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1 Introduction

One of the many subfields of mathematics concerns itself with the study of dy-
namical systems. The original motivation for this branch comes from physics,
since it was quickly noted after the discovery of calculus by Newton and Leibniz
that systems of differential equations often governed the behavior of models from
Newtonian mechanics. Originally, mathematicians searched for exact solutions
of these equations in the hopes of solving questions such as those concerning the
stability of the Solar System. This changed in the late 19th century due to the
efforts of Poincaré. What he understood was that it was more effective to try
and understand qualitative properties of a dynamical system such as asymp-
totics or existence of periodic orbits rather than solve them explicitly. For his
work on celestial mechanics concerning the 3-body problem, which he showed
was fundamentally chaotic, he received King Oscar of Sweden’s prize in 1887.

The mathematical formulation of a dynamical system is based around a
phase space U , which is usually metrizable, and a time evolution law, which
can either be continuous in time, like the flows of differential equations stud-
ied in physical systems, or a discrete map f : U → U . Discrete maps occur
naturally when you take a flow on a higher dimensional surface and restrict it
to lower dimensional cross sections. The class of discrete dynamical systems
studied in this thesis will be that of circle homeomorphisms. Their simplest
classification was due to Poincaré, who discovered an invariant known as the
rotation number. If the rotation number is rational, orbits of points converge to
periodic orbits, while maps with irrational rotation numbers are semiconjugate
to rotations. Further developments of the theory sought to answer the question
of when a circle map with an irrational rotation number is conjugate to a rigid
rotation, and how smooth the conjugating map is. Denjoy proved that a C2

diffeomorphism f : S1 → S1 with irrational rotation number is topologically
conjugate to a rotation, and constructed examples of C1 diffeomorphisms for
which the conjugacy fails to hold. Arnold proved that even for smooth maps,
the conjugacy need only be continuous, and Herman proved a general result,
which, for example concludes that if f is C3 and has rotation number ρ lying
in the full measure set of Diophantine rotation numbers (those which colloqui-
ally are badly approximated by rational numbers), then it is C1 conjugate to
a rotation. An interpretation of such results is to say that at sufficiently small
scales, these circle maps are indistinguishable from rotations.

The proofs of these classic theorems involve studying the behavior of high
iterates of f over nested decreasing sequences of dynamically defined intervals.
A major innovation of modern times has been to do this using renormalization.
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The basic principles of renormalization are as follows: One begins with a dy-
namical system defined by the set U and the mapping f : U → U . Then, a
subset V of U is chosen so that points in V eventually return under iteration.
Finally, the set V and the first return map f̃ : V → V are rescaled in the hopes
that one will obtain a new dynamical system of the same class as the original.
If that is the case, we say (U, f) is renormalizable and by iterating this process,
we consider renormalization as an operator on a space of dynamical systems.

Renormalization was first introduced by Tressier, Collet and Feigenbaum to
study the dynamics of unimodal maps such as the logistic family fr : [0, 1] →
[0, 1], fr(x) = rx(1 − x) for r ∈ [0, 4]. Those systems were experimentally ob-
served to exhibit universal properties associated to period doubling bifurcations.
Lanford used a computer assisted proof to first establish that the renormaliza-
tion operator had a fixed point. Rigorous theoretical advances were due to
Sullivan, who established contraction of renormalization to the fixed point, and
McMullen, who constructed the unstable manifold of renormalization. Lyubich
then completed the picture by proving the renormalization operator was hyper-
bolic. With this in mind, the interest in extending these techniques to the field
of circle maps can be well understood.

There are various conventions for renormalizing circle maps. In this thesis,
the chosen method is to consider them as branched interval maps. These can
be obtained by lifting the circle to [0, 1] and taking appropriate images of circle
homeomorphisms f : S1 → S1 that are C2 everywhere except for at one marked
point and its preimage. For circle maps with aperiodic dynamics, this data can
be encoded by two spatial coordinates c, v ∈ (0, 1) and two C2 orientation pre-
serving diffeomorphisms F−, F+ : [0, 1] → [0, 1]. Using the spatial coordinates to
define a first return interval I and then affinely rescaling I to [0, 1], one obtains
a new renormalized circle map.

An extensive analysis of renormalization of circle maps has been done by
Khanin and Sinai, and also by Stark. As anticipated by Herman, if f is C3 with
Diophantine rotation number, then the renormalizations of f converge to rigid
rotations. More interestingly, it was shown by Khanin and Teplitsky that if one
allowed the derivative of f to have two break points in a way quantified by a
real invariant K ̸= 0, referred to here as the total distortion, the renormalization
operator is hyperbolic, and the renormalizations of f converge to an attractor
homeomorphic to the product of R with a Cantor set, for which the correspond-
ing branches F−, F+ at every point are Möbius. The main result of this thesis
shows that the renormalization operator has additional internal structure when
restricted to the space of Möbius circle maps.

In its classical form, the definitions of renormalization for unimodal and cir-
cle maps involve composition, which can be difficult to work with. Originally
in the setting of unimodal maps, Martens approached this issue by extending
renormalization to the larger space of decompositions. For our purposes, a de-
composition can be thought of as a function f from the set of dyadic rationals

T in (0, 1] into the space of C2 orientation preserving diffeomorphisms of [0, 1],
which can be viewed as a chain of diffeomorphisms equipped with a time order
of composition that respects the structure of the dyadic rationals. As a substi-
tute for composing, two decompositions f, g can then be concatenated together
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into a new decomposition f ⋆ g such that

(f ⋆ g)τ =

{
f2τ if τ ≤ 1/2,

g2τ−1 if τ > 1/2.

By concatenating rather than composing, intrinsic information about the be-
havior of a map at small scales can be preserved and the past history of a
renormalized map can more easily be recovered.

The attractor for renormalization of C3 circle maps with a break point lies
in the space of Mobius circle maps, and these have additional properties associ-
ated to them that allows for fundamentally different analysis. The orientation
preserving Möbius diffeomorphisms that map the interval [0, 1] to itself form

a one-parameter family, characterized by the real number ω(M) =
∫ 1

0
M ′′/M ′,

which is referred to here as the weight. The Möbius diffeomorphisms (Mω)ω∈R
form an additive group under composition, so we can fully understand a de-
composition M of Möbius diffeomorphisms in terms of its weight decomposition
ω, with ωτ = ω(Mτ ). From ω, one can then construct an atomic signed Borel
measure µω on (0, 1] by the definition µω({τ}) = ωτ .

The action of renormalization reorders weight decompositions by cutting
them up and squeezing them into smaller time intervals. A result of this is
that the associated atomic measures converge to continuous measures. This
noticeably differs from the situation for unimodal maps, where the decomposi-
tions bend and preserve distortion at small scales. This suggests a paradigm
shift, which is explored in this thesis. The key idea is to replace the branches
(M−,M+) of a Möbius circle map by signed measures (µ−, µ+), which we will
refer to as distortion measures. For reasons which will become clear, we will
endow these measures with the norm

||µ|| = sup
τ∈T

|µ(0, τ ]|.

The distortion measures generate a Möbius flow defined at dyadic timescales
(0, τ ] by transforming the unit interval by a Möbius diffeomorphism of weight
µ(0, τ ]. Due to the group structure of Möbius diffeomorphisms, this construction
is well defined, and the norm ||µ|| encapsulates the displacement of orbits of the
flow.

Given the data (µ−, µ+), one can apply the canonical projection
π(µ−, µ+) = (Mµ−(0,1],Mµ+(0,1]) to obtain the branches of a Möbius circle map.
What is now needed is a means of renormalizing distortion measures in a way
that commutes with the canonical projection. The formulas for doing this turn
out to only require zooms and concatenations. Just like for decompositions,
one can concatenate two Möbius flows into a single flow by applying one after
the other in sequential time order. The zoom operator, on the other hand, is
analogous to restricting a Möbius flow to a smaller subinterval I ⊆ [0, 1] of
orbits and then rescaling the corresponding flow back to unit size. At the level
of distortion measures, one obtains from µ a new measure ZIµ such that for
τ ∈ T ,

(ZIµ)(0, τ ] =

∫
I

M ′′
µ(0,τ ]

M ′
µ(0,τ ]

.

The crucial analytical tool for studying the renormalization of distortion
measures is the Zoom Contraction Law. It states that if µ, ν are measures such
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that ||µ||, ||ν|| < L, and I is a subinterval of [0, 1] with |I| < 1, then there exists
κ < 1 depending only on L and |I| such that

||ZIµ− ZIν|| < κ||µ− ν||.

The renormalization operators Rσ
z are quantified by a real number σ ∈ (0, 1),

referred to as the scaling ratio, and z ∈ {−,+} which selects the branch µz

to be acted upon by a zoom. One can then show that any sequence of renor-
malizations defined by a renormalization scheme (σ, z) ∈ (0, 1)N × {−,+}N
that satisfies a mild combinatorial condition referred to as δ-boundedness con-
tracts distances between distortion measure pairs (µ−, µ+), (ν−, ν+) for which
π(µ−, µ+) = π(ν−, ν+). The essence of the proof goes as follows:
Firstly, the renormalization operator Rσn

zn acts on the space M × M of dis-
tortion measure pairs by cutting µzn into two pieces Z[0,σn]µzn , Z[σn,1]µzn and
concatenating one of the pieces onto the other branch.
Secondly, after a sequence of renormalizations, the branches of a distortion mea-
sure pair look like concatenations of zooms of the original distortion measures.
The δ-boundedness conditions guarantees that after the sign of the sequence z
changes three times, there comes a point where the pieces have all been acted
upon by zooms with subinterval sizes uniformly bounded in terms of δ.
Thirdly, using the Zoom Contraction Law and a uniform bound on the norm
of renormalizations, the distance between the renormalized distortion measure
pairs on each piece can be shown to contract by a uniform κ < 1.
Finally, as (µ−, µ+), (ν−, ν+) share the same canonical projection, the renor-
malizations have the same measure on every piece, so the net contribution of
any piece to the distance is zero. Hence, the overall distance contracts by κ.

Our main goal is to apply this contraction theorem in the setting of Möbius
circle maps. The main theorem is the following:

Convergence Theorem. Let f be a Möbius circle map in the attractor for
renormalization, of total distortion K. Then f has a unique R-invariant limit-
ing distortion measure pair (µ−, µ+) associated to it.

To do this, we consider sequences of preimages of Möbius circle maps for
which the weights remain uniformly bounded. If the weights of f have the
same sign, this can be done in a unique way. We define the set WK,δ to be
those sequences for which the total distortion equals K, and the renormalization
scheme for the sequence is δ-bounded. It is possible to show that every point in
the attractor for renormalization satisfies these conditions. We then consider the
space ΓK,δ of bounded graphs from WK,δ into M×M that respect the canonical
projection. Using the completeness of M×M and the renormalization schemes
associated to every point in WK,δ, which are all δ-bounded by assumption, one
defines a graph transform operator on ΓK,δ and shows that it is a contraction
on a complete space, hence it has a unique fixed point. Extending this result
over the union of all WK,δ provides renormalization invariant distortion measure
pairs for any Möbius circle map with a combinatorially bounded history.

Now that one has constructed invariant distortion measure pairs, it is natural
to try and understand their properties. This thesis presents two partial and
relatively straightforward results in that direction. First of all, if K = 0, then
the invariant measures are identically zero, and if K ̸= 0, it is possible to
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show that the distortion measure pairs associated to a sequence f ∈ WK,δ are
either both strictly positive or both strictly negative, the choice of which agrees
with the sign of K. Additionally, if the renormalization scheme of f satisfies a
stronger condition satisfied by Möbius circle maps with bounded combinatorics,
then its invariant distortion measure pairs are dyadic doubling, i.e., the measures
on any pair of standard dyadic intervals of level n that share a dyadic ancestor
at level n−1 are proportional by a uniform constant which is independent of n.

2 Renormalization of Möbius Circle Maps

2.1 Renormalization of Circle Maps

2.1.1 Definition of Circle Maps

Definition 1. A circle map is a branched interval map of [a, b] ⊆ R to itself,
parametrized by two marked points c, v ∈ (a, b) and two orientation preserving
homeomorphisms f− : [a, c] → [v, b] and f+ : [c, b] → [a, v]. We refer to [a, b]
as the domain of definition, and f−, f+ as the branches of a circle map
f = (a, b, c, v, f−, f+).

Consider an orientation preserving homeomorphism f of S1 with one marked
point x0. We can then choose any interval [a, b] and take a lift F of f onto [a, b]
by identifying x0 with the endpoints of the interval. Then, one can define c and v
as the images of f−1(x0) and f(x0), respectively, under the circle identification.
Note that F is a branched interval map on [a, b] with a point of discontinuity
at c. By definition, F is a homeomorphism when restricted to [a, c) and [c, b),
so we can define f− : [a, c] → [v, b], f+ : [c, b] → [a, v] that agree with F
on their common domain of definition and extend naturally to the closure via
f−(c) = b, f+(b) = v. From this process, we can embed f as a circle map
(a, b, c, v, f−, f+), which justifies our definition.

If we place stronger conditions on the branches f−, f+, for instance, that
they are diffeomorphisms, then a circle map f as we have defined them can only
correspond to maps of S1 with at most two nonsmooth points.

2.1.2 Classical Renormalization of Circle Maps

Definition 2. Let f : [a, b] → [a, b] be an interval map. If [c, d] ⊆ [a, b], then we
define the first return map of f to [c, d] to be the map ffr : [c, d] → [c, d] such
that ffr(x) = fn(x), where n is the minimal integer such that fn(x) ∈ [c, d], if
it exists.

Definition 3. Let f = (a, b, c, v, f−, f+) be a circle map. If c ̸= v, we say that f
is renormalizable. We define the prerenormalization of f as the circle map
pRf corresponding to the first return map of f to the interval [v, b], if c > v, or
[a, v], if c < v.

Lemma 1.

pRf =

{
(v, b, c, f−(v), f−, f− ◦ f+) if c > v,

(a, v, c, f+(v), f+ ◦ f−, f+) if v > c.
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Proof. We will prove the statement for the case c > v. The case c < v will
follow by a similar argument. So suppose c > v. Then by definition, prerenor-
malization acts as the first return map to the interval [v, 1], which gives us the
domain of definition. The point of discontinuity remains inside [v, 1], so its po-
sition does not change. As a result, the − branch is defined on [v, c] and the
+ branch on [c, 1]. The image of (f−)|[v,c] is [f−(v), 1], so we observe that the
point corresponding to v in pRf will be f−(v). Finally, f+ maps the interval
[c, 1] outside the domain of definition, so to obtain a first return map, we fur-
ther iterate by f−. That makes the prerenormalized + branch equal to f− ◦ f+,
which completes the argument that pRf = (v, 1, c, f−(v), f−, f− ◦ f+).

At this point, we should probably introduce the convention that [a, b] = [0, 1]
and that renormalization is the method to preserve this structure. Then we can
refer to p without reference to a and b.

Definition 4. Let f = (c, v, f−, f+) be a circle map. If f is renormalizable, we
define the renormalization of f to be the circle map Rf whose coordinates
are obtained by applying the affine orientation preserving conjugation to the
coordinates of pRf that maps its domain of definition onto [0, 1].

Remark. Rf is a circle map.

It is probably best to refrain from defining R as an operator right now, since
we haven’t yet defined the space of circle maps as a Banach space.

2.2 Nonlinearities and Renormalization

2.2.1 Introduction

Definition 5. If f : [a, b] → [c, d] is an orientation preserving homeomorphism,
we define the normalization of f to be the orientation preserving homeomor-
phism Nf : [0, 1] → [0, 1] given by the formula

Nf(x) =
f(a+ (b− a)x)− c

d− c
.

Remark. An orientation preserving homeomorphism f is determined uniquely
by its domain, range and normalization. Thus, since the domain and ranges of
f−, f+ are predefined, we can use Nf−, Nf+ instead as coordinates of f .

Proposed convention: F± := Nf± when used inside the coordinates of a
circle map f .

2.2.2 Definition of the Nonlinearity

Definition 6. Let f : [a, b] → [c, d] be a C2 orientation preserving diffeomor-
phism. The nonlinearity of f is the C0 function ηf : [a, b] → R given by

ηf (x) =
f ′′(x)

f ′(x)
.

We denote by Diffk([0, 1]) the Banach space of orientation preserving Ck diffeo-
morphisms of [0, 1], k ≥ 2, with norm given by ||F || = ||ηF ||0. For η ∈ C0([0, 1]),
we define Fη ∈ Diff2([0, 1]) to be the unique orientation preserving diffeomor-
phism of [0, 1] such that ηFη

= η.
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It is important to remark that the vector space structure of Diff2([0, 1])
corresponds to addition of nonlinearities rather than compositions of diffeomor-
phisms.

Definition 7. Let F ∈ Diff2([0, 1]). The weight of F is the quantity

ωF :=

∫ 1

0

ηF .

2.2.3 The Chain Rule of Nonlinearity

Lemma 2 (Chain Rule of Nonlinearity). Let F,G ∈ Diff2([0, 1]). Then

ηF◦G(x) = ηF (G(x))G′(x) + ηG(x).

Proof. Suppose that F,G ∈ Diff2([0, 1]). Then by the Chain Rule,
(F ◦ G)′(x) = F ′(G(X))G′(x). Further applying the Chain Rule, we observe
that (F ◦G)′′(x) = F ′′(G(x))[G′(x)]2 + F ′(G(x))G′′(x). Hence,

ηF◦G(x) =
(F ◦G)′′(x)

(F ◦G)′(x)
=

F ′′(G(x))

F ′(G(x))
G′(x) +

G′′(x)

G′(x)
= ηF (G(x))G′(x) + ηG(x).

Proposition 1. Let L > 0. If F,G ∈ Diff2([0, 1]) satisfy ||ηF ||, ||ηG|| < L,
then there exists a constant C depending on L such that |F − G|, |F ′ − G′| <
C||ηF − ηG||.

Proof. First, observe that by the Chain Rule of Nonlinearities, ηF (x)−ηG(x) =
ηF◦G−1(G(x))G′(x), so it will suffice to write |F − G|, |F ′ − G′| in terms of
ηF◦G−1 . Since F (x) = F (G−1(G(x))),

|(F −G)(x)| = |(F ◦G−1 − Id)(G(x))| ≤ |F ◦G−1 − Id| < |(F ◦G−1 − Id)′|.

As

(F ◦G−1)′(G(x)) = (F ◦G−1)′(0)e
∫ G(x)
0 ηF◦G−1 = (F ◦G−1)′(0)e

∫ x
0

ηF−ηG ,

we obtain that |F −G| is bounded by a constant times ||ηF − ηG||.
Similarly, |(F ′−G′)(x)| = G′(x)|(F ◦G−1)′(G(x))−1|, which is also bounded by
a constant times ||ηF − ηG||, with the constant depending on L. This completes
the proof.

2.2.4 Definition of the Zoom Operator

Definition 8. Let I ⊆ [0, 1]. We define the zoom operator ZI : Diff2([0, 1]) →
Diff2([0, 1]) as the normalization of the restriction operation F |I : I → F (I),
i.e.,

ZIF = N(F |I).

Lemma 3. If I = [a, b] ⊆ [0, 1] and F ∈ Diff2([0, 1]), then

ηZIF (x) = |I|ηF (a+ (b− a)x).

In particular, ||ZIF || ≤ |I|||F ||.
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Proof. Suppose that I = [a, b] ⊆ [0, 1] and F ∈ Diff2([0, 1]). Then

ZIF (x) = N(F|I)(x) =
F (a+ (b− a)x)− F (a)

F (b)− F (a)
,

so (ZIF )′(x) =
(b− a)F ′(a+ (b− a)x)

F (b)− F (a)
and

(ZIF )′′(x) =
(b− a)2F ′′(a+ (b− a)x)

F (b)− F (a)
. Therefore,

ηZIF (x) = (b− a)ηF (a+ (b− a)x) = |I|η(a+ (b− a)x).

From this, it follows that ||ZIF || ≤ |I|||ηF ||0 = |I|||F ||.

Remark. For any I = [a, b] ⊆ [0, 1], ZI : C0([0, 1]) → C0([0, 1]),

ZIη(x) = |I|η(a+ (b− a)x)

defines an operator on the space of C0 nonlinearities, with
∫ 1

0
ZIη =

∫
I
η.

2.2.5 Extension of Renormalization

Definition 9. Let f = (c, v, F−, F+) be a circle map. We refer to (c, v) as the
spatial coordinates of f and the C0 functions (ηF− , ηF+) as the nonlinear-
ity coordinates of f . By identification of f with its spatial and nonlinearity
coordinates, we let X = (0, 1)2 × C0([0, 1])2 denote the space of circle maps,
endowed with the product distance.

By convention, we will refer to η± as the nonlinearity of F±.

Definition 10. Let f = (c, v, η−, η+) ∈ X. We define X− := {f ∈ X : c > v}
and X+ := {f ∈ X : c < v}. If c ̸= v, we say that f is renormalizable, and
for such f , we define the renormalization operator R : X− ⊔ X+ → X as
follows:

Rf =


(
c− v

1− v
, Fη−(

v

c
), Z[v/c,1]η−, ηZ[0,v/c]F−◦F+

) if c > v,

(
c

v
, Fη+(

v − c

1− c
), ηZ[(v−c)/(1−c),1]F+◦F− , Z[0,(v−c)/(1−c)]η+) if c < v.

2.3 Möbius Diffeomorphisms and their Properties

2.3.1 Definition of Möbius Diffeomorphisms

Definition 11. We define the Möbius diffeomorphism of weight ω ∈ R to
be the linear fractional transformation Mω ∈ Diff2([0, 1]) given by

Mω(x) =
x

(1− eω/2)x+ eω/2
.

Remark. The Möbius diffeomorphisms form the union of all orientation pre-
serving linear fractional transformations that map [0, 1] onto itself.
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Lemma 4. 1) The nonlinearity ηω ∈ C0([0, 1]) of Mω is given by the formula

ηω(x) =
2(eω/2 − 1)

(1− eω/2)x+ eω/2
.

2)
∫ 1

0
ηω = ω.

Proof. 1) Observe that M ′
ω(x) =

eω/2

((1− eω/2)x+ eω/2)2
,

and M ′′
ω(x) =

−2eω/2(1− eω/2)

((1− eω/2)x+ eω/2)3
, making

ηω(x) =
2(eω/2 − 1)

(1− eω/2)x+ eω/2
.

2) By direct integration of ηω,∫ 1

0

ηω = [−2 ln((1− eω/2)x+ eω/2)]10 = 0− 2
ω

2
= ω.

2.3.2 General Properties of Möbius Diffeomorphisms

Lemma 5. Let ω1, ω2 ∈ R, and let [a, b] ⊆ [0, 1]. Then: 1)

Mω1+ω2
= Mω1

◦Mω2
.

2) ∫ b

a

ηω1 − ηω2 =

∫ Mω2
(b)

Mω2
(a)

ηω1−ω2 .

Proof. 1) Note first that the product of two Möbius diffeomorphisms is itself a
Möbius diffeomorphism, since they all are orientation preserving linear fractional
transformations that fix 0 and 1. It remains to determine the weight of Mω1

◦
Mω2 , which by the Chain Rule of Nonlinearity and a change of variables equals∫ 1

0

ηω1(Mω2)M
′
ω2

+ ηω2 =

∫ 1

0

ηω1 +

∫ 1

0

ηω2 = ω1 + ω2.

2) Let [a, b] ⊆ [0, 1]. Then by part 1), the Chain Rule of Nonlinearity and a
change of variables,∫ b

a

ηω1
− ηω2

=

∫ b

a

ηMω1−ω2◦Mω2
− ηω2

=

∫ b

a

ηω1−ω2
(Mω2

)M ′
ω2

=

∫ Mω2
(b)

Mω2 (a)

ηω1−ω2
.
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2.3.3 Useful Formulas

Lemma 6.

Mω(x) =
x

e(
∫ 1
x
ηω)/2

=
e(

∫ x
0

ηω)/2 − 1

eω/2 − 1
.

Proof. Observe that by integration,
∫ 1

x
ηω = 2 ln((1− eω/2)x+ eω/2), so

e
∫ 1
x
ηω/2 = (1− eω/2)x+ eω/2 =

x

Mω(x)
,

which proves the first equality. For the second equality, note that

e
∫ x
0

ηω/2 =
eω/2

e
∫ 1
x
ηω/2

, so

e
∫ x
0

ηω/2 − 1 =
eω/2 − ((1− eω/2)x+ eω/2)

(1− eω/2)x+ eω/2
=

x(eω/2 − 1)

(1− eω/2)x+ eω/2

= (eω/2 − 1)Mω(x),

which after dividing by eω/2 − 1 completes the proof.

Remark. Dηω(x) =
η2ω(x)

2
, as linear fractional transformations are character-

ized by having Schwarzian derivative 0, and the Schwarzian derivative associated
to a C1 nonlinearity η is given by the operator
S : C1([0, 1]) → C0([0, 1]), Sη(x) = Dη(x)− η2(x)/2.

2.4 Hyperbolic Theory for Möbius Circle Maps

2.4.1 Definition and Invariance of the Total Distortion

Definition 12. Let f = (c, v, η−, η+) ∈ X. We define the total distortion of

f to be the quantity K(f) :=
∫ 1

0
η− +

∫ 1

0
η+.

Proposition 2. Suppose that f ∈ X is renormalizable. Then K(Rf) = K(f).

Proof. We will prove this when c > v. We calculate:

K(Rf) =

∫ 1

0

η−(Rf) +

∫ 1

0

η+(Rf) =

∫ 1

0

Z[v/c,1]η− +

∫ 1

0

ηZ[0,v/c]F−◦F+

=

∫ 1

v/c

η− +

∫ v/c

0

η− +

∫ 1

0

η+ =

∫ 1

0

η− +

∫ 1

0

η+ = K(f).

The proof for c < v is similar.

2.4.2 The Hyperbolicity Theorem

Definition 13. Let K ∈ R. We let XK denote the space of f ∈ X such that
K(f) = K. We further define ΩK ⊂ XK to be the subset of circle maps with
Möbius nonlinearities in XK . Finally, we let Ω = ⊔KΩK .

Remark. The Möbius nonlinearities are not a subspace of C0([0, 1]) since
they are not closed under addition. However, by the bijection (ηω− , ηω+

) 7→
(ω−, ω+) ∈ R2, they can be endowed with a Banach space structure.
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Piece 1. Let X1
K consist of those circle maps in XK with C1 nonlinearities.

Then as n → ∞, Rn(X1
K) → ΩK .

Piece 2. 1) As n → ∞,Rn(Ω0) converges to the space

Rρ := {(ρ, 1− ρ, Id, Id) : ρ ∈ (0, 1)}

of rigid rotations.
2) If K ̸= 0, then R is a hyperbolic operator on ΩK . The unstable manifolds
of R form a lamination homeomorphic to the product of R with a Cantor set.
The unstable manifolds are dimension 1 and consist of all points p ∈ ΩK which
have a uniformly bounded sequence of preimages.

3 Distortion Measures and their Renormaliza-
tion

3.1 Introduction to Distortion

3.1.1 Weight Structure of Distortion

In this section, we restrict ourselves to ΩK , and develop the bijection into R2

of the weight pairs.

Lemma 7. Let f = (c, v, ω−, ω+) ∈ ΩK . Then,

(ω−(Rf), ω+(Rf)) =


(
∫ 1

v/c
ηω− , ω+ +

∫ v/c

0
ηω−) if c > v,

(ω− +
∫ 1
v − c

1− c

ηω+
,
∫ v − c

1− c
0 ηω+

) if c < v.

Proof. The proof follows from the fact that
∫ 1

0
ZIηω =

∫
I
ηω.

3.1.2 Scaling Ratios and Related Coordinates

Definition 14. Let c, v ∈ (0, 1). We define the scaling ratios of c and v as

σ− =
v

c
, σ+ =

v − c

1− c
.

Remark.
c =

σ+

σ− + σ+ − 1
, v =

σ−σ+

σ− + σ+ − 1
.

Lemma 8. Let f = (c, v, η−, η+) ∈ XK . Then

(σ−(Rf), σ+(Rf)) =


(
F−(σ−)(1− σ+)

−σ+
, σ+ + (1− σ+)F−(σ−)) if σ− < 1,

(F+(σ+)σ−,
σ−F+(σ+)− 1

σ− − 1
) if σ− > 1.

Proof. As auxiliary calculations, note that 1− v =
(1− σ−)(σ+ − 1)

σ− + σ+ − 1

and 1− c =
σ− − 1

σ− + σ+ − 1
Now we split the proof into two cases. First, assume

11



that σ− < 1, and note that this implies c > v. Then

σ−(Rf) =
v(Rf)

c(Rf)
=

F−(σ−)

(c− v)/(1− v)
=

F−(σ−)(1− σ−)(σ+ − 1)

σ+(1− σ−)

= F−(σ−)
σ+ − 1

σ+
,

σ+(Rf) =
v(Rf)− c(Rf)

1− c(Rf)
=

F−(σ−)(1− v)− (c− v)

1− c

=
(σ− − 1)(σ+ + (1− σ+)F−(σ−))

σ− − 1
= σ+ + F−(σ−)(1− σ+).

Next, assume that σ− > 1 and note that this implies c < v. Then

σ−(Rf) =
v(Rf)

c(Rf)
= F+(σ+)

v

c
= F+(σ+)

σ−σ+

σ+
= σ−F+(σ+),

σ+(Rf) =
v(Rf)− c(Rf)

1− c(Rf)
=

vF+(σ+)− c

v − c
=

σ+(σ−F+(σ+)− 1)

σ+(σ− − 1)

=
σ−F+(σ+)− 1

σ− − 1
.

3.1.3 Injectivity of Renormalization Branches

Lemma 9. Let f ∈ ΩK . Then there exist at most two f−, f+ ∈ ΩK such that
σ−(f−) < 1, σ−(f+) > 1 and Rf− = f = Rf+.

Proof. Let f = (c, v, ω−, ω+) ∈ ΩK and let σ−, σ+ be its associated scaling
ratios. We will first prove uniqueness of f−. To prove that R is injective on
that branch, we assume there exist c−, v− ∈ (0, 1), ω1,− ∈ R such that c− > v−,

c = (c− − v−)/(1− v−), v = Mω1,−(v−/c−) and ω− =
∫ 1

σ−
ηω1,− . Let

σ1,− = v−/c−. By Lemma 6,

v =
σ1,−

eω−/2
,

so σ1,− is fixed, and therefore, so is ω1,−. Note that by assumption, σ1,− ∈ (0, 1).

Thus, this implies v− = σ1,−c−, so we obtain that c =
c−(1− σ1,−)

1− σ1,−c−
, which gives

c− =
c

1− (1− c)σ1,−
∈ (0, 1),

also fixing v−. Finally, we select ω1,+ such that ω1,+ + ω1,− = K, since the
total distortion is preserved by renormalization. Hence, we have found a unique
f− = (c−, v−, ω1,−, ω1,+) ∈ ΩK such that Rf− = f and
σ−(f−) < 1.
Next, we want to prove uniqueness of f+. So, we first suppose there exist

c+, v+ ∈ (0, 1), ω2,+ ∈ R such that c+ < v+, c =
c+
v+

, and for σ2,+ =
v+ − c+
1− c+

, we
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additionally obtain that v = Mω2,+
(σ2,+), ω+ =

∫ σ2,+

0
ηω2,+

. As a consequence
of Lemma 6,

v =
eω+/2 − 1

eω2,+/2 − 1
,

which fixes ω2,+, and therefore also σ2,+. By assumption, ω2,+ is assumed to
exist, so eω2,+/2 − 1 > −1. Solving the equations

c =
c+
v+

,
v+ − c+
1− c+

= σ2,+

simultaneously for c+ and v+ gives

v+ =
σ2,+

1− (1− σ2,+)c
∈ (0, 1), c+ = cv+.

Finally, we let f+ = (c+, v+, ω2,−, ω2,+) ∈ ΩK by setting ω2,− + ω2,+ = K.
By the preservation of the total distortion, Rf+ = f , and since f+ is uniquely
defined, the proof is complete.

Note that I restrict myself to the Möbius case for this argument, since my
proof depends on the precise formulas for Möbius diffeomorphisms.

Lemma 10. Let f = (c, v, ω−, ω+) ∈ ΩK . Then
1) There exists f− ∈ ΩK such that Rf− = f and σ−(f−) < 1 if and only if
veω−/2 < 1.
2) There exists f+ ∈ ΩK such that Rf+ = f and σ−(f+) > 1 if and only if
eω+/2 > 1− v.

Proof. 1) Assume that f− = (c−, v−, ω1,−, ω1,+) has scaling ratio σ1,− and sat-
isfies Rf− = f . Then, by the proof of the previous lemma, if c− > v−, it follows
that σ1,− = veω−/2. Thus, σ1,− ∈ (0, 1) if and only if veω−/2 < 1, which was
what we wanted.
2) Assume that f+ = (c,+, v+, ω2,−, ω2,+) has scaling ratios σ2,−, σ2,+. By the
proof of the previous lemma, if σ2,− > 1, it follows that Rf+ = f if and only if

−1 < eω2,+/2−1 =
eω+/2 − 1

v
, i.e., eω+/2 > 1−v. This completes the proof.

Remark. If ω− and ω+ have the same sign, then any f ∈ Ω with weights
(ω−, ω+) has a preimage in Ω. The same holds true if ω− ≤ 0, ω+ ≥ 0.

Note that Ω−, Ω+ are symmetric to one another, which can be discerned by
using the map

c 7→ 1− c, v 7→ 1− v, ω− 7→ −ω+, ω+ 7→ −ω−.

Under this mapping, it can been seen that the conditions for surjectivity are
symmetric, as one would expect. The symmetry will also allow us to simplify
proofs, since a result for renormalization in one component will work for the
other with minor modification.
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3.2 Temporal Structure of Distortion

3.2.1 Introduction to Decompositions

Definition 15. Let T denote the set of dyadic rationals in (0, 1]. A nonlin-
earity decomposition is a function η = (ητ )τ∈T into the space of C0 nonlin-
earities such that

∑
τ∈T ||ητ ||0 < ∞. For every n ∈ N, define

Fn(η) = F1 ◦ F(2n−1)/2n ◦ ... ◦ F2−n ∈ Diff2([0, 1]),

where Fτ = Fητ
, and let F (η) = limn→∞ Fn(η) ∈ Diff2([0, 1]), if the limit exists.

Definition 16. If η1, η2 are nonlinearity decompositions, then we define
η1 ⋆ η2 = (ητ )τ∈T to be the nonlinearity decomposition given by the formula

ητ =

{
η1,2τ if τ ≤ 1/2,

η2,2τ−1 if τ > 1/2.

Remark. For all n ∈ N,

Fn(η1 ⋆ η2) = Fn−1(η2) ◦ Fn−1(η1).

3.2.2 Decomposition of Weights

Definition 17. A weight decomposition is a function ω = (ωτ )τ∈T into the
space of real numbers such that

∑
τ∈T |ωτ | < ∞.

Remark. If ω is a weight decomposition, we associate to it the nonlinearity
decomposition η such that ητ = ηωτ

is Möbius.

Definition 18. For any τ0 ∈ T and any weight decomposition ω, we define
ω(0,τ0] to be the restriction ω̃ such that

ω̃τ =

{
ωτ if τ ≤ τ0,

0 if τ > τ0.

Definition 19. Let A denote the σ-algebra generated by the half open intervals
(τ1, τ2] with endpoints in {0} ∪ T . For any weight decomposition ω, we define
µω as the signed atomic Borel measure on A such that for all τ ∈ T ,

µω({τ}) = ωτ .

Remark. µω(0, τ0] =
∑

τ≤τ0
ωτ .

Remark. For any I ⊆ [0, 1] and any nonlinearity decomposition η, we can
define the zoom decomposition ZIη in a manner that preserves the property

F (ZIη) = ZIF (η).

Pointwise, (ZIη)τ0 = ZI(τ0)ητ0 , where I(τ0) depends on |I| and
∑

τ<τ0
||ητ ||0.

Using zoom decompositions and concatenations, one can define renormalization
on a lift of X where the nonlinearity coordinates η+, η− are replaced by nonlin-
earity decompositions η−, η+ that satisfy

F± = F (η±).
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In an analogous manner, we can define renormalization on a lift of Ω where
the weights ω− and ω+ are replaced by weight decompositions ω−, ω+ such that∑

τ∈T
ω±,τ = ω±.

Because of the additivity of weights under composition, it turns out that it is
natural in this setting to analyze the measures µω± , since for any τ ∈ T and

any I ⊆ [0, 1],

(µZIω)(0, τ ] =

∫
I

ηµω(0,τ ].

Since renormalization acts by zooming and concatenating, and zooming con-
tracts supτ∈T |ωτ | it can be shown that in the lift of Ω, the measures µω±

converge under renormalization to non-atomic measures. This motivates us to
try and extend the definitions of renormalization to this larger measure space.

3.3 Distortion Measures

3.3.1 Definition of Distortion and Spacetime Measures

Definition 20. A distortion measure is a signed Borel measure on A, equipped
with the distortion norm

||µ|| = sup
τ∈T

|µ(0, τ ]|.

Let M = {µ : ||µ|| < ∞} denote the space of distortion measures, equipped with
the distortion norm.

Remark. The distortion norm is different from the usual total variation norm
for signed measures, since its magnitude is only taken over the generating inter-
vals for the sigma algebra A. However, it still defines a norm, since the scaling
property and triangle inequality are easily seen to be satisfied, while ||µ|| = 0
implies that µ(0, τ ] = 0 for all τ ∈ T , from which it follows that the same prop-
erty holds for all intervals (τ1, τ2] with endpoints in T , and thus µ(A) = 0 on
any countable union or countable intersection A of such sets.

A spacetime measure is a pair (µ, (ητ )τ∈T ) composed of a distortion mea-
sure µ and a function (ητ )τ∈T into the space of L1 nonlinearities such that∫ 1

0

ητ = µ(0, τ ], sup
τ∈T

∫ 1

0

|ητ | < ∞.

We refer to ||(µ, (ητ )τ∈T )|| = supτ∈T
∫ 1

0
|ητ | as the spacetime norm. We will

denote the space of spacetime measures endowed with the spacetime norm by M.

Remark. The nonlinearities which make up a spacetime measure do not form
a nonlinearity decomposition, since for example

∑
τ∈T ||ητ ||0 could be infinite.

However, when it makes sense, for a nonlinearity decomposition η0, one could
define a spacetime measure (µ, (ητ )τ∈T ) such that ητ = ηF (η0,(0,τ]), where η(0,τ ]
is defined analogously to the weight decomposition case. In this case,

η1 = ηF (η0).

Remark. If (µ, (ητ )τ∈T ) ∈ M, then

||(µ, (ητ )τ∈T )|| ≥ ||µ||.
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3.3.2 Operations on Spacetime Measures

Definition 21. Let (µ, (ητ )τ∈T ) ∈ M. For any I ⊆ [0, 1], we define the zoom
operator ZI : M → M by the definition

(ZI(µ, (ητ )τ∈T )) = (ZIµ, (ZIητ )τ∈T ),

where ZI denotes the zoom operator on nonlinearities, and

(ZIµ)(0, τ ] =

∫
I

ητ .

Definition 22. Let (µ1, (η1,τ )τ∈T ), (µ2, (η2,τ )τ∈T ) be spacetime measures. We
define the concatenation operator ⋆ : M×M → M as follows:

(µ1, (η1,τ )τ∈T ) ⋆ (µ2, (η2,τ )τ∈T ) = (µ1 ⋆ µ2, ((η1 ⋆ η2)τ )τ∈T ),

where

(η1 ⋆ η2)τ =

{
η1,2τ if τ ≤ 1/2,

ηFη2,2τ−1
◦Fη1,1

if τ > 1/2,

(µ1 ⋆ µ2)(0, τ ] =

{
µ1(0, 2τ ] if τ ≤ 1/2,

µ1(0, 1] + µ2(0, 2τ − 1] if τ > 1/2.

3.4 Renormalization of Möbius Measure Pairs

3.4.1 Definition of Möbius Measures

Definition 23. The spacetime measure (µ, (ητ )τ∈T ) is Möbius if for every
τ ∈ T , ητ is a Möbius nonlinearity.

Proposition 3 (Möbius Identification). If (µ, (ητ )τ∈T ) is Möbius, then

||(µ, (ητ )τ∈T )|| = ||µ||,

and we can identify M with the space of Möbius measures.

Proof. Suppose that (µ, (ητ )τ∈T ) is Möbius. As Möbius nonlinearities are either

strictly positive or strictly negative,
∫ 1

0
|ητ | = |

∫ 1

0
ητ | = |µ(0, τ ]|. Thus,

||(µ, (ητ )τ∈T )|| = sup
τ∈T

∫ 1

0

|ητ | = sup
τ∈T

|µ(0, τ ]| = ||µ||.

It follows that we can embed M into the space of spacetime measures via the
identification µ 7→ (µ, (ηµ(0,τ ])τ∈T ).

Lemma 11. ZI : M → M and ⋆ : M×M → M extend as operators via the
Möbius Identification, with

(ZIµ)(0, τ ] =

∫
I

ηµ(0,τ ], (µ1 ⋆ µ2)(0, τ ] =

{
µ1(0, 2τ ] if τ ≤ 1/2,

µ1(0, 1] + µ2(0, 2τ − 1] if τ > 1/2.

Proof. This is a direct consequence of the definition of ZI and ⋆ on M.
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3.4.2 The Space of Distortion Measure Pairs

Definition 24. Let M×M denote the space of distortion measure pairs, en-
dowed with the norm ||(µ−, µ+)|| = max{||µ−||, ||µ+||}.

Lemma 12. M×M is a Banach space.

Proof. It suffices to prove completeness ofM×M. Let (µn,−, µn,+) be a Cauchy
sequence of distortion measure pairs. Then for any τ ∈ T ,
(µn,−(0, τ ]), (µn,+(0, τ ]) are Cauchy sequences of real numbers, so they converge
in R. We then define the measures µ−, µ+ on A via the definition

µ−(0, τ ] = lim
n→∞

µn,−(0, τ ], µ+(0, τ ] = lim
n→∞

µn,+(0, τ ].

Then for any ϵ > 0, there exists n ∈ N sufficiently large so that for all τ ∈ T ,
|(µ− −µn,−)(0, τ ]|, |(µ+ −µn,+)(0, τ ]| < ϵ, so ||(µ−, µ+)|| is uniformly bounded.
Therefore, (µ−, µ+) ∈ M×M, which completes the proof of completeness.

3.4.3 The Renormalization Operators for Distortion Measure Pairs

Now we have constructed a space M×M of distortion measure pairs, and we
understand how to act on it, via zooming and concatenation. What remains is
to define renormalization in a way that is consistent with its definition on Ω.
The first step is to define a projection operator that will allow us to build the
lift of Ω.

Definition 25. Let π : M×M → R2 denote the canonical projection

π(µ−, µ+) = (µ−(0, 1], µ+(0, 1]).

Next we need to check that the canonical projection commutes with the
zoom and concatenation operators on M × M, but that follows directly from
their definition. As a result, we can look at the formulas for (ω−(Rf), ω+(Rf))
and use them as a blueprint. Note that the choice of renormalization for f ∈ Ω
depends only on the sign of ln(σ−) and one scaling ratio, so we will have to
define two separate operators which both depend on σ ∈ (0, 1). Recalling that

(ω−(Rf), ω+(Rf)) =

{
(
∫ 1

σ−
ηω− , ω+ +

∫ σ−
0

ηω−) if σ− < 1,

(ω− +
∫ 1

σ+
ηω+ ,

∫ σ+

0
ηω+) if σ− > 1,

we define:

Definition 26. Let σ ∈ (0, 1) and let (µ−, µ+) ∈ M × M. We define the
renormalization operators Rσ

± : M×M ⟳ by

Rσ
−(µ−, µ+) = (Z[σ,1]µ−, µ+ ⋆ Z[0,σ]µ−),

Rσ
+(µ−, µ+) = (µ− ⋆ Z[σ,1]µ+, Z[0,σ]µ+).
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4 Contraction of Distortion Measure Fibers

4.1 Fiber Structure of Distortion Measures

Definition 27. For any p = (p−, p+) ∈ R2 we define the slice (M × M)p ∈
M×M to be the set of distortion measure pairs (µ−, µ+) such that π(µ−, µ+) =
p. For K ∈ R, we define

(M×M)K = {(M×M)p : p− + p+ = K}.

Remark. The slices (M × M)p, p ∈ R2 form a fibration of M × M. Any
renormalization operator Rσ

z preserves this fibration, as well as (M×M)K .

Definition 28. Let f ∈ Ω. We define z(f) = sign(ln(σ−(f))). We let s : Ω →
(0, 1)× {+,−} denote the mapping

s(f) = (σz(f)(f), z(f)).

Remark. Let Y = (0, 1) × {−,+} × M × M. Then we have a commutative
diagram

Y Y

Ω Ω

Rσ
z

ππ−1

s

R

4.2 Distortion of Renormalized Möbius Measure Fibers

4.2.1 The Zoom Contraction Law

Proposition 4 (Zoom Contraction Law). Let L > 0 and suppose that µ, ν ∈ M
satisfy ||µ||, ||ν|| < L. Then for any I compactly contained in [0, 1], there exists
κ < 1 depending only on L and |I| such that

||ZIµ− ZIν|| < κ||µ− ν||.

Proof. Assume that L > 0 and that µ, ν ∈ M satisfy ||µ||, ||ν|| < L. Let
I ⊆ [0, 1], I ̸= [0, 1]. For any τ ∈ T , note that by part 2) of Lemma 5,

(ZIµ− ZIν)(0, τ ] =

∫
I

ηµ(0,τ ] − ην(0,τ ] =

∫
Mν(0,τ](I)

η(µ−ν)(0,τ ],

where Mν(0,τ ](I) has uniformly bounded size depending on |I| and L. Now
observe that for any x, y ∈ (0, 1) and any ω ∈ R, | ln(ηω(x)/ηω(y))| ≤ |ω|/2.
Since |(µ− ν)(0, τ ]| < 2L, it follows that∫

Mν(0,τ](I)
η(µ−ν)(0,τ ]∫ 1

0
η(µ−ν)(0,τ ]

<
eL|Mν(0,τ ](I)|

eL|Mν(0,τ ](I)|+ (1− |Mν(0,τ ](I)|)
:= κ,

independent of τ . Thus, there exists κ < 1 depending only on L, |I| such that

||ZIµ− ZIν|| < κ||µ− ν||.
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4.2.2 The Concatenation Lemma

Lemma 13 (Concatenation Lemma). Let µ, ν ∈ M. Then

||µ ⋆ ν|| ≤ max{||µ||, |µ(0, 1]|+ ||ν||}.

Proof. Assume that µ, ν ∈ M. Then by definition, for any τ ∈ T ,

(µ ⋆ ν)(0, τ ] =

{
µ(0, 2τ ] if τ ≤ 1/2,

µ(0, 1] + ν(0, 2τ − 1] if τ > 1/2.
.

In either case, it is apparent that |(µ ⋆ ν)(0, τ ]| ≤ max{||µ||, |µ(0, 1]| + ||ν||},
which after taking a supremum over τ ∈ T completes the proof.

4.2.3 Basic Contraction Principle

Proposition 5. Let L > 0 and suppose that (µ−, µ+), (ν−, ν+) ∈ M×M satisfy
||(µ−, µ+)||, ||(ν−, ν+)|| < L, (µ−, µ+), (ν−, ν+) ∈ (M×M)p for p ∈ R2. Then,
for any renormalization operator Rσ

z ,

||Rσ
z (µ−, µ+)−Rσ

z (ν−, ν+)|| ≤ ||(µ−, µ+)− (ν−, ν+)||,

and additionally, if z1, z2 have opposite sign, and δ ∈ (0, 1/2) exists such that
σ1, σ2 ∈ (δ, 1− δ), then there exists κ < 1 depending only on L and δ such that

||(Rσ2
z2 ◦ Rσ1

z1 )(µ−, µ+)− (Rσ2
z2 ◦ Rσ1

z1 )(ν−, ν+)|| < κ||(µ−, µ+)− (ν−, ν+)||.

Proof. Let L > 0, (µ−, µ+), (ν−, ν+) ∈ M×M satisfy

||(µ−, µ+)||, ||(ν−, ν+)|| < L, π(µ−, µ+) = π(ν−, ν+).

Let Rσ
z be a renormalization operator. Without loss of generality, suppose that

z = −. We will consider both branches of Rσ
−(µ−, µ+)−Rσ

−(ν−, ν+) separately.
On the − branch, Rσ

− acts by Z[σ,1], so by the Zoom Contraction Law, there
exists κ− depending only on 1− σ and L such that the distance between the −
branches of Rσ

−(µ−, µ+) and Rσ
−(ν−, ν+) is contracted by a factor of κ−. For

the + branch, we can exploit that

(µ+ ⋆ Z[0,σ]µ−)− (ν+ ⋆ Z[0,σ]ν−) = (µ+ − ν+) ⋆ (Z[0,σ]µ− − Z[0,σ]ν−),

so as π(µ−, µ+) = π(ν−, ν+), (µ+−ν+)(0, 1] = 0, it follows from the Concatena-
tion Lemma and the Zoom Contraction Law that there exists κ+ < 1 depending
only on L and σ such that
||(µ+−ν+)⋆(Z[0,σ]µ−−Z[0,σ]ν−)|| ≤ max{||µ+−ν+||, κ+||µ−−ν−||}. By setting
κ = max{κ−, κ+}, we obtain that

||Rσ
−(µ−, µ+)−Rσ

−(ν−, ν+)|| ≤ max{||µ+ − ν+||, κ||µ− − ν−||},

where κ depends on σ and L. By symmetry,

||Rσ
+(µ−, µ+)−Rσ

+(ν−, ν+)|| ≤ max{||µ− − ν−||, κ||µ+ − ν+||}

for the same κ < 1. This completes the proof of the first statement. Now
suppose that that δ ∈ (0, 1/2) exists such that σ1, σ2 ∈ (δ, 1 − δ). Note that
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||Rσ1
− (µ−, µ+)||, ||Rσ1

− (ν−, ν+)|| < 2L and π(Rσ1
− (µ−, µ+)) = π(Rσ1

− (ν−, ν+)).
Hence, by taking a larger κ if necessary to account for the 2L discrepancy, we
apply the proof of the previous statement twice to show that there exists κ < 1
depending only on δ and L such that

||(Rσ2
+ ◦ Rσ1

− )(µ−, µ+)− (Rσ2
+ ◦ Rσ1

− )(ν−, ν+)|| ≤
max{||Z[σ1,1]µ− − Z[σ1,1]ν−||, κ||(µ+ − ν+) ⋆ (Z[0,σ1]µ− − Z[0,σ1]ν−)||}

≤ κ||(µ−, µ+)− (ν−, ν+)||.

By symmetry, the same inequality holds forRσ2
− ◦Rσ1

+ , completing the proof.

4.3 Asymptotics of Renormalization Schemes

4.3.1 Definition of Renormalization Schemes

Definition 29. Let (σ, z) ∈ (0, 1)N × {+,−}N. Such sequence pairs shall be
referred to as renormalization schemes. For any n ∈ N, we define the
operator Rn(σ, z) : M×M ⟳ to be

Rn(σ, z) = Rσ1
z1 ◦ ... ◦ Rσn

zn .

4.3.2 The Fast Renormalization Subsequence

Definition 30. For any renormalization scheme (σ, z) we define the fast renor-
malization subsequence of (σ, z) to be the maximal subsequence (σnk

, znk
)

of (σ, z) such that znk
̸= znk+1. For every k ∈ N, we define the operator

Rk
fast(σ, z) = Rnk(σ, z) to be the k-th fast renormalization operator associ-

ated to (σ, z).

4.3.3 δ-bounded Combinatorics and their Meaning

Definition 31. For any δ ∈ (0, 1/2), we say that a renormalization scheme
(σ, z) is δ-bounded if the following three conditions are satisfied:
1) For the fast renormalization subsequence (σnk

, znk
),

znk
= − ⇒ σnk+1 < 1− δ,

znk
= + ⇒ σnk+1 > δ.

2)

zn = − and σn > 1− δ ⇒ σn−1 > 1− δ or zn−1 = +,

zn = + and σn < δ ⇒ σn−1 < δ or zn−1 = −.

3) For every i, j ∈ N such that σi < δ, σj > 1− δ, there exists k ∈ N between i
and j such that σk ∈ (δ, 1− δ).

4.3.4 Contraction of Fast Renormalization for δ-bounded Schemes

Lemma 14. Let L > 0, and let (σ, z) be a renormalization scheme. Then if
||(µ−, µ+)|| < L, it follows that ||Rn(σ, z)(µ−, µ+)|| < 2L for every n ∈ N.
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Proof. Let L > 0, and let Rσ
z be any signed renormalization operator. Let

(µ−, µ+) ∈ M×M and suppose that ||(µ−, µ+)|| < L. We define a new norm
|| · ||S such that

||(µ−, µ+)||S = max{||µ−||− + ||µ+||−, ||µ−||+ + ||µ+||+},

where ||µ||− = max{0,− infτ∈T µ(0, τ ]}, ||µ||+ = max{0, supτ∈T µ(0, τ ]}.
First, observe that ||(µ−, µ+)|| ≤ ||(µ−, µ+)||S , since ||µ|| = max{||µ||−, ||µ||+}.
Now, we claim that ||Rσ

z (µ−, µ+)||S ≤ ||(µ−, µ+)||S . We start by observing that
for either choice z of sign and any I ⊆ [0, 1], ||ZIµ||z = |

∫
I
η||µ||z |. Thus, for

any σ ∈ (0, 1), ||Z[0,σ]µ||z + ||Z[σ,1]µ||z = ||µ||z. Additionally,
||µ ⋆ ν||z ≤ ||µ||z + ||ν||z. As all signed renormalization operators consist of
concatenations and complementary zooms, it follows that Rσ

z cannot expand
|| · ||S . Since ||(µ−, µ+)||S < 2L, and this quantity is not expanded by Rn(σ, z),
we obtain that

||Rn(σ, z)(µ−, µ+)|| ≤ ||Rn(σ, z)(µ−, µ+)||S ≤ ||(µ−, µ+)||S < 2L,

which was what we wanted.

Theorem 1 (Contraction Theorem). Let (σ, z) be a δ-bounded sequence. Then
for any L > 0, there exists κ < 1 depending only on δ and L such that for every
(µ−, µ+), (ν−, ν+) ∈ M×M that satisfies

||(µ−, µ+)||, ||(ν−, ν+)|| < L, (µ−, µ+), (ν−, ν+) ∈ (M×M)p

for p ∈ R2,

||R3
fast(µ−, µ+)−R3

fast(ν−, ν+)|| < κ||(µ−, µ+)− (ν−, ν+)||.

Proof. Suppose that (σ, z) is δ-bounded and let L > 0. Now let (µ−, µ+), (ν−, ν+)
be distortion measure pairs such that ||(µ−, µ+)||, (ν−, ν+)|| < L and
π(µ−, µ+) = π(ν−, ν+) = p ∈ R2. Let (σnk

, znk
) be the fast renormalization

subsequence of (σ, z). Without loss of generality, assume that zn1
= −, zn2

=
+, zn3 = −. For k ∈ [1, 3], let (µk,−, µk+), (νk,−, νk,+) denote the distortion
measure pairs attained by applying the operators composing R3

fast(σ, z) in their
correct order, i.e.,

(µ3,−, µ3,+) = R3
fast(σ, z)(µ−, µ+) = Rk

fast(σ, z)(µk,−, µk,+),

(ν3,−, ν3,+) = R3
fast(σ, z)(ν−, ν+) = Rk

fast(σ, z)(νk,−, νk,+).

Our goal is to prove that there exists κ < 1 depending only on L and δ such
that ||(µ3,− − ν3,−, µ3,+ − ν3,+)|| < κ||(µ− − ν−, µ+ − ν+)||. By Lemma 14, we
know that ||(µk,−, µk,+)||, ||(νk,−, νk,+)|| < 2L for all k ∈ [1, 3]. We begin by es-
timating ||(µ2,−− ν2,−, µ2,+− ν2,+)||. Consider the scaling ratios σn2+1, ..., σn3

,
for which the corresponding z are all negative by assumption. From the defi-
nition of δ-boundedness, σn2+1 ≥ δ, since zn2 = + and none of σn2+2, ..., σn3

lie in (1 − δ, 1). Now we split the proof into two cases, depending on whether
σn2+1 > 1− δ.

First, suppose that σn2+1 > 1−δ. By repeated application of the first state-
ment of the Basic Contraction Principle and the Zoom Contraction Law, there
exists κ2 < 1 depending only on 1− δ such that ||µ2,− − ν2,−|| < κ2||µ− − ν−||
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and ||µ2,+ − ν2,+|| < max{||µ+ − ν+||, ||µ− − ν−||}. Now consider the scal-
ing ratios σn1+1, ..., σn2

, for which the corresponding z are all positive. Since
σn2+1 > 1− δ, by the definition of δ-boundedness, there exists k ∈ [n1 + 1, n2]
such that σk ∈ (δ, 1− δ) and σi > δ for i ∈ [k, n2]. Now we apply the renormal-
ization operator Rσk

+ ◦ ... ◦ Rσn2
+ to (µ2,−, µ2,+), (ν2,−, ν2,+). Observe that this

operator acts as a composition of zooms on the + branch and applies concate-
nations to the − branch by pieces of the old + branch acted upon by the zoom
operators Z[σi,1] for i ∈ [k, n2]. We claim there exists κ1 < 1 depending only on
δ and L such that

||(Rσk
+ ◦ ... ◦ Rσn2

+ )(µ2,−, µ2,+)− (Rσk
+ ◦ ... ◦ Rσn2

+ )(ν2,−, ν2,+)|| <
max{κ1||µ2,+ − ν2,+||, ||µ2,− − ν2,−||}.

The claim holds true for the + branch because σk ∈ (δ, 1 − δ) while as the
pieces concatenated to the − branch are acted upon by zoom operators with
zoom interval sizes bounded by 1 − δ, they also contract by a definite factor
depending only on δ and L. Moreover, since renormalization operators maps
slices to slices, we can utilize that the distortion norm of a measure composed
of concatenations of measures whose mass over (0, 1] is 0 is the max of the
distortion norms of its pieces. This completes the proof of the claim. Now,
we apply the first statement of the Basic Contraction Principle repeatedly to
Rσn1+1

+ ◦ ... ◦ Rσi−1

+ to obtain via nonexpansion of the distortion norm that

||(µ1,− − ν1,−, µ1,+ − ν1,+)|| < max{||µ2,− − ν2,−||, κ1||µ2,+ − ν2,+||}
< max{κ1, κ2}||(µ− − ν−, µ+ − ν+)||.

Since Rfast(σ, z) does not expand the distortion norm, it follows by taking
κ = max{κ1, κ2} that

||(µ3,−−ν3,−, µ3,+−ν3,+)|| ≤ ||(µ1,−−ν1,−, µ1,+−ν1,+)|| < κ||(µ−−ν−, µ+−ν+)||,

which was what we wanted.
Note that the argument actually shows that if zn3 = − and σn2+1 > 1 − δ,

then we observe contraction in two fast steps. By symmetry, the same holds for
the same κ < 1 if zn3

= + and σn2+1 < δ. Now we assume σn2+1 ∈ (δ, 1 − δ).
Again, we can choose κ2 < 1 depending only on δ and L so that

||µ2,− − ν2,−|| < κ2||µ− − ν−||, ||µ2,+ − ν2,+|| ≤ ||(µ− − ν−, µ+ − ν+)||.

Now consider the scaling ratios σn1+1, ..., σn2 . If there exists k ∈ [n1 + 1, n2]
such that σk ∈ (δ, 1− δ), we apply the proof of the previous case to show that
||(µ1,− − ν1,−, µ1,+ − ν1,+)|| < κ||(µ− − ν−, µ+ − ν+)|| for the same κ < 1 as
before. Otherwise, σn1+1 < δ, which by symmetry implies that R2

fast(σ, z) acts
as a contraction, since our argument could then be shown to work in two fast
steps. Hence,

||R3
fast(µ−, µ+)−R3

fast(ν−, ν+)|| < κ||(µ−, µ+)− (ν−, ν+)||.

By symmetry, the same argument holds if zn3
= + and σn2+1 ∈ (δ, 1−δ), which

completes the proof.
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5 Distortion Measures for Unstable Manifolds

5.1 Introduction

5.2 Bounded Renormalization Schemes

5.2.1 Definition of Backwards Sequences and their Associated Schemes

Definition 32. Let f ∈ ΩK , and suppose that ω−(f), ω+(f) both have the
same sign as K. For each z ∈ {+,−}N, we define the sequence f

z
to be

the unique backwards sequence (fn)n∈N of preimages of f in ΩK such that
sign(ln(σ−(fn))) = zn, and Rfn = fn−1, if it exists. We refer to (σzn(fn), zn)n∈N
as the renormalization scheme of f

z
.

Proposition 6. Let f = (c, v, ω−, ω+) ∈ ΩK for K ̸= 0. If ω−, ω+ have the
same sign, then there exists a unique word z for which the weights of f

z
all have

the same sign.

Proof. Assume without loss of generality that K > 0 and suppose that the
weights of f = (c, v, ω−, ω+) ∈ ΩK are both positive. It will suffice to show that
f has a unique inverse for which the weights are bounded in magnitude by K.
First, suppose that f has no inverse in Ω−, i.e., ve

ω−/2 > 1. Let ω̃+ denote the
+ weight of the preimage of f in Ω+. By Lemma 6,

eω+/2 − 1 ≥ e−ω−/2(eω̃+/2 − 1),

hence ω̃+−ω− ≤ ω+, i.e., ω̃+ < K, which proves that the weights of the inverse
of f in Ω+ are both positive.
Next, suppose that ω̃+ > K. This implies by our previous statement that f
has an inverse in Ω−. Let σ̃− denote the scaling ratio for this inverse. Since

v =
σ̃−

eω−/2
by Lemma 6, we obtain that

eω+/2 − 1

v
> eK/2 − 1

⇔ eK/2 − eω−/2 > σ̃−(e
K/2 − 1)

⇔ eK/2(1− σ̃−) > eω−/2 − σ̃−

⇔ eK/2(1− σ̃−) + σ̃− > eω−/2.

But if ω̃− denotes the − weight of the preimage of f in Ω−, then we know from
Lemma 6 that eω−/2 = eω̃−/2(1− σ̃−) + σ̃−,so it follows that

ω̃+ > K ⇔ ω̃− < K.

By flipping the inequality, we obtain in a similar manner that

ω̃− > K ⇔ ω̃+ < K.

This completes the proof for K > 0, while if K < 0, the argument follows from
the previous case by Möbius symmetry.

I plan on omitting the reference to z when the combinatorics are not impor-
tant, and will simply refer to backwards sequences as p for brevity.

23



Remark. If f ∈ ΩK has a renormalization scheme, then it extends to M×M
for the same (σ, z).

5.2.2 Hierarchy of Bounded Sequence Spaces and their Properties

Definition 33. For each K ∈ R and each δ ∈ (0, 1/2), we define WK,δ to
be the set of all backwards sequences f

z
∈ ΩN

K such that firstly, the weights

ω−(fn), ω+(fn) remain uniformly bounded for all n ∈ N, and secondly, the
renormalization scheme of f

z
is δ-bounded. We then define WK = ∪δ∈(0,1/2)WK,δ,

and W = ⊔K∈RWK .

Proposition 7. Let K ̸= 0. For each f ∈ ΩK contained in the attractor of
renormalization, there exists a backwards sequence f

z
∈ WK .

Proof. Let K ̸= 0, and suppose without loss of generality that K > 0. Sup-
pose that f ∈ ΩK lies in the attractor of renormalization. Then the weights
ω−(f), ω+(f) are both positive, so by Proposition 6 there exists a unique se-
quence f of preimages of f whose weights are all uniformly bounded. Let (σ, z)
be the renormalization scheme associated to f . Using a well known fact from
one-dimensional dynamics, we claim that the fast renormalizations fnk

associ-
ated to the fast renormalization subsequence have bounded distortion. We will
now clarify what that entails.

Recall that the branches M−,M+ of a Möbius circle map f are normalized
maps. The original maps are linear fractional transformations f−, f+ whose
domains and ranges depend on the spatial coordinates of f . For any C1 diffeo-

morphism g : I → g(I), one can define its slope s(g) =
|g(I)|
|I|

, and with the

slope, one obtains the formula

g′(y) = s(g)Ng′(
y − a

b− a
),

where I = [a, b]. The slopes of f−, f+ are given by the formulas

s− =
1− v

c
=

(1− σ+)(σ− − 1)

σ+
, s+ =

v

1− c
=

σ−σ+

σ− − 1
.

As a consequence of bounded distortion, there exists a constant C > 1 such
that the derivatives f ′

nk,−, f
′
nk,+

are bounded between 1/C and C. As the
weights ω±(fnk

) are uniformly bounded by K, this entails that the slopes
s−(fnk

), s+(fnk
) are uniformly bounded.

We will now present the formulas for the renormalization of slopes:

(Rs−,Rs+) =


(s−

1−Mω−(σ−)

1− σ−
, s+s−

Mω−(σ−)

σ−
) if σ− < 1,

(s−s+
1−Mω+

(σ+)

1− σ+
, s+

Mω+
(σ+)

σ+
) if σ− > 1.

Since for ω > 0, Mω(σ) ≤ σ, we see that under every renormalization, s− is
multiplied by a term greater than 1, and s+ is multiplied by a term less than
1. This can be expanded upon. If zn = −, then we can tell that s−(fn) is
uniformly bounded, while if zn = +, then the same holds true for s+(fn).
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Thus, assume that there exists a uniform C > 1 such that the slopes s±(fnk
)

are bounded between 1/C and C. We will now construct a sufficiently small
δ > 0 so that (σ, z) is δ-bounded.

1) Suppose that zn = −. Then s−(fn) < C, i.e., (σn−1)
1− σ+(fn)

σ+(fn)
< C. Then

by Lemma 8,

σ−(fn−1) = Mω−(fn)(σn)
1− σ+(fn)

−σ+(fn)
.

It follows since ω−(fn) > 0 that one can find δ1 > 0 small enough that if σn < δ1,
then

σ−(fn−1) <
δ1C

1− δ1
< 1− δ1.

Using in addition that s−(fn) > 1/C and ω−(fn) < K, we can find δ2 > 0
sufficiently small that if σn > 1− δ2, then

σ−(fn−1) >
1− δ2

Cδ2(δ2eK/2 + 1− δ2)
> 1.

In this case, by making δ2 even smaller, we obtain by Lemma 8,

σ+(fn−1) = σ+(fn) + (1− σ+)Mω−(fn)(σn))

> (1− σ+(fn))(−Cδ2 +
1− δ2

δ2eK/2 + 1− δ2
)

> δ2.

For δ− = min{δ1, δ2}, we obtain that δ−-boundedness cannot be broken for all
n such that zn = −.
2) Suppose that zn = +. Then s+(fn) is uniformly bounded, i.e.,

1/C < σn
σ−(fn)

σ−(fn)− 1
< C.

Our first goal is to find δ3 > 0 sufficiently small that σn > 1 − δ3 implies
σ+(fn−1) > δ3. By Lemma 8,

σ+(fn−1) =
σ−(fn)Mω+(fn)(σn)− 1

σ−(fn)− 1
= 1−

σ−(fn)(1−Mω+(fn)(σn)

σ−(fn)− 1

> 1−
(1−Mω+(fn)(σn))C

σn
.

As ω+(fn) < K, then the claim follows from the final inequality.
Next, we find δ4 > 0 sufficiently small that σn < δ4 implies σ+(fn−1) < δ4 or
σ−(fn−1) < 1− δ4. Note that since ω+(fn) > 0,

σ+(fn−1) = 1−
(1−Mω+(fn)(σn))σ−(fn))

σ−(fn)− 1
< σn,

which proves our first claim. For the second claim, note that

σ−(fn−1) < Cσn(σ−(fn)− 1),
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so it suffices to check that for σn sufficiently small, σ−(fn) is uniformly bounded.
Note that s−(fn−1) < C, so as ω+(fn) > 0, by the renormalization formulas for
slopes,

C > s−(fn−1) > s−(fn)s+(fn) = σ−(fn)(1− σn).

Hence, there exists δ4 sufficiently small that σ−(fn) is uniformly bounded, in
which case σ−(fn−1) is bounded by a uniform multiple of δ4, which was what
we wanted. Once we set δ+ = min{δ3, δ4} and δ = min{δ−, δ+}, we see that the
sequence (σ, z) is δ-bounded. By Möbius symmetry, the same conclusion holds
when K < 0.

Lemma 15. Let S denote the right shift operator. Then S preserves WK,δ.
Moreover, on WK , S is the inverse of renormalization.

Proof. Since all weights in Sf appear in f , then it is apparent that they are
uniformly bounded. It remains to check that the right shift of a δ-bounded renor-
malization scheme is δ-bounded. As both of the conditions for δ-boundedness
depend only on the order of the renormalization scheme, and the order is pre-
served by S, the claim follows.

Now suppose that f ∈ WK . Recalling that Rfn = fn−1, it is evident that
R(Sf) = f . In addition, if f is renormalizable, then one can construct the
sequence (Rf)z for which Rfn = fn−1 and zn = sign(ln(σ−(fn−1))). Note that
as there are no restrictions on σz(f), it is only certain that Rf

z
lies in WK , but

when it exists, it is also evident that S(Rf)z = f . This completes the proof.

From the way we have defined WK , it doesn’t follow that every sequence in
WK is renormalizable.

5.3 Distortion Graphs and their Metric

Definition 34. We let Γ denote the space of distortion graphs γ : W →
M×M such that π(γ(f)) = (ω−(f), ω+(f)) and ||γ(WK)|| is uniformly bounded
for all K ∈ R. We endow Γ with the metric

||γ1 − γ2|| = sup
f∈W

||γ1(f)− γ2(f)||.

Lemma 16. Γ is a Banach space.

Proof. Note that Γ is the space of maps into the Banach space M×M, endowed
with the uniform distance, so it is itself complete, hence a Banach space.

5.4 Graph Transforms of Distortion Graphs

Definition 35. Let γ ∈ Γ. We define the graph transform to be the operator
G : Γ → Γ given by

Gγ(f
z
) = R(σ, z)γ(Sf

z
),

where (σ, z) denotes the renormalization scheme of f
z
. Furthermore, we define

the fast graph transform to be the operator Gfast : Γ → Γ given by

Gfastγ(fz
) = Rfast(σ, z)γ(Sn1(f

z
)),

where n1 is the first index of the fast renormalization subsequence of (σ, z).
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Remark.

Gkγ(f
z
) = Rk(σ, z)γ(Sk(f

z
)),

Gk
fastγ(fz

) = Rk
fast(σ, z)γ(Snk(f

z
)).

5.5 Contraction of the Fast Graph Transform on WK,δ

Definition 36. Let ΓK,δ, ΓK denote the spaces of graphs in Γ restricted to
WK,δ and WK , respectively.

Remark. G,Gfast preserve ΓK,δ.

Lemma 17. G3
fast is a contraction on the space of uniformly bounded graphs in

ΓK,δ.

Proof. Fix ΓK,δ. Let γ1, γ2 ∈ ΓK,δ be uniformly bounded by L > 0. Then, by
the Contraction Theorem, there exists κ < 1 depending only on L and δ such
that for any f ∈ WK,δ with renormalization scheme (σ, z),

||G3
fastγ1(f)− G3

fastγ2(f)|| = ||R3
fast(σ, z)γ1(Sn3f)−R3

fast(σ, z)γ2(Sn3f)||
< κ||γ1(Sn3f)− γ2(Sn3f)|| < κ||γ2 − γ1||,

since γ1(Sn3f), γ2(Sn3f) are in the same slice of M×M. Thus,

||G3
fastγ1 − G3

fastγ2|| < κ||γ1 − γ2||, which was what we wanted.

5.6 Convergence Theorem

Theorem 2 (Convergence Theorem). There exists a G-invariant graph in Γ,
i.e., over every f in the unstable manifolds of renormalization lies an R-invariant
distortion measure.

Proof. Note that for any choice of K, δ, ΓK,δ is a complete space, upon which
by Lemma 17 the fast graph transform acts as a contraction in three steps.
Moreover, by Lemma 14, the distortion measure pairs γ(f) remain uniformly
bounded after application of the fast graph transform, so there is a uniform
rate κ of contraction for uniformly bounded γ. Hence, being a contraction on
a complete space, there exists a unique fixed point of Gfast in ΓK,δ. Letting δ
range over (0, 1/2), we obtain a fixed point on ΓK . And finally, since Γ is the
disjoint union of the spaces ΓK , we obtain a unique fixed point for Γ. Finally,
we can use that G doesn’t expand distances to prove that the fixed point for
Gfast is also a fixed point for G. As the unstable manifolds of renormalization for
Ω can be embedded into W , it follows that they have an associated R-invariant
distortion measure pair.

6 Properties of Limiting Distortion Measures

6.1 Monotonicity Properties

Lemma 18. Let (µ−, µ+) be the R-invariant measure associated to f ∈ WK,δ.
Then:
1) If K = 0, then (µ−, µ+) is the zero measure.
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2) If K ̸= 0, then (µ−, µ+) is either strictly negative, or strictly positive, with
the same sign as K.

Proof. 1) Note that all renormalization operators preserve the zero measure pair
(0, 0), so by uniqueness of he G fixed point of Γ0, (µ−, µ+) = (0, 0).
2) Suppose that K ̸= 0. Observe that if (ν−, ν+) are either both strictly positive
or both strictly negative, then that property is preserved by any renormalization
operator Rσ

z . Hence, this property is also preserved by G, so the G fixed point of
ΓK , which can be attained as the limit of G on such strictly monotone distortion
measure pairs, must share that monotone property. It just remains to remark
that if (µ−, µ+) are either both strictly positive, or both strictly negative, and
lie in (M×M)K , then µ−, µ+ share the same sign as K.

6.2 Results for Bounded Combinatorics

6.2.1 Definition of (N, δ)-bounded Combinatorics

Definition 37. For N ∈ N and δ ∈ (0, 1/2), a renormalization scheme (σ, z) is
said to be (N, δ)-bounded if the sign of zn changes at most in every N +1 steps
and σn ∈ (δ, 1− δ) for all n ∈ N.

Remark. (N, δ)-bounded renormalization schemes correspond to bounded com-
binatorics of Möbius circle maps.

6.2.2 Dyadic Doubling of (N, δ)-bounded Distortion Measures

Definition 38. A measure µ defined on A is said to be dyadic doubling if the
measure of any two standard dyadic intervals of scale n that share a common
dyadic ancestor at scale n− 1 are proportional by a constant independent of n.

Remark. If µ is dyadic doubling, then µ is also bi-Hölder.

Proposition 8. Suppose that the renormalization scheme (σ, z) is (N, δ)-bounded.
Then for any f ∈ WK with the same renormalization scheme, the correspond-
ing R-invariant distortion measure pair of f is composed of dyadic doubling
measures.

Proof. Let (σ, z) be an (N, δ)-bounded renormalization scheme associated to
f ∈ WK,δ. Since σn ∈ (δ, 1−δ) for all n ∈ N, it is trivial to check that an (N, δ)-
bounded renormalization scheme is δ-bounded. Let (µ−, µ+) be the invariant
distortion measure pair associated to f . Note that Snf also has an associated in-
variant distortion measure pair with an (N, δ)-bounded renormalization scheme
for all n ∈ N. We will first find a lower bound for µ±(0, 1], which will provide
us with the first proportional estimates. As an upper bound, by Lemma 18,
|µ−(0, 1]|, |µ+(0, 1]| ≤ |K|. Without loss of generality, suppose that z1 = −. By
the Zoom Contraction Law, there exists κ < 1 depending only on δ and |K| such
that |µ−(0, 1]| < κ|K|, so |µ+(0, 1]| > (1 − κ)|K|. Now suppose that n1 ≤ N
(because the renormalization scheme is (N, δ)-bounded) is the first index of the
fast renormalization subsequence of (σ, z). Assume that (µ1,−, µ1,+) are the
associated invariant measures of Sn1f . By symmetry, as zn1+1 = +, we obtain
that |µ1,−(0, 1]| > (1 − κ)|K|. To get back to (µ−, µ+), we apply the operator
sequence Rσ1

− ◦ ... ◦Rσn1
− , which acts on µ1,− as a zoom to an interval of length
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σ1σ2...σn1
, which has size bounded above by δN . By the Zoom Contraction Law

applied to the complementary interval, there exists κ̃ < 1 depending only on
|K|, 1−δN such that µ−(0, 1] > (1−κ̃)(1−κ)|K|, which was what we wanted. By
symmetry, if z1 = +, then |µ−(0, 1]| > (1−κ)|K|, |µ+(0, 1]| > (1− κ̃)(1−κ)|K|.
This proves the desired lower bounds.

The next step is a technical result. It claims that if ω2 = Cω1 for C >
1, |ω2| < 4 and if I ⊆ [0, 1] is a subinterval, then∫

I
ηω2∫

I
ηω1

<
C

1− |ω2|/4
.

To prove this, note that the ratio
ηω2

(x)

ηω1(x)
is bounded above by

η|ω2|(1)

η|ω1|(1)
, since the

derivative Dηω(x) equals [ηω(x)]
2/2, which is strictly monotone and increases

with |ηω(x)|. Hence, by using power series expansions,∫
I
ηω2∫

I
ηω1

<
e|ω2|/2 − 1

e|ω1|/2 − 1
<

C|ω1|/2 + (C|ω1|/2)2/2! + ...

|ω1|/2

<

∞∑
i=0

C(|ω2|/4)i =
C

1− |ω2|/4
,

where we utilized that |ω2|/4 < 1 to write the geometric sequence in closed
form. This completes the proof of the claim.

By the Zoom Contraction Law, any time a distortion measure is cut by a
zoom operator, its size shrinks at least by a factor of κ < 1, where κ depends
on |K| and δ. Thus, for some finite integer k depending on |K| and κ, if
the mass µ±(τ1, τ2] was obtained by applying k zoom operators to one of the
invariant measures associated to Smf , then µ±(τ1, τ2] < 1. Keep in mind that
for any pair (z, (τ1, τ2]) of a sign with a standard dyadic interval of scale n ≥ 1
(corresponding to µz(τ1, τ2]), there exists a unique pair (z̃, (τ̃1, τ̃2]), where (τ̃1, τ̃2]
is a standard dyadic interval of scale either n or n−1, for which µz(τ1, τ2] either
equals, or was obtained as a zoom from µ1,z̃(τ̃1, τ̃2], where µ1,± are the invariant
measures associated to Sf . This process of selecting ancestors can be iterated
backwards in time, until an interval of unit size is obtained. As the sign of the
renormalization operator changes at most every N + 1 steps, it follows that an
interval must have been zoomed at least once every N + 1 steps during this
sequence. Consequently, any sufficiently small standard dyadic interval, say of
size 2−m, has measure bounded by 1, and this holds true for any of the invariant
distortion measures µk,± associated to Skf . Note that the selection of ancestors
sends pairs of standard dyadic intervals of scale n > 1 with common ancestors
to pairs that satisfy the same property. As a result, the proportions between
measures of standard dyadic intervals sharing the same ancestor can only change
by means of a zoom operation. We observe that if Tn−1 is the ancestor of the
standard dyadic interval Tn, and µ±(Tn−1) = Cµ±(Tn) for C > 1, then if
1 > |I| > δ > 0, it follows that

ZIµ±(Tn−1)

ZIµ±(Tn)
<

C

1− κ
,

because ZI must preserve at least 1− κ of the original mass of Tn and
|ZIµ±(Tn−1)| < µ±(Tn−1). Applying this claim for the first k zooms backwards
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in time, and the previous claim for all zooms afterwards, it would suffice to
show that if T̃ is the dyadic ancestor of a standard dyadic interval T , then
µ±(T ) is uniformly proportional to µ±(T̃ ). Since the measure of intervals decays
exponentially to 0, and it takes only k zooms to get to intervals of scale m, for
which the proportion decays at most by (1− κ), it follows that the claim holds
true whenever the sequence of ancestors share left endpoints, since then the
zoom operators are always the same, and the proportion of weights can only
shrink from that point by the exponentially decaying factors 1−µ±(T̃ )/4 > 3/4.
If T̃ and T share a right endpoint, then the zoom interval is transformed by
a Möbius transformation of weight µ±(T1), where T1 is the standard dyadic
interval complementary to T whose ancestor is T̃ . When T1 is of of sufficiently
bounded scale, the interval shrinks by at most a factor of 1 − |µ±(T1)| which
exponentially decays to 1. Thus, the claim holds for all dyadic successors T of
T̃ , which was what we wanted.
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