaat is een zeer sterke aanwijzing dat een renromalizatie theorie mogelijk is voor
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Hénon afbeeldingen van Fibonnacci type.

Oneindig renormalizeerbare Hénon afbeeldingen van periode verdubbelings type hebben

een Cantor attractor. Deze attractor heeft delen die er op microscopische schaal precies zo

uit zien als de een-dimensionale equivalenten. Dit is de universaliteit die men in toepassin-

gen opmerkt. Helaas is de Cantor attractor niet rigide. Er zijn delen waar de microscopische

meetkunde erg verschilt van de een-dimensionale equivalenten. Deze niet rigiditeit was een

onverwacht verschijnsel.

De numeriek geconstrueerde kromme van dissipatieve oneindig renormalizeerbare syste-

men eindigt in een conservatief systeem. Dit conservatieve systeem heeft ook een invariante

Cantor verzameling. De meetkunde van deze verzameling is anders dan de meetkunde van

de dissipatieve Cantor attractoren. Het derde deel van deze numerieke studie beschrijft

hoe de meetkunde van de dissipatieve afbeeldingen verandert in die van de conservatieve

situatie.

De studie beschrijft het invariante lijnen veld op de Cantor verzamelingen. Men kan zich

dit lijnen veld voorstellen als de raak lijnen aan een kromme waarop de Cantor verzameling

ligt. Helaas is de meetkunde van deze Cantor verzameling anders dan die in de een-

dimensionale situatie. Deze Cantor verzamelingen kunnen niet op een gladde kromme

liggen.

De numerieke studie van dit lijnen veld beschrijft de statistische verdelingen van de

hoeken van de lijnen met een vaste richting. Voor sterk dissipatieve systemen ligt de verdel-

ing dicht bij een Cantor verzameling. Dit is niet verassend, het zijn lijnen op een Cantor

verzameling die dicht zou moeten liggen bij de een-dimensionale Cantor verzameling. Als

we de verdelingen beschouwen van afbeeldingen dichter bij de conservatieve situatie zien

we dat de verdelingen gewicht geven aan alle hoeken. De Cantor verzameling lijkt minder

en minder op een Cantor verzameling die binnen een gladde kromme kan liggen.

Deze fijne meetkundige studie is van belang voor verdere Hénon ontwikkelingen. We

staan nog maar aan het begin. Net als in een-dimensionale dynamica verwacht men dat

wandelende domeinen niet bestaan. De eigenschappen van het lijnen veld spelen een be-

langrijke rol bij de studie van bijvoorbeeld wandelende domeinen.
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