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Abstract of the Dissertation

Hénon-like Maps and Renormalisation

by

Peter Edward Hazard

Doctor of Philosophy

in

Mathematics

Stony Brook University

2008

The aim of this dissertation is to develop a renormalisation theory for the Hénon
family

Fa,b(x, y) = (a− x2 − by, x) (†)

for combinatorics other than period-doubling in a way similar to that for the
standard unimodal family fa(x) = a−x2. This work breaks into two parts. Af-
ter recalling background needed in the unimodal renormalisation theory, where
a space U of unimodal maps and an operator RU acting on a subspace of U are
considered, we construct a space H –the strongly dissipative Hénon-like maps–
and an operator R which acts on a subspace of H. The space U is canonically
embedded in the boundary of H. We show that R is a dynamically-defined
continuous operator which continuously extends RU acting on U . Moreover the
classical renormalisation picture still holds: there exists a unique renormalisa-
tion fixed point which is hyperbolic, has a codimension one stable manifold,
consisting of all infinitely renormalisable maps, and a dimension one local un-
stable manifold.

Infinitely renormalisable Hénon-like maps are then examined. We show, as
in the unimodal case, that such maps have invariant Cantor sets supporting
a unique invariant probability. We construct a metric invariant, the average
Jacobian. Using this we study the dynamics of infinitely renormalisable maps
around a prescribed point, the ‘tip’. We show, as in the unimodal case, univer-
sality exists at this point. We also show the dynamics at the tip is non-rigid:
any two maps with differing average Jacobians cannot be C1-conjugated by a
tip-preserving diffeomorphism.

Finally it is shown that the geometry of these Cantor sets is, metrically and
generically, unbounded in one-parameter families of infinitely renormalisable
maps satisfying a transversality condition.
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Chapter 1

Introduction

1.1 Background on Hénon-like Maps

This work aims to describe some of the dynamical properties of Hénon-like
maps. These are maps of the square to itself which ‘bend’ at a unique place.
The prototype for these maps is the Hénon family of maps, given by

Fa,b(x, y) = (a− x2 − by, x). (1.1.1)

In [24], Hénon gave numerical evidence which suggested, for particular values
of parameters1 a and b, there exists a strange attractor for this map (see the
front cover for a picture). Since that time much work has been done in studying
the properties of such maps and the bifurcations the family exhibits in the
(a, b)-plane.

Showing that the attractor actually existed for certain parameter values
turned out to be a significant achievement. This was first done in the work of
Benedicks and Carleson [2]. They showed, for a large set of parameters that the
unstable manifold is attracting and that it has a definite basin of attraction.
Their breakthrough was to compare the dynamics of Fa,b with that of the one-
dimensional unimodal map fa(x) = a− x2 (their parametrisation was different
but we state the equivalent formulation, see below). The tools they developed in
their proof of Jakobson’s Theorem allowed them to get very precise information
about a specific point whose orbit turns out to be dense in the attractor. We
will return with a precise formulation of their results later.

Let us finally remark that this application of the one-dimensional unimodal
theory is one of the driving forces in current investigations of these systems. As
far as we are aware this was first suggested by Feigenbaum (see the book [7]

1Hénon actually studied the family

Ha,b(x, y) = (1 − ax2 + y, by) (1.1.2)

but the two families are affinely conjugate. He found this interesting behaviour for the pa-
rameter values a = 1.4, b = 0.3.
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by Collet and Eckmann). This is a leitmotif that drives the present work, and
one which will be developed in this introduction. Before we describe Hénon-like
maps in more detail let us consider the development of dynamics from a more
global viewpoint.

1.2 Uniform Hyperbolicity and Topological Dy-

namics

First let us set up some notation. Given manifolds M and N and any r =
0, 1, . . . ,∞, ω, let Cr(M,N) denote the space of all Cr-smooth maps from M
to N , let Cr

0 (M,N) denote the subspace of maps with compact support and
let Embr(M,N) denote the subspace of all Cr-embeddings from M to N . We
let Endr(M) denote the space of Cr-endomorphisms of M and we let Diffr(M)
denote the space of Cr-diffeomorphisms on M . We will denote the usual Cr-
norm on Cr(M,N) by | − |Cr(M,N). If the spaces M,N are understood we will
simply write | − |Cr . In the special case when r = 0, the sup-norm will be
denoted | − |M . We will reserve the notation ‖ − ‖ or ‖ − ‖E to denote the
operator norm of a linear operator on the Banach space E.

Given f ∈ Diffr(M) we will denote the set of its periodic points by Per(f)
and the the orbit of x ∈ M under f by orbf (x). The set of non-wandering
points is denoted by Ω(f). Given a periodic point x ∈ M we will denote its
table and unstable manifolds by W s(x) and Wu(x) respectively.

In the late 1950’s Smale initiated the study of uniformly hyperbolic dynam-
ical systems. The aim was to show such systems were generic and structurally
stable. If this were shown a reasonable topological or differential topological
classification of dynamical systems would be achieved. Systems such as Morse-
Smale, Kupka-Smale and Axiom A were considered in detail.

Definition 1.2.1 (Kupka-Smale, Morse-Smale). Let M be a manifold and f ∈
Diffr(M) a diffeomorphism. If f satisfies the following properties,

(i) each p ∈ Per(f) is hyperbolic;

(ii) Wu(p) ⋔ W s(q) for each p, q ∈ Per(f);

then we say f is a Kupka-Smale diffeomorphism on M . If f satisfies the addi-
tional properties,

(iii) Per(f) has finite cardinality;

(iv)
⋃

p∈Per(f)W
s(p) = M ;

(v)
⋃

p∈Per(f)W
u(p) = M ;

then we say f is a Morse-Smale diffeomorphism on M .

Definition 1.2.2 (Axiom A). Let M be a manifold and f ∈ Diffr(M) a diffeo-
morphism. If f satisfies the following properties,

2



(i) the nonwandering set Ω(f) is hyperbolic;

(ii) Per(f) is dense in Ω(f);

then we say f is an Axiom A diffeomorphism on M .

The hope was, for a long time, that, Axiom A maps would be dense. This
was shown not to be the case, most conclusively by Newhouse. The following
two results were shown by him in [39] and [40]. We refer the reader to chapter
6 of the book [42] by Palis and Takens for more details.

Theorem 1.2.3 (Newhouse). For any two dimensional manifold M there exists
an open set U ⊂ Diff2(M), and a dense subset B ⊂ U such that every map f ∈ B
possesses a homoclinic tangency.

Theorem 1.2.4 (Newhouse). For any two dimensional manifold M , and any
r ≥ 2, there exists an open set U ⊂ Diffr(M) and a residual subset B ⊂ U such
that every map f ∈ B has infinitely many hyperbolic periodic attractors.

Let us also recall the following result of Katok, which acts as a nice coun-
terpoint to the first of these two theorems.

Theorem 1.2.5 (Katok). For any compact two dimensional manifold M , let
f ∈ Diff1+α(M) preserve the Borel probability measure µ and also satisfy the
following properties,

(i) the support of µ is not concentrated on a single periodic orbit;

(ii) µ is f -ergodic;

(iii) f has non-zero characteristic exponents with respect to µ;

then f having a transversal homoclinic point implies htop(f) > 0, where htop(f)
denotes the topological entropy of f .

This shows that the dense set B constructed by Newhouse lives close to
the region of ‘chaotic’ maps. We will consider this in more detail later when
outlining the renormalisation picture.

1.3 Non-Uniform Hyperbolicity and Measurable

Dynamics

In the late 1960’s Oseledets and Pesin, among others, initiated the study of
non-uniformly hyperbolic systems, i.e. ones for which the tangent bundle does
not split into factors which contract or expand at a uniform rate. The key
observation was that it was the asymptotic behaviour of the action of f on
elements of the tangent bundle that was significant. By considering the long
term behaviour only it was discovered that there still existed a splitting, but a
measure zero set of “irregular” points needed to be removed first. More precisely,
Oseledets proved the following Theorem, for a proof we refer the reader to the
book [31] of Mañé.
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Theorem 1.3.1 (Oseledets). Let M be smooth, compact, boundary-free Rie-
mannian manifold of dimension n. Let f ∈ Diff(M) and for each p ∈ M let
Eλ

p denote the subspace of TpM whose elements have characteristic exponent
λ. Then there exists an f -invariant Borel subset R ⊂ M and for each ε > 0 a
Borel function rε : R → (1,∞) such that for all p ∈ R, v ∈ Eλ

p and each integer
n, the following properties hold,

(i)
⊕

λE
λ
p = TpM ;

(ii) 1
rε(p)(1+ε)|n| ≤

‖Dpf◦n(v)‖
λn‖v‖ ≤ rε(p)(1 + ε)|n|;

(iii) ∠(EΛ
p , EpΛ

′) ≥ rε(p)
−1 if Λ ∩ Λ′ = ∅;

(iv) 1
1+ε

≤ rε(p)
rε(p) ≤ 1 + ε.

Moreover R has total probability, in that µ(R) = 1 for any f invariant Borel
probability measure µ on M . Also, the characteristic exponents, characteristic
subspaces and their dimensions are Borel functions of the base space R.

Using this result as his starting point Pesin was then able to construct much
of what was known for uniformly hyperbolic systems but in a measurable con-
text. In particular he was able to prove the following Stable Manifold Theorem:
there exists a partition of the space into stable manifolds which, moreover, is
absolutely continuous2 and induce conditional measures on local unstable man-
ifolds of almost every point. For more details we recommend [16] and [43].

1.4 The Palis Conjecture

For many properties of uniformly hyperbolic systems it is reasonable to expect
they occur in other systems, at least on a large scale. For example, the prop-
erty of having finitely many indecomposable sets, the so-called basic sets in
the hyperbolic setting, and the property that an open dense set of orbits in
each indecomposable set is attracted to a subset, called the attractor, of the
indecomposable set, both hold for hyperbolic systems. These are topological
notions, but the results developed by Oseledets and Pesin suggested they could
be carried over to a topological/measurable framework for a larger class of sys-
tems. In [41], Palis proposed that this was indeed the case - by changing the
topological notions to measurable ones in the right places he conjectures that we
will be able to describe all dynamical behaviour generically. We will state this
conjecture more precisely below. The most topologically significant part of this
conjecture is that finitude of attractors holds generically, especially since the
results of Newhouse seem to suggest this should not be possible. However, the

2This means the holonomy maps which transport, locally, points from one unstable mani-
fold to another are measurable and do not send zero measure sets to positive measure sets or
vice versa.
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notion of attractor and basic set in the measurable setting requires careful at-
tention. For example we have the two following definitions (see the articles [35]
and [36] by Milnor).

Definition 1.4.1 (Measure Attractor). Let M be a Riemannian manifold and
let f ∈ Diffr(M). A closed subset A ⊂M is a measure attractor if the following
properties hold,

(i) the realm of attraction ρ(A), defined to be the set of all points
x ∈ M such that ω(x) ⊂ A, has strictly positive measure (with
respect to the Riemannian volume form on M);

(ii) there is no strictly smaller closed set A′ ⊂ A such that ρ(A′)
differs from ρ(A) by a set of zero measure only.

Measure attractors are sometimes called Milnor attractors.

Definition 1.4.2 (Statistical Attractor). A closed subset A ⊂M is a statistical
attractor if the following properties hold,

(i) the orbit of almost every x ∈M converges statistically to A, this

means limn→∞
1
n

∑n−1
i=0 dist(f◦i(x), A) = 0;

(ii) there is no strictly smaller closed set A′ ⊂ A with the same
property.

Another notion that was shown to be useful in the uniformly hyperbolic
case was that of a physical measure These are also referred to as SRB, BRS, or
SBR-measures, named after Sinai, Ruelle and Bowen.

Definition 1.4.3 (Physical Measure). Assume we are given a measurable Borel
space M and a Borel transformation T : M →M . Endow M with a background
measure µ (for example, Lebesgue). A measure ν on M is a physical measure if
it is T -invariant and for a set Bν of positive µ-measure, z ∈ Bν implies

lim
n→∞

1

n

n−1
∑

i=0

φ ◦ T n(z) =

∫

M

φdν, (1.4.1)

for any φ ∈ C0(M,R). The set Bν is called the basin of the physical measure ν.

We make the following remarks. Typically we require that the basin of
attraction, Bν , of the measure ν has full measure in an open set which contains
it. Compare this definition with Birkhoff’s Ergodic Theorem: in that situation
ergodicity and measure preservation was required which allowed us to use L1-
observables φ but here we have removed ergodicity and measure preservation
with the restriction that the observable be continuous.

Before we state the Palis Conjecture let us consider the following. Let M be
a manifold, Endr(M) the space of Cr-endomorphisms. Let Pr(M) denote the
subspace of Endr(M) consisting of maps with the following properties:

5



(i) there are finitely many attractors A0, A1, . . . , Ak;

(ii) each attractor Ai supports a physical measure νi;

(iii)
∑

µ(Bνi
) = µ(M), where µ denotes the Riemannian volume of M ;

The Palis Conjecture then states that for any manifold M and any degree of
regularity r ≥ 1 the space Pr(M) is generic in Endr(M). Actually it states
more. Firstly given a generic, finite dimensional family ft in Endr(M) for typ-
ical parameter values, there is a neighbourhood of this parameter such that for
almost all parameters in that neighbourhood the corresponding endomorphism
also has finitely many attractors which support a physical measure and for each
attractor of the initial map there are finitely many attractors for the pertur-
bation whose union of basins is ‘nearly equal’ to the basin of the initial map.
Secondly each attractor is stochastically stable.

1.5 Renormalisation of Unimodal maps

Towards the end of the 1970’s a new phenomenon in the dynamics of one di-
mensional unimodal maps was discovered by Feigenbaum [17], [18], and indepen-
dently by Collet and Tresser [9], [10]. They observed that in many one-parameter
families of unimodal maps, specifically maps with a quadratic critical point, the
sequence of period doubling bifurcations accumulate to a specific parameter
value and asymptotically the ratio between successive bifurcations is universal
(i.e. independent of the one-parameter family). Feigenbaum’s explanation of
this was then (after paraphrasing) as follows:

There exists an operator RU , called the period-doubling renormal-
isation operator, acting on a subspace of the space of unimodal
maps U , which has a unique fixed point, which is hyperbolic with
codimension-one stable manifold and dimension one local unstable
manifold.

The relation to the observed phenomena is as follows. The space of uni-
modal maps is foliated by codimension-one manifolds whose kneading sequence
is the same. The stable manifold is one of the leaves of this foliation. If the
renormalisation operator is defined on one point of a leaf it is defined on the
whole leaf. Moreover renormalisation will permute these leaves. Generically a
one parameter family, or curve in the space of unimodal maps, intersecting the
stable manifold will intersect it transversely, and hence all leaves sufficiently
close will also be intersected transversely. Each period doubling bifurcation
has a uniquely prescribed kneading sequence, and so they correspond to the
intersection of our curve with certain singular leaves. In a neigbourhood of the
fixed point each leaf, except the unstable manifold, will be pushed away from
the fixed point at a geometric rate corresponding to the unstable eigenvalue.
Hence these singular leaves accumulate on the unstable manifold at a geometric
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Figure 1.1: The bifurcation diagram for the family fµ(x) = µx(1 − x) on the
interval [0, 1] for parameter values 2.8 ≤ µ ≤ 4.

rate. This means the ratios between successive bifurcations will converge to the
unstable eigenvalue of the renormalisation operator.

The second aspect of renormalisation, fittingly, deals with the second as-
pect of the bifurcation diagram, namely what happens after the accumulation
of period doubling? The picture suggests regions where the attractor consists of
infinitely many points (so-called stochastic regions) and regions where there are
only finitely many (regular regions). However it appears these regions are intri-
cately interlaced. Again let us return to the kneading theoretic point of view.
Firstly the period doubling bifurcations occur typically because of a monotone
increase in the critical value. It was shown by Milnor and Thurston, [37], that
in the particular case of the standard family, this monotone increase in critical
value creates a monotone increase in the topological entropy (for details see [7]
and [13]). It turns out that the onset of positive topological entropy occurs
precisely at the unstable manifold of the renormalisation operator- and hence
we may say renormalisation is the boundary of chaos. This is shown in two
steps: first, it needs to be shown that the stochastic regions accumulate on the
unstable manifold of the renormalisation operator; second, we need to show each
map in this region possesses an absolutely continuous invariant measure with
positive measurable entropy. Finally we invoke the variational principle.

The first conceptual proof of the first part of the Feigenbaum conjecture was
given by Sullivan (see the article by Sullivan [46] or Chapter 6 of the book [13]
by de Melo and van Strien). In his approach he considered a renormalisation
operator acting on a the space of certain quadratic-like maps which was first con-
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structed by Douady and Hubbard in [14]. The renormalisation of a quadratic-
like map which is unimodal when restricted to a real interval coincides with
the usual unimodal renormalisation of the quadratic-like map restricted to this
real interval. The main tools he developed were the real and complex a priori
bounds, which allows us to control the geometry of central intervals and do-
mains respectively, and the pullback argument, which allows you to construct
a quasiconformal conjugacy between two maps with the same (bounded) com-
binatorics. We note that the pullback argument requires real a priori bounds.
Using these tools he was then able to show that two infinitely renormalisable
quadratic-like maps f, g with the same (bounded) combinatorics must satisfy

lim
n→∞

distJ−T (Rn
Uf,R

n
Ug) = 0 (1.5.1)

where distJ−T denotes the so-called Julia-Teichmüller metric.
The equivalence of the universal (real and complex a priori bounds) and

rigid (pullback argument) properties were significant for many results in uni-
modal dynamics, see for example [26, 29, 27, 28]. Together with works such
as [33], which used real methods, this culminated in a proof of the Palis Conjec-
ture on the space of unimodal maps with quadratic critical point and negative
Schwarzian derivative, see [1] and the survey article [30] for more details.

1.6 From Dimension One to Two: Hénon maps

Period-doubling cascades were also considered by Bowen and Franks at around
the same time as Feigenbaum, but in a more constructive way and on the disk
instead of the interval. In [5], Bowen and Franks constructed a C1-smooth
Kupka-Smale mapping of the disk to itself such that all its periodic points
were saddles. In [20], Franks and Young increased the degree of regularity
to C2-smoothness. Their motivation was a question of Smale in [44], which
asked if there was a Kupka-Smale diffeomorphism of the sphere without sinks
or sources. An obvious surgery, gluing two disks together, gave a map with these
properties. The biggest problem with this approach was that of regularity: could
this construction be extended from a C2-smooth map to a C∞-smooth one?

Such a map was given by Gambaudo, Tresser and van Strien in [21], but
using a different strategy - instead of constructing a map combinatorially via
surgery and then smoothing they considered families of maps that were already
smooth and tried to locate a parameter with the desired properties. The family
of maps they consider was first discussed in the paper by Collet, Eckmann and
Koch [8]. Namely, they considered infinitely renormalisable unimodal maps,
with doubling combinatorics, embedded in a higher dimensional space so the
dynamics is preserved and examined a neighbourhood of such maps intersected
with the space of embeddings. It turns out that many properties of a unimodal
map are shared by those maps close by.

A complementary approach to the study of embeddings of the disk was
initiated by Benedicks and Carleson in [2] at about the same time as the work by
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Gambaudo, Tresser and van Strien. This was done using the tools constructed
by the same authors in their proof of Jakobson’s Theorem on the existence of
absolutely continuous invariant measures in the standard family, see [3]. As was
mentioned before, their main result was the proof of the existence of an attractor
for a large set of parameters. More specifically they showed the following.

Theorem 1.6.1. Let Fa,b(x, y) = (1+y−ax2, bx). Let Wa,b denote the unstable
manifold of the fixed point lying in R+ ×R+. Then for all c < log 2 there exists
a b0 > 0 such that for all b ∈ (0, b0) there exists a set Eb of positive (one-
dimensional) Lebesgue measure such that for all a ∈ Eb the following holds:

(i) There exists an open set Ua,b ⊂ R+×R+ such that for all z ∈ Ua,b,

lim
n→∞

dist(F ◦n
a,b(z),Wa,b) = 0; (1.6.1)

(ii) There exists a point z0
a,b ∈ Wa,b such that orb(z0

a,b) is dense in
Wa,b and,

∥

∥

∥
Dz0

a,b
F ◦n

a,b(0, 1)
∥

∥

∥
≥ ecn. (1.6.2)

The first statement tells us there is a realm of attraction for the unstable
manifold, and the second tells us the unstable manifold is minimal and, in some
sense, expansive. The existence of a physical measure is not shown, but it
is suggested by the final theorem in [21], albeit in a slightly different setting.
Together these suggested the Palis Conjecture should be true for a large family
of Hénon maps.

1.7 Hénon Renormalisation

In [12], de Carvalho, Lyubich and Martens constructed a period-doubling renor-
malisation operator for Hénon-like mappings of the form

F (x, y) = (f(x) − ε(x, y), x). (1.7.1)

Here f is a unimodal map and ε was a real-valued map from the square to the
positive real numbers of small size (we shall be more explicit about the maps
under consideration in Sections 2 and 3). They showed that for |ε| sufficiently
small the unimodal renormalisation picture carries over to this case. Namely,
there exists a unique renormalisation fixed point (which actually coincides with
unimodal period-doubling renormalisation fixed point) which is hyperbolic with
codimension one stable manifold, consisting of infinitely renormalisable period-
doubling maps, and dimension one local unstable manifold. They later called
this regime strongly dissipative.

In the period doubling case, de Carvalho, Lyubich and Martens then studied
the dynamics of infinitely renormalisable Hénon-like maps F . They showed that
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such a map has an invariant Cantor set, O, upon which the map acts like an
adding machine. This allowed them to define the average Jacobian given by

b = exp

∫

O

log |JaczF |dµ(z) (1.7.2)

where µ denotes the unique F -invariant measure on O induced by the adding
machine. This quantity played an important role in their study of the local
behaviour of such maps around the Cantor set. They took a distinguished point,
τ , of the Cantor set called the tip. They examined the dynamics and geometry
of the Cantor set asymptotically taking smaller and smaller neighbourhoods
around τ . Their two main results can then be stated as follows.

Theorem 1.7.1 (Universality at the tip). There exists a universal constant
0 < ρ < 1 and a universal real-analytic real-valued function a(x) such that
the following holds: Let F be a strongly dissipative, period-doubling, infinitely
renormalisable Hénon-like map. Then

RnF (x, y) = (fn(x) − b2
n

a(x)y(1 + O(ρn)), x) (1.7.3)

where b denotes the average Jacobian of F and fn are unimodal maps converging
exponentially to the unimodal period-doubling renormalisation fixed point.

Theorem 1.7.2 (Non-rigidity around the tip). Let F and F̃ be two strongly
dissipative, period-doubling, infinitely renormalisable Hénon-like maps. Let their
average Jacobians be b and b̃ and their Cantor sets be O and Õ respectively.
Then for any conjugacy π : O → Õ between F and F̃ the Hölder exponent α
satisfies

α ≤
1

2

(

1 +
log b

log b̃

)

(1.7.4)

In particular if the average Jacobians b and b̃ differ then there cannot exist a
C1-smooth conjugacy between F and F̃ .

For a long time it was assumed that the properties satisfied by the one
dimensional unimodal renormalisation theory would also be satisfied by any
renormalisation theory in any dimension. In particular, the equivalence of the
universal (real and complex a priori bounds) and rigid (pullback argument)
properties in this setting made it natural to think that such a relation would
be realised for any reasonable renormalisation theory. That is, if universality
controls the geometry of an attractor and we have a conjugacy mapping one
attractor to another3 it seems reasonable to think that we could extend such a
conjugacy in a “smooth” way, since the geometry of infinitesimally close pairs
of orbits cannot differ too much. The above shows that this intuitive reasoning
is incorrect.

In section 3 we generalise this renormalisation operator to other combina-
torial types. We show that in this case too the renormalisation picture holds

3this requires only combinatorial information
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if |ε̄| is sufficiently small. Namely, for any stationary combinatorics there ex-
ists a unique renormalisation fixed point, again coinciding with the unimodal
renormalisation fixed point, which is hyperbolic with codimension one stable
manifold, consisting of infinitely renormalisable period-doubling maps, and di-
mension one local unstable manifold.

We then study the dynamics of infinitely renormalisable maps of stationary
combinatorial type and show that such maps have an F -invariant Cantor set O
on which F acts as an adding machine. We would like to note that the strategy
to show that the limit set is a Cantor set in the period-doubling case does not
carry over to maps with general stationary combinatorics. The reason is that
in both cases the construction of the Cantor set is via ‘Scope Maps’, defined
in sections 2 and 3, which we approximate using the so-called ‘Presentation
function’ of the renormalisation fixed point. In the period-doubling case this is
known to be contracting as the renormalisation fixed point is convex (see the
result of Davie [11]). In the case of general combinatorics this is unlikely to be
true. The work of Eckmann and Wittwer [15] suggests the convexity of fixed
points for sufficiently large combinatorial types does not hold. The problem of
contraction of branches of the presentation function was also asked in [25].

Once this is done we are in a position to define the average Jacobian and the
tip of an infinitely renormalisable Hénon-like map in a way completely analo-
gous to the period-doubling case. This then allows us, in Section 4, to generalise
the universality and non-rigidity results stated above to the case of arbitrary
combinatorics. We also generalise another result from [12], namely the Cantor
set of an infinitely renormalisable Hénon-like map cannot support a continuous
invariant line field. Our proof, though, is significantly different. This is because
in the period-doubling case the argument a ‘flipping’ phenonmenon was ob-
served where orientations were changed purely because of combinatorics. This
argument clearly breaks down in the more general case.

Another facet of the renormalisation theory for unimodal maps is the notion
of a priori bounds and bounded geometry. In chapter 5 we study the geometry of
Cantor sets for infinitely renormalisable Hénon-like maps in more detail. Recall
that, in the unimodal case, a priori bounds states there are uniform or eventually
uniform bounds for the geometry of the images of the central interval at each
renormalisation step. Namely at each renormalisation level there is a bounded
decrease in size of these interval and their gaps. More precisely if J is an image
of the i-th central interval, and J ′ is an image of the i + 1-st central interval
contained in J , then |J ′|/|J |, |L′|/|J | and |R′|/|J | are (eventually) uniformly
bounded, where L′, R′ are the left and right connected components of J \ J ′.

Several authors have worked on consequences of a similar notion of a priori
bounds in the two dimensional case. For example, in the papers of Catsigeras,
Moreira and Gambaudo [6], and Moreira [38], they consider common generali-
sations of the model introduced by Bowen and Franks, in [5], and Franks and
Young, in [20], and of the model introduced by Gambaudo, Tresser and van
Strien in [21] and [22]. In [6] it is shown that given a dissipative infinitely renor-
malisable diffeomorphism of the disk with bounded combinatorics and bounded
geometry, there is a dichotomy: either it has positive topological entropy or
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it is eventually period doubling. In [38] a comparison is made between the
smoothness and combinatorics of the two models using the asymptotic linking
number: given a period doubling, C∞-smooth, dissipative, infinitely renormal-
isable diffeomorphism of the disk with bounded geometry the convergents of
the asymptotic linking number cannot converge monotonically. This should be
viewed as a kind of combinatorial rigidity result which, in particular, implies
that Bowen-Franks-Young maps cannot be C∞.

We would like to note,as of yet, there are no known examples of infinitely
renormalisable Hénon-like maps with bounded geometry. In the more general
case of infinitely renormalisable diffeomorphisms of the disk considered in [6]
and [38], we know of no example with bounded geometry either. In fact, at
least for the Hénon-like case, we will show the following result:

Theorem 1.7.3. Let Fb be a one parameter family of infinitely renormalisable
Hénon-like maps, parametrised by the average Jacobian b = b(Fb) ∈ [0, b0).
Then there is a subinterval [0, b1] ⊂ [0, b0) for which there exists a dense Gδ

subset S ⊂ [0, b1) with full relative Lebesgue measure such that the Cantor set
O(b) = O(Fb) has unbounded geometry for all b ∈ S.

This is the main result of chapter 5. We conclude with a discussion of future
directions of research and some open problems which the current work suggests.

1.8 Notations and Conventions

First let us introduce some standard definitions. We will denote the integers
by Z, the real numbers by R and the complex numbers by C. We will denote
by Z+ the set of strictly positive integers and by R+ the set of strictly positive
real numbers. Given real-valued functions f(x) and g(x) we say that f(x) is
O(g(x)) if there exists δ > 0 and C > 0 such that |f(x)| ≤ C|g(x)| whenever
|x| < δ. We say that f(x) is o(g(x)) if limx→0 |f(x)/g(x)| = 0.

Given a topological space M and a subspace S ⊂ M we will denote its
interior by int(S) and its closure by cl(S). If M is also a metric space with
metric d we define the distance between subsets S and S′ of M by

dist(S, S′) = inf
s∈S,s′∈S′

d(s, s′). (1.8.1)

For S, S′ both compact we define the Hausdorff distance between S and S′ by

dHaus(S, S
′) = max

{

sup
s∈S

inf
s′∈S′

d(s, s′), sup
s′∈S′

inf
s∈S

d(s, s′)

}

. (1.8.2)

If M also has a linear structure we denote the convex hull of S by Hull(S).
For an integer p ≥ 2 we set Wp = {0, 1, . . . , p− 1}. When p is fixed we will

simply denote this by W . We denote by Wn the space of all words of length n
and by W ∗ the totality of all finite words over W . We will use juxtapositional
notation to denote elements of W ∗, so if w ∈ W ∗ then w = w0 . . . wn for some
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w0, . . . , wn ∈W . For all w ∈W and n > 0 we will let wn denote w . . . w, where
the juxtaposition is taken n times. Given w ∈ W we will denote the m-th word
from the left by w(m) whenever it exists.

We endow W ∗ with the structure of a topological semi-group as follows.
First endow W ∗ with the topology whose bases are the cylinder sets

[w1 . . . wn]m = {w ∈W ∗ : w(m) = w1, . . . ,w(m+ n) = wn} (1.8.3)

Now consider the map m : W ∗×W ∗ → Z∗
+, where Z∗

+ denotes the set of words of
arbitrary length over the positive integers Z+, given by m(x,y)(i) = x(i)+y(i).
Then we define the map s : Z∗

+ → W ∗ inductively by

s(w)(i) =







w(i) w(i− 1) ∈Wp and w(i) ∈Wp

w(i) + 1 w(i− 1) /∈Wp and w(i) + 1 ∈Wp

0 otherwise
(1.8.4)

The addition on W ∗ is given by +: W ∗ ×W ∗ → W ∗,x + y = s ◦m(x,y). Let
1 = (1, 0, 0, . . .) and let T : W ∗ → W ∗ be given by T (w) = 1 + w. This map
is called addition with infinite carry4. The pair (W ∗, T ) is called the adding
machine over W ∗. The set of all infinite words will be denoted by W . Observe
that T can be extended to W .

Typically, we will treat the adding machine as an index set for cylinder sets
of a Cantor set. The following definition5 will also be useful.

Definition 1.8.1. Let O ⊂ S be a Cantor set, where S is a metrizable space.
A presentation for O is a collection {Bw}w∈W∗ of closed topological disks Bw

such that, if Bd =
⋃

w∈W n Bw,

(i) intBw ∩ intBw̃ = ∅ for all w 6= w̃ ∈W ∗ of the same length;

(ii) Bd ⊃ Bd+1 for each n ≥ 0;

(iii)
⋂

d≥0B
d = O.

For w ∈W d we call Bw a piece of depth d.

Now let us describe indexing issues in some detail. Given a presentation of
a Cantor set O we could give the pieces the indexing above or we could have
given them the ordering Bd,i, where d denotes the depth and i corresponds to
a linear ordering i = 0, . . . , pd − 1 of all the pieces of depth d. Typically this
ordering has the property that if Bd+1,i ⊂ Bd,j then Bd+1,i+1 ⊂ Bd+1,j+1. Let
q : W ∗ → Z+ × Z+ denote the correspondence between these two indexings.

4Explicitly this is defined by

T (w) =



(1 + x0, x1, . . .) x0 < p − 1
(0, 0, . . . , 0, 1 + xk, . . .) x0, . . . , xk−1 = p − 1, xk 6= p − 1

5An equivalent definition is given in [13, Chapter VI, Section 3], the only difference being
the indexing. However, their definition is more general as it allows combinatorial types other
than stationary type.
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Given a function F we will denote its domain by Dom(F ). Typically this
will be a subset of Rn or Cn. If F : Rn → Rm is differentiable at a point z ∈ Rn

we will denote the derivative of F at z by DzF . The Jacobian of F is given by

JaczF = det DzF (1.8.5)

Given a bounded region S ⊂ Rn we will define the distortion of F on S by

Dis(F ;S) = sup
z,z̃∈S

log

∣

∣

∣

∣

JaczF

Jacz̃F

∣

∣

∣

∣

(1.8.6)

and the variation of F on S by

Var(F ;S) = sup
G∈C1

0
(S):|G(z)|≤1

∫

S

FdivGdz. (1.8.7)

According to [23], when S ⊂ R2 this coincides with

Var(F ;S) = max

{

∫

Sx

Var(F ;Sy)dx,

∫

Sy

Var(F ;Sx)dy

}

, (1.8.8)

i.e. the integral of the one-dimensional variations, restricted to vertical or hori-
zontal slices, is taken in the orthogonal direction.

Given a domain S ⊂ Rn and a map F : S → Rn we will denote its i-th
iterate by F ◦i and, if it is a diffeomorphism onto its image, its i-th preimage
by F ◦−i : F ◦i(S) → Rn. If F is not a map we are iterating (for example if
it is a change of coordinates) then we will denote its inverse by F̄ instead. It
will become clear when considering Hénon-like maps why we need to make this
distinction. It is to make our indexing conventions consistent.

Now we will restrict our attention to the one- and two-dimensional cases,
both real and complex. Let πx, πy : R2 → R denote the projections onto the x-
and y- coordinates. We will identify these with their extensions to C2. (In fact
we will identify all real functions with their complex extensions whenever they
exist.)

Given a, b ∈ R we will denote the closed interval between them by [a, b] =
[b, a]. We will denote [0, 1] by J . For any interval T ⊂ R we will denote
its boundary by ∂T , its left endpoint by ∂−T and its right endpoint by ∂+T .
Given two intervals T0, T1 ⊂ J we will denote an affine bijection from T0 to T1

by ιT0→T1
. Typically it will be clear from the situation whether we are using

the unique orientation preserving or orientation reversing bijection.
Let us denote the square [0, 1]× [0, 1] = J2 by B. We call S ⊂ B a rectangle

if it is the Cartesian product of two intervals. Given two points z, z̃ ∈ B, the
closed rectangle spanned by z and z̃ is given by

[[z, z̃]] = [πx(z), πx(z̃)] × [πy(z), πy(z̃)], (1.8.9)

and the straight line segment between z and z̃ is denoted by [z, z̃]. Given two
rectangles B0, B1 ⊂ B we will denote an affine bijection from B0 to B1 pre-
serving horizontal and vertical lines by IB0→B1

. Again the orientations of its
components will be clear from the situation.
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Let S denote the interval J or the square B. Let S′ be a closed sub-
interval or sub-square of S respectively. Let Dω

p (S′) ⊂ Endω(S) denote the
subspace of endomorphisms F such that F ◦p(S′) ⊂ S′. Then the zoom operator
ZS′ : Dp(S

′) → Endω(S) is given by

ZS′F = IS′→S ◦ F ◦p ◦ IS→S′ : S → S (1.8.10)

where IS→S′ : S → S′ denotes the orientation-preserving affine bijection between
S and S′ which preserves horizontal and vertical lines. We note that in certain
situations it will be more natural to change orientations but in these cases we
shall be explicit.

Let Ωx ⊆ Ωy ⊂ C be simply connected domains compactly containing J and
let Ω = Ωx × Ωy denote the resulting polydisk containing B.
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[31] Ricardo Mañé, Ergodic theory and differentiable dynamics, Ergebnisse Der
Mathematik Und Ihrer Grenzgebiete 3 Folge Band 8, no. 8, Springer-Verlag,
New York, Berlin, Heidelberg, 1987.

[32] Marco Martens, Periodic points of renormalisation, Annals of Mathematics
147 (1998), no. 3, 543–584.

[33] Marco Martens and Tomasz Nowicki, Invariant measures for Lebesgue typ-
ical quadratic maps, Asteriqué 261 (2000), 239–252.
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Samenvatting

Het doel van deze scriptie is het ontwikkelen van een renormalisatietheorie voor
de Hénon familie,

Fa,b(x, y) = (a = x2 − by, x), (†)

voor combinatoriek die verschilt van periode-verdubbelen, op een manier die
vergelijkbaar is met die voor de standaard unimodale familie fa(x) = a − x2.
Dit werk bestaat uit twee delen. Na het bespreken van de achtergrond die nodig
is in de unimodale renormalisatietheorie, waar een ruimte U van unimodale
afbeeldingen en een operator RU die werkt op een deelruimte van U worden
beschouwd, construeren we een ruimte H –de sterk dissipatieve Hénon-achtige
afbeeldingen– en een operator R die werkt op een deelruimte van H. De ruimte
U wordt op een kanonieke manier afgebeeld in de rand van H. We laten zien dat
R een dynamisch-gedefinieerde continue operator is die een continue uitbreiding
is van RU , de operator die werkt op U . Het klassieke renormalisatieplaatje klopt
nog steeds: er bestaat een uniek renormalisatie vast punt dat hyperbolisch is, een
stabiele variëteit van codimensie één heeft die bestaat uit alle afbeeldingenen
die oneindig vaak gerenormaliseerd kunnen worden, en een lokaal onstabiele
variëteit van dimensie één heeft.

Dan worden Hénon afbeeldingen bestudeerd die oneindig vaak gerenormalis-
eerd kunnen worden. We laten zien dat, net als in het unimodale geval, zulke
afbeeldingen invariante Cantor verzalimingen hebben waarop een unique invari-
ante kansmaat leeft. We construeren een metriek invariant, de gemiddelde Jaco-
biaan. Met gebruik hiervan bestuderen we het dynamische gedrag van afbeeldin-
gen die oneindig vaak renormaliseerd kunnen worden rond een voorgeschreven
punt, de ‘tip’. We laten zien dat er net als in het unimodale geval univer-
saliteit bestaat bij dit tip. We laten ook zien dat het dynamische gedrag bij de
punt niet-regide is: twee afbeeldingen met verschillende gemiddelde Jacobianen
kunnen nooit C1 worden geconjugeerd met een diffeomorfisme dat de tip vast
houdt.

Tot slot laten we zien dat de meetkunde van deze Cantor verzamelingen,
zowel generiek als qua metriek, onbegrensd is in één-parameter families van af-
beeldingen die oneindig vaak renormaliseerd kunnen worden en aan een transver-
sale eis voldoen.
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Summary

The aim of this thesis is to develop a renormalisation theory for the Hénon
family

Fa,b(x, y) = (a− x2 − by, x) (†)

for combinatorics other than period-doubling in a way similar to that for the
standard unimodal family fa(x) = a−x2. This work breaks into two parts. Af-
ter recalling background needed in the unimodal renormalisation theory, where
a space U of unimodal maps and an operator RU acting on a subspace of U are
considered, we construct a space H –the strongly dissipative Hénon-like maps–
and an operator R which acts on a subspace of H. The space U is canonically
embedded in the boundary of H. We show that R is a dynamically-defined
continuous operator which continuously extends RU acting on U . Moreover the
classical renormalisation picture still holds: there exists a unique renormalisa-
tion fixed point which is hyperbolic, has a codimension one stable manifold,
consisting of all infinitely renormalisable maps, and a dimension one local un-
stable manifold.

Infinitely renormalisable Hénon-like maps are then examined. We show, as
in the unimodal case, that such maps have invariant Cantor sets supporting
a unique invariant probability. We construct a metric invariant, the average
Jacobian. Using this we study the dynamics of infinitely renormalisable maps
around a prescribed point, the ‘tip’. We show, as in the unimodal case, univer-
sality exists at this point. We also show the dynamics at the tip is non-rigid:
any two maps with differing average Jacobians cannot be C1-conjugated by a
tip-preserving diffeomorphism.

Finally it is shown that the geometry of these Cantor sets is, metrically and
generically, unbounded in one-parameter families of infinitely renormalisable
maps satisfying a transversality condition.
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