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Abstract of the Dissertation

Nonexistence of Wandering Domains for Infinitely Renormalizable Hénon Maps

by

Dyi-Shing Ou

Doctor of Philosophy

in

Mathematics

Stony Brook University

2018

In the thesis, I proved the absence of wandering domains for strongly dissipative infinitely renor-
malizable Hénon-like maps with arbitrary stationary combinatorics. The theorem solves an open
problem proposed by van Strien (2010) [vS10] and Lyubich and Martens (2011) [LM11], and
opens a direction of studying the existence of wandering domains in higher-dimensional systems.
Unimodal maps are a reduced version of Hénon-like maps in one-dimension and unimodal maps
do not have wandering intervals. However, the classical proofs for unimodal maps break down in
the Hénon setting. To resolve this issue, two higher-dimensional techniques, “the area argument”
and “the good region and the bad region”, are introduced in the thesis to prove the theorem.

The proof is split into two cases. The first case covers infinitely period-doubling renormalizable
Hénon-like maps. The second case covers infinitely renormalizable Hénon-like maps with station-
ary combinatorics other than period-doubling. The difference between the proofs of the two cases
is the way of how we measure the expansion of a set when it is iterated under a Hénon-like map.
The prior case relies on the Euclidean metric, and the later case relies on the hyperbolic metric.
The two cases are disjoint, and together solve the problem for all stationary combinatorics.

As an application, the theorem enriches our understanding about the topological structure of the
heteroclinic web: the union of the stable manifolds forms a dense set in the domain.
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1. Introduction

Dynamical systems is a field in mathematics that studies the long time behavior of a mathematical
model that depends on time. The behavior of a system at a certain moment is described by an
element in a set which is called the phase space, and the evolution of the behavior at the next
moment of a time is modeled by a map (for discrete-time) or a flow (for continuous-time).

A simplest type of discrete-time dynamical systems is the iteration of a linear map overRn or Tn.
We identify the n-tours Tn as a quotient of Rn over the group of integral vectors. The dynamics of
a linear map overRn is simple. The system has only one periodic orbit at the origin which is a fixed
point and the behavior of other points depends on the eigenvalues and eigenvectors. An eigenvalue
λ is called attracting if |λ |< 1, indifferent if |λ |= 1, and repelling if |λ |> 1. Hyperbolic systems
are the linear maps that do not have indifferent eigenvalues. The dynamical behavior is completely
described by two subspaces. The stable manifold is the direct sum of all generalized eigenspaces
associated to the attracting eigenvalues. The orbits of all points on the stable manifold move
toward to the fixed point. The unstable manifold is the direct sum of all generalized eigenspaces
associated to the repelling eigenvalues. The orbits of all points on the hypersurface move away
from the fixed point. For non-hyperbolic systems, the dynamics on a subspace formed by the
indifferent eigenvectors can still be understood by the structure of the associated Jordan blocks.

The dynamics of a linear map over Tn is similar to the case of Rn. The only difference comes
from the fact that a linear map over Tn may have more than one periodic orbit, and the stable
manifold and the unstable manifold may form a dense set in the domain. In the case of hyperbolic
systems, the manifolds are transverse at any intersection point which looks like a woven textile
structure. This is called a local product structure.

For a nonlinear system, the local behavior of the map around a hyperbolic fixed point (or periodic
orbit) can be fully analyzed by linearizing the map. A fixed point is hyperbolic if the derivative
at the point does not have an indifferent eigenvalue. However, the linear theory does not apply
to nonhyperbolic periodic orbits. On the other hand, the global picture of the dynamics cannot
be understood by the local behavior even when all periodic orbits are hyperbolic. A hyperbolic
periodic orbit also has a stable manifold and an unstable manifold, but they are no longer hyper-
plains as they become submanifolds of the domain. The manifolds are transversal at the periodic
orbit, but they may have a tangential intersection away from the periodic orbit and hence the man-
ifolds do not form a local product structure. Both of the issues have the same characteristic: the
tangent space cannot be decomposed as a direct sum of a expanding and a contracting subspace.
Those points are called nonhyperbolic. Nonhyperbolic systems can lead to interesting dynamical
aspects. A famous example is the period-doubling bifurcation of the family of logistic maps in
one-dimensional dynamics. To understand the dynamics of a system when tangencies of the stable
and unstable manifolds occur, Hénon maps serves as a simple model for realizing the homoclinic
and hetroclinic tangencies.

A Hénon-like map F : D⊂ R2→ R2 is a discrete-time dynamical system on a two-dimensional

1



1. Introduction

phase space D. It is an analytic map of the form

F(x,y) = ( f (x)− ε(x,y),x) (1.1)

where f is a unimodal map. A unimodal map is a differentiable map on the real line that has
exactly one turning point in the interior of its domain. A Hénon-like map is dissipative if it is area
contracting, i.e. the determin of the Jacobian |detDF | is strictly lesser than one. Strongly dissi-
pative means that the Jacobian is small. Figure 1.1 illustrates the image of a strongly dissipative
Hénon-like map. These maps are a generalization of the classical Hénon family [Hén76]

Fa,b(x,y) = (1−ax2−by,x) (1.2)

to the analytic setting, and an extension of unimodal maps from one- to two-dimensions.

f

ϵ

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 1.1.: The image of a
Hénon map.

In this thesis, we will study the dynamical behavior of Hénon-
like maps by using a dynamical object that is called wandering
domain and establish the theorem:

Theorem (Main Theorem). A strongly dissipative infinitely renor-
malizable Hénon-like map of arbitrary stationary combinatorics
does not have a wandering domain.

The definition of wandering domain may defer on the system aim-
ing to study. Here, we define wandering domain to be a connected
open subset that is disjoint from the stable manifold of any periodic
point. This is equivalent to the classical definition for unimodal
maps (Remark 7.2). Renormalizable maps are the maps that ex-
hibit similar dynamical behavior in different scales which will be
discussed later.

It is known that unimodal maps do not have wandering intervals [Guc79, dMvS88, dMvS89,
Lyu89, BL89, MdMvS92]. The theorem shows that this property can be extended to higher di-
mension and solves an open problem proposed by van Strien [vS10] and Lyubich and Martens
[LM11]. As an application, the theorem enriches our understanding of the topological structure of
the heteroclinic web: the union of the stable manifolds forms a dense set in the domain.

The subject of wandering domain in different systems.

The problem of existence of wandering domains has a broad interest in the field of dynamics.
Points in a wandering domain have similar dynamical behavior and have orbits wander around.
Excluding these kinds of domain is a popular research topic and has different aspects in different
systems.

Real one-dimensional systems. In real one-dimensional systems, the absence of wandering
intervals helps to solve the classification problem. Two discrete-time dynamical systems f : X→ X
and g : Y →Y are said to be topological semi-conjugate if there exists a continuous surjective map
h : X → Y such that h ◦ f = g ◦ h. The map h is called a semi-conjugacy. The two maps are
topological conjugate if h is a homeomorphism. The conjugacy h acts as a change of coordinate.

2



In this context, a wandering interval is a nonempty open interval that has disjoint orbit and the orbit
does not approach a periodic orbit.

One example is the class of circle homeomorphisms. We consider the circle S1 as the quotient
of the real numbers over the group of integers R/Z. The study of the dynamics of circle home-
omorphism started from Poincaré in 1881 [Poi86]. He classified the orientation-preserving circle
homeomorphisms by a quantity that is called the rotation number ρ( f ) ∈ S1: the average transla-
tion of an orbit. The quantity is independent of the choice of orbit. A rigid rotation is the special
case when the size of translation is a fixed value. He showed that

Theorem. For any orientation-preserving circle homeomorphism with irrational rotation number,
the map is topological semi-conjugated to the rigid rotation that has the same rotation number.
In addition, the maps are topological conjugate if the circle homeomorphism has no wandering
interval.

Wandering intervals are exactly the gaps consisting the points that are sent to a same point by
the semi-conjugacy. In terms of the long-time behavior of the system, the absence of wandering
intervals is equivalent of saying that the orbit of any point is dense in the circle. Therefore, studying
the existence of wandering intervals turns out to be an important subject.

Denjoy [Den32] strengthened the theorem of Poincaré by giving the conditions for the absence
of wandering intervals:

Theorem. Assume that the map f : S1→ S1 is an orientation-preserving C1 diffeomorphism with
irrational rotation number. If log( f ′) has bounded variation, then the map has no wandering
interval.

Schwartz [Sch63] gave a different proof by assuming that log( f ′) is Lipschitz. There are exam-
ples showing that the regularity conditions imposed to the map are essential. Bohl [Boh16], Kneser
[Kne24], and Denjoy [Den32] produced counterexamples of C1 circle diffeomorphisms of arbitrary
irrational rotation number having wandering intervals. Herman [Her79] improved the result by
constructing counterexamples of C1+α diffeomorphisms (with the derivative having some Hölder
continuity). In addition, the techniques developed by Denjoy [Den32] and Schwartz [Sch63] can-
not handle critical circle maps. Hall [Hal81] found counterexamples of C∞ homeomorphisms with
at most two critical points. On the other hand, the conditions are not sharp. The paper of Hu and
Sullivan [HS97] improved the Denjoy’s theorem by assuming log( f ′) to have bounded Zygmund
variation and bounded quadratic variation. In contrast to the work of Hall, the paper by Yoccoz
[Yoc84] extended the Denjoy’s theorem to critical circle homeomorphisms: allowing the map to
have critical points but restricting the regularity of the map to be analytic.

Another example is the class of unimodal maps. A unimodal map is a continuous endomorphism
on a compact interval that has a unique turning point in the interior of the interval. We assume that
the turning point is the maximal point of the map. The dynamics of a unimodal map is determined
by the kneading sequence [MT88], which encodes the combinatorics of the orbit of the critical
point.

Guckenheimer [Guc79] had developed an analog of the Poincaré theory for unimodal maps: if
two unimodal maps have the same kneading sequence which is not periodic and both of them have
no wandering intervals, then the two maps are topological conjugate. In particular, he showed that
C3 unimodal maps with negative Schwarzian derivative do not have wandering intervals. Only C3

3



1. Introduction

regularity is not enough. Some additional conditions are required in order to take care of the critical
points. Similar to the examples of circle homeomorphisms, there are C∞ unimodal maps with a
flat critical point exhibiting wandering intervals [SI83, dM87]. There are other works weakened
the hypothesis or generalized the theorem to multimodal maps [dMvS88, dMvS89, Lyu89, BL89,
MdMvS92], but all require some non-flatness around the critical point.

Complex one-dimension systems. In complex one-dimension, the Fatou set and the Julia
set are two complementary sets in the domain. The Fatou set contains points that have the same
asymptotic behavior on their neighborhoods. The Julia set is the compliment of the Fatou set. It
contains points that have wild behavior: the behavior of an orbit depends sensitively on the initial
point.

A Fatou component is a connected component of the Fatou set. The domain is decomposed by
the components into regions with different dynamical behaviors. The dynamics of a periodic Fatou
component is classified into several categories by the behavior of its first-return-map [Cre32, Fat]:

• Attracting: the orbits of the points approach an attracting periodic orbit which belongs in the
interior of the component.

• Parabolic: the orbits of the points approach a parabolic periodic orbit which lies on the
boundary of of the component.

• Siegel disk: the dynamics on the component is equivalent to a rigid rotation on a disc.

• Herman ring: the dynamics on the component is equivalent to a rigid rotation on an annulus.

• Baker domain: the orbits of the points approach an essential singular point which lies on the
boundary of the component.

The remaining possibility is the case when a component is not eventually periodic. Those compo-
nents are called wandering domains. Equivalently, a wandering domain is a Fatou component that
has a disjoint orbit.

A rational map is a quotient of two polynomials defined on the Riemann sphere. The possible
types of Fatou components is clear in the setting of rational maps. An attracting Fatou component
occurs when there is an attracting periodic point. A parabolic Fatou component is observed around
an indifferent periodic point has a multiplier that is a root of unity. Seigel [Sie42] showed that a
holomorphic map is linearizable around an indifferent periodic point for some multipliers that are
not a root of unity (irrational rotation), and its neighborhood forms a Siegel disk. Herman [Her79]
found an example of a rational map with a Herman ring. Obviously, a rational map does not have
Baker domains. Finally, Sullivan [Sul85] completed the last puzzle of the classification of Fatou
components by excluding the possibility of having a wandering domain. In other words, all Fatou
components are eventually periodic and belong to one of the first four categories.
Not complete
(meromorphic functions)
On the other hand, Baker domains and wandering domains [Bak76, Bak84, Her84, Sul85, EL87,
Bis15, FGJ15] appear in other types of meromorphic functions.
//Unlike rational maps, there are transcendental maps having wandering domains . There are also
some types of transcendental maps that do not have wandering domains [GK86, EL92, BHK+93,
MBRG13].
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Real higher-dimensions systems. In higher dimensions, the classification problem be-
comes a delicate problem. Topological equivalence breaks down between any two different levels
of differentiability. The work of Harrison [Har75, Har79] showed that for every d-manifold with
d 6= 1,4 and integer r ≥ 0, there exists a Cr diffeomorphism that is not topologically conjugate
to any Cr+1 diffeomorphism. The paper of Hazard, Martens, and Tresser [HMT18] studied the
possible combinatorics behavior of a Hénon-like map with zero entropy. They showed that un-
like the one-dimensional case, infinitely many parameters are needed to exhaust all the possible
topological types.

Nevertheless, due to the successful of the Denjoy theory on the circle, there are attempts of
generalizing the Denjoy theory to higher-dimensional systems. Bonatti, Gambaudo, Lion, Tresser
[BGLT94] studied infinitely renormalizable diffeomorphisms of the disk. They proved that a dif-
feomorphism has no wandering domain when the map is smooth enough (C1 Hölder with bounded
geometry), and proved the existence of a diffeomorphism consisting wandering domains when the
regularity is not sufficient (C1). Norton [Nor91] excluded the occurrence of some types of wan-
dering domains for a C3 diffeomorphism of a compact smooth 2-manifold. There are also some
works of developing a similar theory for higher-dimensional torus by proving the nonexistence of
wandering domains when there is enough smoothness and finding examples that have wandering
domains when the regularity is not enough. Mc Swiggen [McS93, McS95] proved that for any
dimension k and constant ε > 0, there exists a Ck+1−ε diffeomorphism of the k-torus that acts like
a rotation but has a wandering domain. He also conjectured that Ck+1 might be the upper bound of
the smoothness for having wandering domains. In the other direction, Norton and Sullivan [NS96]
showed that a C3 diffeomorphism on a 2-tours that acts like a rotation does not have circular wan-
dering domains. And the results was extended to higher dimensional torus by Navas [Nav17].
However, the problem is still unsolved.

In higher dimensions, nonhyperbolic phenomena are used to construct examples exhibiting wan-
dering domains [CV01, KS17, KNS17]. Hyperbolic systems are the maps that have uniformly
controlled contraction and expansion. In particular, a relevant work by Kiriki and Soma [KS17]
found examples of Hénon-like maps close to F2,0 from 1.2 having wandering domains. The main
theorem does not overlap with their work. In the thesis, the Hénon-like maps in consideration
are real analytic, and the maps are away from having a homoclinic tangency. However, in their
article, the maps they found having wandering domains have only finite differentiability, and their
construction relies on the existence of maps arbitrary close to F2,0 containing homoclinic tangency
[KLS10, KS13].

In this thesis, we center on strongly dissipative infinite renormalizable Hénon-like maps of ar-
bitrary stationary combinatorics. The main theorem covers maps that are not hyperbolic. For the
period-doubling combinatorics, the unique invariant measure of the Cantor set has a 0 character-
istic exponent [dCLM05, Theorem 6.3]. Indeed, the main issue occurs when the expansion and
contraction are out of control in the region called “the bad region”. The solution is to rely on the
“hyperbolicity” of area instead of the expansion or contraction of length: the contraction of area
is uniform bounded because of the map has a universal shape around the tip [dCLM05, Theorem
7.9].

Complex higher-dimensions systems. In complex higher-dimensions, counterexamples
in transcendental maps can be constructed from one-dimensional examples [FS98] by taking di-
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1. Introduction

ff 2

R f

s

P

I I

Figure 1.2.: A period-doubling renormalizable unimodal map f and its renormalization R f .

rect products. For polynomial maps, very little was known about the existence of wandering Fa-
tou components until recent developments on polynomial skew-products [Lil04, ABD+16, PS17,
PR17, PV16], which are the maps of the form

F(z,w) = ( f (z,w),g(w)).

Unlike the one-dimensional case, Astorg, Buff, Dujardin, Peters, and Raissy [ABD+16] found a
polynomial skew-product possessing a wandering Fatou component as the quasi-conformal meth-
ods break down. The reader can refer to the survey [Rai16] for more details about other relevant
work on polynomial skew-product [Lil04, PS17, PR17, PV16].

The study of complex Hénon maps is motivated by the classification of polynomial automor-
phisms [FM89]. Those maps have the same form as in (1.1) but covers a broader class of functions
by allowing f to be any polynomial [Hub86, HOV95] or analytic map [Duj04]. A recent paper
by Arosio, Benini, Fornæss, and Peters [ABFP18] found transcendental Hénon maps exhibiting
a wandering domain. Those are similar to the examples found in one-dimensional transcendental
maps. Nevertheless, the problem is still unsolved [Bed15] for complex polynomial Hénon maps.

Renormalization.

Renormalization is an important procedure that allows people to study the dynamics on a different
scale. In the degenerate case, a unimodal map f : I→ I is renormalizable if there exists a subin-
terval P⊂ I and an integer n such that f n(P)⊂ P and the restriction of f n to P is also a unimodal
map. The map acts on the orbit of the intervals P, f (P), · · · , f n−1(P) like a permutation which is
called the combinatorics of renormalization. For example, period-doubling means n = 2. Finally,
the renormalization is the coordinate change R f = s ◦ f n ◦ s−1 that brings the domain P of the
n-th iterate back to the unit interval I by the affine rescaling map s : P→ I which turns R f into
a unimodal map on I. Figure 1.2 shows an illustration of the period-doubling renormalization of
a unimodal map. A map is called infinitely renormalizable with stationary combinatorics if the
procedure of renormalization can be applied infinitely many times and all renormalizations have
the same combinatorics.
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(a) A six times period-doubling renormal-
izable Hénon map.
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(b) A Hénon map that is not period-
doubling renormalizable.

Figure 1.3.: The 7501 to 10000 iterates of a random point by a Hénon-like map.

Renormalization can also be done in the Hénon setting. In this thesis, we will apply the tools of
Hénon-renormalization based on the framework developed by de Carvalho, Lyubich, and Martens
[dCLM05] for the period-doubling combinatorics and Hazard [dCLM05, Haz11] for other combi-
natorics. The Hénon-renormalization turns out to be much more delicate because the rescaling map
is not affine. Several papers [BGLT94, MW14, MW16] in different contexts show the condition
“infinitely renormalizable” is sufficient for the absence of wandering domains. In this thesis, we
will make use of this condition to prove the main theorem. By the hyperbolicity of the renormal-
ization operator, the renormalization RnF converges to the one-dimensional renormalization fixed
point. We will show that the size of the region, called the bad region, where the map RnF behaves
different from the degenerate case converges to 0 at a super-exponential rate. Roughly speaking,
the case when the expansion and contraction are out of control becomes less likely to happen as the
renormalization applies to the map more times. Therefore, we will show that the estimates from
one-dimension (unimodal maps) also apply to Hénon-like maps except finitely many exceptions.

Dynamics of Hénon-like maps

One of the important problems in dynamics is to study the long time behavior of a system. Such
limiting behavior is characterized by attracting sets. An attracting set is a closed set such that many
points evolve toward the set. And the collection of the points is called the basin of the attracting set.
One type of attracting set is the omega limit set which describes the limiting behavior of a point.
The omega limit set ω(x) of a point x is defined as ω(x) = ∩∞

n=1O( f n(x)) where O(x) stands for
the forward orbit of the point x. Figure 1.3 shows two numerical experiments plotting the limiting
trajectory of an orbit. A strange attractor is an attracting set having chaotic behavior (depends
sensitivity on the initial condition).

Hénon maps are famous of its chaotic limiting behavior since Hénon first discovered the strange
attractor in the classical Hénon family [Hén76]. For a strongly dissipative infinitely period-doubling
renormalizable Hénon map, the omega limit sets are classified into two categories: it can be either
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1. Introduction

a saddle periodic orbit (of period 2n) or the renormalization Cantor set [GvST89, LM11]. The
dynamics on the Cantor set is conjugated to the dyadic adding machine. Figure 1.3a shows a nu-
merical simulation of the Cantor set. The structure of the omega limit set is similar to the hierarchy
structure for unimodal maps [JR80]. From the dichotomy, the topological structure of the stable
manifolds fully characterizes the long time behavior of the map. As an application of the main
theorem, we show that the union of the stable manifolds is dense. In other words, the basin of the
Cantor set has no interior even though it has full Lebesgue measure.

Idea of the Proof

When ε = 0 in (1.1), the behavior of the Hénon-like map is fully characterized by the unimodal
component f . This is called a degenerate Hénon-like map. One can view the class of unimodal
maps as a subset of the class of the Hénon-like maps by identifying a unimodal map as a degenerate
Hénon-like map. It is known that unimodal maps do not have wandering intervals. The proof for
the Hénon-like maps is motivated from a proof for the degenerate case.

For the degenerate case, we prove by contradiction: assume that an infinitely renormalizable
unimodal map f with stationary combinatorics has a wandering interval J. The map is renormal-
izable, so the first return map of f is defined on some subinterval P(1) of the domain P(0). One
can define a rescaling map φ that enlarge the subinterval P(1) back to the original scale P(0). The
rescaled first return map RF = φ ◦ f n ◦φ−1 is also a unimodal map that is called the renormaliza-
tion of the map. Since the map is infinitely renormalizable, procedure or renormalization can be
repeated infinitely many times.

Then we define a rescaled orbit of the wandering interval J that closest approaches to the critical
value by iterating and rescaling the interval J. The rescaled orbit is called the J-closest approach.
Then we study the sizes of the orbit elements. For the infinite period-doubling renormalizable
case, the sizes are measured by the Euclidean metric; for other stationary combinatorics, the sizes
are measured by the hyperbolic metric. We prove an expansion estimate: the sizes of the orbit
elements expand at a definite rate. This leads to a contradiction because the size of the domain is
bounded but the sizes of the orbit elements approach infinity.

Motivated from the degenerate case, our goal is to prove an analog version of the expansion for
Hénon-like maps then show that the (one-dimensional) sizes of the elements in a closest approach
tend to infinity. Based on how the sizes are measure, the proof is split into two parts. Part I focuses
on the period-doubling combinatorics. In this case, we will measure the sizes of the elements
by the horizontal size. This is a generalization of the Euclidean measurement from one- to two-
dimensions. Part II covers the remaining cases but not period-doubling. In this case, we will
measure the sizes by the hyperbolic size which is a generalization of the hyperbolic length.

However, in the Hénon case, the expansion estimate breaks down because of nonhyperbolic
behavior. In the thesis, we will develop two techniques to resolve the issue:

1. The good region and the bad region

2. The area argument

The domain of a Hénon-like map is classified into two complimentary areas: the good region
and the bad region. The good region is an area where the Hénon-like map behaves like a unimodal
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map. In particular, the expansion estimate can be promoted to the Hénon-like map when the
closest approach stays in the good region. We note that the proof for the expansion estimates in
Part I and Part II are not exchangeable. The bad region is an area where the Hénon-like map
behaves different from a unimodal map. The expansion or contraction of the size is out of control
because of nonhyperbolicity whenever an element enters the bad region. The size of the bad region
is determined by the size of ε . The size of ε measures how far the Hénon-like map is away from
the class of unimodal maps.

To take care of the nonhyperbolicity in the bad region, we rely on studying the contraction of
the areas of the orbit elements. This is because that we have “hyperbolicty” over the area due to
the universality around the tip: the Jacobian of the map has a uniform controlled lower bound.
This is called the area argument. The area provides a good estimate for the contraction of the
(one-dimensional) sizes when the expansion estimate breaks down.

In order to show that the (one-dimensional) sizes approach infinity, we prove that the contraction
happens at most finitely many times. This is achieved by showing that a closest approach have at
most finite entries to the bad regions. The proof based on several key ingredients:

1. When an element in a closest approach enters the bad region, the size of that element cannot
exceed the size of the bad region. This means that if the size of the bad region is small, a closest
approach have a small chance of entering the bad region.

2. Whenever an element in a closest approach is rescaled, then we renormalize the map and iter-
ate the rescaled element by the renormalized map. By the hyperbolicity of the Hénon-renormalization
operator, the renormalized map becomes closer to the class of unimodal maps. This means that
the size of the bad region becomes smaller whenever we renormalize the map. In other words, the
closest approach becomes less likely to enter the bad region whenever a rescaling is applied.

3. When an element enters the bad region, a large amount of rescaling is applied to the element.
After combining all of the ingredients, roughly speaking, we will show that the sizes of the bad re-
gions contract faster than the contraction of the (one-dimensional) sizes of the elements in a closest
approach. This relies on delicate estimations given from the expansion estimate, the contraction
of the area, the size of the bad region, and the relationships between the (one-dimensional) size
and the area. Note that we give two different proofs for this property in Part I and Part II. The
proof from Section 11.3 is more intuitive but longer; the proof from Section 18.3 is shorter but less
intuitive. The two proofs are interchangeable.

Finally, since the sizes of the element in a closest approach expands at a definite rate with only
finitely many exceptions, we show that the sizes approach infinity. This leads to a contradiction.
Therefore, wandering domains cannot exist.
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2. Preliminary and Notation

2.1. Sets and topology

Assume that (X ,≺) is a simple (total) ordered set [Mun00, Section 3]. An interval I on X is a
subset such that for all a,b ∈ I with a ≺ b implies that c ∈ I for all c ∈ X with a ≺ c ≺ b. The
bracket notations for intervals are used for ordered sets.

The set of real numbers is denoted as R. The set of complex numbers is denoted as C. The
set of all positive integers is denoted as N. Let I be an interval on R and δ > 0. The complex
δ -neighborhood of I is defined to be the open set I(δ ) = {z ∈ C; |z− z′|< δ for some z′ ∈ I}.

Assume that X is a topological space. The closure of a subset A ⊂ X is denoted as cl(A). The
interior of the set is denoted as int(A). For A,B⊂ X , the relation A b B means cl(A)⊂ int(B).

2.2. Functions

Assume that V and W are Banach spaces. A function f : V →W is Lipschitz continuous with
constant L if

| f (y)− f (x)| ≤ L |y− x|

for all x,y ∈V .
Assume that S is a set and f is a complex-valued function on S. The sup norm of f on S is

‖ f‖S = sup{| f (x)| ;x ∈ S} .

The subscript S is neglected whenever the context is clear.
Assume that I is an interval on R. The space of Cn(I) functions is the collection of functions

f : I → R that are n-times differentiable and the n-th derivative is bounded and continuous. The
Cn-norm of a Cn(I) function f is

‖ f‖Cn(I) =
n

∑
j=0

∥∥∥ f ( j)
∥∥∥

I

where f ( j) is the j-th derivative of f .
As an application from the Cauchy’s integral formula [SS10, Corollary 4.3], the derivatives of a

holomorphic function are bounded by the following lemma.

Lemma 2.1. Assume that I is an interval and δ > 0. There exist positive constants c = c(δ ) and
δ ′ = δ ′(δ )< δ such that ∥∥ f ′

∥∥
I(δ ′) ≤ c‖ f‖I(δ ) .

for all holomorphic maps f : I(δ )→ C.

Higher order derivatives and partial derivatives (of a multi-variable holomorphic map) can also
be estimated by a similar inequality.
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2. Preliminary and Notation

Assume that f : X→Y is a map where X and Y are simple ordered sets. The map f is increasing
(orientation preserving) on an interval I ⊂ X if f (x)≺ f (y) whenever x≺ y. Decreasing (orienta-
tion reversing) is defined to be similar. The map f is monotone (has a fixed orientation) on I if it
is either orientation preserving or orientation reversing on I. Two points x and y in the domain is
said to have same orientation if f is monotone on some interval that contains both x and y.

Assume that U ⊂ R2 is open and F : U → R2 is a differentiable map. The Jacobian of the
function F is the determine of its derivative detDF .

The canonical projections πx and πy on the plane are the maps πx(x,y) = x and πy(x,y) = y.

2.3. Dynamics

Assume that f : X→X is a function. For any integer n> 0, denote the n-th iterate as f n = f ◦· · ·◦ f
where f is composed n-times. Also, let f 0 = Id be the identity map. If f is invertible, then set
f−n = f−1 ◦ · · · ◦ f−1 where the inverse f−1 is composed n-times.

A point x ∈ X is a periodic point of f with period p if p is the smallest positive integer such
that f p(x) = x. The point x ∈ X is a fixed point of f if x is a periodic point of f with period 1. A
point x ∈ X is a preperiodic point of f if f n(x) is a periodic point of f for some integer n ≥ 0. In
addition, if X ⊂ Rn is open and the map f is differentiable, the multipliers of x are the eigenvalues
of the derivative D( f p)(x) at the point.

Assume that X is a topological space and x ∈ X is a periodic point of the continuous map
f : X → X with period p. The stable set of p is the set

W s(p) =W s( f , p) =
{

x ∈ X ; lim
n→∞

f n(x) = p
}
.

If X is a manifold, the stable set is called the stable manifold if itself is a submanifold of X . In this
article, a local stable manifold refers to a connected component of a stable manifold.

Assume that I is an interval on R and f is a C1(I) function. A point c ∈ I is a critical point of f
if f ′(c) = 0. Its iterate v = f (c) is called a critical value of f . The map f is a unimodal map if it
has a unique maximal point and no other local extrema in the interior of I. A C2(I) unimodal map
f is nondegenerate if f ′′(c) 6= 0 where c is the critical point.

2.4. Permutation

A permutation is an automorphism on a set. In this article, we will only consider permutations on a
finite set. A cyclic permutation ν (or cycle) is a permutation that contains exactly one periodic orbit
with period p ≥ 2. The length |ν |= p of the cycle ν is the period of the orbit. In this article, any
periodic orbit of period p on a simple ordered set can be uniquely identified with the permutation
on the finite ordered set Zp = {1, · · · , p} that has the same order.

2.5. Schwarzian derivative

In this section, we recall the definition and the properties of Schwarzian derivative. The proof for
the properties can be found in [dMvS12].
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2.5. Schwarzian derivative

Definition 2.2 (Schwarzian Derivative). Assume that f ∈C3(I) where I is an interval. The Schwarzian
derivative of f is defined by

(S f )(x) =
(

f ′′(x)
f ′(x)

)′
− 1

2

(
f ′′(x)
f ′(x)

)2

=
f ′′′(x)
f ′(x)

− 3
2

(
f ′′(x)
f ′(x)

)2

whenever f ′(x) 6= 0. The map f is said to have negative Schwarizan derivative if S f (x)< 0 for all
x ∈ I with f ′(x) 6= 0.

Negative Schwarzian derivative is preserved under iteration.

Proposition 2.3. If f : I→ I has negative Schwarzian derivative, then f n also has negative Schwarzian
derivative for all n > 0.

Proposition 2.4 (Minimal Principle). Assume that J is a bounded closed interval and f : J→ R
is a C3 map with negative Schwarzian derivative. If f ′(x) 6= 0 for all x ∈ J, then | f ′(x)| does not
attain a local minimum in the interior of J.

Corollary 2.5. Assume that J is a bounded closed interval and f : J→R is a C3 map with negative
Schwarzian derivative. If f ′(x) 6= 0 for all x ∈ J, then

1. p is an inflection point if and only if f ′′(p) = 0,

2. if p is an inflection then f ′′′(p)< 0, and

3. f can have at most one inflection point in the interior of J.

Proof. Without lose of generality, we assume that f ′ > 0. For each point p ∈ intJ with f ′′(p) = 0,
since S f (p) < 0, we have f ′′′(p) < 0 and hence p is a inflection point. Thus, properties 1 and 2
follows.

To prove the last property, we prove by contradiction. Assume that f has at least two inflection
point in the interior of J. Property one implies that the set of inflection point is closed and property
two implies that the set of inflection points does not contain any accumulation point. Thus, J can
only contain at most finitely many inflection points.

Let a< b be two consecutive inflection points in the interior of J. By property 2, f ′′ is decreasing
on a neighborhood of a. Thus, f ′′(x)< 0 for all x ∈ (a,b) because f does not have inflection point
on (a,b). However, by the same reason, f ′′ is decreasing on a neighborhood of b and f ′′(b) = 0.
This is a contradiction. Therefore, f can have at most one inflection point in the interior of J.

Proposition 2.6 (Singer). Assume that J is an interval and f : J → J is a C3 map with negative
Schwarzian derivative. Then the immediate basin of any attracting periodic orbit contains either
a critical point of f or a boundary point of the interval J.

The next proposition shows that the property of negative Schwarizan derivative is preserved
under small perturbation.

Proposition 2.7. Assume that f is a C3(I) nondegenerate unimodal map on a compact interval I
with negative Schwarzian derivative. There exists δ > 0 (depending on f ) such that if g is a C3(I)
map with ‖g′− f ′‖C2(I) < δ , then g is a map with negative Schwarzian derivative.
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Proof. The Schwarzian derivative can be rewritten in the form of

S f (x) =
(

1
f ′(x)

)2[
f ′(x) f ′′′(x)− 3

2
(

f ′′(x)
)2
]
.

It is easy to see that a C3 nondegenerate unimodal map f has negative Schwarzian derivative if and
only if

f ′(x) f ′′′(x)− 3
2
(

f ′′(x)
)2

< 0 (2.1)

for all x ∈ I.
Next, we claim that g has negative Schwarzian derivative. Since I is compact, we may assume

that M,N > 0 be values such that f ′(x) f ′′′(x)− 3
2 ( f ′′(x))2 <−M and ‖ f ′‖ ,‖ f ′′‖ ,‖ f ′′′‖< N. Use

(2.1), we get

g′(x)g′′′(x)− 3
2
(
g′′(x)

)2 ≤ f ′(x) f ′′′(x)− 3
2
(

f ′′(x)
)2

+

∣∣∣∣[g′(x)g′′′(x)− 3
2
(
g′′(x)

)2
]
−
[

f ′(x) f ′′′(x)− 3
2
(

f ′′(x)
)2
]∣∣∣∣

≤ f ′(x) f ′′′(x)− 3
2
(

f ′′(x)
)2

+
∣∣g′(x)∣∣ ∣∣g′′′(x)− f ′′′(x)

∣∣
+
∣∣ f ′′′(x)∣∣ ∣∣g′(x)− f ′(x)

∣∣+ 3
2

∣∣g′′(x)+ f ′′(x)
∣∣ ∣∣g′′(x)− f ′′(x)

∣∣
≤−M+

[∣∣ f ′(x)∣∣+3
∣∣ f ′′(x)∣∣+ ∣∣ f ′′′(x)∣∣+ 5

2

∥∥g′− f ′
∥∥

C2(I)

]∥∥g′− f ′
∥∥

C2(I)

≤−M+6N
∥∥g′− f ′

∥∥
C2(I)

≤− 1
2

M < 0

for all C2 functions g with ‖ f ′−g′‖C2(I) < δ where δ = min(2
5N, 1

12
M
N ). Therefore, g has negative

Schwarzian derivative.

2.6. Hyperbolic length

In this article, we will use the hyperbolic length to measure the size of a wandering interval in this
article. It will be generalized to dimension two in Chapter 16 to measure the size of a wandering
domain.

First define the Euclidean length.

Definition 2.8 (Euclidean Length). The Euclidean length of an interval J ⊂ R is

|J|= sup{|b−a| ;a,b ∈ J} .

The brackets are neglected whenever the context is clear.

Recall the definition of hyperbolic length.
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2.6. Hyperbolic length

Definition 2.9 (Hyperbolic Length). Assume that T is an bounded interval and J is a subinterval
such that J b T . The hyperbolic length of J in T is

|J|T = ln
(L+ J)(R+ J)

LR
= ln

(
1+

J
L

)
+ ln

(
1+

J
R

)
(2.2)

where L and R are the left and the right components of the complement T\J respectively as illus-
trated in Figure 2.1.

a c d b

L J R

T

Figure 2.1.: Definition of T , L, R, and J.

Proposition 2.10. Assume that T and T ′ are intervals and f : T → T ′ is a C3-diffeomorphism with
negative Schwarzian derivative. If J is an interval on int(T ), then

| f (J)|T ′ > |J|T .

Proof. See [dMvS12, Section IV.1].

Proposition 2.11. Assume that s is an affine map, T and T ′ are nontrivial intervals, and s(T ) = T ′.
If J b intT is an interval, then

|s(J)|T ′ = |J|T .

Proof. The equality holds because affine map is a special case of Möbius transformation. See
[dMvS12, Section IV.1].

2.6.1. Relations with the Euclidean length

The first proposition allows to bound the Euclidean length by the hyperbolic length.

Proposition 2.12. There exists a constant c > 0 such that the inequality

|J|T ≥ ln
(

1+
J
T

)
≥ c

J
T

holds for all intervals J b T .

Proof. The first part of the inequality follows directly from the definition (2.2). The last part of the
inequality is true because the logarithm has a linearized lower bound when 0≤ J

T ≤ 1.

The next proposition shows that the hyperbolic length and the Euclidean length are comparable
when the two sides have definite size.
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2. Preliminary and Notation

Proposition 2.13. The inequality

|J|T ≤
(

1
L
+

1
R

)
J =

(
T
L
+

T
R

)
J
T

holds for all intervals J b T .

Proof. The inequality follows directly from the definition of hyperbolic length

|J|T = ln
(

1+
J
L

)
+ ln

(
1+

J
R

)
≤ J

L
+

J
R
.

2.6.2. Expansion of hyperbolic length from topological expansion

The goal of this section is to prove Proposition 2.17. The horizontal size of an interval grows when
it is measured inside a smaller base interval. The proposition estimates the lower bound of the
growth.

Assume that J, t, and T are intervals J b t b T . Let l and r be the left and the right components
of t\J respectively and L and R be the left and the right components of T\t respectively. See Figure
2.2 for illustration.

a c e f d b

L l J r R

t
T

Figure 2.2.: Definition of the intervals T , t, L, l, R, r, and J.

Lemma 2.14. The equality holds for all J

|J|t−|J|T = ln
(

1+
J
l

L
l +L+ J

)
+ ln

(
1+

J
r

R
r+R+ J

)
.

Proof. By the definition of hyperbolic distance, compute

|J|t−|J|T = ln
(l + J)(r+ J)

lr
− ln

(l +L+ J)(r+R+ J)
(l +L)(r+R)

= ln

(
1+ J

l

1+ J
l+L

)(
1+ J

r

1+ J
r+R

)

= ln

[
1+

(1
l −

1
l+L

)
J

1+ J
l+L

][
1+

(1
r −

1
r+R

)
J

1+ J
r+R

]

= ln

[
1+

JL
l(l+L)

1+ J
l+L

][
1+

JR
r(r+R)

1+ J
r+R

]
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2.6. Hyperbolic length

= ln
(

1+
J
l

L
l +L+ J

)(
1+

J
r

R
r+R+ J

)
.

Corollary 2.15. Assume that J b t ⊂ T . Then |J|t ≥ |J|T .

We also need the following lemma.

Lemma 2.16. Assume that 0 < a < 1. Then

ln(1+ax)> a ln(1+ x)

for all x > 0.

Proof. Let f (x) = ln(1+ax) and g(x) = a ln(1+ x). Then

f ′(x) =
a

1+ax
> g′(x) =

a
1+ x

for all x > 0. Also, f (0) = g(0) = 0. Therefore, the lemma follows by integrating the inequality
from both sides.

If the interval J ⊂ T is embedded into a smaller interval t, then the hyperbolic size expands and
the size of expansion can be estimated by the left L and right R intervals as follows.

Proposition 2.17. Assume that J b t b T and M > 0. If L
T ,

R
T > M, then

|J|t >
1

1−M
|J|T .

Proof. By Lemma 2.16 and Lemma 2.14, we have

|J|t−|J|T >
L

l +L+ J
ln
(

1+
J
l

)
+

R
r+R+ J

ln
(

1+
J
r

)
>

L
T

ln
(

1+
J
l

)
+

R
T

ln
(

1+
J
r

)
> M |J|t .

Then
(1−M) |J|t > |J|T

and hence the proposition follows.
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Part I.

The period doubling combinatorics

19





3. Outline

In this part of the article, chapters, sections, or statements marked with a star sign “*” means that
the main theorem, Theorem 11.17, does not depend on them. Terminologies in the outline will be
defined precisely in later chapters.

Chapters 2, 4, 5, and 6 are the preliminaries of the theorem. The chapters include basic knowl-
edge and conventions that will be used in the proof. Most of the theorems in Chapter 5 and Section
6.1 can be found in [dCLM05, LM11].

The proof for the nonexistence of wandering domains is motivated by the proof of the degenerate
case. A Hénon-like map is degenerate means that ε = 0 in (1.1). In this case, the dynamics of the
map degenerates to the unimodal dynamics. In Chapter 8, a short proof for the nonexistence
of wandering intervals for infinitely renormalizable unimodal maps is presented by identifying a
unimodal map as a degenerate Hénon-like map. The proof assumes the contrapositive, there exists
a wandering interval J. Then we apply the Hénon renormalization instead of the standard unimodal
renormalization to study the dynamics of the rescaled orbit of J that closest approaches the critical
value. The rescaled orbit is called the J-closest approach (Definition 7.1). The proof argues that
the length of the elements in the rescaled orbit approaches infinity by a length expansion estimate
which leads to a contradiction. The expansion estimate motivates the proof for the Hénon case.

The main theorem is covered by Chapters 7, 9, 10, and 11. The proof is summarized below.
Assume the contrapositive, a Hénon-like map has a wandering domain J. In Chapter 7, we study

the rescaled orbit {Jn}n≥0 of J that closest approaches to the tip, called the J-closest approach.
Each element Jn belongs to some appropriate renormalization scale (the domain of the r(n)-th
renormalization Rr(n)F for some nonnegative integer r(n)). The transition between two constitutive
sequence elements Jn → Jn+1 is called one step. Motivated by the expansion estimate from the
degenerate case, we estimate the expansion rate of the horizontal sizes ln of the elements. The
horizontal size of a set is the length of its projection to the first coordinate (Definition 7.9). Our
final goal is to show that the horizontal sizes of the sequence elements approach infinity to obtain
a contradiction.

In the degenerate case, the expansion estimate says that the horizontal sizes expand at a uniform
rate, and hence the horizontal sizes of the sequence elements approach infinity. Unfortunately,
the argument breaks down in the non-degenerate case. There are two features that make the non-
degenerate case special:

1. The good region and the bad region.

2. Thickness.

The good region and the bad region, introduced in Chapter 9, divide the phase space of a Hénon-
like map into two regions by how similar the map behaves like a unimodal map. Each renormal-
ization scale (domain of the n-th renormalization RnF for some n) has its own good region and
bad region, and the sizes of the bad regions contract super-exponentially as the map gets renor-
malized more times ([dCLM05, Theorem 4.1] and Definition 9.1). When the elements in a closest
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3. Outline

approach stay in the good regions of some appropriate scale, we show that the expansion estimate
can be generalized to the Hénon-like maps. Thus, the horizontal sizes expand at a definite rate
(Proposition 10.11). However, when an element Jn enters the bad region of some proper scale, the
expansion estimate breaks down. We introduce another quantity, called thickness, to estimate the
size of a horizontal cross-section of the next element Jn+1 (Definition 11.2). At the moment when
the element Jn enters the bad region, the thickness wn+1 of the next element Jn+1 offers a good
approximation for the horizontal size ln+1 of the element. We will show that the thicknesses of
the sequence elements have similar properties as the properties of the areas of the elements: the
contraction rate of the thicknesses is the Jacobian of the map (Proposition 11.6). For a strongly
dissipative Hénon-like map, the Jacobian is small and hence the amount of contraction is large.
The contraction produces the main obstruction toward our final goal.

The breakthrough is the discovery that the elements in a closest approach have at most finitely
many entries to the bad regions (Proposition 11.16). When an element Jn enters the bad region,
the horizontal size becomes smaller but the size of the bad region also shrinks at the same time.
This is because the proceeding elements Jm with m > n belong to some deeper renormalization
scales. Roughly speaking, we found that the sizes of the bad regions contract faster than the the
horizontal sizes of the sequence elements so that the elements cannot enter the bad region infinitely
many times. The actual proof is more delicate because another quantity, the time span in the good
regions (Definition 11.9), also involves in the competition. The two-row-lemma (Lemma 11.14) is
the key lemma that gives an estimate for the competitions between the contraction of thicknesses,
the expansion of the horizontal sizes in the good region, the time span in the good region, and
the size of the bad region when the closest approach enters the bad region twice. The conclusion
follows after applying the two-row-lemma inductively (Lemma 11.15).

In summary, the horizontal sizes of the elements in a closest approach expand in the good re-
gions, while contract in the bad regions. However, the contraction happens at most finitely many
times. This shows that the horizontal sizes approach infinity which is a contradiction. Therefore,
wandering domains cannot exist.
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4. Unimodal Maps

In this chapter, we give a short review over the procedure for unimodal renormalization. The goal
is to introduce the hyperbolic fixed point for the renormalization operator (Proposition 4.29) and
establish the estimates for its derivative (Subsection 4.4.3).

Definition 4.1 (Unimodal Map). Let I = [−1,1]. A unimodal map in this paper is a smooth map
f : I→ I such that

1. the point −1 is the unique fixed point with a positive multiplier,

2. f (1) =−1, and

3. the map f has a unique maximum at c ∈ int(I) and the point c is a non-degenerate critical
point, i.e. f ′(c) = 0 and f ′′(c) 6= 0.

The class of analytic unimodal maps f : I→ I is denoted as U .

Definition 4.2 (Critical Orbit). For a unimodal map f ∈ U , let c(0) = c(0)( f ) ∈ I be the critical
point of f . The critical orbit is denoted as c(n) = f n(c(0)) for all n > 0.

Definition 4.3 (Reflection). Assume that f ∈U and x ∈ I. If x 6= c(0), define the reflection of x to
be the point x̂ ∈ I such that f (x̂) = f (x) and x̂ 6= x. If x = c(0), define x̂ = c(0).

4.1. The renormalization of a unimodal map

To define the period-doubling renormalization operator for unimodal maps, we introduce a parti-
tion on I that allows us to define the first return map for a renormalizable unimodal map.

Definition 4.4. Assume that f ∈U has a unique fixed point p(0)∈ I with a negative multiplier. Let
p(1) = p̂(0) and p(2) be the point such that f (p(2)) = p(1) and p(2) > c(0). Define A = (−1, p(1))∪
(p(2),1), B = (p(1), p(0)), and C = (p(0), p(2)). The sets A = A( f ), B = B( f ), and C =C( f ) form
a partition of the domain D≡ I. See Figure 4.1 for an illustration.

The property “renormalizable” is defined by using the partition elements.

Definition 4.5 (Renormalizable). A unimodal map f ∈ U is (period-doubling) renormalizable if
it has a fixed point p(0) with a negative multiplier and f (B) ⊂ C. The class of renormalizable
unimodal maps is denoted as U r.

Remark 4.6. Most of the articles define the unimodal renormalization by using the critical orbit.
However, here we choose to use an orbit that maps to the fixed point with a negative multiplier
instead. The purpose of doing this is to make the partition consistent with the partition defined for
Hénon-like maps (Definition 5.14) because Hénon-like maps do not have a critical point.
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4. Unimodal Maps

A B C A

p(0)p(1)

p(2)

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

Figure 4.1.: The partition {A,B,C} of a unimodal map. The parabola is the graph of a unimodal
map. The points p(0), p(1), and p(2) are defined as in Definition 4.4.

For a renormalizable unimodal map, an orbit that is not eventually periodic follows the paths in
the following diagram.

A //88 B //Coo

Figure 4.2.: The itinerary of an orbit on the partition A, B, and C.

This allows us to define the first return map on B or on C and the period-doubling renormalization.

Definition 4.7 (Renormalization Operator). Assume that f ∈U r.

1. Define the renormalization operator around the critical point Rc : U r → U as Rc f = sc ◦
f 2 ◦ s−1

c where sc is the orientation-reversing affine rescaling that satisfies sc(p(0)) = −1
and sc(p(1)) = 1.

2. Define the renormalization operator around the critical value Rv : U r → U as Rv f = sv ◦
f 2 ◦ s−1

v where sv is the orientation-preserving affine rescaling that satisfies sv(p(0)) = −1
and sv(p(2)) = 1.

With the definition of the renormalization operator, we may renormalize a renormalized uni-
modal map again if the renormalization is renormalizable. This gives the definition of infinitely
renormalizable map.

Definition 4.8 (Infinitely Renormalizable). A unimodal map f ∈U is (period-doubling) infinitely
renormalizable if for any length n ≥ 0 there exists a sequence

{
a j
}n

j=1 of letters a j ∈ {c,v} such
that the renormalization Ran ◦ · · · ◦Ra1( f ) is renormalizable. The class of infinitely renormalizable
unimodal maps is denoted as I .

Remark 4.9. There are no ambiguity of the choice of the sequence in the definition of infinitely
renormalizable. One can prove that if a unimodal map is renormalizable on a sequence of charac-
ters {c,v}, then it is also renormalizable on any sequence of the same length.
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4.2. *Structure and dynamics of infinitely renormalizable unimodal maps

4.2. *Structure and dynamics of infinitely renormalizable unimodal
maps

In this section, we study the dynamics and rescalling on the partition. We consider infinitely renor-
malizable unimodal maps and renormalization about the critical value. This gives us an analog of
infinitely renormalizable Henon-like map.

Assume that f ∈ I . We define a sequence of unimodal map fn = Rn
v f . The value n is called

the renormalization scale. We use the subscript for the renormalization scale of the corresponding
object. For example, the partition An = A( fn), Bn = B( fn), and Cn = C( fn) for the domain Dn =
D( fn); the fixed point pn = p( fn) with negative multiplier for fn.

Define S j
n = sn+ j−1 ◦ · · · ◦ sn for j ≥ 0 and n≥ 0. Also, define pn( j) =

(
S j

n

)−1
(pn+ j) for j ≥ 0

and pn(−1) =−1. Define a finer partition on Cn as Cn( j) = (pn( j−1), pn( j)) for j≥ 0. The value
j is called the rescaling level. If a point belongs to Cn( j), the point can be rescaled at most j times.
It follows from definition and conjugation that

Proposition 4.10. Assume that f ∈I . The following properties holds for all n≥ 0.

1. pn( j) is a periodic point of fn with period 2 j for j ≥ 0.

2. Sk
n(pn( j)) = pn+k( j− k) for j ≥ k−1.

3. Cn(0) = An∪{pn(0)}∪Bn.

4. The affine maps sn : Cn→ Dn and Sk
n : Cn( j)→Cn+k( j− k) are bijective for j ≥ k.

The proposition and Figure 4.2 provide the following diagram for the dynamics on the finer
partition. When a point enters An, it is mapped to An or Bn by fn. When a point enters Bn, it is
mapped to Cn by fn. When a point enters Cn, the point belongs to Cn( j) in the finer partition for
some j so we are able to rescale the point at most j times. The value j is called the rescaling level.
After rescale j times by applying S j

n, the point enters An+ j or Bn+ j on the n+ j renormalization
scale.

An

fn
��

fnii An+ j

fn+ j
��

fn+ jtt

Bn
fn //Cn( j)

S j
n //

S j
n

;;

Bn+ j
fn+ j //Cn+ j( j′)

S j′
n+ j // · · ·

Figure 4.1.: The dynamics on the partition of a unimodal map.

4.3. *Nonexistence of wandering intervals

In this section, we include two elementary proofs of nonexistence of wandering interval for in-
finitely renormalizable maps with negative Schwarzian derivative. The first prove uses the renor-
malization operator around the critical point, while the second one uses the renormalization op-
erator around the critical value. This will give us some ideas for the case in two dimensional
Hénon-like maps.

25



4. Unimodal Maps

Definition 4.11 (Wandering Interval). Assume that f is a unimodal map. We say that a closed
subinterval J ⊂ I is a wandering interval of f if J is nonempty, J is not a singleton, { f n(J)}∞

n=0
does not tend to a periodic orbit, and { f n(J)}∞

n=0 are disjoint.

The following important proposition allows us to generate wandering intervals by iteration and
rescaling.

Proposition 4.12. Assume that f ∈U r and sc,sv are the rescaling functions of f .

1. If J ⊂ D( f ) is a wandering interval of f then f (J) is a wandering interval of F.

2. If J ⊂ B(F) is a wandering interval of f then sc(J)⊂ I is a wandering interval of RcF.

3. If J ⊂ C(F) is a wandering interval of f then sv(J) ⊂ D(RvF) is a wandering interval of
RvF.

Proof. It follows directly from the definition and conjugation.

To prove the nonexistence of wandering interval, the strategy is to prove by contradiction. If
there exists a wandering interval, we iterate and rescale the interval by the proposition to generate
a sequence of wandering intervals. Our goal is to prove the length (or hyperbolic length) of the
wandering interval in the sequence increases by a fixed rate. Therefore, the length approaches
infinity and hence a contradiction.

4.3.1. Proof by renormalization about the critical point

For the first proof, we use the renormalization about the critical point to prove that the wandering
interval does not exist by contradiction. If a wandering interval exists, we construct a sequence
of wandering intervals by iteration and rescaling then prove the length of the wandering interval
approaches infinity.

Lemma 4.13. Assume that f ∈U r is symmetric, infinitely renormalizable about the critical point,
and has negative Schwarzian derivative. If f has a wandering interval, then∣∣ f ′(p)

∣∣≥ 1

where p is the fixed point with negative multiplier. Moreover, |R f ′(−1)| ≥ 1.

Proof. Prove by contradiction. If p is an attracting fixed point, its immediate basin cannot contain
−1 and 1 since −1 is a fixed point and 1 is the preimage of 1. By Proposition 2.6, the immediate
basin must contain the critical point. Hence, the immediate basin of p contains B.

Assume that J is a wandering interval. J is not contained in B since B is in the immediate basin
of p.

On the interval (−1,0), f can have at most one fixed point since f (−1) =−1, f (0)> 0, and f
has at most one inflection point on (−1,0) by Corollary 2.5.

If f contains a fixed point p′ on (−1,0), then f (x)< x on (−1, p′) and f (x)> x on (p′,0). If J
is contained in A, then J ⊂ (p′,0) since [−1, p′) is the immediate basin of −1. This implies that
f n(J)⊂ B for some n large enough which is a contradiction.
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4.3. *Nonexistence of wandering intervals

If f does not have a fixed point on (−1,0), then f (x)> x on (−1,0). If J is contained in A, then
f n(J)⊂ B for some n large enough which is a contradiction.

If J is contained in C, then f (J)⊂ A or f (J)⊂ B which is impossible by the previous argument.
Therefore, p can not be attracting.

Moreover, compute the renormalization directly, we get

R f ′(−1) = s′c ◦ f 2 ◦ s−1
c (−1) f ′ ◦ f ◦ s−1

c (−1) f ′ ◦ s−1
c (−1)s−1′

c (−1)

=
[

f ′(p)
]2
.

Thus, |R f ′(−1)| ≥ 1.

The rescaling function sc maps B( f ) onto I. So D( f ) is too small. We extend the partition A, B,
and C to I by letting Ĉ = (p,1). Then the following lemma shows that the dynamics of a wandering
interval can be described by the partition A, B, and Ĉ.

Lemma 4.14. Assume that f ∈ U r and J ⊂ I is a wandering interval of f . Then J is a subset of
one of the sets A, B, or Ĉ.

Proof. It follows by a wandering interval cannot contain any periodic point or preperiodic point.

Proposition 4.15. Assume that f ∈ I is symmetric, infinitely renormalizable about the critical
point, and has negative Schwarzian derivative. Then f does not have wandering interval.

Proof. Without lose of generality we may assume that −1 is a repelling fixed point of f by Propo-
sition 4.12 and Lemma 4.13. Write fn = Rn

c f and fn+1 = sn ◦ f 2
n ◦ s−1

n . Then fn has only two fixed
point and the fixed points are repelling for all n≥ 0 by Lemma 4.13 and the assumption on f .

Assume that f has a wandering interval J. First, we show that there exists an integer n≥ 0 such
that f n(J)⊂ B. Since f does not have a fixed point on (−1,0), then f (x)> x for all x ∈ (−1,0). If
J is contained in A, then f n(J)⊂ B for some n large enough.

Define level of renormalization r(n) and a closest approach Jn of fr(n) by induction. For n = 0,
define r(0) = 0 and J0 = J. Assume that r(n) and Jn are defined. By Lemma 4.14, only one of the
inclusion holds Jn ⊂ Ar(n), Jn ⊂ Br(n), or Jn ⊂ Ĉr(n). If Jn ⊂ An ∪ Ĉn, define r(n+ 1) = r(n) and
Jn+1 = fr(n)(Jn). If Jn ⊂ Br(n), define r(n+1) = r(n)+1 and Jn+1 = sn(Jn). For both cases, Jn+1
is a wandering interval of fr(n+1) by Proposition 4.12. The itinerary of the sequence follows the
path of the following graph.

Ĉn

fn
��

fn

ww

An

fn
��

fnii

Bn−1
sn−1 //

sn−1

==
sn−1

FF

Bn
sn // An+1∪Bn+1∪Ĉn+1

Our goal is to prove that |Jn| → ∞ to obtain a contradiction.
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4. Unimodal Maps

If Jn⊂Ar(n)∪Ĉr(n), lemma 4.13, | f ′(−1)|> 1, and the minimal principle implies that
∣∣∣ f ′r(n)(x)∣∣∣>

1 for all x ∈ J. This yields |Jn+1|> |Jn|.
If Jn ⊂ Br(n), by definition of the rescaling, |Jn+1|= λr(n) |Jn| where λn = |s′n(x)|. The wandering

intervals cannot stay in An forever since fn(x) > x for all x ∈ intAn and −1 is the only fixed point
in An. Hence, Jn ⊂ Br(n) for infinitely many n. Also, by the theory of infinitely renormalizable
maps, limn→∞ λr(n) = λ for some constant λ > 1. This shows that limn→∞ |Jn| = ∞ which is a
contradiction. Therefore, f does not have a wandering interval.

4.3.2. Proof by renormalization about the critical value

For the second proof, we use the renormalization about the critical value to prove that the wander-
ing interval does not exist by contradiction. If a wandering interval exists, we construct a sequence
of wandering intervals by iteration and rescaling then prove the hyperbolic length of the wandering
interval approaches infinity.

First, we define a partition on the domain D for hyperbolic length. Since the hyperbolic length
only increases on a injective branch of a unimodal map and f is not injective on B, the partition A,
B, and C is not useful for studying hyperbolic length. We need to modify the partition. For f ∈U
that has a fixed point p of negative multiplier, define Bl = Bl( f ) = (p̂,c(0)), Br = Br( f ) = (c(0), p),
and Â = A∪{p̂}∪Bl = (−1,c(0)). Then Â, Br, and C forms a partition of D = (−1,c(1)) and f is
injective on each subset.

The following lemma shows that the dynamics of a wandering interval can be described by this
partition.

Lemma 4.16. Assume that f ∈U r and J⊂D( f ) is a wandering interval of f that does not contain
the critical point. Then J is a subset of one of the sets Â, Br, or C.

Proof. It follows by a wandering interval cannot contain any periodic point and preperiodic point.

To apply the tool of renormalization about the critical value, we also need the following def-
inition. For f ∈ I , define fn = Rn

v f and write fn+1 = sn ◦ f 2
n ◦ s−1

n . We abbreviate Ân = Â( fn),
Bl

n = Bl( fn), Br
n = Br( fn), and Cn =C( fn).

Lemma 4.17. Assume that f ∈U r and J ⊂C is an interval such that c(0)( f ) /∈ f n(J) for all n≥ 0.
Then c(0)(Rv f ) /∈ (Rv f )n ◦ sv(J) for all n≥ 0.

Proof. Prove by contradiction. If c(0)(Rv f )∈ (Rv f )n◦sv(J) for some n≥ 0, by the definition of the
renormalization operator, we have c(0)(Rv f ) ∈ (Rv f )n ◦ sv(J) = sv ◦ f 2n(J). Also by the definition
of the renormalization operator, we have f ◦s−1

v ◦c(0)(Rv f ) = c(0)( f ). Combine the two equations,
we get c(0)( f ) ∈ f 2n+1(J) which is a contradiction. Therefore, c(0)(Rv f ) /∈ (Rv f )nsv(J) for all
n≥ 0.

From the two lemmas, if there is a wandering interval such that any iterate does not contain
the critical point, then its itinerary under iteration and rescaling follows the path of the following
graph.

Therefore, we construct a sequence of wandering intervals by iteration and rescaling as follows.
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Ân

fn
��

fn

��

fnii

Br
n

fn
��

Cn−1
sn−1 //

sn−1

==
sn−1

FF

Cn
sn // Dn+1

Figure 4.1.: Itinerary for a sequence of wandering interval.

Definition 4.18. Assume that J is a wandering interval of f ∈I such that c(0)( f ) /∈ f n(J) for all
n≥ 0. Define the level of renormalization r(n) and a closest approach Jn of fr(n) by the following
procedure.

1. Define r(0) = 0 and J0 = J.

2. If Jn ⊂ Âr(n)∪Br
r(n), define r(n+1) = r(n) and Jn+1 = fr(n)(Jn).

3. If Jn ⊂Cr(n), define r(n+1) = r(n)+1 and Jn+1 = sn(Jn).

Next, we study the expansion of hyperbolic length for each edge on the graph.
We need the following linear approximation for logarithm when J is small.

Lemma 4.19. For all ε > 0, there exists a constant δ > 0 such that

(1− ε)x≤ ln(1+ x)≤ x

for all 0≤ x < δ .

Proof. The upper bound is trivial and holds for all x≥ 0.
To the lower bound, we know that 1

1+x↗ 1 as x↘ 0. For any given ε > 0, there exists a constant
δ > 0 such that

1− ε ≤ 1
1+ x

for all 0≤ x < δ . Integrate both sides on [0,x], we get

(1− ε)x≤ ln(1+ x) .

We estimate the hyperbolic distance of an interval in the following setting. Assume that J =
[e, f ], T ′ = (c,d), and T = (a,b) are intervals such that J ⊂ T ′ ⊂ T . Let L = (a,c), R = (d,b),
l = (c,e), and r = ( f ,d).
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4. Unimodal Maps

a c e f d b

L l J r R

T ′
T

Figure 4.2.: Definition of T , T ′, L, l, R, r, and J.

Lemma 4.20. For all ε > 0, there exists a constant δ > 0 such that the following property holds.
Then

|J|T ′ ≥ (1− ε)

(
1+2

LR
T T ′

)
|J|T

whenever J
l < δ and J

r < δ .

Proof. Given ε > 0. Let δ > 0 to be defined by Lemma 4.19.
Apply the linear approximation for logarithm to the definition of hyperbolic distance, we have

|J|T = ln
(

1+
J

l +L

)
+ ln

(
1+

J
r+R

)
≤

(
1

l +L
+

1
r+R

)
J

and

|J|T ′ = ln
(

1+
J
l

)
+ ln

(
1+

J
r

)
≥ (1− ε)

(
1
l
+

1
r

)
J.

Combine the two inequalities, we get

|J|T ′ ≥(1− ε)

(
1
l
+

1
r

)(
1

l +L
+

1
r+R

)−1

|J|T

=(1− ε)

(
1+

1
l −

1
l+L +

1
r −

1
r+R

1
l+L +

1
r+R

)
|J|T

=(1− ε)

[
1+

L
l(l+L) +

R
r(r+R)

1
l+L +

1
r+R

]
|J|T

=(1− ε)

[
1+

L
l (r+R)+ R

r (l +L)
r+R+ l +L

]
|J|T

≥(1− ε)

(
1+

LR
T ′ +

RL
T ′

T

)
|J|T

=(1− ε)

(
1+2

LR
T T ′

)
|J|T .
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4.3. *Nonexistence of wandering intervals

Lemma 4.21. The equality holds for all J

|J|T ′−|J|T = ln
(

1+
J
l

L
l +L+ J

)(
1+

J
r

R
r+R+ J

)
.

Proof. Apply the definition of hyperbolic distance, compute

|J|T ′−|J|T = ln
(l + J)(r+ J)

lr
− ln

(l +L+ J)(r+R+ J)
(l +L)(r+R)

= ln

(
1+ J

l

1+ J
l+L

)(
1+ J

r

1+ J
r+R

)

= ln

[
1+

(1
l −

1
l+L

)
J

1+ J
l+L

][
1+

(1
r −

1
r+R

)
J

1+ J
r+R

]

= ln

[
1+

JL
l(l+L)

1+ J
l+L

][
1+

JR
r(r+R)

1+ J
r+R

]

= ln
(

1+
J
l

L
l +L+ J

)(
1+

J
r

R
r+R+ J

)
.

Corollary 4.22. Assume that J b intT ′ and T ′ ⊂ T , then |J|T ′ ≥ |J|T .

Proof. The inequality follows directly from Lemma 4.21.

Corollary 4.23. For all ε > 0, there exists a constantδ > 0 such that for all J one of the following
inequality holds

|J|T ′ ≥ (1− ε)

(
1+2

LR
T T ′

)
|J|T

or

|J|T ′ ≥ |J|T + ln
[

1+δ
min(L,R)

T

]
.

Proof. Given ε > 0. Let δ > 0 be defined in Lemma 4.20. If J
l ,

J
r < δ , then

|J|T ′ ≥ (1− ε)

(
1+2

LR
T T ′

)
|J|T .

If J
l > δ or J

r > δ , by Lemma 4.21, we have

|J|T ′−|J|T ≥ ln
(

1+
J
l

min(L,R)
T

)
+ ln

(
1+

J
r

min(L,R)
T

)
≥ ln

(
1+δ

min(L,R)
T

)
.
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4. Unimodal Maps

From the theory of infinitely renormalizable maps, we have

Lemma 4.24. Assume that f ∈I has negative Schwarzian derivative. Then the ratio of any two
lengths of the interval in the list D, A, B, C, Â, Bl , and Br are bounded above and below by a
universal constant.

Corollary 4.25. Assume that f ∈I has negative Schwarzian derivative. If J is a subinterval of B,
then |J|D is bounded by a universal constant.

Proof. Compute

|J|D ≤ |B|D = ln
(

1+
B
A

)
+ ln

(
1+

B
C

)
.

By the previous Lemma, the quantity is bounded above by a universal constant.

Now we are ready to study the expansion for each path in Figure 4.1. If an interval is in Â or Br,
we use the hyperbolic length in D to measure the interval. Otherwise, if an interval is in C, we use
the hyperbolic length in C to measure the interval.

Lemma 4.26. There exist constants c > 1 and d > 0 such that the following properties hold.
Assume that f ∈ I has negative Schwarzian derivative and J is an interval. Then we have the
following two tables for the expansion of hyperbolic distance:

J f (J) Expansion

Â Â | f (J)|D > |J|D
Â Br | f (J)|D > |J|D
Â C | f (J)|C > c |J|D or | f (J)|C > |J|D +d
Br C | f (J)|C > c |J|D or | f (J)|C > |J|D +d

J sv(J) Expansion

C Â |sv(J)|D(R f ) = |J|C( f )

C Br |sv(J)|D(R f ) = |J|C( f )

C C |sv(J)|C(R f ) ≥ |J|C( f )

Proof. For any ε > 0, let δ > 0 to be defined in Proposition 4.19.
Case one and two: Assume that J ⊂ Â and f (J) ⊂ Â or f (J) ⊂ Br. Since f : Â → D is a

diffeomorphism, apply Proposition 2.10 and Corollary 4.22, we get

|J|D ≤ |J|Â < | f (J)|D .

Case three: Assume that J⊂ Â and f (J)⊂C. Then J⊂Bl . Since f : Bl→C is a diffeomorphism,
by Proposition 2.10, we have

|J|Bl < | f (J)|C .

Also, apply Corollary 4.23 to the sets J ⊂ Bl ⊂ D, we get

| f (J)|C > |J|Bl ≥ (1− ε)

[
1+2

A(Br +C)

DBl

]
|J|D (4.1)
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4.3. *Nonexistence of wandering intervals

or

| f (J)|C > |J|Bl ≥ |J|D + ln
[

1+δ
min(A,Br +C)

D

]
. (4.2)

Case four: Assume that J ⊂ Br and f (J)⊂C. Since f : Br→C is a diffeomorphism, by Propo-
sition 2.10, we have

|J|Br < | f (J)|C .

Also, apply Corollary 4.23 to the sets J ⊂ Br ⊂ D, we get

| f (J)|C > |J|Br ≥ (1− ε)

(
1+2

ÂC
DBr

)
|J|D (4.3)

or

| f (J)|C > |J|Br ≥ |J|D + ln
[

1+δ
min(Â,C)

D

]
. (4.4)

Case five and six follow directly from Proposition 2.11. Case seven follows from Proposition
2.11 and Corollary 4.22.

Finally by Lemma 4.24, the ratios A(Br+C)
DBl and ÂC

DBr in (4.1) and (4.3) are bounded below by a

universal constant. We may assume that ε > 0 be so small such that (1− ε)
[
1+2A(Br+C)

DBl

]
> c

and (1− ε)
(

1+2 ÂC
DBr

)
> c for some universal constant c > 1. This fixes δ . Also, min(A,Br+C)

D

and min(Â,C)
D in (4.2) and (4.4) are bounded below by the same reason. Therefore, the Lemma is

proved.

With the expansion of hyperbolic length, we are able to prove our goal for this section.

Proposition 4.27. Assume that f ∈I is infinitely renormalizable about the critical value and has
negative Schwarzian derivative. Then f does not have wandering interval.

Proof. Prove by contradiction. Assume that J ⊂ D is a wandering interval of f . Without lose of
generality, we may assume that c(0)( f ) /∈ f n(J) for all n≥ 0 by Proposition 4.12. Define the level
of renormalization r(n) and a closest approach Jn of fr(n) by Definition 4.18.

Consider the sequence elements with the same renormalization scale j > 1. Let s and t be
integers such that r(s+1) = · · ·= r(s+ t) = j, r(s) = j−1, and r(s+ t +1) = j+1. The path of
the sequence has four different cases in the same renormalization scale by Figure 4.1:

1. C j−1
s j−1 // Â j

f j //

f j��

Br
j

f j //C j ,

2. C j−1
s j−1 // Â j

f j //

f j��

C j ,

3. C j−1
s j−1 // Br

j
f j //C j , and

4. C j−1
s j−1 //C j .
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4. Unimodal Maps

The iterations in Â j cannot occur infinitely many times because there is only one fixed point −1 in
Â j.

Also, at least one of the cases 1, 2, or 3 must occur infinitely many j. Otherwise, there exists a
constant s > 0 such that r(t +1) = r(t)+1 for all t ≥ s. Then

|Jt+1|= λ(t−s)+r(s) |Jt |

for all t ≥ s where λn = |s′n(x)|. This implies that limt→∞ |Jt |= ∞ since λn→ λ > 1 by the theory
of period doubling renormalization which yields a contradiction.

Finally, by Lemma 4.26, the cases 1, 2, and 3 gives a strict expansion with fixed rate as

|Js+t |C j
> c |Js|C j−1

or
|Js+t |C j

> |J|C j−1
+d.

And the forth case gives also expands the hyperbolic length

|Js+1|C j
> |Js|C j−1

.

Since at least one of the cases 1, 2, or 3 must occurs infinitely many times, the hyperbolic length of
the sequence approaches infinity which contradicts to Corollary 4.25 and the sequence must enters
B⊂ Â∩Br before entering C. Therefore, wandering interval does not exists.

4.4. The fixed point of the renormalization operator

In this section, we study the fixed point g of the renormalization operator about the critical point.
The map g is also important for the Hénon case because it also defines the hyperbolic fixed point
of the Hénon renormalization operator [dCLM05, Theorem 4.1].

To define the fixed point, [EL81, CER82] proved that

Lemma 4.28. There exist a unique constant λ = 2.5029... and a unique function f : [−1,1]→
[−1,1] that satisfies the Cvitanović-Feigenbaum-Coullet-Tresser functional equation f (x) =−λ f 2 (− x

λ

)
, −1≤ x≤ 1

f (0) = 1

The function f has the following properties:

1. f is analytic in a complex neighborhood of [−1,1].

2. f is even and concave: f ′′(x)< 0 for all −1≤ x≤ 1.

3. λ > 1, f (1) =− 1
λ

, and f ′(1) =−λ .

4. f has negative Schwarzian derivative.
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4.4. The fixed point of the renormalization operator

The solution in this lemma is not in the right scale of unimodal map in this article. It does not
contain a fixed point with positive multiplier. The next proposition convert the solution into the
correct scale that this article is using.

Proposition 4.29. There exist a unique constant λ = 2.5029... and a unique solution g ∈I of the
Cvitanović-Feigenbaum-Coullet-Tresser functional equation

g(x) =−λg2
(
− x

λ

)
(4.5)

for −1≤ x≤ 1 with the following properties:

1. g is analytic in a complex neighborhood of [−1,1].

2. g is even.

3. g is concave on [−c(1),c(1)].

4. g(c(1)) =− 1
λ

c(1) and g′(c(1)) =−λ .

5. g has negative Schwarzian derivative.

Proof. Let f be the solution in the previous lemma. Since f (0) = 1 and f (1) =− 1
λ

, it follows by
the intermediate value that f has a fixed point α ∈ (0,1). The fixed point is unique on [0,1] and
has negative eigenvalue because f is decreasing on [0,1]. However, f does not have a fixed point
on [−1,0] because f (−1) =− 1

λ
>−1, f (0) = 1 > 0, and f is concave. So we need to first extend

f such that the extension contains a fixed point with positive multiplier.
First we construct an extension of f . Define f̂ (x) =−λ f 2 (− x

λ

)
for−λ ≤ x≤ λ . It satisfies the

functional equation (4.5) for all −λ ≤ x≤ λ because

f̂ (x) =−λ f 2
(
− x

λ

)
= λ

2 f 4
(
− x

λ 2

)
=−λ f̂ 2

(
− x

λ

)
.

Thus, f̂ is an extension of f on [−λ ,λ ].
The point −λα ∈ [−λ ,0] is a fixed point of f̂ . This is because

f̂ (−λα) =−λ f 2 (α) =−λα.

Also, we show that f̂ has a critical point on (−λ ,−λα). Apply the intermediate value theorem
to f (α)> 0 and f (1)< 0, there exists a constant c′ ∈ (α,1) such that f (c′) = 0. The root is unique
on (0,1) since f is decreasing on the interval. By simple computation,

f̂ ′(−λc′) = f ′ ◦ f (c′) f ′(c′) = 0.

Thus, −λc′ is a critical point of f̂ on (−λ ,−λα).
Moreover, f̂ does not have any other critical point on (−λc′,0). Critical point does not exist

on [−1,0) because f̂ is an extension of f and f is concave on [−1,1]. If f̂ has a critical point
c′′ ∈ (−λc′,−1), then

0 = f̂ (c′′) = f ′ ◦ f
(
−c′′

λ

)
f ′
(
−c′′

λ

)
.
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4. Unimodal Maps

This implies that f
(
−c′′

λ

)
= 0 since −c′′

λ
6= 0 which contradicts to c′ is the unique root on (0,1).

Consequently, f̂ is increasing on (−λc′,0).
It follows that −λα is the only fixed point on (−λc′,−1). This is because f̂ has negative

Schwarzian derivative. It contains only one inflection on (−λc′,0) by Corollary 2.5. If f̂ has
more than one fixed point in (−λc′,−1), then f̂ will have more then one inflection point which is
impossible.

Finally, we rescale f̂ by defining g(x) = 1
αλ

f (αλx) for −1 ≤ x ≤ 1. The map g has only two
fixed points for −1 and 1

λ
. Also, by definition, g satisfies the functional equation (4.5). Hence,

g ∈I . It is easy to check that g satisfies all the desired properties.

Corollary 4.30. The map g satisfies the following property

g2n
(

1
(−λ )n x

)
=

1
(−λ )n g(x) (4.6)

for all n≥ 0 and all x ∈ I.

Proof. Prove by induction. The case n = 0 is trivial. Assume that the lemma is true for n. For the
case n+1, apply the induction hypothesis, we have

g2n+1
(

x
(−λ )n+1

)
= g2n

◦g2n
(

1
(−λ )n

x
−λ

)
= g2n

(
1

(−λ )n g
(

x
−λ

))
=

1
(−λ )n g2

(
x
−λ

)
.

Also the functional equation (4.5) yields

g2n+1
(

x
(−λ )n+1

)
=

1
(−λ )n g2

(
x
−λ

)
=

1
(−λ )n+1 g(x) .

Therefore the lemma is proved by induction.

In the remaining part of the section, the notations for the unimodal maps will be applied to the
map g. For example,

{
c( j) = c( j)(g)

}
j≥0

is the critical orbit and the sets A = A(g), B = B(g), and

C =C(g) form a partition of the domain D = I. In Definition 4.32, we will use another notation q
(instead of p) to denote the fixed points because g is special, i.e. the points q(−1) =−1 and q(0)
are the fixed points with positive and negative multiplier respectively.

4.4.1. The periodic points of period 2n

Lemma 4.31. If p ∈ I is a fixed point for g, then p
(−λ )n is a fixed point for g2n

.

Proof. The proof is straightforward from (4.6) by setting x = p

g2n
(

p
(−λ )n

)
=

1
(−λ )n g(p) =

p
(−λ )n .

The periodic points of g can be written by an explicit formula.
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4.4. The fixed point of the renormalization operator

Definition 4.32. Define qc(n) =−
(
− 1

λ

)n+1
and q(n) = g(qc(n)) for all integers n≥−1.

Next proposition shows that these values are the periodic points for g. The superscript c for
qc stands for the periodic points around the critical point. The other collection of points q(n) are
the periodic points around the critical value. The superscript is suppressed from the later notation
because it is important for the Hénon renormalization.

Proposition 4.33. For n ≥ 0, qc(n) is a periodic point of period 2n for g. Moreover, qc(−1) =
q(−1) and qc(0) = q(0) are the fixed points for g.

Proof. By the definition of unimodal map, qc(−1) = q(−1) = −1 is the fixed point with positive
multiplier.

We prove qc(n) is a periodic point of period 2n for n≥ 0 by induction.
For the base case n = 0, we know that the rescaling function is sc(x) =−λx from the functional

equation (4.5). From the rescaling function, we get

qc(−1) =−1 = sc ◦qc(0).

Thus, qc(0) = q(0) = 1
λ

is the other fixed point of g.
Assume that qc(n) is a periodic point of period 2n. By Lemma 4.31, we see that qc(n+ 1) is a

fixed point for g2n+1
. It suffices to show that the orbit qc(n+1),g(qc(n+1)), · · · ,g2n+1−1(qc(n+1))

are distinct points. By the functional equation sc ◦g2 ◦ s−1
c = g, we have

sc ◦g2 j(qc(n+1)) = g j ◦ sc(qc(n+1)) = g j(qc(n))

for all j≥ 0. Thus, the points qc(n+1),g2(qc(n+1)), · · · ,g2n+1−2(qc(n+1)) are distinct elements
in B because qc(n) is a periodic point of period 2n by the induction hypothesis. Also, g(B) ⊂ C
and B∩C = φ . Therefore, qc(n+1) is a periodic point of period 2n+1. The proposition is proved
by induction.

4.4.2. The orbit of the critical point

First, we derive a formula for the forward orbit of the critical points.

Lemma 4.34. *The orbit of the critical point satisfies the equality

c(2
n) =

(
−1
λ

)n

c(1)

for all n≥ 0.

Proof. From the functional equation (4.6), we have

c(2
n) = g2n

(0) =
1

(−λ )n g(0) =
(
−1
λ

)n

c(1).
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4. Unimodal Maps

Then, we study a backward orbit of the critical point. Let b(1) ∈ [0,c(1)] be the point such that
g(b(1)) = 0. Set b(2) = 1

λ
b(1).

Lemma 4.35. We have
g
(

b(2)
)
= b(1).

Proof. Since g is even, the only two roots of g are−b(1) and b(1). By the functional equation (4.6),
we have

g2
(

b(2)
)
=− 1

λ
g
(
−b(1)

)
= 0.

Thus, g
(

b(2)
)
= −b(1) or b(1). Also, g

(
b(2)
)
6= −b(1) because b(2) ∈ (0,b(1)) and g(x) > 0 on

(0,b(1)). Therefore, g
(

b(2)
)
= b(1).

4.4.3. Estimations for the derivative

Apply the chain rule to the functional equation (4.5), we have

g′ (x) = g′
(
− x

λ

)
g′ ◦g

(
− x

λ

)
(4.7)

for x ∈ I. We will use this formula to derive the values for the derivative of g at some particular
values.

Lemma 4.36. The slope at the critical value is

g′(c(1)) =−λ . (4.8)

Proof. The lemma follows either from Proposition 4.29 or from the functional equation explained
below.

Take the derivative of (4.7), we have

g′′(x) =− 1
λ

[
g′′
(
− x

λ

)
g′ ◦g

(
− x

λ

)
+
(

g′
(
− x

λ

))2
g′′ ◦g

(
− x

λ

)]
.

Substitute x = 0, we get

g′′(c(0)) =− 1
λ

g′′(c(0))g′(c(1)).

Since the critical point is non-degenerate, we solved

g′(c(1)) =−λ .

Lemma 4.37. The slope at b(2) is
g′(b(2)) =−1. (4.9)

Proof. From (4.7) and g is even, we have

g′(b(1)) = g′
(
−b(2)

)
g′ ◦g

(
−b(2)

)
=−g′

(
b(2)
)

g′
(

b(1)
)
.

38



4.4. The fixed point of the renormalization operator

We solve g′(b(2)) =−1.

Recall from Definition that 4.32 q(−1) = −1 is the fixed point with a positive multiplier and
q(0) = 1

λ
is the fixed point with a negative multiplier.

Lemma 4.38. The slopes at the fixed points satisfy the relation

g′ (q(−1)) =
[
g′ (q(0))

]2
. (4.10)

Proof. From (4.7), compute

g′ (q(−1)) = g′ (−1) = g′
(

1
λ

)
g′ ◦g

(
1
λ

)
= g′ (q(0))g′ ◦g(q(0)) =

[
g′ (q(0))

]2
.

Finally, we prove that the map g is expanding on A and C.

Proposition 4.39. The slope of g is bounded below by∣∣g′(x)∣∣≥ ∣∣g′(q(0))∣∣> 1

for all x ∈ [q(−1), q̂(0)]∪ [q(0), q̂(−1)].

Proof. It is enough to prove the case when x ∈ [q(0), q̂(−1)] since g is even.
First, we consider the interval [b(2),c(1)]. We have b(2) < q(0)< c(1). By (4.9) and Proposition

4.29, the derivatives of the boundaries are g′(b(2)) =−1 and g′(c(1)) =−λ . We get |g′(q(0))|> 1
by the minimal principle (Proposition 2.4).

Next, we consider the interval [q(0), q̂(−1)]. From (4.10), we also get |g′(q̂(−1))| > 1. There-
fore, the proposition follows from the minimal principle (Proposition 2.4).

4.4.4. *Concavity of g

From Proposition 4.29, we learned that g is concave on [−c(1),c(1)]. In this section, we discuses
the concavity on the remaining part of the domain [−1,−c(1)]∪ [c(1),1].

Lemma 4.40. The second derivative at the fixed point −1 satisfies

g′′(−1)> 0.

Proof. Take the derivative of (4.7), we have

g′′(x) =− 1
λ

[
g′′ ◦g

(
− x

λ

)(
g′
(
− x

λ

))2
+g′′

(
− x

λ

)
g′ ◦g

(
− x

λ

)]
.

Substitute x =−1, we get

g′′(−1) = − 1
λ

[
g′′ (q(0))

(
g′ (q(0))

)2
+g′′ (q(0))g′ (q(0))

]
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4. Unimodal Maps

= − 1
λ

g′′ (q(0))g′ (q(0))
[
g′ (q(0))+1

]
.

By Proposition 4.29, g′′ (q(0))< 0. Also, by Proposition (4.39), g′ (q(0))<−1. Therefore,

g′′(−1)> 0.

Corollary 4.41. The map g changes concavity on (−1,−c(1)) and (c(1),1).
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5. Hénon-like Maps

In this chapter, we give an introduction to the theory of Hénon renormalization in the strongly
dissipative regime developed by [dCLM05, LM11]. Their theorems are adapted to fit the notations
and the coordinate system used in this article.

5.1. The class of unimodal maps

Definition 5.1 (Class of unimodal maps). Assume that δ > 0, κ > 0, and Ih c I ≡ [−1,1]. Let
Uδ ,κ(Ih)⊂U be the class of analytic unimodal maps f : Ih→ R such that

1. f has a unique critical point c such that f (c) ∈ [c+κ,1−κ],

2. f has two fixed points−1 and p such that−1 has an expanding positive multiplier and p has
a negative multiplier,

3. f has holomorphic extension to Ih(δ ),

4. f can be factorized as f = Q ◦φ where Q(x) = c(1)− (c(1)+ 1)x2, c(1) is the critical value,
and φ is an R-symmetric univalent map on Ih(δ ), and

5. f has negative Schwarzian derivative.

In the remaining article, we fix a small κ > 0 such that the class contains the renormalization fixed
point g, and we suppress the subscript from the notation Uδ (Ih) = Uδ ,κ(Ih).

Remark 5.2. From the conditions f (−1) =−1 and f (1) =−1, this forces φ(−1) =−1 and φ(1) =
1. Thus, Uδ forms a normal family by [Mil11, Theorem 3.2].

5.2. The class of Hénon-like maps

Definition 5.3 (Hénon-like map). Assume that Iv ⊃ Ih c I are closed intervals. A Hénon-like map
is a smooth map F : Ih× Iv→ R2 of the form

F(x,y) = ( f (x)− ε(x,y),x)

where f is a unimodal map and ε is a small perturbation. The function h will also be used to
express the x-component, hy(x) = h(x,y) = πxF(x,y). A representation of F will be expressed in
the form F = ( f − ε,x).

The function spaces of the Hénon-like map are defined below.

Definition 5.4 (Class of Hénon-like maps). Assume that Iv ⊃ Ih c I and δ > 0.
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5. Hénon-like Maps

1. Denote Hδ (Ih× Iv) to be the class of real analytic Hénon-like maps F : Ih× Iv→ R2 that
have the following properties:

a) It has a representation F = ( f − ε,x) such that f ∈Uδ (Ih).

b) It has a saddle fixed point p(−1) near the point (−1,−1). The fixed point has an
expanding positive multiplier.

c) The x-component h(x,y) has a holomorphic extension to Ih(δ )× Iv(δ )→ C.

2. Given ε > 0 and f ∈ Uδ (Ih). Denote Hδ (Ih× Iv, f ,ε) to be the class of Hénon-like maps
F ∈Hδ (Ih× Iv) with the form F = ( f − ε,x) such that ‖ε‖< ε .

3. Denote Hδ (Ih× Iv,ε) = ∪Hδ (Ih× Iv, f ,ε) where the union is taken over all f ∈Uδ (Ih).

Remark 5.5. The domain Ih×Iv used in this article is larger than the domain studied in the two orig-
inal papers [dCLM05, LM11]. Their domain is equivalent to the dynamical interval [ f 2(c), f (c)]
for unimodal maps which does not include the fixed point with positive multiplier. The larger
domain is necessary in this article to study the rescaled orbit of a point. See Proposition 5.11,
Proposition 5.16, and Proposition 6.3.

Their work also holds on the larger domain Ih × Iv. See for examples [dCLM05, Footnote
7, Section 3.4] and [LM11, Lemma 3.3, Proposition 3.5, Theorem 4.1]. However, reproving
their theorem on the larger domain is not the aim here. This article will assume the results from
[dCLM05, LM11] also hold in the larger domain and rephrase them in the notations used in this
article without reproving. See also Remarks 5.18, 5.29, and 11.18.

From the definition, it follows immediately that

Lemma 5.6. Given Iv ⊃ Ih c I, δ > 0, ε > 0, and f ∈Uδ (Ih).

1. If ε1 < ε2 then Hδ ( f ,ε1)⊂Hδ ( f ,ε2).

2. If I ⊂ Ih
1 ⊂ Ih

2 ⊂ Iv and f ∈Uδ (Ih
2 ), then Uδ (Ih

1 )⊃Uδ (Ih
2 ) and Hδ (Ih

1 × Iv, f ,ε)⊃Hδ (Ih
2 ×

Iv, f ,ε).

An important property of a Hénon-like map is that it maps vertical lines to horizontal lines; it
maps horizontal lines to parabola-like arcs.

Example 5.7 (Degenerate case). Assume that F(x,y) = ( f (x)− ε(x,y),x) is a Hénon-like map.
The map is called a degenerate Hénon-like map if ∂πxF

∂y = ∂ε

∂y = 0; a non-degenerate Hénon-like

map if ∂πxF
∂y = ∂ε

∂y 6= 0.
If F is degenerate, then ε depends only on x. In this case, without lose of generality, we will

assume the Hénon-like map has the representation F(x,y) = ( f (x),x) where f = πxF and ε = 0.
For the degenerate case, the dynamics of the Hénon-like map is completely determined by its

unimodal component. So it will also be called as the unimodal case in this article.
The degenerate case is an important example in this article. A proof for the nonexistence of

wandering intervals for unimodal maps will be presented in Chapter 8 by identifying a unimodal
map as a degenerate Hénon-like map. The expansion estimate in the proof motivates the proof for
the non-degenerate case. The difference between the degenerate case and the non-degenerate case
produces the main difficulty (explained in Chapter 9 and Chapter 11) of extending the proof to the
non-degenerate case.
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Example 5.8 (Classical Hénon maps). The classical Hénon family is a two-parameter family of
the form Fa,b(x,y) = (−1+ a(1− x2)− by,x) where a,b > 0. These are Hénon-like maps Fa,b ∈
Hδ (Ih× Iv,−1+a(1− x2),b[|Iv|+2δ ]) for all δ > 0 and Iv ⊃ Ih.

5.3. Local stable manifolds and the partition of a Hénon-like map

To study the dynamics of a Hénon-like map, we need to find a domain D ⊂ Ih× Iv that turns
the Hénon-like map into a self-map. Also, to renormalize a Hénon-like map, we need to find a
subdomain C⊂D that defines a first return map. Motivated from unimodal maps, one can construct
a partition of the domain Ih× Iv to find the domains. In the unimodal case, an orbit that maps to
the fixed point p(0) with an expanding multiplier splits the domain D into a partition {A,B,C}
(Definition 4.4). For a strongly dissipative Hénon-like map, the orbit becomes components of the
stable manifold of the saddle fixed point p(0). These components are vertical graphs that split the
domain into multiple vertical strips.

Definition 5.9. A set Γ is a vertical graph if there exists a continuous function γ : Iv→ Ih such that
Γ = {(γ(t), t); t ∈ Iv}. The vertical graph Γ is said to have Lipschitz constant L if the function γ is
Lipschitz with constant L.

In this paper, a local stable manifold is a connected component of a stable manifold. Inspired
by [dCLM05], the partition will be the vertical strips separated by the associated local stable man-
ifolds.

First, we study the local stable manifolds of the saddle fixed point p(−1) which contains an
expanding positive multiplier.

Definition 5.10 (The local stable manifolds of p(−1) and the iteration domain D). Given Iv⊃ Ih c
I, δ > 0, and F ∈Hδ (Ih× Iv). Consider the stable manifold of the saddle fixed point p(−1).

1. If the connected component that contains the fixed point p(−1) is a vertical graph, let
W 0(−1) be the component.

2. Assume that W 0(−1) exists. If F−1(W 0(−1)) has two components, one is W 0(−1) and the
other is a vertical graph. Let W 2(−1) be the one that is disjoint from W 0(−1).

If the the local stable manifolds W 0(−1) and W 2(−1) exists, define D = D(F)⊂ Ih× Iv to be the
open set bounded between the two local stable manifolds. See Figure 5.1 for an illustration.

The domain D turns the Hénon-like map into a self-map.

Proposition 5.11. Given δ > 0 and intervals Ih and Iv with Iv⊃ Ih c I. There exist constants ε > 0
and c > 0 such that for all F ∈Hδ (Ih× Iv,ε) the following properties hold:

1. The sets W 0(−1), W 2(−1), and D exist. The two local stable manifolds are vertical graphs
with Lipschitz constant c‖ε‖.

2. F(D)⊂ D.
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p(-1)

W0(-1)

F-1 W2(-1)
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Figure 5.1.: Local stable manifolds and the partition of a Hénon-like map F . The shaded area is
the image of the Hénon-like map. The vertical graphs are the local stable manifolds
W 0(−1), W 1(0), W 0(0), W 2(0), and W 2(−1) from left to right. The arrows illustrates
the construction of each local stable manifold.

Proof. The first property follows from the graph transformation. The techniques were developed
in [LM11, Chapter 3]. See [LM11, Lemma 3.1, 3.2].

The second property follows from the definition of the local stable manifolds and ε > 0 is
sufficiently small.

Next, we study the local stable manifolds of the other saddle fixed point p(0) with an expanding
negative multiplier to define a partition of D.

Definition 5.12 (The local stable manifolds of p(0)). Given Iv ⊃ Ih c I, δ > 0, and F ∈Hδ (Ih×
Iv). Assume that F has a saddle fixed point p(0) with an expanding negative multiplier. Consider
the stable manifold of p(0).

1. If the connected component that contains p(0) is a vertical graph, let W 0(0) be the compo-
nent.

2. Assume that W 0(0) exists. If F−1(W 0(0)) has two components, one is W 0(0) and the other
is a vertical graph. Let W 1(0) be the one that is disjoint from W 0(0).

3. Assume that W 0(0) and W 1(0) exist. If F−1(W 1(0)) has two components and one compo-
nent is a vertical graph located to the right of W 0(0). Let W 2(0) be the component.

See Figure 5.1 for an illustration.
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5.3. Local stable manifolds and the partition of a Hénon-like map

Remark 5.13. At this moment, the numbers 0 and −1 in the notation of the fixed points p(0)
and p(−1) (and also the local stable manifolds) do not have a special meaning. After introducing
infinitely renormalizable Hénon-like maps, the notation p(k) will be used to define a periodic point
with period 2k. See Definition 6.2. The numbers are introduced here for consistency.

The local stable manifolds split the domain D into vertical strips. These strips define a partition
of the domain.

Definition 5.14 (A, B, and C). Given Iv ⊃ Ih c I, δ > 0, and F ∈Hδ (Ih× Iv). Assume that F
has a saddle fixed point p(0) with an expanding negative multiplier, the local stable manifolds in
Definition 5.12 exist, and D exists.

1. Define A = A(F)⊂ Ih× Iv to be the union of two sets. One is the open set bounded between
W 0(−1) and W 1(0); the other is the open set bounded between W 2(0) and W 2(−1).

2. Define B = B(F)⊂ Ih× Iv to be the open set bounded between W 0(0) and W 1(0).

3. Define C =C(F)⊂ Ih× Iv to be the open set bounded between W 0(0) and W 2(0).

Remark 5.15. The local stable manifolds W 0(−1), W 1(0), W 0(0) , W 2(0), and W 2(−1) are asso-
ciated to the points p(−1) =−1, p(1), p(0), p(2), and 1 respectively (Definition 4.4).

For a strongly dissipative Hénon-like map, the local stable manifolds are vertical graphs and the
dynamics on the partition is similar to the unimodal case.

Proposition 5.16. Given δ > 0 and intervals Ih and Iv with Iv⊃ Ih c I. There exist constants ε > 0
and c > 0 such that for all F ∈Hδ (Ih× Iv,ε) the following properties hold:

1. The sets W 0(0), W 1(0), W 2(0), A, B, and C exist. The local stable manifolds are vertical
graphs with Lipschitz constant c‖ε‖.

2. F(A)⊂ A∪W 1(0)∪B.

3. F(C)⊂ B.

4. If z ∈ A then its orbit eventually escapes A, i.e. there exists n > 0 such that Fn(z) /∈ A.

Proof. The first property is proved by graph transformation. See [LM11, Chapter 3].
The second and third properties follows from the definition of the local stable manifolds. See

also [LM11, Lemma 4.2].
The last property holds because the only fixed points are p(−1) and p(0) so the local unstable

manifold of p(−1) must extends across the whole set A. See also [LM11, Lemma 4.2].

By the definition of B, its iterate F(B) is contained in the right component of D\W 0(0). With
the third property of Proposition 5.16, we can define the condition “renormalizable” as follows.

Definition 5.17 (Renormalizable). Assume that ε > 0 is sufficiently small. A Hénon-like map
F ∈Hδ (Ih× Iv,ε) is (period-doubling) renormalizable if it has a saddle fixed point p(0) with
an expanding negative multiplier and F(B) ⊂C. The class of renormalizable Hénon-like maps is
denoted by H r

δ
(Ih× Iv,ε)⊂Hδ (Ih× Iv,ε).
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5. Hénon-like Maps

Remark 5.18. The notion of “renormalizable” here is similar to [dCLM05, Section 3.4] (which
they called pre-renormalization) but not exactly the same. The “renormalizable” in their paper
is called CLM-renormalizable here to compare the difference. In their article, the set “C” (they
named the set D) where they define the first return map is a region bounded between W 0(0) and
a section of the unstable manifold of p(−1). In this article, the set C is defined to be the largest
candidate (around the critical value) that is invariant under F2 which only uses the local stable
manifolds of p(0). Thus, the sets B and C in this article is larger than theirs.

As a result, the property “renormalizable” in this article is stronger than theirs. If a Hénon-like
map is renormalizable then it is also CLM-renormalizable. Although the converse is not true in
general, the hyperbolicity of the renormalization operator [dCLM05, Theorem 4.1] allows us to
apply the notion of renormalizable to an infinitely CLM-renormalizable map. This makes the final
result, Theorem 11.17, also works for CLM-renormalizable maps. See Remarks 5.29 and 11.18
for more details.

Their definition has some advantages and disadvantages. Their notion of renormalizable does
not depend on the size of the vertical domain Iv. However, their sets B and C are too small. It may
requires more iterations for an orbit to enter their B and C. See the proof of [LM11, Lemma 4.2].
This is the reason for adjusting their definition.

For a renormalizable Hénon-like map, an orbit that is disjoint from the stable manifold of the
fixed points follows the paths in the following diagram.

A //finite iterations 88 B //Coo

Therefore, a renormalizable map has a first return map on C.

5.4. Existence and properties of the local stable manifolds

In this section, we give a review for the properties of the local stable manifolds developed in
[LM11].

To prove the existence of local stable manifold, we use the graph transformation method. The
following lemma allows us to generate a vertical graph by pulling back another vertical graph
under the Hénon-like map. This will be used in the graph transformation.

Lemma 5.19. Given m > 0, δ > 0, ε > 0, I ⊂ Ih ⊂ Iv, and F ∈Hδ (Ih× Iv,ε). Assume that
U,U ′ ⊂ Ih are two closed intervals such that F(x,y) = (hy(x),x) satisfies the properties for all
y ∈ Iv

1. hy(U ′)⊃U and

2.
∥∥h′y
∥∥

U ′ = supx∈U ′

∣∣∣∂h
∂x (x,y)

∣∣∣≥ m.

If Γ⊂U× Ih is the vertical graph of some L-Lipschitz function on Ih with L < m, then the preimage
F−1(Γ)∩U ′× Iv is the vertical graph of some 1

δ (m−L) ‖ε‖-Lipschitz function on Iv.

Proof. Assume that Γ is the vertical graph of a L-Lipschitz function γ : Ih→U .
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First, we prove that F−1(Γ)∩U ′× Iv is a vertical graph of some function on Iv. Fixed y ∈ Iv.
Our goal is to find a unique solution γ̂(y) ∈U ′ such that

F(γ̂(y),y) = (hy(γ̂(y)), γ̂(y)) = (γ(γ̂(y)), γ̂(y)),

i.e. the fixed point of h−1
y ◦ γ .

By the second condition, hy is injective on U ′. So the inverse h−1
y : U → U ′ exists. Define

T : U ′ ⊂ Ih→U ′ by T = h−1
y ◦ γ . For all x1,x2 ∈U ′, we have

|T (x2)−T (x1)| =
∣∣h−1

y ◦ γ(x2)−h−1
y ◦ γ(x1)

∣∣
≤ 1

m
|γ(x2)− γ(x1)|

≤ L
m
|x2− x1| .

Thus, T is a strong contraction since L < m. By the contraction mapping principle [MH93, The-
orem 5.7.1], T has a unique fixed point γ̂(y) ∈U ′. Consequently, F−1(Γ)∩U ′× Iv is the vertical
graph of γ̂ : Iv→U ′.

It remains to prove that γ̂ is Lipschitz. Let y1,y2 ∈ Iv and xi = γ̂(yi) for i = 1,2. Then hyi(xi) =
γ(xi) for i = 1,2. We get

(hy2(x2)−hy2(x1))− (γ(x2)− γ(x1)) = hy1(x1)−hy2(x1).

For the left hand side of the equality, we have∣∣(hy2(x2)−hy2(x1))− (γ(x2)− γ(x1))
∣∣ ≥ ∣∣hy2(x2)−hy2(x1)

∣∣−|γ(x2)− γ(x1)|
≥ (m−L) |x2− x1| .

For the right hand side of the inequality, we have

∣∣hy1(x1)−hy2(x1)
∣∣≤ ∥∥∥∥∂ε

∂y

∥∥∥∥
Ih×Iv
|y2− y1| ≤

1
δ
‖ε‖|y2− y1| .

Combine the two inequalities, we obtain

|γ̂(y2)− γ̂(y1)| ≤
1

δ (m−L)
‖ε‖|y2− y1| .

Therefore, γ̂ is 1
δ (m−L)-Lipschitz.

Now we use the graph transformation to prove the existence of local stable manifold.

Proposition 5.20. Given δ > 0, Iv ⊃ Ih c I, and f ∈Uδ (Ih) such that f has a fixed point p̂ with
f ′(p̂)<−1. There exists a constant ε > 0 such that for all F ∈Hδ (Ih× Iv, f ,ε), the local stable
manifold W 0(0) exists and W 0(0) is a vertical graph of a 2

δ
‖ε‖-Lipschitz function on Iv.

Proof. We use the method of graph transform to prove the existence of the local stable manifold.
Let ε > 0 be a constant. We will adjust ε in the proof so that ε depends only on δ and f . Assume
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5. Hénon-like Maps

that F ∈Hδ (Ih× Iv, f ,ε) and d > 0 such that f ′(x) < 1
2 ( f ′(p̂)−1) for all x ∈ [p̂− 2d, p̂+ 2d].

Also, assume that ε is small enough such that ∂h
∂x (z) < −1 for all z ∈ [p̂− 2d, p̂+ 2d]× Iv. By

Lemma A.2, F has a fixed point p(0) = (q,q) on (p̂− d, p̂+ d)× Iv and hy has a fixed point
on (p̂− d, p̂+ d) for all y ∈ Iv when ε < d. Then hy[p̂− 2d, p̂+ 2d] ⊃ [p̂− 2d, p̂+ 2d]. Let
U =U ′ = [p̂−2d, p̂+2d]. So we are now able to apply Lemma 5.19 with this setting.

Define L = 2
δ
‖ε‖ and L be the collection of L-Lipschitz functions γ : Iv→R such that γ(q) = q.

Then Imγ ⊂U when ε < dδ

2|Iv| . Also, assume that ε is small enough such that L < 1
2 . Then

1
δ (1−L)

‖ε‖< L.

By Lemma 5.19, F−1(Γ)∩U ′× Iv is the vertical graph of a L-Lipschitz function for all γ ∈ L
where Γ is the vertical graph of γ . This defines a graph transformation T : L→ L. It remains to
show that T has a fixed point.

We first claim that

‖T γ1−T γ2‖(q−s,q+s)∩Iv(δ ) ≤
2

1−2L
‖γ1− γ2‖(q−Ls,q+Ls)∩Iv(δ ) (5.1)

for all γ1,γ2 ∈ L and s > 0. By the definition of T , we have

hy(T γ(y)) = γ(T γ(y))

for all γ ∈ L and y ∈ Iv(δ ). Then

|T γ1(y)−T γ2(y)| ≤
∣∣hy(T γ1(y))−hy(T γ2(y))

∣∣
= |γ1(T γ1(y))− γ2(T γ2(y))|
≤ |γ1(T γ1(y))− γ1(T γ2(y))|+ |γ1(T γ2(y))− γ2(T γ2(y))|
≤ L |T γ1(y)−T γ2(y)|+ |γ1(T γ2(y))− γ2(T γ2(y))|

for all γ1,γ2 ∈ L and y ∈ (q− s,q+ s)∩ Iv(δ ) since ImT γ1, ImT γ2 ⊂U ′. Thus we proved (5.1).
Now we show T has a fixed point. Let γ0(y) = q be the constant map. Define γn = T nγ0. We

prove that {γn}∞

n=0 is a Cauchy sequence. For all m > n, we have

‖T γm−T γn‖Iv(δ ) ≤
(

1
1−L

)n

‖γm−n− γ0‖(q−Ln|Iv(δ )|,q+Ln|Iv(δ )|)∩Iv(δ )

≤
(

L
1−L

)n

L |Iv(δ )| .

Note that L
1−L = 1

1
L−1

< 1 since L < 1
2 . Therefore, γn has a limit and the Proposition is proved.

Remark 5.21. By the stable manifold theorem, the local stable manifolds are analytic curves. The
proposition gives a bound for the slope of the analytic curve.

One can also prove the existence for W 1(0), W 2(0), W 0(−1), and W 1(−1). See Proposition 6.8.
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5.5. The renormalization operator

5.5. The renormalization operator

When a Hénon-like map is renormalizable, the map has a first return map on C. However, the first
return map is no longer a Hénon-like map by a direct computation

F2(x,y) = (hx(hy(x)),hy(x)).

The paper [dCLM05] introduced a nonlinear coordinate change H(x,y)≡ (hy(x),y) that turns the
first return map into a Hénon-like map. The next proposition defines the renormalization operator.

Proposition 5.22 (The renormalization operator). Given δ > 0 and intervals Ih, Iv with Iv⊃ Ih c I.
There exist constants ε > 0 and c> 0 so that for all F ∈H r

δ
(Ih×Iv,ε) there exists anR-symmetric

orientation reversing affine map s = s(F) that depends continuously on F such that the following
properties hold:

Let Λ(x,y) = (s(x),s(y)) and φ = Λ◦H.

1. The map x→ hy(x) is injective on a neighborhood of C(F) and hence φ is a diffeomorphism
from a neighborhood of C(F) to its image.

2. The renormalization RF ≡ φ ◦F2 ◦φ−1 is an Hénon-like map defined on Ih
R(δR)× Iv

R(δR) for
some δR > 0 and intervals Ih

R and Iv
R. The intervals satisfy Ih

R c [−1,1] and Iv
R = s(Iv).

3. The domain Ih
R× Iv

R contains D(RF), and the rescaling φ maps φ(C(F)) = D(RF).

4. The fixed points satisfy the relation φ(p(0)) = pRF(−1) where pRF(−1) is the saddle fixed
point of RF with an expanding positive multiplier.

5. The renormalization has a representation RF = ( fR− εR,x) where fR ∈U . The representa-
tion satisfies the relations

‖ fR−Rc f‖Ih
R(δR)

< c‖ε‖

and
‖εR‖Ih

R(δR)×Iv
R(δR)

< c‖ε‖2 .

Proof. See [dCLM05, Section 3.5].

Remark 5.23. The rescaling φ preserves the orientation along the x-coordinate and reverses the
orientation along the y-coordinate.

Remark 5.24. The operator R is canonical. The renormalization RF depends continuously on the
Hénon-like map F . The renormalization RF and rescaling φ do not depend on the representation
f and ε for F . However, the representation fR and εR of RF and the estimates in property 5 do
depend on the choice of representation of F .

Lemma 5.25. (to be removed)The derivatives of the nonlinear rescaling are given by

DH(x,y) =

[
∂h
∂x (x,y)

∂h
∂y (x,y)

0 1

]
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DH−1(x,y) =

 1
∂h
∂x (h

−1
y (x),y)

−
∂h
∂y (h

−1
y (x),y)

∂h
∂x (h

−1
y (x),y)

0 1


Hence,

h−1′
y (x) =

(
h′y ◦h−1

y (x)
)−1

and
∂h−1

y

∂y
(x,y) =−

∂ε

∂y (h
−1
y (x),y)

h′y ◦h−1
y (x)

.

Proof. The lemma follows directly from computation.

A map is called infinitely renormalizable if the procedure of renormalization can be done in-
finitely many times. The class of infinitely renormalizable Hénon-like map is denoted as Iδ (Ih×
Iv,ε)⊂Hδ (Ih× Iv,ε).

Assume that F ∈Iδ (Ih× Iv,ε), we define Fn = RnF . The subscript n is called the renormaliza-
tion scale. The subscript is also used to indicate the associated renormalization scale of an object.
For example, Hn, sn, and Λn are the functions in Proposition 5.22 that corresponds to Fn. The
vertical domain Iv

n satisfies Iv
0 = Iv and Iv

n+1 = sn(Iv
n) for all n ≥ 0. The vertical graphs W t

n( j) are
the local stable manifolds of Fn. The sets An, Bn, and Cn form a partition of the dynamical domain
Dn that associates to Fn. The points pn(−1) and pn(0) are the two saddle fixed points of Fn.

Also, define Φ
j
n = φn+ j−1 ◦ · · · ◦φn and λn = s′n(x).

Recall g∈U is the fixed point of the renormalization operator Rc, and λ is the rescaling constant
defined in 4.29. Let G(x,y) = (g(x),x) be the induced degenerate Hénon-like map.

The renormalization operator is hyperbolic. The next proposition lists the properties of infinitely
renormalizable Hénon-like maps.

Proposition 5.26 (Hyperbolicity of the renormalization operator). Given δ > 0 and intervals Ih, Iv

with Iv ⊃ Ih c I. There exists constants ρ < 1 (universal), ε > 0, and c > 0 such that for all
F ∈Iδ (Ih× Iv,ε) there exist a constant δR with 0 < δR < δ , an interval Ih

R with Ih ⊃ Ih
R c I, and

a constant b = b(F) ∈ R such that the following properties hold:
Let Fn = RnF be the sequence of renormalizations of F. Then Fn ∈HδR(I

h
R× Iv

n) for all n ≥ 0.
Also, the sequence has a representation Fn = ( fn− εn,x) with fn ∈UδR(I

h
R) that satisfies

1. ‖ fn−g‖Ih
R(δR)

< cρn ‖F−G‖Ih
R(δR)×Iv(δR)

2. ‖εn+1‖Ih
R(δR)×Iv

n+1(δR)
< c‖εn‖2

Ih
R(δR)×Iv

n(δR)
,

3.
∥∥ fn+1− sn ◦ f 2

n ◦ s−1
n
∥∥

Ih
R(δR)

< c‖εn‖Ih
R(δR)×Iv

n(δR)
,

4. |λn−λ |< cρn ‖F−G‖Ih
R(δR)×Iv(δR)

, and

5. εn(x,y) = b2n
a(x)y(1+O(ρn)) (universality)

for all n≥ 0 where a(x) is a universal analytic positive function. The value δR in the estimates can
be replaced by any positive number that is smaller than δR.

50



5.5. The renormalization operator

Proof. See [dCLM05, Theorem 3.5, 4.1, 7.9, and Lemma 7.4].

Remark 5.27. The constant b is called the average Jacobian of F . See [dCLM05, Section 6].

Remark 5.28. The Hénon-renormailzation is an operation that renormalizes around the critical
value. However, the renormalization Fn converges to the fixed point G of the unimodal-renormalization
that renormalizes around the critical point. This is because of the nonlinear rescaling H maps the
domain from C to B in the degenerate case. See Chapter 8 for a more detail explanation.

Remark 5.29. Although infinitely CLM-renormalizable in general does not imply infinitely renor-
malizable, the hyperbolicity provides a connection between the two notions of infinitely renormal-
izable. Assume that F is infinitely CLM-renormalizable. The hyperbolicity of the renormalizable
operator [dCLM05, Theorem 4.1] says that RnF converges to the fixed point G. This means that
RnF is also infinitely renormalizable for all n sufficiently large. This makes Theorem 11.17 also
applies to infinitely CLM-renormalizable Hénon-like maps. See Remark 11.18 for more details.

From now on, for any infinitely renormalizable map F , we fix a representation Fn = ( fn− εn,x)
such that the maps fn and εn satisfy the properties given in Proposition 5.26. Also, we neglect
the subscript of the supnorms ‖ fn−g‖= ‖ fn−g‖Ih

R(δR)
and ‖εn‖= ‖εn‖Ih

R(δR)×Iv
n(δR)

whenever the
context is clear.

Corollary 5.30. There exists a constant c > 1 such that

‖Fn−G‖< cρ
n ‖F−G‖

and
‖εn+t‖< (c‖εn‖)2t

for all t ≥ 1.

Lemma 5.31. Assume that ε > 0 small enough such that Proposition 5.26 holds. There exists a
constant c1 > 0 such that the inequalities hold∣∣∣∣∂εn

∂x
(x,y)

∣∣∣∣ , ∣∣∣∣∂εn

∂y
(x,y)

∣∣∣∣≤ c1 ‖εn‖ (5.2)

for all F ∈ Iδ (Ih× Iv,ε) and (x,y) ∈ Ih× Iv
n . In addition, if F is non-degenerate, there exist

constants N = N(F)≥ 0, δR > 0, and c2 > 0 such that

∂εn

∂y
(x,y)≥ c1

|Iv
n|
‖εn‖ (5.3)

for all (x,y) ∈ Ih× Iv
n and n≥ N.

Proof. The first inequality (5.2) follows from Lemma 2.1.
By the universality (and the proof of [dCLM05, Theorem 7.9]) of the infinitely renormalizable

Hénon-like maps, the perturbation ε and its derivative has the asymptotic form

εn(x,y) = b2n
a(x)y(1+O(ρn))
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5. Hénon-like Maps

and
∂εn

∂y
(x,y) = b2n

a(x)(1+O(ρn)).

There exists a constant N ≥ 0 such that O(ρn)< 1
2 for all n≥ N. Then

‖εn‖ ≤
3
2

b2n
max

x∈Ih
R(δR)
|a(x)| |Iv

n|

and
∂εn

∂y
(z)≥ 1

2
b2n

min
x∈Ih

R

a(x)

for all z ∈ Ih× Iv
n and n≥ N. We get

∂εn

∂y
(z)≥ 1

3 |Iv
n|

minx∈Ih
R

a(x)

maxx∈Ih
R(δR)
|a(x)|

‖εn‖

for all z ∈ Ih× Iv
n and n ≥ N. Note that maxx∈Ih

R(δR)
|a(x)| 6= 0 and minx∈Ih

R
a(x) 6= 0 since a is

positive on Ih
R and δR can be chosen to be arbitrary small.

To study the wandering domains, it is enough to consider Hénon-like maps that are close to the
hyperbolic fixed point G. By Corollary 7.4 later, for any integer n≥ 0, we show an infinitely renor-
malizable Hénon-like map F has a wandering domain in D(F) if and only if Fn has a wandering
domain in D(Fn). Also, the maps Fn converge to the hyperbolic fixed point G as n approaches to
infinity by Proposition 5.26. Thus, we focus on a small neighborhood of the fixed point G.

Definition 5.32. Given δ > 0 and I b Ih ⊂ Iv. If ε is small enough such that Proposition 5.26
holds, define Îδ (Ih× Iv,ε) to be the class of non-degenerate Hénon-like maps F ∈Iδ (Ih× Iv,ε)
such that Fn ∈Hδ (Ih× Iv

n,ε), ‖Fn−G‖< ε , |λn−λ |< ε , ‖sn(x)− (−λ )x‖Ih < ε , and (5.3) holds
for all n≥ 0.

In the remaining part of the article, we will study the dynamics and the topology of Hénon-like
maps in this smaller class of maps.
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6. Structure and Dynamics of Infinitely Renormalizable
Hénon-Like Maps

In this chapter, we study the topology of the local stable manifolds and the dynamics on the parti-
tion for a infinitely renormalizable Hénon-like map.

6.1. Rescaling levels

This section introduces a finer partition of C, called the rescaling levels, based on the maximum
possible rescalings of a point in C.

For each two consecutive levels of renormalization n and n + 1, the maps F2
n and Fn+1 are

conjugated by the nonlinear rescaling φn. The rescaling φn relates the two renormalization scales
by the following lemma.

Lemma 6.1. Given δ > 0 and Iv ⊃ Ih c I. There exists a constant ε > 0 such that for all F ∈
Îδ (Ih× Iv,ε), the following properties hold for all n≥ 0:

1. φn(pn(0)) = pn+1(−1),

2. φn(W k
n (0)) =W k

n+1(−1) for k = 0,2, and

3. φn : Cn→ Dn is a diffeomorphism.

The itinerary of a point follows the arrows in the diagram.

An+1

Fn+1
��

Fn+1uu An+2

Fn+2
��

Fn+2uu

Bn+1

Fn+1
��

Bn+2

Fn+2
��

Cn
φn //

φn

==
φn

FF

Cn+1
φn+1 //

φn+1
77

φn+1

>>

Cn+2
φn+2 // · · ·

The diagram says, if z0 ∈Cn, then we can rescale the point. The rescaled point z1 = φn(z0) enters
the domain Dn+1 of the next renormalization scale n+ 1 by Lemma 6.1. On the renormalization
scale n+1, the rescaled point z1 belongs to one of the sets An+1, Bn+1, or Cn+1 if it is disjoint from
the stable manifolds. The process of rescaling stops if z1 belongs to An+1 or Bn+1 and z0 can be
rescaled at most one time. If z1 belongs to Cn+1, we can continue to rescale the point. The rescaled
point z2 = φn+1(z1) enters the domain Dn+2 of the next renormalization scale n+2. Similarly, the
process of rescaling stops if z2 belongs to An+2 or Bn+2 and z0 can be rescaled at most two times.
If z2 belongs to Cn+2, we can rescale again and repeat the procedure until the rescaled point enters
the sets A or B of some deeper renormalization scale.

Motivated from the diagram, we define the finer partition Cn( j) on Cn by the maximal possible
rescalings.
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6. Structure and Dynamics of Infinitely Renormalizable Hénon-Like Maps

Definition 6.2. For consistency, set Cn(0) = An∪W 1
n (0)∪Bn and Bn(0) = An∪W 2

n (0)∪Cn. Given

a positive integer j. The j-th rescaling level in C is defined as Cn( j) =
(

Φ
j
n

)−1
(Cn+ j(0)) and the

j-th rescaling level in B is defined as Bn( j) = F−1
n (Cn( j)). Also, set pn( j) =

(
Φ

j
n

)−1
(pn+ j(0))

and W t
n( j) =

(
Φ

j
n

)−1
(W t

n+ j(0)) for t = 0,2.

For each n≥ 0, the local stable manifolds {W t
n( j)} j≥0,t=0,2 cannot intersect each other.

The diagram explains the definition of a rescaling level.

Cn( j)
F2 j

n //

Φ
j
n
��

Cn( j)

Φ
j
n
��

Dn+ j Fn+ j
// Dn+ j

From the definition, the rescaling levels of two renormalization scales are related by the rescaling
map with the following properties. The proposition is an analog of Proposition 4.10.

Proposition 6.3. Given δ > 0 and Iv ⊃ Ih c I. There exists a constant ε > 0 such that for all
F ∈ Îδ (Ih× Iv,ε), the following properties hold for all n≥ 0:

1. pn( j) is a periodic point of Fn with period 2 j for j ≥ 0.

2. W t
n( j) is a local stable manifold of pn( j) for j ≥ 0 and t = 0,2.

3. Φk
n(W

t
n( j)) =W t

n+k( j− k) and Φk
n(pn( j)) = pn+k( j− k) for j ≥ k−1 and t = 0,2.

4. The map Φk
n : Cn( j)→Cn+k( j− k) is a diffeomorphism for j ≥ k, and

5. For each j ≥ 0, the set Cn( j) contains two components. The left component Cl
n( j) is the set

bounded between W 0
n ( j− 1) and W 0

n ( j) and the right component Cr
n( j) is the set bounded

between W 2
n ( j) and W 2

n ( j−1).

The partition and the local stable manifolds W t
n( j) are illustrated in Figure 6.1. The sets {Cn( j)} j≥1

form a partition of Cn and the sets {Bn( j)} j≥1 form a partition of Bn.

6.2. Existence of the local stable manifolds and the partition for all
renormalization scales

Although we already proved the existence of the local stable manifolds in Proposition in 5.20, the
constants may depend on the Hénon-like map. Our goal in this section is to make the constants to
be independent of the Hénon-like maps when the Hénon-like maps are close to the renormalization
fixed point G. The proofs are based from the methods in [LM11].

Recall q( j) are the periodic points for the fixed point g by Definition 4.32 and Proposition 4.33.
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6.2. Existence of the local stable manifolds and the partition for all renormalization scales

Figure 6.1.: The partition and the local stable manifolds of two renormalization scales F0 and F1
from the left to the right. The rescaling levels 1, 2, 3, and below 4 are shaded from
light to dark as shown in the legend.
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6. Structure and Dynamics of Infinitely Renormalizable Hénon-Like Maps

Lemma 6.4. Given δ > 0 and Iv ⊃ Ih c I. For all d > 0 there exists a constant ε = ε(d)> 0 such
that for all F ∈ Îδ (Ih× Iv,ε) we have

|πx pn(0)−q(0)|< d

for all n≥ 0.

Proof. Without lose of generality, we may assume that d is small enough such that g is decreasing
on [q(0)−d,q(0)+d]. Let ε < d be small enough such that Proposition 5.26 holds. Then

‖hn−g‖Ih×Iv
n
< d

for all n≥ 0. In particular, |g(x)−hn(x,x)|< d for all x∈ [q(0)−d,q(0)+d]. Since g is decreasing
on [q(0)−d,q(0)+d], we obtain

|πx pn(0)−q(0)|< d

by Lemma A.2.

For the limiting case F = G, define

Definition 6.5. Define qC( j) = g(q( j)) for all j ≥ 0.

For the limiting case, the local stable manifold W 0( j) is determined by the point qC( j). Pre-
cisely, W 0( j) is the vertical line x = qC( j). (Here we suppress the subscript n for G because
RG = G.)

Corollary 6.6. Given δ > 0 and Iv ⊃ Ih c I. For all d > 0 and j > 0, there exists a constant
ε = ε(d, j)> 0 such that for all F ∈ Îδ (Ih× Iv,ε) we have∣∣∣πx pn( j)−qC( j)

∣∣∣< d

for all n≥ 0.

To prove the existence of the local manifolds, we apply the graph transformation by Lemma
5.19. To use the Lemma, we first prove

Lemma 6.7. Given δ > 0 and Iv ⊃ Ih c I. There exist constants ε > 0, m > 0, and d > 0 and
closed intervals U1,U2 ⊂ I such that for all F ∈ Î

δ̂
(Îh× Iv,ε) the following properties hold for all

n≥ 0 and y ∈ Iv
n:

1. q(0),πx pn(0) ∈ Ů1, q̂(0) ∈ Ů2, and πx pn(0) /∈U2.

2. Bπx pn(0)(d)⊂ hn(U j,y) for all j = 1,2.

3.
∥∥∥∂hn

∂x (·,y)
∥∥∥

U j
≥ m for all j = 1,2.

4. U2 ⊂ hn(U1,y).

Here the constants m,d and intervals U1,U2 are universal.
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6.2. Existence of the local stable manifolds and the partition for all renormalization scales

Proof. (x) Let ε > 0 be small enough (explain later) such that Proposition 5.26 holds. Let c > 0,
ρ < 1, δ > 0 be the constants defined in Proposition 5.26.

First, we define U1. Let m̂ = min(|g′(q(0))| , |g′(q̂(−1))|) = min(|g′(q(−1))| , |g′(q̂(1))|) =
|g′(q(1))|. By the minimal principle of negative Schwarzian derivative, there exists a1 < q(0)
such that g′(x) ≤ −2

3m̂ for all x ∈U1 = [a1,b1] where b1 = q̂(−1) = 1. Then U1 ⊂ I, q(0) ∈ Ů1,
and the image q(0) ∈ g(Ů1). Hence, there exists d1 > 0 such that Bq(0)(3d1)⊂ g(U1)∩U1.

Assume that ε < d1. That is
‖hn−g‖Ih(δ )×Iv

n(δ )
< d1 (6.1)

for all n≥ 0. By Lemma 6.4,
|πx pn(0)−q(0)|< d1 (6.2)

when ε is small enough. This proves the first property for U1.
To prove the second property for U1, we claim that

hn(b1,y)< πx pn(0)−d < πx pn(0)+d < hn(a1,y) (6.3)

for n≥ 0. Since (q(0)−3d1,q(0)+3d1)⊂ g(U1), we have

g(b1)< q(0)−3d1 < q(0)+3d1 < g(a1).

It follows by (6.2) and (6.1) that (6.3) holds and Bπx pn(0)(d)⊂ hn(U1,y) for all n≥ 0 since hn(U1,y)
is connected.

To prove the third property, also assume that ε < δ

3 m̂. That is

‖hn−g‖Ih(δ )×Iv
n(δ )

<
δ

3
m̂

for all n≥ 0. Then

h′n(x,y) ≤ g′(x)+
∣∣∣∣∂hn

∂x
(x,y)−g′(x)

∣∣∣∣
≤ −2

3
m̂+

1
δ
‖hn−g‖Ih(δ )×Iv

n(δ )
<−1

3
m̂

for all x ∈U1 and y ∈ Iv
n . Thus,

∥∥∥∂hn
∂x (·,y)

∥∥∥
U1
≥ 1

3m̂.

To construct U2, we recall that q̂(0)∈ [q(−1),q(0)]⊂ g([q(0), q̂(−1)])⊂ g(Ů1). By the minimal
principle of negative Schwarzian derivative, there exists d2 > 0 such that g′(x) ≥ 2

3m̂ for all x ∈
Bq̂(0)(2d2), Bq̂(0)(2d2) ⊂ g(U1). Let U2 = Bq̂(0)([q̂(0)− d2, q̂(0) + d2]). We can choose d2 be
small enough such that U2 ∩Bq(0)(d1) = φ . This implies that πx pn(0) /∈ U2 for all n ≥ 0 since
πx pn(0) ∈ Bq(0)(d1). This proves the first property for U2.

Moreover, also assume that ε < d2. That is

‖hn−g‖Ih(δ )×Iv
n(δ )

< d2

for all n≥ 0. Then U2 ⊂ hn(U1,y) for all y ∈ Iv
n and n≥ 0. This proves the fourth property.

To prove the second and third property, let d3 > 0 be such that Bq(0)(3d3)⊂ g(U2) since q(0) ∈
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6. Structure and Dynamics of Infinitely Renormalizable Hénon-Like Maps

g(Ů2). By the same reason, the second and third properties hold for U2 when ε is sufficiently small.
The lemma is proved by setting d = min(d1,d3).

We are ready to prove the existence of the local manifolds.

Proposition 6.8. Given δ > 0 and Iv ⊃ Ih c I. There exists constants ε > 0 and c > 0 such that
for all F ∈ Îδ (Ih× Iv,ε), the following properties hold for all n≥ 0:

The local stable manifold W t
n(0) ⊂ I × Iv

n exists and W t
n(0) is a vertical graph of a c‖εn‖-

Lipschitz function on Iv
n for t = 0,1,2. In addition, W 0

n (0),W
2
n (0) ⊂U1× Iv

n and W 1
n (0) ⊂U2× Iv

n
where U1 and U2 are the closed intervals defined in Lemma 6.7.

Proof. We use the method of graph transform to prove the existence of the local stable manifold.
Let ε > 0 be small enough such that Proposition 5.26 holds, m > 0, d > 0, U1, and U2 be defined in
Lemma 6.7. Also, let d > 0, Vn ≡ [πx pn(0)−d,πx pn(0)+d]. Assume that F ∈I

δ̂
(Îh× Îv, f̂ ,ε).

Write Fn = RnF = (hn,x) = ( fn− εn,x). Then Vn ⊂ hn(U j,y) for all j = 1,2 and n ≥ 0 when ε is
small enough.

Define Ln = 2
δm ‖εn‖ and Ln be the collection of Ln-Lipschitz functions γ : Iv

n → R such that
γ(πx pn(0)) = πx pn(0). First we show that when ε is sufficiently small, then Γ ⊂ Vn× Iv

n for all
γ ∈ Ln and n≥ 0 where Γ is the vertical graph of γ . Assume that ε is small enough such that

2
δm

(cε)2n
(λ + ε)n

∣∣∣Ih
∣∣∣< d

for all n≥ 0 where m is the constant defined in Lemma 6.7. Then

|γ(y)−πx pn(0)| = |γ(y)− γ(πx pn(0))|

≤ 2
δm
‖εn‖|y−πx pn(0)|

≤ 2
δm
‖εn‖|Iv

n|

≤ 2
δm

(c‖ε0‖)2n n−1

∏
j=0

λ j |Iv|

≤ 2
δm

(cε)2n
(λ + ε)n |Iv|

< d

for all y ∈ Iv
n . Thus, Imγ ⊂Vn and Γ⊂Vn× Iv

n for all n≥ 0.
Moreover, assume that ε is small enough such that

Ln =
2

δm
‖εn‖ ≤

2
δm

(c‖ε0‖)2n
≤ 2

δm
(cε)2n

<
m
2

for all n≥ 0. Then
1

δ (m−Ln)
‖εn‖ ≤ Ln

for all n≥ 0. By Lemma 5.19, F−1
n (Γ)∩U1× Iv

n is the vertical graph of a Ln-Lipschitz function for
all γ ∈ Ln where Γ is the vertical graph of γ . Also, the preimage preserves the fixed point pn(0).

58



6.2. Existence of the local stable manifolds and the partition for all renormalization scales

Thus, the preimage defines a graph transformation Tn : Ln→ Ln such that if Γ′ is the vertical graph
of Tnγ then Γ′ ⊂U1× Iv

n . It remains to show that Tn has a fixed point.
We claim that

‖Tnγ1−Tnγ2‖B(πx pn(0),s)∩Iv
n
≤ 1

m−Ln
‖γ1− γ2‖B(πx pn(0),Lns)∩Iv

n
(6.4)

for all γ1,γ2 ∈ Ln and s > 0. By the definition of Tn, we have

hn(Tnγ(y),y) = γ(Tnγ(y))

for all γ ∈ Ln and y ∈ Iv
n . Then

|Tnγ1(y)−Tnγ2(y)| ≤
1
m
|hn(Tnγ1(y),y)−hn(Tnγ2(y),y)|

=
1
m
|γ1(Tnγ1(y))− γ2(Tnγ2(y))|

≤ 1
m
|γ1(Tnγ1(y))− γ1(Tnγ2(y))|+

1
m
|γ1(Tnγ2(y))− γ2(Tnγ2(y))|

≤ Ln

m
|Tnγ1(y)−Tnγ2(y)|+

1
m
‖γ1− γ2‖B(πx pn(0),Lns)∩Iv

n

for all γ1,γ2 ∈ Ln and y ∈ Bπx pn(0)(s)∩ Iv
n since ImTnγ1, ImTnγ2 ⊂U1. Note that

|Tnγ2(y)− px,n(0)|= |Tnγ2(y)−Tnγ2(px,n(0))| ≤ Lns

and so Tnγ2(y) ∈ Bπx pn(0)(Lns). Thus we proved (6.4).

Now we show Tn has a fixed point. Let γ0(y) = πx pn(0) be the constant map. Define γ j = T j
n γ0.

We prove that
{

γ j
}∞

j=0 is a Cauchy sequence. For all j > k, we have∥∥T γ j−T γk
∥∥

Iv
n

=
∥∥T γ j−T γk

∥∥
B(πx pn(0),|Iv

n |)∩Iv
n

≤
(

1
m−Ln

)k∥∥γ j−k− γ0
∥∥

B(πx pn(0),Lk
n|Iv

n |)∩Iv
n

=

(
1

m−Ln

)k∥∥γ j−k− γ j−k(px,n(0))
∥∥

Bpn,x(0)(L
k
n|Iv

n |)∩Iv
n

≤
(

Ln

m−Ln

)k

Ln |Iv
n| .

Note that Ln
m−Ln

< 1 since Ln <
m
2 for all n ≥ 0. Therefore, γn has a limit and we proved W 0

n (0) ⊂
U1× Iv

n exists.
Moreover, we have W 0

n (0) ⊂ Vn× Iv
n and Vn ⊂ hn(U2,y) for all y ∈ Iv

n by Lemma 6.7. Apply
Lemma 5.19 again, F−1

n (W 0
n (0))∩U2× Iv

n is the vertical graph of a Ln-Lipschitz function. This
proves that W 1

n (0)⊂U2× Iv
n exists.

Similarly, we have W 1
n (0) ⊂ U2× Iv

n and U2 ⊂ hn(U1,y) for all y ∈ Iv
n by Lemma 6.7. Apply

Lemma 5.19 again, F−1
n (W 1

n (0))∩U1× Iv
n is the vertical graph of a Ln-Lipschitz function. This
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6. Structure and Dynamics of Infinitely Renormalizable Hénon-Like Maps

proves that W 2
n (0)⊂U1× Iv

n exists.

Proposition 6.9. Given δ > 0 and Iv ⊃ Ih c I. There exist constants ε > 0 and c > 0 such that for
all F ∈ Îδ (Ih× Iv,ε) the local stable manifold W t

n(−1)⊂ Ih× Iv
n exists and W t

n(−1) is a vertical
graph of a c‖εn‖-Lipschitz function on Iv

n for t = 0,2 and n≥ 0.

Proof. The proof is similar to the proof of Lemma 6.7 and Proposition 6.8.

Since the local stable manifolds W 0
n (−1), W 2

n (−1), W 0
n (0), W 1

n (0), and W 2
n (0) exists, this shows

that

Corollary 6.10. Given δ > 0 and Iv ⊃ Ih c I. There exists a constant ε > 0 such that for all
F ∈ Îδ (Ih× Iv,ε) the partition An, Bn, and Cn on Dn exists for all n≥ 0. Moreover, Cn ⊂U1× Iv

n
where U1 is the interval defined in Lemma 6.7.

Moreover, we are able to control the local stable manifolds so that they are close to the local
manifold of the limiting case when the sequence of Henon-like maps is close enough to the fixed
point G.

Lemma 6.11. Given δ > 0 and Iv ⊃ Ih c I. For all d > 0, there exists a constant ε > 0 such that
for all F ∈ Îδ (Ih× Iv,ε), the following properties hold for all n≥ 0:

1. W 0
n (0) ∈ Bq(0)(d)× Iv

n ,

2. W 1
n (0) ∈ Bq̂(0)(d)× Iv

n ,

3. W 0
n (−1) ∈ Bq(−1)(d)× Iv

n , and

4. W 2
n (−1) ∈ Bq̂(−1)(d)× Iv

n

Proof. By Lemma 6.4, there exists ε > 0 such that

|πx pn(0)−q(0)|< d
2

for all n≥ 0. Also assume that ε is small enough such that Proposition 6.8 holds and c′ > 0 is the
constant defined by the proposition. Assume that W 0

n (0) is the vertical graph of γ . Then

|γ(y)−q(0)| ≤ |γ(y)−πx pn(0)|+ |πx pn(0)−q(0)|

≤ c′ ‖εn‖|Iv
n|+

d
2

≤ c′ (c‖ε0‖)2n n−1

∏
j=0

λ j |Iv|+ d
2

≤ c′ (cε)2n
(λ + ε)n |Iv|+ d

2
< d.

Here, we also assume that c is the constant defined in Proposition 5.26 and ε is small enough such
that

c′ (cε)2n
(λ + ε)n |Iv|< d

2
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for all n≥ 0. This proves the first property.
To prove the second property, let m be the constant defined by Lemma 6.7, ε be small enough

such that the lemma holds, and W 0
n (0) ∈ Bq(0)(

dm
2 )× Iv

n for all n≥ 0. By the mean value theorem,
we have

|hn(γ(y),y)−hn(q̂(0),y)| ≥ m |γ(y)− q̂(0)|

since W 1
n (0) ∈U2× Iv

n and q̂ ∈U2. Also

|hn(γ(y),y)−hn(q̂(0),y)| ≤ |hn(γ(y),y)−q(0)|+ |g(q̂(0))−hn(q̂(0),y)|

<
dm
2

+‖hn−g‖
ε(δ )

< dm.

Here, we also assume that ε < dm
2 . That is

‖hn−g‖Ih×Iv
n
<

dm
2

for all n≥ 0. Combine the two inequalities, we get

|γ(y)− q̂(0)|< d

and hence W 1
n (0) ∈ Bq̂(0)(d)× Iv

n .
The third and forth properties are similar to the first two.

6.3. Structure of the local stable manifolds for period doubling
periodic points

In this section, we study the geometric properties of the local stable manifolds.
First, we study the geometry of W t

n( j) by generalizing Proposition 6.8 and Proposition 6.9. The
following two lemmas allows us to pullback vertical graphs by the nonlinear rescaling φn.

Lemma 6.12. Assume that Ih and Iv are intervals, s is an affine map such that s(Ih) = Îh and
s(Iv) = Îv, and Λ(x,y) = (s(x),s(y)). If Γ ⊂ Îh× Îv is a vertical graph of a L-Lipschitz function,
then Λ−1(Γ)⊂ Ih× Iv is a vertical graph of a L-Lipschitz function.

Proof. It follows directly by s is affine.

Lemma 6.13. Given δ > 0 and Iv ⊃ Ih c I. There exist constants m > 0 and ε > 0 such that for
all F ∈ Îδ (Ih× Iv,ε) the following property hold for all n≥ 0:

If Γ ⊂ Λ−1
n (Dn+1) is a vertical graph of a L-Lipschitz function on Iv

n , then H−1
n (Γ) ⊂ Cn is a

vertical graph of a 1
m

(
L+ 1

δ
‖εn‖

)
-Lipschitz function on Iv

n .

Proof. (x) Assume that Γ ⊂ Λ−1
n (Dn+1) is a vertical graph of a L-Lipschitz function γ on Iv

n . By
direct computation, we have

H−1
n (γ(y),y) = (h−1

y ◦ γ(y),y).

for all y ∈ Iv
n . Thus, H−1

n (Γ) is a vertical graph of the function y→ h−1
y ◦ γ(y).
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W 0(−1) W 1(0) W 0(0) W 0(1) W 0( j) τ W 2( j) W 2(1) W 2(0) W 2(−1)

A B

C

C(1) C(2) λ−2 j λ−2 j C(2) C(1) A

Figure 6.1.: The structure of the rescaling levels. The figure shows the partition and the local stable
manifolds on the horizontal cross section that intersects the tip.

For all y1,y2 ∈ Iv
n , by the mean value theorem and Lemma 5.25, we have∣∣h−1

y2
◦ γ(y2)−h−1

y1
◦ γ(y1)

∣∣ ≤ ∣∣h−1
y2
◦ γ(y2)−h−1

y2
◦ γ(y1)

∣∣+ ∣∣h−1
y2
◦ γ(y1)−h−1

y1
◦ γ(y1)

∣∣
≤

 L∣∣h′y2
◦h−1

y2 ◦ γ(ξ )
∣∣ +

∣∣∣∂εn
∂y (h

−1
η ◦ γ(y1),η)

∣∣∣∣∣h′η ◦h−1
η ◦ γ(y1)

∣∣
 |y2− y1|

for some ξ ,η ∈ (y1,y2). Since Γ⊂ Λ−1
n (Dn+1), we have H−1

n (Γ)⊂Cn ⊂U1× Iv
n where U1 is the

closed interval defined in Lemma 6.7. Thus, h−1
y2
◦ γ(ξ ),h−1

η ◦ γ(y1) ∈U1. Apply Lemma 6.7, get

∣∣h−1
y2
◦ γ(y2)−h−1

y1
◦ γ(y1)

∣∣≤ 1
m

(
L+

1
δ
‖εn‖

)
|y2− y1|

where m > 0 is the constant defined in Lemma 6.7.

Combine Lemma 6.12 and 6.13, we obtain

Corollary 6.14. Given δ > 0 and Iv ⊃ Ih c I. There exist constants m > 0 and ε > 0 such that for
all F ∈ Îδ (Ih× Iv,ε) the following property hold for all n≥ 0:

If Γ⊂Dn+1 is a vertical graph of a L-Lipschitz function on Iv
n+1, then φ−1

n (Γ)⊂Cn is a vertical
graph of a 1

m

(
L+ 1

δ
‖εn‖

)
-Lipschitz function on Iv

n .

We recall from [dCLM05] that

Definition 6.15 (Tip). Assume that ε > 0 is sufficiently small. The tip τ of an infinitely renormal-
izable Hénon-like map F ∈ Îδ (Ih× Iv,ε) is the unique point such that

{τ}= ∩∞
j=N

(
Φ

j
0

)−1
(D j∩ Ih× Ih)

for all N ≥ 0.

The tip is an analog of the critical value in the non-degenerate case. Roughly speaking, the
tip generates the attracting Cantor set of a Hénon-like map. See [dCLM05, Chapter 5] for more
information.

From Proposition 6.3, a rescaling level Cn( j) contains two components which are both bounded
by two local stable manifolds. The following proposition lists the geometric properties of the local
stable manifolds.
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Proposition 6.16. Given δ > 0 and Iv ⊃ Ih c I. There exist constants ε > 0, c > 0, and c′ > 1
such that for all F ∈ Îδ (Ih× Iv,ε), the following properties hold for all n≥ 0:

1. W t
n( j) is a vertical graph with Lipschitz constant c‖εn‖ for all j ≥−1 and t = 0,2.

2. 1
c′
( 1

λ

)2 j
<
∣∣∣z(t)n ( j)− τn

∣∣∣< c′
( 1

λ

)2 j
for all j≥−1 and t = 0,2 where z(t)n ( j) is the intersection

point of W t
n( j) with the horizontal line through τn. See Figure 6.1.

Proof. By Proposition 6.8 and Proposition 6.9, let c′′ > 0 be a constant such that W 0
n (0), W 1

n (0),
W 2

n (0), W 0
n (−1), and W 2

n (−1) are vertical graphs of a c′′ ‖εn‖-Lipschitz function on Iv
n for all

n ≥ 0 when ε is sufficiently small. Also let c′ be the constant defined in Proposition 5.26. Set
c = max(c′′, 2

mδ
).

We prove the second property by induction on j. For the cases j =−1,0, it is clear that W 0
n (0),

W 1
n (0), W 2

n (0), W 0
n (−1), and W 2

n (−1) are vertical graphs of c‖εn‖-Lipschitz functions for all n≥ 0.
Assume that for some j ≥ 0, W t

n( j) is a vertical graph of a c‖εn‖-Lipschitz function on Iv
n for

all n ≥ 0 and t = 0,2. Then W t
n( j + 1) = φ−1

n (W t
n+1( j)). By Corollary 6.14 and the induction

hypothesis, W t
n( j+1) is a vertical graph of a Lipschitz function.

Finally, compute the Lipschitz constant by the formula from Corollary 6.14,

1
m

(
c‖εn+1‖ε(δ )+

1
δ
‖εn‖ε(δ )

)
≤ 1

m

(
cc′ ‖εn‖2 +

1
δ
‖εn‖

)
≤ 1

m

(
cc′ε +

1
δ

)
‖εn‖

≤ 2
mδ
‖εn‖

≤ c‖εn‖ .

Here, we assume that ε is small enough such that cc′ε < 1
δ

. Therefore, the second property is
proved by induction.

The third property comes from [LM11, Proposition 3.5].

Now we study the topology of Bn( j). For a fixed rescaling level j, we will show that the set
Bn( j) has two components, each component is bounded by two local stable manifolds that are
vertical graphs when ε is sufficiently small. To show this, we study the pullback of the local
stable manifold W 0

n (t). When ε is sufficiently small, the pullback F−1
n (W 0

n ( j)) consists of two
components on Bn.

First we define the points that are associated to the limiting case F = G. Recall from Definition
4.32 that qc( j) is the periodic point of g with period 2 j around the critical point.

Definition 6.17. Define ql( j) =−|qc( j)| and qr( j) = |qc( j)| for all j ≥ 0.

For the limiting case, the two components of G−1(W 0( j)) are determined by the points in the
definition. Precisely, G−1(W 0( j)) is the union of the two vertical lines x = ql( j) and x = qr( j).

The next lemma provides a required condition for applying Lemma 5.19 to pullback the local
stable manifold.
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6. Structure and Dynamics of Infinitely Renormalizable Hénon-Like Maps

Lemma 6.18. Given δ > 0 and Iv ⊃ Ih c I. For all j ≥ 0, there exist constants ε = ε( j) > 0,
m = m( j)> 0, and d′ = d′( j)> 0 such that for all F ∈ Îδ (Ih× Iv,ε) we have∣∣∣∣∂hn

∂x
(x,y)

∣∣∣∣≥ m

for all x ∈ [ql( j)−d′,ql( j)+d′]∪ [qr( j)−d′,qr( j)+d′], y ∈ Iv
n , and n≥ 0.

Proof. We prove the case for x ∈ [ql( j)−d′,ql( j)+d′]. The other case is similar.
Since g is continuous and

∣∣g′(ql( j))
∣∣> 0, there exist d > 0 and m > 0 such that∣∣g′(x)∣∣> 2m

for all x ∈ [ql( j)−d,ql( j)+d]. Also assume that ε < δm. That is∥∥∥∥∂hn

∂x
−g′

∥∥∥∥
Ih×Iv

n

≤ 1
δ
‖hn−g‖Ih(δ )×Iv

n(δ )
< m

for all n≥ 0. We get ∣∣∣∣∂hn

∂x
(x,y)

∣∣∣∣ ≥ ∣∣g′(x)∣∣−∥∥∥∥∂hn

∂x
−g′

∥∥∥∥
Ih×Iv

n

≥ m

for all x ∈ [ql( j)−d,ql( j)+d], y ∈ Iv
n , and n≥ 0.

The last proposition provides the topology of the local stable manifolds in Bn when ε is suffi-
ciently small.

Proposition 6.19. Given δ > 0 and Iv ⊃ Ih c I. For all j ≥ 0 and d > 0, there exist constants
ε = ε( j,d)> 0 and c = c( j)> 0 such that for all F ∈ Îδ (Ih× Iv,ε), the following properties hold
for all n≥ 0:

1. F−1
n (W 0

n ( j)) has exactly two components W l
n( j) ⊂ [ql( j)− d,ql( j)+ d]× Iv

n and W r
n ( j) ⊂

[qr( j)−d,qr( j)+d]× Iv
n .

2. Both components W l
n( j) and W r

n ( j) are vertical graphs with Lipschitz constant c‖εn‖.

Proof. First, we prove the existence of W l
n( j).

To pullback the local stable manifold W 0
n ( j), we check the conditions that are required for

Lemma 5.19.
Assume that d′ < d is small enough such that Lemma 6.18 holds and m be the constant in the

lemma. Then

hn(ql( j)−d′,y) ≤ hn(ql( j),y)−md′

≤ g(ql( j))+‖hn−g‖Ih(δ )×Iv
n(δ )
−md′

≤ q( j)− 1
2

md′ (6.5)
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for all y ∈ Iv
n and n ≥ 0. Here we assume that ε > 0 is sufficiently small such that Lemma 6.18

holds and ‖hn−g‖Ih(δ )×Iv
n(δ )

< 1
2md′. Similarly,

hn(ql( j)+d′,y) ≥ hn(ql( j),y)+md′

≥ g(ql( j))−‖hn−g‖Ih(δ )×Iv
n(δ )

+md′

≥ q( j)+
1
2

md′ (6.6)

for all y ∈ Iv
n and n≥ 0 when ε is small enough. The two inequalities (6.5) and (6.6) yields

hn([ql( j)−d′,ql( j)+d′],y)⊃ [q( j)− 1
2

md′,q( j)+
1
2

md′].

Also, by Lemma 6.18, we have∣∣∣∣∂hn

∂x
([ql( j)−d′,ql( j)+d′],y)

∣∣∣∣≥ m

for all y ∈ Iv
n and n≥ 0 when ε is small enough.

Finally, we need to check that W 0
n ( j)∩ Ih× Ih ⊂ [q( j)− 1

2md′,q( j)+ 1
2md′]× Ih. By Corollary

6.6, we assume that ε = ε( j,d)> 0 is sufficiently small such that |πx pn( j)−q( j)|< 1
4md′ since j

is fixed. Also, by Proposition 6.16, W 0
n ( j) is a vertical graph of a c‖εn‖-Lipschitz function. Thus,

|πxz−πx pn( j)| ≤ c‖εn‖
∣∣∣Ih
∣∣∣

for all z ∈W 0
n ( j)∩ Ih× Ih and n≥ 0. We obtain

|πxz−q( j)| ≤ |πxz−πx pn( j)|+ |πx pn( j)−q( j)|< c‖εn‖
∣∣∣Ih
∣∣∣+ 1

4
md′ <

1
2

md′

for all z ∈W 0
n ( j)∩ Ih× Ih and n ≥ 0 when ε is small enough. Hence, W 0

n ( j)∩ Ih× Ih ⊂ [q( j)−
1
2md′,q( j)+ 1

2md′]× Ih for all n≥ 0.
By Lemma 5.19, W l

n( j) ≡ F−1(W 0
n ( j))∩ [ql( j)− d′,ql( j)+ d′]× Iv

n is the vertical graph of a
Lipschitz function on Iv

n . Apply the formula from Lemma 5.19 to compute the Lipschitz constant,
we get

1
δ (m− c‖εn‖)

‖εn‖ ≤
2

δm
‖εn‖

for all n ≥ 0 when ε is small enough such that cε ≤ m
2 . Consequently, the local stable manifold

W l
n( j) is the vertical graph of a 2

δm ‖εn‖-Lipschitz function.
Similarly, the local stable manifold W r

n ( j) ≡ F−1(W 0
n ( j))∩ [qr( j)− d′,qr( j)+ d′]× Iv

n is also
the vertical graph of a 2

δm ‖εn‖-Lipschitz function.
It remains to show that W l

n( j) and W r
n ( j) are the only components of F−1(W 0

n ( j)). From 6.5,
we have hn((−∞,ql( j)− d′]∩ Ih,y)) ⊂ (−∞,q( j)− 1

2md′]. Similarly, one can prove hn([ql( j)+
d,qr( j)−d]∩ Ih,y))⊂ [q( j)+ 1

2md′,∞) and hn([qr( j)+d′,∞)∩ Ih,y))⊂ (−∞,q( j)− 1
2md′]. This

shows that the sets Fn(((−∞,ql( j)−d′]∩Ih)×Iv
n), Fn([ql( j)+d′,qr( j)−d′]×Iv

n), and Fn(([qr( j)+
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d′,∞)∩ Ih)× Iv
n) does not intersect W 0

n ( j) when ε is small enough. This proves that W l
n( j) and

W r
n ( j) are the only components in F−1

n (W 0
n ( j)).

Remark 6.20. Unlike Proposition 6.16, here the constant ε is not uniform on j ≥ 0. For a non-
degenerate Hénon-like map, the structure of the local stable manifolds is similar to degenerate
case when j is large. The local stable manifold W 0

n ( j) is far away from the tip and hence the
pullback F−1

n (W 0
n ( j)) is the union of two vertical graphs in Bn. However, the structure turns to be

different when j is large. The local stable manifold is close to the tip and the vertical line argument
in Chapter 9 shows that the pullback F−1

n (W 0
n ( j)) is a concave curve in Bn.

6.4. Asymptotic behavior near the hyperbolic fixed point of the
renormalization operator

In this section, we estimate the derivatives of a Hénon-like map that is close to the hyperbolic fixed
point G. Define vn ∈ Ih to be the critical point of fn and wn = fn(vn) be the critical value.

The first lemma proves that a Hénon-like map acts like a quadratic map on B.

Lemma 6.21. Given δ > 0 and Iv ⊃ Ih c I. There exist constants a > 0, ε > 0, and an interval
IB ⊂ Ih such that for all F ∈ Îδ (Ih× Iv,ε), the following properties hold for all n≥ 0:

The interior of IB contains q̂(0) and q(0), IB× Iv
n ⊃ Bn,

1
a
|x− vn| ≤

∣∣ f ′n(x)∣∣≤ a |x− vn| ,

and
1

2a
(x− vn)

2 ≤ | fn(x)− fn(vn)| ≤
a
2
(x− vn)

2

for all x ∈ IB.

Proof. By Proposition 4.29, the map g is concave on [−c(1),c(1)]. Let d > 0 be small enough such
that [−q(0)−d,q(0)+d]⊂ [−c(1),c(1)]. Define IB = [−q(0)−d,q(0)+d]. Then minx∈IB |g′′(x)|>
a′ for some constant a′ > 0 when d > 0 is small enough. Assume that ε < a′δ 2

4 . In particular,

∥∥ f ′′n −g′′
∥∥

Ih <
2

δ 2 ‖ fn−g‖Ih(δ ) <
a′

2

for all n≥ 0. Also assume that ε is small enough so that Bn ⊂ IB× Iv
n for all n≥ 0 by Lemma 6.11

because that Bn is bounded by W 1
n (0) and W 0

n (0).
By the mean value theorem, there exists ξ ∈ (x,vn) such that

f ′n(x) = f ′n(x)− f ′n(vn) = f ′′n (ξ )(x− vn).

We obtain the lower bound for the first inequality as∣∣ f ′n(x)∣∣ =
∣∣ f ′′n (ξ )∣∣ |x− vn|

≥
(∣∣g′′(ξ )∣∣− ∣∣ f ′′n (ξ )−g′′(ξ )

∣∣) |x− vn|
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≥
(

min
x∈IB

∣∣g′′(y)∣∣− a′

2

)
|x− vn|

=
a′

2
|x− vn| .

Similarly, for the upper bound, we have∣∣ f ′n(x)∣∣ =
∣∣ f ′′n (ξ )∣∣ |x− vn|

≤
(∣∣g′′(ξ )∣∣+ ∣∣ f ′′n (ξ )−g′′(ξ )

∣∣) |x− vn|

≤
(

max
x∈IB

∣∣g′′(y)∣∣+ a′

2

)
|x− vn|

=
3a′

2
|x− vn|

This proves the first inequality.
To prove the second inequality, we prove the case for x > vn. By the fundamental theorem of

calculus, we have

| fn(x)− fn(vn)|= fn(vn)− fn(x) =
∫ x

vn

− f ′n(t)dt.

After applying the first inequality and evaluate the integration, we obtain

1
2a

(x− vn)
2 ≤ | fn(x)− fn(vn)| ≤

a
2
(x− vn)

2 .

The case for x < vn is similar.

The next lemma shows that a Hénon-like map is expanding on A and C in the x-coordinate when
it is close enough to the fixed point G.

Lemma 6.22. Given δ > 0 and Iv ⊃ Ih c I. There exist constants E > 1, ε > 0, and a union of two
intervals IAC ⊂ Ih such that for all F ∈ Îδ (Ih× Iv,ε) the following properties hold for all n≥ 0:

The interior of IAC contains q(−1), q̂(0) , q(0), and q̂(−1), IAC× Iv
n ⊃ An∪W 2

n (0)∪Cn, and∣∣∣∣∂hn

∂x
(x,y)

∣∣∣∣≥ E

for all (x,y) ∈ IAC× Iv
n .

Proof. By Proposition 4.39, there exists E ′ > 1 such that∣∣g′(x)∣∣≥ E ′

for all x ∈ [q(−1), q̂(0)]∪ [q(0), q̂(−1)]. Let ∆m > 0 be small enough such that E ≡ E ′−∆m > 1
and d′ > 0 be small enough such that ∣∣g′(y)−g′(x)

∣∣< ∆m/2

for all |y− x| ≤ d′ since g is uniform continuous on Ih. Define IAC = [q(−1)− d′, q̂(0) + d′]∪
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[q(0)−d′, q̂(−1)+d′]⊂ Ih. Also, let ε > 0 be small enough such that An∪W 2
n (0)∪Cn ⊂ IAC× Iv

n
by Lemma 6.11 because An ∪W 2

n (0)∪Cn is a union of two regions, one region is bounded by
W 0

n (−1) and W 1
n (0) and the other region is bounded by W 0

n (0) and W 2
n (−1). Then∣∣g′(x)∣∣≥ E ′−∆m/2

for all x ∈ IAC.
Moreover, also assume that ε is small enough such that∥∥∥∥∂hn

∂x
−g′

∥∥∥∥
Ih×Iv

n

≤ 1
δ
‖hn−g‖Ih(δ )×Iv

n(δ )
<

∆m
2

for all n≥ 0. Then ∣∣∣∣∂hn

∂x
(x,y)

∣∣∣∣≥ ∣∣g′(x)∣∣−∥∥∥∥∂hn

∂x
−g′

∥∥∥∥
Ih×Iv

n

≥ E

for all (x,y) ∈ IAC× Iv
n .

The last lemma provides a upper bound for the expansion rate of a Hénon-like map in the x-
coordinate.

Lemma 6.23. Given δ > 0 and Iv ⊃ Ih c I. There exist constants K > 0 and ε > 0 such that for
all F ∈ Îδ (Ih× Iv,ε) we have ∣∣∣∣∂hn

∂x
(x,y)

∣∣∣∣≤ K

for all (x,y) ∈ Ih× Iv
n and n≥ 0.

Proof. By the compactness of Ih, there exists K > 1 such that∣∣g′(x)∣∣≤ K
2

for all x ∈ Ih. Also, there exists ε > 0 small enough such that∥∥∥∥∂hn

∂x
−g′

∥∥∥∥
Ih×Iv

n

≤ 1
δ
‖hn−g‖Ih(δ )×Iv

n(δ )
≤ K

2

for all n≥ 0. Then ∣∣∣∣∂hn

∂x
(x,y)

∣∣∣∣≤ ∣∣g′(x)∣∣+∥∥∥∥∂hn

∂x
−g′

∥∥∥∥
ε(δ )

≤ K.

for all (x,y) ∈ Ih× Iv
n and n≥ 0.

6.5. Relation between the tip and the critical value

In Lemma 6.21, we proved that a Hénon-like map behaves like a quadratic map when a point is
close to the critical point vn of fn for the representation Fn = ( fn− εn,x). However, the critical
point vn and the critical value wn in the estimates depend on the representation.
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In this section, we show that the critical value wn (for any representation) is ‖εn‖-close to the
tip τn in Proposition 6.27. This allows us to replace vn and wn by the representation independent
quantity τn. This makes the quadratic estimates in Lemma 6.21 useful when a point is ‖εn‖-away
from the tip.

To estimate the distance from the tip to the critical value, we write τn = (an,bn). Since the
rescaling φn maps a horizontal line to a horizontal line, we focus on the horizontal slice that inter-
sects the tip in each renormalization scale. Define the restriction of the rescaling map φ to the slice
as

ηn(x) = πx ◦φn(x,bn) = sn ◦hn(x,bn).

By the definition of the tip, the quantities satisfy the recurrence relations φn(τn) = τn+1, ηn(an) =
an+1, and sn(bn) = bn+1.

First, we prove a lemma that allows us to compare the critical value between two renormaliztion
levels.

Lemma 6.24. Given δ > 0 and Iv ⊃ Ih c I. There exist constants ε > 0 and c > 0 such that for all
F ∈ Îδ (Ih× Iv,ε), we have

|wn+1−ηn(wn)|< c‖εn‖

for all n≥ 0.

Proof. First, we compare the critical points vn and vn+1. By Proposition 5.26, we have∥∥ f ′n+1− (sn ◦ f 2
n ◦ s−1

n )′
∥∥

Ih < c
∥∥ fn+1− sn ◦ f 2

n ◦ s−1
n
∥∥

Ih(δ )
< c‖εn‖

for some constant c > 0 when ε > 0 is sufficiently small. Also, there exists a constant a > 0
independent of F such that

∣∣ f ′′n+1(x)
∣∣ , ∣∣(sn ◦ f 2

n ◦ s−1
n )′′(x)

∣∣ > a for all x ∈ [q̂(0),q(0)] and n ≥ 0
because the critical point of g is non-degenerate. Apply Lemma A.3 to the roots vn+1 and sn(vn)
of the functions f ′n+1 and (sn ◦ f 2

n ◦ s−1
n )′, there exists a constant c′ > 0 such that

|vn+1− sn(vn)| ≤ c′ ‖εn‖

for all n≥ 0.
Moreover, by the quadratic estimates in Lemma 6.21, we get∣∣ fn+1(vn+1)− sn ◦ f 2

n (vn)
∣∣ ≤ | fn+1(vn+1)− fn+1(sn(vn))|+

∣∣ fn+1(sn(vn))− sn ◦ f 2
n (vn)

∣∣
≤ a

2
|vn+1− sn(vn)|2 +

∣∣ fn+1(sn(vn))− sn ◦ f 2
n ◦ s−1

n (sn(vn))
∣∣

≤ ac′2

2
‖εn‖2 + c‖εn‖

≤ c′′ ‖εn‖

for some constant c′′ > 0. In the equation, one should think sn ◦ f 2
n (vn) = (sn ◦ fn) ◦ fn(vn) as the

rescaled critical value of fn.
Finally, we compare the critical values wn and wn+1. Compute

|wn+1−ηn(wn)| =
∣∣ fn+1(vn+1)− sn( f 2

n (vn)− εn( fn(vn),bn))
∣∣
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≤
∣∣ fn+1(vn+1)− sn ◦ f 2

n (vn)
∣∣+λn |εn( fn(vn),bn)|

≤ c′′ ‖εn‖+2λ ‖εn‖
= (c′′+2λ )‖εn‖

for all n≥ 0 whenever ε is small enough such that λn ≤ 2λ .

The rescaling maps {ηn}n≥0 can be viewed as a non-autonomous dynamical system (system that
depends on time). An orbit is defined as follows.

Definition 6.25 (Orbit of Non-Autonomous Systems). Let Yn be a complete metric space, Xn ⊂ Yn
be a closed subset, and fn : Xn→Yn+1 be a continuous map for all n≥ 1. A sequence {xn}∞

n=1 is an
orbit of the non-autonomous system { fn}∞

n=1 if xn ∈ Xn and xn+1 = fn(xn) for all n≥ 1. A sequence
{xn}∞

n=1 is an ε-orbit of the non-autonomous system { fn}∞

n=1 if xn ∈ Xn and |xn+1− fn(xn)|< ε for
all n≥ 1.

Next, we prove an analog of the shadowing theorem for non-autonomous systems.

Lemma 6.26 (Shadowing Theorem for Non-Autonomous Systems). For each n ≥ 1, let Yn be a
complete metric space equipped with a metric d (the metric depends on n), Xn ⊂ Yn be a closed
subset, and fn : Xn → Yn+1 be a homeomorphism. Also assume that the non-autonomous system
{ fn}∞

n=1 has a uniform expansion. That is, there exists a constant L > 1 such that | fn(a)− fn(b)| ≥
L |a−b| for all a,b ∈ Xn and n≥ 1.

If {xn}∞

n=1 is an ε-orbit of { fn}∞

n=1, there exists a unique orbit {un}∞

n=1 of { fn}∞

n=1 such that

d(xn,un)≤
ε

L−1

for all n ≥ 1. In addition, if {Xn}∞

n=1 is uniformly bounded, then the non-autonomous system
{ fn}∞

n=1 has exactly one orbit {un}∞

n=1. For any sequence {xn}∞

n=1 with xn ∈ Xn, we have

un = lim
j→∞

(
fn+ j−1 ◦ · · · ◦ fn+1 ◦ fn

)−1
(xn+ j)

for all n≥ 1.

Proof. Given an ε-orbit {xn}∞

n=1 of { fn}∞

n=1. The uniqueness of the orbit {un}∞

n=1 follows from
expansion.

To prove existence, define x(0)n = xn and x( j)
n = f−1

n− j(x
( j−1)
n ) ∈ Xn− j for j = 1, · · · ,n− 1 by in-

duction. From the expansion of fn, we have

d(x(0)n+ j,x
(1)
n+ j+1)≤

1
L

d( fn+ j(xn+ j),xn+ j+1)<
ε

L

and
d(x( j+1)

m ,x(k+1)
n )≤ 1

L
d(x( j)

m ,x(k)n )

for all j,k ≥ 0. By the triangular inequality, we get

d(x( j)
n+ j,x

(k)
n+k) ≤ d(x( j)

n+ j,x
( j+1)
n+ j+1)+ · · ·+d(x(k−1)

n+k−1,x
(k)
n+k)
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≤ 1
L j d(x(0)n+ j,x

(1)
n+ j+1)+ · · ·+

1
Lk−1 d(x(0)n+k−1,x

(1)
n+k)

<
ε

L j+1

(
1+

1
L
+ · · ·+ 1

Lk− j−1

)
<

ε

(L−1)L j

for all j < k. Therefore,
{

x( j)
n+ j

}∞

j=0
is a Cauchy sequence in Yn and hence un = lim j→∞ x( j)

n+ j exists.

Similarly, by triangular inequality and the expansion of f , we have

d(xn,un) ≤ d(x(0)n ,x(1)n+1)+ · · ·+d(x( j−1)
n+ j−1,x

( j)
n+ j)+d(x( j)

n+ j,un)

≤ 1
L0 d(x(0)n ,x(1)n+1)+ · · ·+

1
L j−1 d(x(0)n+ j−1,x

(1)
n+ j)+d(x( j)

n+ j,un)

≤ ε

L

(
1
L0 + · · ·+

1
L j−1

)
+d(x( j)

n+ j,un)

<
ε

L−1
+d(x( j)

n+ j,un)

for all j ≥ 0. Take the limit j→ ∞, we obtain

d(xn,un)≤
ε

L−1
.

To prove that {un}∞

n=1 is an orbit of { fn}∞

n=1, we evaluate the limit directly. We get

fn(un) = lim
j→∞

fn(x
( j)
n+ j) = lim

j→∞
x( j−1)

n+ j = lim
j→∞

x( j)
n+1+ j = un+1.

In addition, if Xn is uniformly bounded and xn ⊂ Xn for all n ≥ 1. Assume that the diameter of
Xn is bounded by d > 0 for all n ≥ 1. Let yn = f−1

n (xn+1). Then {yn}∞

n=1 is a d-orbit for { fn}∞

n=1
and hence

un = lim
j→∞

(
fn ◦ fn+1 ◦ · · · fn+ j−2

)−1
(yn+ j−1) = lim

j→∞

(
fn ◦ fn+1 ◦ · · · fn+ j−1

)−1
(xn+ j)

exists by the proof of the previous part. The uniqueness of the sequence {un}∞

n=1 follows from the
expansion of { fn}∞

n=1.

The result from Lemma 6.24 shows that the sequence of critical values wn is an ε-orbit of the
expanding non-autonomous system ηn. With the help from the Shadowing Theorem, we are able
to obtain the goal for this section.

Proposition 6.27. Given δ > 0 and Iv ⊃ Ih c I. There exist constants ε > 0 and c > 0 such that
for all F ∈ Îδ (Ih× Iv,ε), we have

| fn(vn)−πx(τn)|< c‖εn‖

for all n≥ 0.

71



6. Structure and Dynamics of Infinitely Renormalizable Hénon-Like Maps

Proof. Fix n≥ 0 and consider the sequence
{

wn+ j
}∞

j=0. By Lemma 6.24, there exists c > 0 such
that ∣∣wn+ j+1−ηn+ j(wn+ j)

∣∣< c
∥∥εn+ j

∥∥≤ c‖εn‖

for some fixed j≥ 0 when ε > 0 is small enough. Hence, the sequence
{

wn+ j
}∞

j=0 is a c‖εn‖-orbit
for the perturbed maps

{
ηn+ j

}∞

j=0.
To prove the non-autonomous system is uniform expanding, we evaluate the derivative

η
′
n+ j(x) =−λn

∂hn+ j

∂x
(x,bn+ j).

Assume that ε > 0 is also small enough such that λn ≥
√

λ > 1. Also, by Lemma 6.22, there exists
E > 1 such that ∣∣∣∣∂hn+ j

∂x
(x,bn+ j)

∣∣∣∣> E

for all x ∈ πx
(
Bn+ j∩{y = bn+ j}

)
and j≥ 0 when ε is small enough. Thus, there exists L > 1 such

that ∣∣η ′n+ j(x)
∣∣> L

for all x ∈ πx
(
Bn+ j∩{y = bn+ j}

)
and j ≥ 0.

Finally, we apply Lemma 6.26. There exists an orbit
{

u j
}∞

j=0 of
{

ηn+ j
}∞

j=0 such that

∣∣wn+ j−u j
∣∣≤ c

L−1
‖εn‖

for all j ≥ 0. Also, by the definition of ηn and the tip, we have an+ j+1 = ηn+ j(an+ j) for all j ≥ 0.
The uniqueness of the orbit for bounded domains IAC yields u j = an+ j for all j≥ 0. Consequently,

| fn(vn)−πx(τn)|= |wn−an| ≤
c

L−1
‖εn‖

for all n≥ 0.

In addition, we can also estimate the distance from the critical point to the preimage of the tip.

Corollary 6.28. Given δ > 0 and Iv ⊃ Ih c I. There exist constants ε > 0 and c > 0 such that for
all F ∈ Î

δ̂
(Îh× Iv,ε) we have ∣∣vn−πy(τn)

∣∣< c
√
‖εn‖

for all n≥ 0.

Proof. Assume that ε > 0 is small enough such that Lemma 6.21 and Proposition 6.27 hold. By
Lemma 6.21, there exists a > 1 such that∣∣ fn(πyτn)− fn(vn)

∣∣≥ 1
a

∣∣πyτn− vn
∣∣2 .
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6.5. Relation between the tip and the critical value

Also, since τn ∈ ImFn, there exists y ∈ Iv
n such that Fn(πyτn,y) = τn. We get∣∣ fn(πyτn)− fn(vn)

∣∣ ≤ ∣∣ fn(πyτn)−hn(πyτn,y)
∣∣+ |πxτn− fn(vn)|

≤ (1+ c)‖εn‖

by Proposition 6.27. Combine the two inequalities, we obtain∣∣πyτn− vn
∣∣≤√a(1+ c)

√
‖εn‖.
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7. Closest Approach

The proof for the nonexistence of wandering domains begins from this chapter. We assume the
contrapositive: there exists a wandering domain J.

In this chapter, we construct a rescaled orbit {Jn}∞

n=0 of a wandering domain J which is called
the J-closest approach. Then we define the horizontal size ln, the vertical size hn, and the rescaling
level kn of an element Jn.

Recall the definition of wandering domain.

Definition 7.1 (Wandering Domain). Assume that F ∈Hδ (Ih× Iv), D(F) exists, and F is an open
map (diffeomorphism from D(F) to the image). A nonempty connected open set J ⊂ D(F) is a
wandering domain of F if the orbit{Fn(J)}n≥0 does not intersect the stable manifold of a periodic
point.

Remark 7.2. The classical definition of wandering intervals contains one additional condition: the
elements of the orbit do not intersect. This condition is redundant for case of the unimodal maps.
Assume that J is an nonempty open interval that does not contain points from the basin of a periodic
orbit. If the elements in the orbit of J intersect, then take a connected component A of the union
of the orbit that contains at least two elements from the orbit. Then, there exists a positive integer
n such that f n(U)⊂U . It is easy to show that f n has a fixed point in the interior of U by applying
the Brouwer fixed-point theorem several times which leads to a contradiction. Therefore, the orbit
elements of J are disjoint.

The following proposition allow us to generate wandering domains by iteration and rescaling.

Proposition 7.3. Given δ > 0 and Iv ⊃ Ih c I. There exists a constant ε > 0 such that for all open
maps F ∈H r

δ
(Ih× Iv), the following properties hold:

1. A set J ⊂ D(F) is a wandering domain of F if and only if F(J) is a wandering domain of F.

2. A set J ⊂ C(F) is a wandering domain of F if and only if φ(J) ⊂ D(RF) is a wandering
domain of RF.

Proof. The proposition is true because the stable manifold of a periodic orbit is invariant under
iteration and the rescaling of a stable manifold is also a stable manifold.

Corollary 7.4. Given δ > 0 and Iv ⊃ Ih c I. There exists a constant ε > 0 such that for all open
maps F ∈H r

δ
(Ih× Iv,ε), F has a wandering domain in D(F) if and only if RF has a wandering

domain in D(RF).

Proof. Assume that J ⊂ D(F) is a wandering domain. If J ⊂C, then RF has a wandering domain
by Proposition 7.3. If J ⊂ A, there exists n≥ 1 such that Fn(J)⊂ B by Proposition 5.16. If J ⊂ B,
then F(J)⊂C by Proposition 5.16. Thus, RF has a wandering domain by Proposition 7.3.

The converse follows from the second property of Proposition 7.3.
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Also, we define the rescaling level of a wandering domain in B.

Definition 7.5 (Rescaling level). Assume that U ⊂ An∪Bn is a connected set that does not intersect
any of the stable manifolds. The rescaling level k(U) of U is a nonnegative integer such that
U ⊂ Bn(k(U)).

To study the dynamics of a wandering domain, we apply the procedure of renormalization. If
a wandering domain is contained in A0 or B0, then its orbit will eventually leave A0 and B0 and
enter C0. If the orbit of the wandering domain enters C0, we rescale the orbit element by φ0, φ1, · · ·
as many times as possible until it lands on one of the sets An or Bn of some renormalization scale
n, then study the dynamics of the rescaled orbit by the renormalized map Fn. If the rescaled orbit
enters Cn again, then we rescale it and repeat the same procedure again. According to this process,
we construct a rescaled orbit.

Definition 7.6 (Closest approach). Assume that ε > 0 is sufficiently small and F ∈Iδ (Ih× Iv,ε).
Let J ⊂ A∪B be a connected set that does not intersect any of the stable manifolds. Define a

sequence of sets {Jn}∞

n=0 and the associate renormalization scales {r(n)}∞

n=0 by induction such that
Jn ⊂ Ar(n)∪Br(n) for all n≥ 0.

1. Set J0 = J and r(0) = 0.

2. Write the rescaling level of Jn as kn = k(Jn) whenever Jn is defined.

3. If Jn ⊂ Ar(n), set Jn+1 = Fr(n)(Jn) and r(n+1) = r(n).

4. If Jn ⊂ Br(n), set Jn+1 = Φ
kn
r(n) ◦Fr(n)(Jn) and r(n+1) = r(n)+ kn.

The transition between two constitutive sequence elements, one iteration together with rescaling
(if possible), is called one step. The sequence {Jn}∞

n=0 is called the rescaled iterations of J that
closest approaches the tip, or J-closest approach for short.

Remark 7.7. The papers [GvST89, LM11] showed that the orbit of a point x has two types of
limiting behavior: the omega limit set ω(x) is either a periodic orbit or the renormalization Cantor
set. The closest approach of a set (or a point) in the basin of the renormalization Cantor set is
exactly showing the itinerary of how the orbit approaches to the Cantor set.

The itinerary of a closest approach is summarized by the following diagram.

Ar(n)

Fr(n)

��

Fr(n)tt Ar(n+1)

Br(n)

Φ
kn
r(n)◦Fr(n)

// Ar(n+1)∪Br(n+1)
//

44

Br(n+1)

Example 7.8. In this example, we explain the construction of a closest approach and demonstrate
the idea of proving the nonexistence of wandering domains. Let F = ( f − ε,x) be a Hénon-like
map such that f (x) = 1.7996565(1+x)(1−x)−1 and ε(x,y) = 0.025y. The map F is numerically
checked to be seven times renormalizable. Given a set J = (−0.950,−0.947)×(0.042,0.045)⊂A.
We show that the set is not a wandering domain by contradiction.
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Figure 7.1.: The construction of a closest approach Jn. The graphs are the domains and the parti-
tions of F0 and F1 from the left to the right.

If J is a wandering domain, we construct a J-closest approach as shown in Figure 7.1. Set J0 = J
and r(0) = 0. The set J0 is contained in Ar(0). The next element is defined to be J1 = Fr(0)(J0) and
r(1)= r(0)= 0. The set J1 is also contained in Ar(1). Set J2 =Fr(1)(J1) and r(2)= r(1)= 0. The set
J2 is contained in Br(2)(1). Set k2 = 1, r(3) = r(2)+k2 = 1, and J3 =Φ

k2
r(2)◦Fr(2)(J2) = φ0◦F0(J2).

The set J3 is contained in Ar(3). Set J4 = Fr(3)(J3) and r(4) = r(3) = 1.
From the graph, the sizes of the elements {Jn} grow as the construction continues and the size

of J4 ⊂ B1 becomes so large that the set intersects some local stable manifolds. This leads to a
contradiction. Therefore, J is not a wandering domain.

Motivated from the example, we study the growth of horizontal size and prove the sizes of the
elements approach infinity to obtain a contradiction.

Definition 7.9 (Horizontal and Vertical size). Assume that J ⊂ R2. The horizontal size of J is

l(J) = sup{|x1− x2| ;(x1,y1),(x2,y2) ∈ J}= |πxJ| .

The vertical size of J is

h(J) = sup{|y1− y2| ;(x1,y1),(x2,y2) ∈U}=
∣∣πyJ

∣∣ .
If J is compact, a pair of horizontal endpoints are two points in the set that determines l(J).

Figure 11.1 compares the horizontal size and the vertical size of a set J. For a Hénon-like map
F ∈Hδ (Ih× Iv), it follows from the definition that

h(F(J)) = l(J)

for all J ⊂ Ih× Iv.
For simplicity, we start from a closed subset J of a wandering domain such that int(J) = J. Then

consider the J-closest approach {Jn}n≥0 instead to ensure the horizontal endpoints exist. Note that
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7. Closest Approach

the sequence element Jn is also a subset of a wandering domain of Fr(n). For elements in a closest
approach, set ln = l(Jn) and hn = h(Jn). Our final goal is to show that the horizontal sizes {ln}n≥0
approach infinity and hence wandering domains cannot exist.
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8. *The Degenerate Case

The goal of this chapter is to present a proof for the nonexistence of wandering intervals for in-
finitely period-doubling renormalizable unimodal maps. It is known that a unimodal map (under
some regularity condition) does not have wandering intervals [Guc79, dMvS88, dMvS89, Lyu89,
BL89, MdMvS92]. The readers can refer to the article by Guckenheimer [Guc79] for a classical
proof. The proof here is different from those. In this chapter, we identify a unimodal map as
a degenerate Hénon-like map then use the Hénon-renormalization to prove the nonexistence of
wandering intervals. This motivates the proof for the nondegenerate case.

8.1. Local stable manifolds and partition

In this section, we identify a unimodal map as a degenerate Hénon-like map then study the rela-
tionships between the two maps.

Let F be a degenerate Hénon-like map

F(x,y) = ( f (x),x).

The super-scripts “u” and “h” are used to distinguish the difference between the notations of uni-
modal maps and Hénon-like maps to avoid confusion. For example, pu(−1) = −1 and pu(0) are
the fixed points of f ; ph(−1) = (−1,−1) and ph(0) are the saddle fixed points of F ; Au,Bu,Cu ⊂ I
is the partition defined for f ; Ah,Bh,Ch ⊂ Ih× Iv is the partition defined for F .

The next lemma relates the local stable manifolds of a degenerate Hénon-like map with the
fixed points and their preimages of its unimodal component. Recall that p(1) and p(2) are the
points such that f (p(2)) = p(1), f (p(1)) = pu(0), and p(1) < pu(0)< p(2) (Definition 4.4); W 0(−1)
and W 2(−1) are the local stable manifolds of ph(−1) (Definition 5.10); W 0(0),W 1(0),W 2(0) are
the local stable manifolds of ph(0) (Definition 5.12).

Lemma 8.1 (Fixed points and their local stable manifolds). Assume that F ∈Hδ (Ih× Iv) is a
degenerate Hénon-like map. Then

1. ph( j) = (pu( j), pu( j)) for j =−1,0,

2. the local stable manifold W 0( j) is the vertical line x = pu( j) for j =−1,0,

3. the local stable manifold W 2(−1) is the vertical line x = p̂u(−1),

4. the local stable manifold W 1(0) is the vertical line x = p(1),

5. the local stable manifold W 2(0) is the vertical line x = p(2), and

6. Ah = Au× Iv, Bh = Bu× Iv, Ch =Cu× Iv, and Dh = I× Iv.
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8.2. Renormalization operator

Next we relate the renormaliztion operator for Hénon-like maps with the renormalization operator
about the critical point for unimodal maps. Recall the definitions of the rescaling maps. For
a degenerate renormalizable Hénon-like map F , the rescaling map is the composition φ = Λ ◦H
where Λ(x,y)= (sh(x),sh(y)), sh is the affine rescaling map, and H(x,y)= ( f (x),y) is the nonlinear
rescaling term. The renormalization is RF = φ ◦F2 ◦φ−1. For a renormalizable unimodal map f ,
su is the affine rescaling and Rc f = su ◦ f 2 ◦ (su)−1 is the renormalization about the critical point.

Although the Hénon-renormaliation rescales the first return map around the “critical value”,
the operation acts like the unimodal renormalization that rescales the first return map around the
“critical point”. This is because of the nonlinear rescaling term H for the Hénon-renormalization.
Let Ah

0,Bh
0,Ch

0 be the partition for F and Dh
1 be the domain for RF . The rescaling map φ(x,y) =

(sh ◦ f (x),sh(y)) maps Ch
0 to Dh

1. This means the operation f in the x-component maps Cu
0 to Bu

0
and the affine map sh maps Cu

0 back to the unit size I. Thus, the two affine maps su and sh are the
same and

H ◦F2 ◦H−1(x,y) = ( f 2|Bu
0
(x),x)

is the first return map on Bh
0. Therefore, the two renormalizations coincide

RF(x,y) = (su ◦ f 2 ◦ (su)−1(x),x) = (Rc f (x),x).

This also explains why RnF converges to the fixed point g of Rc but not the fixed point of Rv.
The observation is summarized below.

Lemma 8.2 (Renormalization operator). Assume that F ∈Hδ (Ih× Iv) is a degenerate Hénon-like
map. Then F is Hénon renormalizable if and only if f is unimodal renormalizable. When the map
is renormalizable, we have

1. sh = su and

2. RF(x,y) = (Rc f (x),x).

In fact, if F is infinitely renormalizable, then the affine term Λn : Bn( j)→ Bn+1( j−1) is a bijection
for all n≥ 0 and j ≥ 1 where Bn(0)≡ An∪W 2

n (0)∪Cn.

From now on, we remove the super-script from s because the maps are the same.
For an infinitely renormalizable Hénon-like map, we also adapt the subscript used for the renor-

malization scales to the degenerate case. Assume that a degenerate Hénon-like map F(x,y) =
( f (x),x) is infinitely renormalizable. Let Fn = RnF and fn = Rn

c f . Then Fn(x,y) = ( fn(x),x) by
the second property of Lemma 8.2.

Next proposition proves an important equality which will be used to prove the nonexistence of
wandering intervals for infinitely renormalizable unimodal maps. The expansion estimate comes
from this proposition.

Proposition 8.3 (Rescaling trick). Assume that f ∈I . Then

(sn+ j−1 ◦ fn+ j−1)◦ · · · ◦ (sn ◦ fn)◦ fn = fn+ j ◦ sn+ j−1 ◦ · · · ◦ sn

for all integers n≥ 0 and j ≥ 0.
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8.3. Nonexistence of wandering intervals

Proof. Prove by induction on j. It is clear that the equality holds when j = 0.
Assume that the equality holds for some j. Then

(sn+ j ◦ fn+ j)◦ (sn+ j−1 ◦ fn+ j−1)◦ · · · ◦ (sn ◦ fn)◦ fn

=(sn+ j ◦ fn+ j)◦ fn+ j ◦ sn+ j−1 ◦ · · · ◦ sn

=(sn+ j ◦ fn+ j ◦ fn+ j ◦ s−1
n+ j)◦ sn+ j ◦ sn+ j−1 ◦ · · · ◦ sn

= fn+ j+1 ◦ sn+ j ◦ sn+ j−1 ◦ · · · ◦ sn.

Therefore, the lemma is proved by induction.

By Lemma 8.2 and Proposition 8.2, we get

Corollary 8.4. Assume that F ∈Iδ (Ih× Iv) is a degenerate Hénon-like map. Then

Φ
j
n ◦Fn = Fn+ j ◦Λn+ j−1 ◦ · · · ◦Λn

for all integers n≥ 0 and j ≥ 0.

Proof. By direct computation and the previous proposition

Φ
j
n ◦Fn(x,y) =

(
(sn+ j−1 ◦ fn+ j−1)◦ · · · ◦ (sn ◦ fn)◦ fn(x),sn+ j−1 ◦ · · · ◦ sn(x)

)
=

(
fn+ j ◦ sn+ j−1 ◦ · · · ◦ sn(x),sn+ j−1 ◦ · · · ◦ sn(x)

)
= Fn+ j ◦Λn+ j−1 ◦ · · · ◦Λn(x,y).

8.3. Nonexistence of wandering intervals

In this section, we present a proof for the nonexistence of wandering intervals for infinitely renor-
malizable unimodal maps by identifying a unimodal map as a degenerate Hénon-like map and
using the Hénon renormalization. A wandering interval is a nonempty interval such that its orbit
elements are disjoint and the omega limit set does not contain a periodic point.

Proposition 8.5. An infinitely renormalizable unimodal map does not have a wandering interval.

Proof. Prove by contradiction. Assume that f is an infinitely renormalizable unimodal map that
has a wandering interval Ju. Without lose of generality, we may assume that the map is close to
the fixed point g of the renormalization operator because the sequence of renormalizations Rn

c f
converges to g as n approaches infinity. Let F = ( f ,x). Then F is a degenerate infinitely renormal-
izable Hénon-like map. Assume that Ju ⊂ I is a wandering interval of f0. Let Jh = Ju×{0} and
Jn ⊂ Ar(n)∪Br(n) be the Jh-closest approach. The projection πxJn is a wandering interval of fr(n)
and the horizontal size ln is the length of the projection. Our goal is to show that horizontal size
expands at a definite rate

ln+1 > Eln (8.1)

for some constant E > 1.
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8. *The Degenerate Case

If Jn ⊂ Ar(n), the inequality (8.1) holds because g is expanding on A(g) by Proposition 4.39 and
the map fr(n) is close to g.

If Jn ⊂ Br(n)(kn), then Jn+1 = Fr(n+1) ◦Λr(n)+kn−1 ◦ · · · ◦Λr(n)(Jn) by Corollary 8.4. Horizontal
size expands when the set Jn is mapped under the rescaling maps Λr(n)+kn−1◦· · ·◦Λr(n). Horizontal
size also expands when the rescaled set is mapped under Fr(n+1). This is because the map fr(n+1)
is close to g, g is expanding on A(g)∪C(g) by Proposition 4.39, and the rescaled set is in Ar(n+1)∪
Cr(n+1). Thus, the inequality (8.1) also holds.

This expansion estimate (8.1) shows that the horizontal sizes {ln}n≥0 approach infinity which
yields a contradiction. Therefore, wandering intervals cannot exist.

In the proof, we showed that the horizontal sizes expand at a definite rate. This motivates the
proof for the non-degenerate case. In the remain part of the article, we will study the growth rate
and contraction rate of the horizontal sizes. For the non-degenerate case, we will show in Chapter
10 that the expansion estimate also holds under some conditions.
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9. The Good Region and the Bad Region

In this chapter, we group the sub-partitions {Bn( j)}∞

j=1 and {Cn( j)}∞

j=1 into two regions: called
the good region and the bad region. We will then study the geometric properties of the good region
and the bad region.

When j is small, the rescaling level Bn( j) in B is far away from the center of the domain and
the rescaling level Cn( j) in C is far from the tip τn. The topological structure of Bn( j) and the
dynamical behavior of Fn on Bn( j) behave like a unimodal map. The boundaries of Bn( j) are
vertical graphs with a small Lipschitz constant by Proposition 9.15. We will show in Chapter 10
that the expansion estimate holds: the horizontal sizes of the elements in a closest approach expand
at a uniform rate. The area containing the rescaling levels with j small is called “the good region”.

When j is large, the rescaling level Bn( j) in B is close to the center of the domain and the
rescaling level Cn( j) in C is close to the tip τn. The topological structure of Bn( j) and the dynamical
behavior of Fn on Bn( j) behave different from a unimodal map. Unlike the unimodal case, the
rescaling level Bn( j) becomes an arch-like domain. In fact, the expansion estimate breaks down: a
strong contraction applies to the horizontal sizes whenever an element in a closest approach enters
the rescaling levels. The area containing these rescaling levels is called “the bad region”.

The vertical line argument in Figure 9.1 explains why the expansion estimate breaks down in a
rescaling level Bn( j) when j is large. First, draw a vertical line (dashed vertical line in the figure)
close to the tip such that its intersection with the image of Fn contains only one component. Apply
the inverse F−1

n to the intersection. Unlike the case when j is small, the preimage is not a vertical
graph but a concave curve close to the center of the domain. Assume that there is a wandering
domain J close to the preimage. If the line

←→
UV connecting horizontal endpoints U and V of J is

parallel to the preimage (Figure 9.1a), then the line connecting the iterated horizontal endpoints
Fn(U) and Fn(V ) is also parallel to the vertical line (Figure 9.1b). This shows that the horizontal
size of the iterated set can be as small as possible. Therefore, the expansion estimate breaks down
in a rescaling level Bn( j) when j is large.

Motivated from the vertical line argument, we group the rescaling levels in C by how close a
level to the tip is. The size of the image of Fn is ‖εn‖. To avoid a vertical line having only one
intersection with the image, the line has to be ‖εn‖ away from the tip. This suggests the definition
of the good region and the bad region.

Definition 9.1 (The Good Region and The Bad Region). Fix a constant b > 0. Assume that ε > 0
is sufficiently small so that Proposition 6.16 holds and F ∈ Îδ (Ih× Iv,ε). For each n ≥ 0, define
Kn = Kn(b) to be the largest positive integer such that∣∣∣πxz(0)n (Kn)−πxτn

∣∣∣> b‖εn‖

where z(0)n ( j) is the intersection point of W 0
n ( j) with the horizontal line through τn.

The rescaling level Cn( j) (resp. Bn( j)) is in the good region if j ≤ Kn; in the bad region if
j > Kn. The integer Kn is called the boundary of the good region and the bad region. See Figure
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Figure 9.1.: The vertical line argument. The scales of the graphs in (a) and (b) are the same.
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Figure 9.2.: The good region and the bad region. The rescaling levels 1, 2, and below are the
shaded area colored from light to dark. In this example, one can see a tiny light area
on the center bottom part of the graph. This is because Cr(2) intersects the image
F(D). Hence, the boundary is K = 2 and the good region contains the lightest part and
the bad region contains the two darker parts.

9.2 for an illustration.

Remark 9.2. It is enough to consider the subdomain Ih× Ih ⊂ Ih× Iv
n in the definition because

Fn(Dn)⊂ Ih× Ih.

Remark 9.3. The bad region is a special feature for the Hénon case. For the degenerate case, εn = 0
and hence Kn = ∞. This means that there is no bad region for the degenerate case.

Our goal in this chapter is to study the geometric properties of the good region and the bad
region. The properties are summarized below.

Proposition 9.4 (Geometric properties of the good region and the bad region). Given δ > 0 and
Iv ⊃ Ih c I. There exist constants ε > 0, b > 0, and c > 1 such that for all F ∈ Îδ (Ih× Iv,ε) and
b > b the following properties hold for all n≥ 0:

The boundary Kn is bounded by

1
c

1√
b‖εn‖

≤ λ
Kn ≤ c

1√
b‖εn‖

. (9.1)

For the rescaling levels 1≤ j ≤ Kn in the good region, we have

1. Cr
n( j)∩Fn(Dn) = φ ,
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9. The Good Region and the Bad Region

2. |πxz−πxτn|> b
c ‖εn‖ for all z ∈Cn( j)∩Fn(Dn),

3. |πxz− vn|> 1
c

√
b‖εn‖ for all z ∈ Bn( j),

4. 1
c

( 1
λ

)2 j
< |πxz−πxτn|< c

( 1
λ

)2 j
for all z ∈Cn( j)∩Fn(Dn), and

5. 1
c

( 1
λ

) j
< |πxz− vn|< c

( 1
λ

) j
for all z ∈ Bn( j).

For the rescaling levels j > Kn in the bad region, we have

1. |πxz−πxτn|< cb‖εn‖ for all z ∈Cn( j)∩Fn(Dn) and

2. |πxz− vn|< c
√

b‖εn‖ for all z ∈ Bn( j).

The properties in this proposition will be proved by the lemmas in this chapter.
First, we estimate the bounds for the boundary Kn.

Lemma 9.5. Given δ > 0 and Iv ⊃ Ih c I. There exist constants ε > 0 and c > 1 such that for all
F ∈ Îδ (Ih× Iv,ε) and b > 0, we have

1
c

1√
b‖εn‖

≤ λ
Kn ≤ c

1√
b‖εn‖

for all n≥ 0.

Proof. To prove the lower bound, we apply Proposition 6.16 to the definition of Kn. Assume that
ε > 0 is sufficiently small. We have

c
(

1
λ

)2(Kn+1)

≤
∣∣∣z(0)n (Kn +1)− τn

∣∣∣≤ b‖εn‖ .

for some constant c > 1. Thus,

λ
Kn ≥

√
c

bλ 2
1√
‖εn‖

.

The upper bound is similar.

9.1. Properties of the good region

To prove the properties, the strategy is to first estimate the distance from the tip τn to the local stable
manifolds. Since the rescaling level Cn( j) is bounded by the local stable manifolds W t

n( j−1) and
W t

n( j), the locations of the points in the level can be estimated by using the local stable manifolds.
After proving the properties of the levels in C, the properties of the levels in B holds because the
Hénon-like map behaves like a quadratic map near the center of the domain (Lemma 6.21 and
Proposition 6.27).

First, we estimate the x-coordinate of the points on W t
n( j).
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9.1. Properties of the good region

Lemma 9.6. Given δ > 0 and Iv ⊃ Ih c I. There exist constants ε > 0, b > 0, and c > 1 such that
for all F ∈ Îδ (Ih× Iv,ε) and b > b, we have

1
c

(
1
λ

)2 j

≤ |πxz−πxτn| ≤ c
(

1
λ

)2 j

for all z ∈W t
n( j)∩

(
Ih× Ih) with t ∈ {0,2}, 0≤ j ≤ Kn, and n≥ 0.

Proof. Assume that ε > 0 is sufficiently small. We prove the the lower bound for the case t = 0.
The upper bound and the other case t = 2 are similar.

To prove the lower bound, we apply Proposition 6.16. Let z ∈W 0
n ( j)∩

(
Ih× Ih). Then

|πxz−πxτn| ≥
∣∣∣z(0)n ( j)− τn

∣∣∣− ∣∣∣πxz−πxz(0)n ( j)
∣∣∣

≥ 1
c

(
1
λ

)2 j

− c‖εn‖
∣∣∣Ih
∣∣∣

≥
(

1
c
− c
∣∣∣Ih
∣∣∣‖εn‖λ

2Kn

)(
1
λ

)2 j

for some constant c > 1. By Lemma 9.5, there exists c′ > 1 such that

|πxz−πxτn| ≥

(
1
c
−

cc′2
∣∣Ih
∣∣

b

)(
1
λ

)2 j

≥ 1
2c

(
1
λ

)2 j

whenever b≥ 2c2c′2
∣∣Ih
∣∣.

We prove the first property of the good region.

Lemma 9.7. Given δ > 0 and Iv ⊃ Ih c I. There exist constants ε > 0 and b > 0 such that for all
F ∈ Îδ (Ih× Iv,ε) and b > b, we have

Cr
n( j)∩Fn(Dn) = φ

for all 1≤ j ≤ Kn and n≥ 0.

Proof. Since the right component of the good region ∪Kn
j=1Cr

n( j) is bounded by the local manifolds
W 2

n (Kn) and W 2
n (0), it suffices to show that the local stable manifold W 2

n (Kn) is far away form the
image. We have

fn(vn)−‖εn‖ ≤ sup
z′∈Dn

hn(z′) = sup
z′∈Dn

(
fn(πxz′)+ εn(z′)

)
≤ fn(vn)+‖εn‖ .
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9. The Good Region and the Bad Region

By Proposition 6.27, Lemma 9.5, and Lemma 9.6, there exist constants c > 0 and a > 1 such that

πxz− sup
z′∈Dn

hn(z′) ≥ (πxz−πxτn)−|πxτn− fn(vn)|−

∣∣∣∣∣ fn(vn)− sup
z′∈Dn

hn(z′)

∣∣∣∣∣
≥ 1

a

(
1
λ

)2Kn

− c‖εn‖−‖εn‖

≥
(

b
a3 − c−1

)
‖εn‖

for all z∈W 2
n (Kn)∩

(
Ih× Ih). The coefficient on the right hand side is positive when b > 0 is large

enough. Consequently, Cr
n( j)∩Fn(Dn) = φ for all 1≤ j ≤ Kn.

By the previous lemma, it is enough to only consider the left component of the rescaling levels
Cl

n( j). The second property shows that the good region is ‖εn‖ away from the tip.

Lemma 9.8. Given δ > 0 and Iv ⊃ Ih c I. There exist constants ε > 0, b > 0, and c > 0 such that
for all F ∈ Îδ (Ih× Iv,ε) and b > b, we have

|πxz−πxτn|> cb‖εn‖

for all z ∈Cn( j)∩Fn(Dn) with 1≤ j ≤ Kn and n≥ 0.

Proof. The left component of the good region in C is bounded by the local stable manifolds W 0
n (0)

and W 0
n (Kn). Thus, the estimate follows from Lemma 9.5 and Lemma 9.6.

The third property is an analog of the lemma in B.

Corollary 9.9. Given δ > 0 and Iv ⊃ Ih c I. There exist constants ε > 0, b > 0, and c > 0 such
that for all F ∈ Îδ (Ih× Iv,ε) and b > b so that the following property hold for all n≥ 0:

If z ∈ IB× Iv
n satisfies |hn(z)−πxτn| ≥ cb‖εn‖, then

|πxz− vn| ≥ c
√

b‖εn‖. (9.2)

In particular, (9.2) holds for all z ∈ Bn( j) with 1≤ j ≤ Kn.

Proof. Assume that z ∈ IB× Iv
n such that |hn(z)−πxτn|> cb‖εn‖. By Proposition 6.27, we get

| fn(πxz)− fn(vn)| ≥ |hn(z)−πxτn|− | fn(πxz)−hn(z)|− |πxτn− fn(vn)|
≥ (cb−1− c′)‖εn‖

>
cb
2
‖εn‖

for some c′ > 0 when b > 2(1+ c′)/c.
Moreover, by Lemma 6.21, there exists a constant a > 1 such that

| fn(πxz)− fn(vn)| ≤
a
2
(πxz− vn)

2
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9.2. Properties of the bad region

for all n≥ 0 when ε > 0 is small enough. Therefore,

|πxz− vn| ≥
√

c
a

√
b‖εn‖.

The last property gives an estimate of the distance from the rescaling level Cn( j) to the tip τn.

Lemma 9.10. Given δ > 0 and Iv ⊃ Ih c I. There exist constants ε > 0, b > 0, and c > 1 such
that for all F ∈ Îδ (Ih× Iv,ε) and b > b, we have

1
c

(
1
λ

)2 j

< |πxz−πxτn|< c
(

1
λ

)2 j

for all z ∈Cn( j)∩Fn(Dn) with 1≤ j ≤ Kn and n≥ 0.

Proof. For all z ∈ Cl
n( j)∩ Fn(Dn) with 1 ≤ j ≤ Kn, there exist z1 ∈W 0

n ( j− 1)∩
(
Ih× Ih) and

z2 ∈W 0
n ( j)∩

(
Ih× Ih) such that πyz = πyz1 = πyz2 because the local stable manifolds are vertical

graphs. By Lemma 9.6, we obtain

1
c

(
1
λ

)2 j

≤ |πxz2−πxτn| ≤ |πxz−πxτn| ≤ |πxz1−πxτn| ≤ cλ
2
(

1
λ

)2 j

.

This proves the corollary because Cl
n( j) is the component bounded between W 0

n ( j−1) and W 0
n ( j).

One can deduce an analog of the lemma for the rescaling levels in B. The proof is similar to
Corollary 9.9. The details are left to the reader.

Corollary 9.11. Given δ > 0 and Iv ⊃ Ih c I. There exist constants ε > 0, b > 0, and c > 1 such
that for all F ∈ Îδ (Ih× Iv,ε) and b > b, we have

1
c

(
1
λ

) j

< |πxz− vn|< c
(

1
λ

) j

for all z ∈ Bn( j) with 1≤ j ≤ Kn and n≥ 0.

9.2. Properties of the bad region

We prove the first property of the bad region by applying Lemma 9.6 to the boundary local stable
manifolds W 0

n (Kn) and W 2
n (Kn) of the bad region.

Lemma 9.12. Given δ > 0 and Iv ⊃ Ih c I. There exist constants ε > 0, b > 0, and c > 0 such
that for all F ∈ Îδ (Ih× Iv,ε) and b > b, we have

|πxz−πxτn|< cb‖εn‖

for all z ∈Cn( j)∩Fn(Dn) with j > Kn and n≥ 0.
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9. The Good Region and the Bad Region

Proof. Assume that z ∈W t
n(Kn)∩

(
Ih× Ih) with t ∈ {0,2}. By Lemma 9.5 and Lemma 9.6, there

exists c > 1 such that

|πxz−πxτn| ≤ c
(

1
λ

)2Kn

≤ c3b‖εn‖

for all b > 0 sufficiently large. Therefore, the estimate holds because the bad region is bounded by
the local stable manifolds W 0

n (Kn) and W 2
n (Kn).

The second property of the bad region follows from Lemma 6.21.

Corollary 9.13. Given δ > 0 and Iv ⊃ Ih c I. There exist constants ε > 0, b > 0, and c > 0 such
that for all F ∈ Îδ (Ih× Iv,ε) and b > b, we have

|πxz− vn|< c
√

b‖εn‖

for all z ∈ Bn( j) with j > Kn and n≥ 0.

Proof. Assume that z ∈ Bn( j). Then Fn(z) ∈ Cn( j)∩Fn(Dn). By Proposition 6.27 and Lemma
9.12, there exists c > 0 such that

| fn(πxz)− fn(vn)| ≤ |hn(z)−πxτn|+ | fn(πxz)−hn(z)|+ |πxτn− fn(vn)|
≤ (cb+1+ c)‖εn‖
< 2cb‖εn‖

for all b > 0 sufficiently large. Also, by Lemma 6.21, we have

| fn(πxz)− fn(vn)| ≥
1

2a
(πxz− vn)

2

for some constant a > 0. Combine the two inequalities, we obtain

|πxz− vn| ≤
√

4ac
√

b‖εn‖.

9.3. *Local stable manifolds in Bn

In this section, we show in the good region j ≤ Kn the rescaling level Bn( j)⊂ Bn has two compo-
nents, the left component Bl

n( j) and the right component Br
n( j). Each component is bounded by

two local stable manifolds that are vertical graphs.

Lemma 9.14. Given δ > 0 and Iv ⊃ Ih c I. There exist constants ε > 0, b > 0, and c > 0 such
that for all F ∈ Îδ (Ih× Iv,ε) and b > b, the following properties hold for all n≥ 0:

There exist closed intervals IBl
n = IBl

n (b,F), IBr
n = IBr

n (b,F), and ICg
n = ICg

n (b,F) such that

1. W 0
n ( j)∩

(
Ih× Ih)⊂ ICg

n × Ih for all 1≤ j ≤ Kn,

2. F−1
n (W 0

n ( j))⊂ (IBl
n ∪ IBr

n )× Iv
n ,
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9.3. *Local stable manifolds in Bn

3. hn(IBl
n ,y)⊃ ICg

n , hn(IBr
n ,y)⊃ ICg

n , and

4.
∣∣∣∂hn

∂x (x,y)
∣∣∣≥ c

√
‖εn‖ for all (x,y) ∈ (IBl

n ∪ IBr
n )× Iv

n .

Proof. Let c > 0 be the constant defined by Corollary 9.9, ICg
n = [πx pn(0),πxτn− b‖εn‖], IBl

n =
IB∩ [−1,vn− c

√
b‖εn‖], IBr

n = IB∩ [vn + c
√

b‖εn‖,1]. Also, let ε > 0 be small enough such that
W 0

n (1)∩
(
Ih× Ih)⊂ ICg

n × Ih for all n≥ 0. Then the first property holds.
The second property follows from Corollary 9.9.
The third property follows from Corollary 9.9 and the definitions of ICg

n , IBl
n , and IBr

n .
To prove the last property, let (x,y) ∈ IBl

n × Iv
n . Then∣∣∣∣∂hn

∂x
(x,y)

∣∣∣∣ ≥ ∣∣ f ′n(x)∣∣−‖εn‖

≥ 1
a
|x− vn|−‖εn‖

≥ c
a

√
b‖εn‖−‖εn‖

≥ c
2a

√
b‖εn‖

by Lemma 6.21 and the definition of IBl . Here we assume that ε is also small enough such that√
‖εn‖< c

2a for all n≥ 0. The other case IBr
n × Iv

n is similar.

Proposition 9.15. Given δ > 0 and Iv ⊃ Ih c I. There exist constants ε > 0, b > 0, and c > 0 such
that for all F ∈ Îδ (Ih× Iv,ε) and b > b the following properties hold for all n≥ 0:

For all 1 ≤ j ≤ Kn, the set F−1
n (W 0

n ( j)) is the union of two components, left component W l
n( j)

and right component W r
n ( j). Both components are vertical graphs of c

√
‖εn‖-Lipschitz functions

in Bn. For 1≤ j≤Kn, let Bl
n( j) be the set bounded by W l

n( j−1) and W l
n( j) in Ih× Iv

n; and Br
n( j) be

the set bounded by W r
n ( j) and W r

n ( j−1) in Ih× Iv
n . Then Bn( j) = Bl

n( j)∪Br
n( j) for all 1≤ j≤Kn.

Proof. By Proposition 6.16, the local stable manifold W 0
n ( j) is the vertical graph of a c‖εn‖-

Lipschitz function for some constant c > 0. Let c′ > 0 be the constant in Lemma 9.14. Then

1

δ

(
c′
√

b‖εn‖− c‖εn‖
) ‖εn‖ ≤

2
δc′
√
‖εn‖

for all n ≥ 0. Here we assume that ε is small enough such that c
√
‖εn‖ < c′

2 for all n ≥ 0. By
Lemma 5.19 and Lemma 9.14, W l

n( j) = F−1
n (W 0

n ( j))∩ IBl
n × Iv

n and W r
n ( j) = F−1

n (W 0
n ( j))∩ IBr

n × Iv
n

are vertical graphs of 2
δc′
√
‖εn‖-Lipschitz functions for all 0≤ j ≤ Kn. By the second property in

Lemma 9.14, F−1
n (W 0

n ( j)) =W l
n( j)∪W r

n ( j).
The property for Bn( j) follows from definition.
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10. The Good Region and the expansion estimate

In this chapter, we generalize the expansion estimate (8.1) from unimodal maps to Hénon-like
maps: horizontal sizes expands at a definite rate when the elements in a closest approach stay in
the good regions. From now on, we fix a constant b > 0 sufficiently large so that Proposition 9.4
holds and the boundary of the good region and the bad region {Kn}n≥0 depends only on F .

To prove horizontal size expands, we impose a technical condition “regular” to the elements of a
closest approach. In terms of notations from the vertical line argument (Figure 9.1), this condition
ensures that the line connecting a pair of horizontal endpoints is far from being parallel to the
preimage of a vertical line.

Definition 10.1 (Regular). Let R > 0. A set U ⊂ D(F) is R-regular if

h(U)

l(U)
≤ R

1

‖ε‖1/4 . (10.1)

To see R-regular implies not parallel, we estimate the slope of the preimage of a vertical line.
Assume that γ : Iv→ Ih is the vertical graph of the preimage of some vertical line x = x0 by the
Hénon-like map Fn and the vertical graph is in the good region. Then

hn(γ(y),y) = x0.

Apply the derivative in terms of y to the both sides, we solved

γ
′(y) =

∂εn
∂y (γ(y),y)

f ′n(γ(y))− ∂εn
∂x (γ(y),y)

.

By Lemma 6.21 and Proposition 9.4, we get∣∣∣∣ f ′n(y)− ∂εn

∂x
(γ(y),y)

∣∣∣∣ ≥ 1
a
|γ(y)− vn|−

1
δ
‖εn‖

≥ c
a

√
‖εn‖−

1
δ
‖εn‖

≥ c
2a

√
‖εn‖

when ε is small enough. This yields ∣∣γ ′(y)∣∣≤ c′
√
‖εn‖ (10.2)

for some constant c′ > 0.
The condition R-regular says that the vertical slope of the line determined by the horizontal
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10. The Good Region and the expansion estimate

endpoints (x1,y1) and (x2,y2) of J is bounded by

|x2− x1|
|y2− y1|

≥ l(J)
h(J)

≥ 1
R
‖εn‖1/4 . (10.3)

From (10.2) and (10.3), we get
|x2− x1|
|y2− y1|

�
∣∣γ ′(y)∣∣ .

This concludes that the line connecting the horizontal endpoints is not parallel to the preimage of
a vertical line if the wandering domain is R-regular.

Assume that J ⊂ An∪Bn is a wandering domain in the good region. We will prove the expansion
estimate, Proposition 10.11, in three different cases:

1. the case when the element J is in An (Section 10.1),

2. the case when the element J is in Bn( j) with 1≤ j < K for some positive integer K (Section
10.3), and

3. the case when the element J is in Bn( j) with K ≤ j ≤ Kn (Section 10.2).

The proof is technical but not the result is not surprising when the element is far away from the bad
region (case 1 and 2) because the Hénon-like map F inherits the properties from g when F is close
to g. In short, the proof is just showing that the expansion estimate for g holds on a neighborhood of
the partition elements of g, the partition elements of a Hénon-like map F are close to the partition
elements of g, and the expansion estimate survives under a small perturbation. On the other hand,
the expansion estimate breaks down in the bad region. The intermediate region (case 3) turns out
to be the nontrivial part because the properties from the degenerate map g do not apply to this case
directly. The proof relies on how the good region is defined. In other words, the good region is
defined to be the condition that makes the expansion estimate works in the intermediate region.

10.1. Case Jn ⊂ Ar(n)

In this section, we estimate the expansion rate of horizontal size when a wandering domain Jn is
in Ar(n). We show that the expansion estimate for g (Proposition 4.39) also applies to Hénon-like
maps when Fn is close to the degenerate map G.

Lemma 10.2. Given δ > 0 and Iv ⊃ Ih c I. For all R > 0, there exist ε = ε(R) > 0 and E > 1
such that for all F ∈ Îδ (Ih× Iv,ε), the following properties hold for all n≥ 0:

Assume that J ⊂ An is a closed R-regular set. Then its iterate J′ = Fn(J) is an R-regular set in
An∪W 1

n (0)∪Bn and
l(J′)≥ El(J).

Proof. Let E > 1 be the constant defined in Lemma 6.22 and ∆E > 0 be small enough such that
E ′ ≡ E−∆E > 1. Assume that ε > 0 is small enough such that Lemma 6.22 holds and

R
δ
‖εn‖3/4 < ∆E (10.4)
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10.2. Case B, center

for all n≥ 0.
To prove the inequality, let (x1,y1),(x2,y2) ∈ J such that x2− x1 = l(J). Then h(J)≥ |y2− y1|.
Compute

l(J′) ≥ |πx [Fn(x2,y2)−Fn(x1,y1)]|
≥ |πx [Fn(x2,y2)−Fn(x1,y2)]|− |πx [Fn(x1,y2)−Fn(x1,y1)]| .

By the mean value theorem, there exist ξ ∈ (x1,x2) and η ∈ (y1,y2) such that

πx [Fn(x2,y2)−Fn(x1,y2)] =
∂hn

∂x
(ξ ,y2)(x2− x1)

and

πx [Fn(x1,y2)−Fn(x1,y1)] =
∂εn

∂y
(x1,η)(y2− y1).

Since (x1,y1),(x2,y2) ∈ An ⊂ IAC× Iv
n , we have (ξ ,y2) ∈ IAC× Iv

n . By Lemma 5.31 and Lemma
6.22, we get

l(J′) ≥ El(J)− 1
δ
‖εn‖h(J)

=

(
E− 1

δ
‖εn‖

h(J)
l(J)

)
l(J).

Also, by J is R-regular and (10.4), this yields

l(J′) ≥
(

E− R
δ
‖εn‖3/4

)
l(J)

≥ E ′l(J). (10.5)

To prove that J′ is R-regular, we apply (10.5) and h(J′) = l(J). We get

h(J′)
l(J′)

≤ 1
E ′

.

Also assume that ε is small enough such that 1
E ′ ≤ R‖εn‖−1/4 for all n ≥ 0. This proves that J′ is

R-regular.

10.2. Case Jn ⊂ Br(n)(kn), K ≤ kn ≤ Kr(n)

In this section, we prove that horizontal size expands when a wandering domain Jn ⊂ Br(n)(k) is
iterated then rescaled in the intermediate region K ≤ k ≤ Kr(n) (Lemma 10.3). We first show that
the amount of contraction is well controlled when the set Jn is iterated by Fr(n) in the good region
(Lemma 10.4). Then we estimate the size of expansion when the iterated set Fr(n)(Jn) is rescaled
by Φ

kn
r(n) (Lemma 10.5). Finally, we show that the expansion is larger than the contraction:
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10. The Good Region and the expansion estimate

Lemma 10.3. Given δ > 0 and Iv ⊃ Ih c I. For all R > 0, there exist constants ε = ε(R) > 0,
E > 1, R′ > 0, and c > 0 such that for all F ∈ Îδ (Ih× Iv,ε), the following properties hold for all
n≥ 0:

Assume that J ⊂ Bn(k) is a closed R-regular set and 1≤ k ≤ Kn, then the set J′ = Φk
n ◦Fn(J) is

an R′-regular set in Cn+k(0) = An+k∪W 1
n+k(0)∪Bn+k and

l(J′)≥ cEkl(J). (10.6)

The constants E, R′, and c do not depend on R.

After this section, we fix K > 0 to be a large integer so that the lemma produces a definite
expansion for all k≥ K. We will also set R = R′ to make the property regular to be invariant under
the construction of a closest approach.

First, we estimate the size of contraction when a wandering domain is iterated in B.

Lemma 10.4. Given δ > 0 and Iv ⊃ Ih c I. For all R > 0, there exist constants ε = ε(R) > 0,
c > 1, and R′ > 0 such that for all F ∈ Îδ (Ih× Iv,ε), the following properties hold for all n≥ 0:

Assume that J ⊂ Bn(k) is a closed R-regular set and k ≤ Kn. Let J′ = Fn(J). Then

l(J′) ≥ cλ
−kl(J) (10.7)

and
h(J′)
l(J′)

≤ R′
1√
‖εn‖

.

The constants c and R′ do not depend on R.

Proof. Let ε > 0 be a small number such that Lemma 5.31, Lemma 6.21, and Proposition 9.4 hold.
Let (x1,y1),(x2,y2) ∈ J be a pair of horizontal endpoints and x ∈ {x1,x2} be such that |x− vn| =
mini=1,2 |xi− vn|. By the triangular inequality, we have

l(J′) ≥ |πx (Fn(x2,y2)−Fn(x1,y1))|
≥ |πx (Fn(x2,y2)−Fn(x1,y2))|− |πx (Fn(x1,y2)−Fn(x1,y1))| (10.8)

Apply the mean value theorem, there exist ξ ∈ (x1,x2) and η ∈ (y1,y2) such that

πx (Fn(x2,y2)−Fn(x1,y2)) =

[
f ′n(ξ )−

∂εn

∂x
(ξ ,y2)

]
(x2− x1) (10.9)

and

πx (Fn(x1,y2)−Fn(x1,y1)) =−
∂εn

∂y
(x1,η)(y2− y1). (10.10)

Then ξ ∈ IB since (x1,y1),(x2,y2) ∈ Bn ⊂ IB× Iv
n . By Lemma 6.21, (10.9) yields

|πx (Fn(x2,y2)−Fn(x1,y2))| ≥
(∣∣ f ′n(ξ )∣∣− ∣∣∣∣∂εn

∂x
(ξ ,y2)

∣∣∣∣) l(J)

≥
(

1
a
|x− vn|−

1
δ
‖εn‖

)
l(J). (10.11)
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Also, since J is R-regular, (10.10) yields

|πx (Fn(x1,y2)−Fn(x1,y1))| ≤
1
δ
‖εn‖h(J)≤ R

δ
‖εn‖3/4 l(J). (10.12)

Combine (10.8), (10.11), and (10.12), we get

l(J′)≥
(

1
a
|x− vn|−

1
δ

(
‖εn‖1/2 +R‖εn‖1/4

)√
‖εn‖

)
l(J)

for some constant a > 1. By Proposition 9.4 (3rd property of the good region), we have

c |x− vn|>
√
‖εn‖ (10.13)

for some constant c> 1. Also, assume that ε > 0 is small enough such that c
δ

(
‖εn‖1/2 +R‖εn‖1/4

)
<

1
2a for all n≥ 0. We obtain

l(J′)≥ 1
2a
|x− vn| l(J) (10.14)

when ε > 0 is small. Then (10.7) follows from Proposition 9.4 (5th property of the good region).
Moreover, by (10.13), (10.14), and h(J′) = l(J), we get

h(J′)
l(J′)

≤ 2a
|x− vn|

≤ R′
1√
‖εn‖

where R′ = 2ac.

Then we estimate the size of expansion when a wandering domain is rescaled in C.

Lemma 10.5. Given δ > 0 and Iv ⊃ Ih c I. For all R > 0, there exist constants ε = ε(R)> 0 and
E > 1 such that for all F ∈ Îδ (Ih× Iv,ε), the following properties hold for all n≥ 0:

Assume that J ⊂Cn(k) is a closed set and h(J)
l(J) ≤ R 1√

‖εn‖
, then

l(Φ j
n(J)) ≥ (λE) j l(J) (10.15)

and
h(Φ j

n(J))

l(Φ j
n(J))

≤ R
1√
‖εn‖

(10.16)

for all integer j with 0≤ j ≤ k. The constant E does not depend on R.

Proof. Let E ′ > 1 be the expansion factor defined in Lemma 6.22 and E =
√

E ′. We prove the
lemma by induction on j. The statement is trivial for the case j = 0.

Assume that the lemma is true for some integer j ≤ k. We show the lemma also holds for
j + 1 ≤ k. Let (x1,y1),(x2,y2) ∈ Φ

j
n(J) be a pair of horizontal endpoints. By the mean value

theorem, there exist ξ j ∈ (x1,x2)⊂ IAC and η j ∈ (y1,y2) such that

πx
(
φn+ j(x2,y2)−φn+ j(x1,y2)

)
=−λn+ j

∂hn

∂x
(ξ j,y2)(x2− x1) (10.17)
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and

πx
(
φn+ j(x1,y2)−φn+ j(x1,y1)

)
= λn+ j

∂εn+ j

∂y
(x1,η j)(y2− y1) . (10.18)

Apply Lemma 6.22 to (10.17), we have∣∣πx
(
φn+ j(x2,y2)−φn+ j(x1,y1)

)∣∣ ≥ λn+ jE ′l(Φ j
n(J)) (10.19)

for some constant E ′ > 1. Also apply the induction hypothesis to (10.18), we have

∣∣πx
(
φn+ j(x1,y2)−φn+ j(x1,y1)

)∣∣ ≤ λn+ j

δ

∥∥εn+ j
∥∥h(Φ j

n(J))

≤
λn+ jR′

δ

√
‖εn‖l(Φ j

n(J)). (10.20)

By the triangular inequality, (10.19), and (10.20), we get

l(Φ j+1
n (J))

≥
∣∣πx
(
φn+ j(x2,y2)−φn+ j(x1,y2)

)∣∣− ∣∣πx
(
φn+ j(x1,y2)−φn+ j(x1,y1)

)∣∣
≥λn+ j

(
E ′− R′

δ

√
‖εn‖

)
l(Φ j

n(J)) (10.21)

≥λEl(Φ j
n(J))

Here we assume that ε is sufficiently small such that λn+ j

(
E ′− R′

δ

√
‖εn‖

)
> λE for all n≥ 0 and

j ≥ 0 since E ′ > E > 1 and |λn−λ |< ε . Then (10.15) follows from the induction hypothesis.

Moreover, the vertical sizes are related by h(Φ j+1
n (J)) = λn+ jh(Φ

j
n(J)). By (10.21) and the

induction hypothesis, we get

h(Φ j+1
n (J))

l(Φ j+1
n (J))

≤ 1
E ′− 1

δ
R
√
‖εn‖

h(Φ j
n(J))

l(Φ j
n(J))

< R
1√
‖εn‖

when ε > 0 is small since E ′− 1
δ

R′
√
‖εn‖> 1.

Therefore, the lemma is proved by induction.

Finally, we prove the expansion estimate for the case of the intermediate region.

Proof of Lemma 10.3. The expansion estimate (10.6) follows from Lemma 10.4 and Lemma 10.5.
To show that J′ is a regular set, we apply Lemma 10.4, Lemma 10.5, and Proposition 5.26. Then

h(J′)
l(J′)

≤ R′
1√
‖εn‖

≤ R′c
1

‖εn+1‖1/4 ≤ R′c
1

‖εn+k‖1/4

where c > 0 is a constant. Therefore, the set J′ is R′c-regular.
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10.3. Case Jn ⊂ Br(n)(kn), 1≤ kn < K

In this section, we prove the expansion estimate holds when the wandering domain is inside B but
far away from the bad region. Although the rescaling trick does not work in the non-degenerate
case, we still can apply it to the limiting degenerate Hénon-like map G to prove the expansion
estimate for G. Then we show that the estimate can be promoted to Hénon-like maps that are close
to G because of continuity and K is a fixed number.

Observe in the limiting case, we have

lim
n→∞

Fn(x,y) = (g(x),x)

and
lim
n→∞

φn(x,y) = (−λ )(g(x),y).

Then
lim
n→∞

Φ
j
n(x,y) = ([(−λ )g] j (x),(−λ ) jy)

and
lim
n→∞

Φ
j
n ◦Fn(x,y) = ([(−λ )g] j ◦g(x),(−λ ) jx)

where [(−λ )g] j means the function x→ (−λ )g(x) is composed j times.
The next lemma is a version of the rescaling trick (Lemma 8.3) in the limiting case.

Lemma 10.6 (Rescaling trick). Assume that j ≥ 0 is an integer. Then

[(−λ )g] j ◦g(x) = g((−λ ) jx) (10.22)

for all x with ql( j−1)≤ x≤ qr( j−1).

Proof. Prove by induction on j. The base case j = 0 is clear.
Assume the equality holds for j. For the case j+ 1, assume that |x| ≤

( 1
λ

) j+1
. The induction

hypothesis yields

[(−λ )g] j+1 ◦g(x) = (−λ )g◦g((−λ ) jx) = (−λ )g2
(
−(−λ ) j+1x

λ

)
since |x| ≤

( 1
λ

) j
. By the functional equation (4.5), we get

[(−λ )g] j+1 ◦g(x) = g((−λ ) j+1x)

since
∣∣(−λ ) j+1x

∣∣≤ 1.
Therefore, the equality is proved by induction.

Then we estimate the size of expansion in each rescaling level.

Lemma 10.7. There exist constants E,E ′ > 1 such that

Eλ
j ≤

∣∣∣∣∣d [(−λ )g] j ◦g
dx

(x)

∣∣∣∣∣≤ E ′λ j (10.23)
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for all x ∈ Bg( j) and j ≥ 0.

Proof. By the rescaling trick and chain rule, we have

d [(−λ )g] j ◦g
dx

(x) = (−λ ) jg′((−λ ) jx)

for all |x| ≤
( 1

λ

) j
. By Proposition 4.39, there exists E > 1 such that∣∣g′(x)∣∣≥ E

for all 1
λ
≤ |x| ≤ 1. Also, by compactness, there exists E ′ > 0 such that∣∣g′(x)∣∣≤ E ′

for all x ∈ I. This yields (10.23) since 1
λ
≤
∣∣(−λ ) jx

∣∣≤ 1 for all
( 1

λ

) j+1 ≤ |x| ≤
( 1

λ

) j
.

Assume that J ⊂ Bn( j) is a wandering domain. As usual, we estimate the size of expansion by
iterating a pair of horizontal endpoints. In order to apply the mean value theorem to the horizontal
endpoints, the map Φ

j
n ◦Fn has to be defined on a convex (rectangular) neighborhood of Bn( j). To

promote the expansion estimate to the Hénon-like map Fn, we also need to show that the partition
element Bn( j) is close to the partition element of the limiting case G when ε is small. The technical
details are left to the reader.

Lemma 10.8. Given δ > 0 and Iv ⊃ Ih c I. For all d > 0 and integer j ≥ 1, there exist a constant
ε = ε(d, j)> 0 and two closed intervals U l ⊂ [ql( j−1)−d,ql( j)+d] and U r ⊂ [qr( j)−d,qr( j−
1)+d] such that the following properties hold:

Let F ∈ Îδ (Ih× Iv,ε) and U =U l ∪U r. Then for all n≥ 0, we have

1. Bl
n( j)⊂U l× Iv

n , Br
n( j)⊂U r× Iv

n , and

2. the map Φ
j
n ◦Fn is defined on U× Iv

n where U =U l ∪U r.

We also show that the expansion estimate, Lemma 10.7, also applies to the nondegenerate case.

Lemma 10.9. Given δ > 0 and Iv ⊃ Ih c I. For all integer j ≥ 1, there exist constants ε( j) > 0,
E > 1, and E ′ > 1 such that for all F ∈ Îδ (Ih× Iv,ε), the estimate

Eλ
j ≤

∣∣∣∣∣∂πx ◦Φ
j
n ◦Fn

∂x
(x,y)

∣∣∣∣∣≤ E ′λ j

holds for all (x,y) ∈U× Iv
n and n≥ 0 where U is the set given in Lemma 10.8.

Proof. By analytic continuation, the map x→ [(−λ )g] j ◦g(x) has an analytic extension to a neigh-
borhood of Bg( j). By continuity, the expansion estimate (10.23) (with possibly different constants)
holds on some neighborhood of Bg( j). That is, there exist E > 1, E ′ > 1, and d = d( j) > 0 such
that

Eλ
j ≤

∣∣∣∣∣d [(−λ )g] j ◦g
dx

(x)

∣∣∣∣∣≤ E ′λ j
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for all x ∈ [ql( j− 1)− d,ql( j)+ d]∪ [qr( j)− d,qr( j− 1)+ d]. Also, the map πx ◦Φ
j
n ◦Fn (and

its derivative) depends continuously on the sup-norm ‖F−G‖ since we are considering a class of
analytic maps that has a holomorphic extension to a small neighborhood of the domain. Together
with Lemma 10.8, there exist ε = ε( j)> 0 and a union U of two open intervals such that Bn( j)⊂
U× Iv

n and
√

Eλ
j ≤

∣∣∣∣∣∂πx ◦Φ
j
n ◦Fn

∂x
(x,y)

∣∣∣∣∣≤√E ′λ j

for all F ∈ Îδ (Ih× Iv,ε) and (x,y) ∈U× Iv
n .

Finally, we estimate the size of expansion.

Lemma 10.10. Given δ > 0 and Iv ⊃ Ih c I. For all K > 0 and R > 0, there exist constanrs
ε = ε(K,R) > 0 and E > 1 such that for all F ∈ Îδ (Ih× Iv,ε), the following properties hold for
all n≥ 0:

Assume that J ⊂ Bn(k) is a connected closed R-regular set and k ≤ min
(
K,Kn

)
. Then J′ =

Φk
n ◦Fn(J) is an R-regular set in Cn+k(0) = An+k∪W 1

n+k(0)∪Bn+k and

l(J′)≥ Eλ
kl(J). (10.24)

Proof. Let ε = ε(K) > 0 be sufficiently small such that the expansion estimate in Lemma 10.9
holds for all j ≤ K. Let J ⊂ Bn(k) be a connected closed R-regular set with k ≤ min

(
K,Kn

)
and

n ≥ 0. Also, set G = Φk
n ◦Fn and Gx = πx ◦G. Then J′ = G(J). We prove the lemma for the case

of J ⊂ Bl
n(k). The other case J ⊂ Br

n(k) is similar. Let (x1,y1),(x2,y2) ∈ J be a pair of horizontal
endpoints. By Lemma 10.9, G is defined on U l× Iv

n . We can apply the mean value theorem. There
exist ξ ∈ (x1,x2) and η ∈ (y1,y2) such that

Gx(x2,y2)−Gx(x1,y2) =
∂Gx

∂x
(ξ ,y2)(x2− x1)

and

Gx(x1,y2)−Gx(x1,y1) =
∂Gx

∂y
(x1,η)(y2− y1).

By triangular inequality and J is R-regular, we get

l(J′) ≥ |Gx(x2,y2)−Gx(x1,y2)|− |Gx(x1,y2)−Gx(x1,y1)|

≥
∣∣∣∣∂Gx

∂x
(ξ ,y2)

∣∣∣∣ l(J)− ∣∣∣∣∂Gx

∂y
(x1,η)

∣∣∣∣h(J)
≥

(∣∣∣∣∂Gx

∂x
(ξ ,y2)

∣∣∣∣− ∣∣∣∣∂Gx

∂y
(x1,η)

∣∣∣∣R‖εn‖−1/4
)

l(J).

The first term can be estimated by Lemma 10.9. To bound the second term ∂Gx
∂y (x1,η), we

compute
∂Gx

∂y
(x1,η) =

∂πx ◦Φk
n

∂x
◦Fn(x1,η)

∂εn

∂y
(x1,η).
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By compactness, one can find a constant c > 0 that bounds ∂πx◦Φk
n

∂x for all k≤ K and all Hénon-like
maps that are close to the limiting map G. Then∣∣∣∣∂Gx

∂y
(x1,η)

∣∣∣∣≤ c
δ
‖εn‖ .

We get

l(J′)≥ Eλ
k
(

1− cR
δE

R‖εn‖3/4
)

l(J)≥
√

Eλ
kl(J) (10.25)

for some constant E > 1 when ε > 0 is small.
To prove that J′ is R-regular, we apply (10.25) and h(J′) =

(
∏

k(J)−1
j=0 λ j+n

)
l(J). Assume that

ε = ε(K) is small enough such that ∏
i−1
j=0 λ j+n ≤ 2λ i for all 1≤ i≤ K and n≥ 0. Thus,

h(J′)
l(J′)

≤ 2λ kl(J)√
Eλ kl(J)

=
2√
E
≤ R‖εn+k‖−1/4

when ε = ε(R) is small enough.

10.4. The expansion estimate for a closest approach

Finally, we establish the expansion estimate when the elements in a closest approach stay in the
good region.

Proposition 10.11. Given δ > 0 and Iv ⊃ Ih c I. There exist constants ε > 0, E > 1, and R > 0
such that for all F ∈ Îδ (Ih× Iv,ε), the following properties hold:

Assume that J ⊂ A∪B is a connected closed R-regular subset of a wandering domain of F and
{Jn}∞

n=0 is the J-closest approach. If kn ≤ Kr(n) for all n≤m, then Jn is R-regular for all n≤m+1
and

ln+1 ≥ Eln (10.26)

for all n≤ m.

Proof. We fix a constant R > 0 from Lemma 10.3 that makes the property regular to be invariant
under the construction of a closest approach. Also set K > 0 be a large number such that (10.7)
gives a strict expansion. Then the expansion estimate (10.26) follows from Lemma 10.2, Lemma
10.10, and Lemma 10.3.
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11. The Bad Region and the Thickness

In this chapter, we cover the case of the bad region then prove the nonexistence of wandering
domains.

In the good region, we showed that the horizontal sizes of the elements in a closest approach
expand at a definite rate by estimating the expansion of the horizontal endpoints. However, we
lose control of the horizontal sizes when the expansion estimate breaks down in the bad region.
Even worse, the situation of having a wandering domain in the bad region is unavoidable. The next
lemma shows that an infinitely renormalizable Hénon-like map must have a wandering domain in
the bad region if it has any wandering domain. This produces the main difficulty of proving the
nonexistence of wandering domains.

Lemma 11.1. *Given δ > 0 and Iv ⊃ Ih c I. There exists ε > 0 such that for all non-degenerate
Hénon-like maps F ∈ Îδ (Ih× Iv,ε), the following property holds.

If F has a wandering domain in D then F has a wandering domain in the bad region of B and a
wandering domain in the bad region of C.

Proof. Recall that K0 is the boundary of the good region and the bad region for F0 = F (Definition
9.1). Let j > K0.

If F has a wandering domain in D, then Fj also has a wandering domain J′ in D j by Corollary
7.4. By iterating the wandering domain, we can assume without lose of generality that J′⊂ Fj(D j).

Set JC =
(

Φ
j
0

)−1
(J′). Then JC is a wandering domain of F in the bad region of C.

Moreover, since J′ ⊂ Fj(D j), we have JC ⊂
(

Φ
j
0

)−1
(Fj(D j))⊂ F(D). Let JB = F−1(JC). Then

JB is a wandering domain of F in the bad region of B.

To proceed, we first introduce thickness to determine a lower bound of the horizontal size when
the expansion estimate breaks down.

After studying the relationships between horizontal size and thickness, we are able to control the
lower bounds of the horizontal sizes of all elements in a closest approach. However, Proposition
11.12 shows that a strong contraction applies to the horizontal size whenever the closest approach
enters the bad region. The whole proof leads to a dead-end if contraction occurs infinitely many
times. The breakthrough is the observation that a closest approach can have at most finitely many
entries to the bad region (Proposition 11.16). This is done by proving the two-row-lemma (Lemma
11.14). Finally, we combine all of the work and prove the nonexistence of wandering domain.

11.1. Thickness and largest square subset

When the element Jn enters the bad region, we are not able to estimate the horizontal size of the
proceeding element Jn+1 from the horizontal size of the current element Jn as explained by the
vertical line argument (Chapter 9). On the other hand, the main difference from one-dimensional
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11. The Bad Region and the Thickness

systems is that a wandering domain is an open set. It has area. At this moment, the size of a
horizontal cross-section gives a good lower bound for the horizontal size. In this section, we
introduce “thickness” to quantify the size of an horizontal cross-section.

When a wandering domain Jn is contained in a bad region, we cannot continue to estimate the
horizontal size of the proceeding elements in the closest approach because of the following two
reasons. First, the horizontal size of the next element Jn+1 cannot be estimated by the horizontal
size of the previous element Jn because the expansion estimate in Chapter 10 breaks down. At this
moment, the horizontal size ln+1 is dominated by the size of its horizontal cross-section. Second,
the proceeding elements are no longer regular sets. The expansion estimate (Proposition 10.11)
does not apply to the elements even if they all stay in the good regions.

To resolve the two issues, it requires the following:

1. A quantity to approximate the size of a horizontal cross-section of a wandering domain,
called the thickness.

2. Keep track of the thickness of the elements in a closest approach. When an element Jn enters
the bad region, the horizontal size of the next element Jn+1 will be estimated by its thickness.

3. A method to select a subset S from the wandering domain Jn+1 that makes S an R-regular set
with horizontal size close to the size of Jn+1. The subset will be defined by a largest square
subset of Jn+1.

In this section, we define the thickness and a largest square subset of a wandering domain then
study the properties of these two objects in a closest approach.

Definition 11.2 (Square, Largest square subset, and Thickness). A set S ⊂ R2 is a square if S =
[x1,x2]× [y1,y2] and |x2− x1|= |y2− y1|. This means that S is a closed square with horizontal and
vertical sides. The thickness of a set J ⊂R2 is the quantity w(J) = sup{l(S)} where the supremum
is evaluated over all square subsets S ⊂ J. A square subset S ⊂ J is a largest square subset if
l(S) = w(J). Figure 11.1 shows a comparison between the horizontal size, the vertical size, and
the thickness of a set.

Lemma 11.3. A largest square subset of a compact set exists.

Proof. The lemma follows from compactness.
Let J ⊂ R2 be a compact set. Also let {In}n≥1 be a sequence of square subsets In ⊂ J such that

{l(In)}n≥1 is increasing and converge to w(J). Write In =
[
x(n)1 ,x(n)2

]
×
[
y(n)1 ,y(n)2

]
. Without loss of

generality, we may assume that (x1,y1) = limn→∞(x
(n)
1 ,y(n)1 ) and (x2,y2) = limn→∞(x

(n)
2 ,y(n)2 ) exist

by the compactness of J. Define I = [x1,x2]× [y1,y2]. Then

l(I) = x2− x1 = lim
n→∞

x(n)2 − x(n)1 = lim
n→∞

l(In) = w(J).

and I is a square by the similar reason.
It remains to show that I ⊂ J. Given (x,y) ∈ I.
For the case that x1 < x< x2 and y1 < y< y2. There exists n large enough such that x(n)1 < x< x(n)2

and y(n)1 < y < y(n)2 . Then (x,y) ∈ In ⊂ J.
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11.1. Thickness and largest square subset

Figure 11.1.: The horizontal size l, the vertical size h, and the thickness w of a set J. In this picture,
S is a largest square subset of J.

For the case that x = x1 and y1 < y < y2. There exists N large enough such that y(n)1 < y < y(n)2

for all n ≥ N. Then (x(n)1 ,y) ∈ In ⊂ J for all n ≥ N. By the compactness of J, we get (x,y) =
limn→∞(x

(n)
1 ,y) ∈ J.

The other cases are similar.

Next, we study the contraction of thickness when a wandering domain is iterated. The contrac-
tion of thickness is similar to how the area is contracted: the amount of contraction has the same
order as the Jacobian of the map.

Lemma 11.4. Given δ > 0 and Iv ⊃ Ih c I. There exist constants ε > 0 and c > 0 such that for all
F ∈ Îδ (Ih× Iv,ε), the following property holds for all n≥ 0:

If S⊂ Dn is a square, there exists a square S′ ⊂ Fn(S) such that

l(S′)≥ c
‖εn‖
|Iv

n|
l(S).

Proof. The lemma is trivial when F is degenerate. We assume that F is non-degenerate.
By the definition of Î and (5.3), we have ∂εn

∂y > 0 for all n≥ 0. Assume that b> 0 is a small con-
stant which will be determined later. Let S = [x,a]× [y1,y2], (x′1,x) = Fn(x,y2), (x′2,x) = Fn(x,y1),

and W = b(x′2−x′1) = b [εn(x,y2)− εn(x,y1)]> 0. Define x′ = x′1+x′2
2 and S′ =

[
x′− 1

2W,x′+ 1
2W
]
×

[x,x+W ].
To prove S′ ⊂ Fn(S), we show that the inequality

hn(t,y2)< x′− 1
2

W < x′+
1
2

W < hn(t,y1) (11.1)

holds for all t ∈ [x,x+W ]. The four components in the inequality are associated to four points on
the horizontal cross section y = t. See Figure 11.2 for an illustration. If the inequality is true, then
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11. The Bad Region and the Thickness

S'

Fn(S)

(x1',x) (x2',x)

(hn(t,y2),t) (hn(t,y1),t)(x'-W /2,t) (x'+W /2,t)

-0.094 -0.092 -0.090 -0.088 -0.086 -0.084 -0.082 -0.080

-0.7005

-0.7000

-0.6995

-0.6990

-0.6985

-0.6980

-0.6975

-0.6970

x

y

Figure 11.2.: Four points on the cross section y = t.

there exists η ∈ (y1,y2) such that

l(S′) =W = b
∂εn

∂y
(x,η)l(S).

by the mean value theorem. Apply (5.3), we proved the lemma

l(S′)≥ bc
|Iv

n|
‖εn‖ l(S)

since F ∈ Îδ (Ih× Iv,ε).
We prove the first half of the inequality (11.1)

hn(t,y2)< x′− 1
2

W.

By the mean value theorem and Lemma 6.23, there exist ξ ∈ (x, t) and E > 1 such that

∣∣hn(t,y2)− x′1
∣∣= |hn(t,y2)−hn(x,y2)|=

∣∣∣∣∂hn

∂x
(ξ ,y2)

∣∣∣∣ |t− x| ≤ EW.

We get (
x′− 1

2
W
)
−hn(t,y2) =

[(
x′− 1

2
W
)
− x′1

]
−
[
hn(t,y2)− x′1

]
≥

(
x′2− x′1

2
− 1

2
W
)
−EW

=

[
1
2
−
(

1
2
+E

)
b
](

x′2− x′1
)

> 0

when b < 1
1+2E . Therefore, the first half of the inequality is proved. Similarly, we prove the second

part of the inequality (11.1)

x′+
1
2

W < hn(t,y1).
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11.1. Thickness and largest square subset

By the mean value theorem, there exists ξ ∈ (x, t) such that

∣∣hn(t,y1)− x′2
∣∣= |hn(t,y1)−hn(x,y1)|=

∣∣∣∣∂hn

∂x
(ξ ,y1)

∣∣∣∣ |t− x| ≤ EW.

Similarly, we get

hn(t,y1)−
(

x′+
1
2

W
)

=

[
x′2−

(
x′+

1
2

W
)]
−
[
x′2−hn(t,y1)

]
≥

(
x′2− x′1

2
− 1

2
W
)
−EW

=

[
1
2
−
(

1
2
+E

)
b
](

x′2− x′1
)

> 0.

Thus, the second part of the inequality is proved.

Finally, we estimate the expansion of the thickness when a wandering domain is rescaled.

Lemma 11.5. Given δ > 0 and Iv ⊃ Ih c I. There exists ε > 0 such that for all F ∈ Îδ (Ih× Iv,ε),
the following property holds for all n≥ 0:

If S⊂Cn is a square, there exists a square S′ ⊂ φn(S) such that

l(S′) = λnl(S).

Proof. Let S = [x1,x2]× [y1,y2], W = l(S), x = 1
2 [hn(x2,y1)+hn(x1,y1)], and S′′ = [x− 1

2W,x+
1
2W ]× [y1,y2]. Then S′′ is a square with l(S′′) = l(S).

First we show that S′′ ⊂ Hn(S). It suffice to prove the inequality

hn(x2, t)< x− 1
2

W < x+
1
2

W < hn(x1, t) (11.2)

holds for all t ∈ [y1,y2]. The four components in the inequality are associated to four points on the
horizontal cross section y = t. See Figure 11.3 for an illustration.

We prove the first half of the inequality (11.2). By the mean value theorem, there exist ξ ∈
(x1,x2) and η ∈ (y1, t) such that

hn(x1,y1)−hn(x2,y1) =

∣∣∣∣∂hn

∂x
(ξ ,y1)

∣∣∣∣(x2− x1)

and

hn(x2, t)−hn(x2,y1) =
∂εn

∂y
(x2,η)(t− y1).

By Lemma 6.22, there exists E > 1 such that(
x− 1

2
W
)
−hn(x2, t) = [x−hn(x2,y1)]− [hn(x2, t)−hn(x2,y1)]−

1
2

W
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11. The Bad Region and the Thickness

S''Hn(S)

x- 1
2
W ,t x+ 1

2
W ,t(hn(x2,t),t) (hn(x1,t),t)

0.35 0.40 0.45 0.50

0.40

0.42

0.44

0.46

0.48

0.50

x

y

Figure 11.3.: Four points on the cross section y = t.

≥ 1
2

∣∣∣∣∂hn

∂x
(ξ ,y1)

∣∣∣∣(x2− x1)−
∣∣∣∣∂εn

∂y
(x2,η)

∣∣∣∣(t− y1)−
1
2

W

≥
(

E
2
− 1

δ
‖εn‖−

1
2

)
W

> 0

when ε > 0 is small. Thus, the first half of the inequality is proved.
Similarly, we prove the second half of the inequality (11.2). By the mean value theorem, there

exists η ′ ∈ (y1, t) such that

εn(x1, t)− εn(x1,y1) =
∂εn

∂y
(x1,η

′)(t− y1) .

Compute

hn(x1, t)−
(

x+
1
2

W
)

= [hn(x1,y1)− x]− [εn(x1, t)− εn(x1,y1)]−
1
2

W

≥ 1
2

∣∣∣∣∂hn

∂x
(ξ ,y1)

∣∣∣∣(x2− x1)−
∣∣∣∣∂εn

∂y
(x1,η

′)

∣∣∣∣(t− y1)−
1
2

W

≥
(

E
2
− 1

δ
‖εn‖−

1
2

)
W

> 0.

Thus, the right inequality is proved.
Finally, let S′ = Λn(S′′). Then S′ is a square subset of φn(S) and

l(S′) = λnl(S′′) = λnl(S).

108



11.1. Thickness and largest square subset

As before, we adapt the subscript n to the notation of the thickness wn = w(Jn). By Lemma
11.4 and Lemma 11.5, the contraction rate of the thicknesses for elements in a closest approach is
estimated by the following.

Proposition 11.6. Given δ > 0 and Iv ⊃ Ih c I. There exist constants ε > 0 and c > 0 such that
for all F ∈ Îδ (Ih× Iv,ε), the following property holds:

Assume that J ⊂ A∪B is a compact subset of a wandering domain of F and {Jn}∞

n=0 is the
J-closest approach. Then

wn+1 ≥ c

∥∥εr(n)
∥∥∣∣∣Iv

r(n)

∣∣∣ wn

for all n≥ 0.

Proof. Let ε > 0 be small enough such that Lemma 11.4 and Lemma 11.5 holds. The sets {Jn}∞

n=0
are compact by the continuity of Hénon-like maps and rescaling.

For the case that Jn ⊂ Ar(n), let I be a largest square of Jn. By Proposition 11.4, there exists a
square I′ ⊂ Fr(n)(I)⊂ Jn+1 such that

l(I′)≥ c

∥∥εr(n)
∥∥∣∣∣Iv

r(n)

∣∣∣ l(I).

We get

wn+1 ≥ l(I′)≥ c

∥∥εr(n)
∥∥∣∣∣Iv

r(n)

∣∣∣ l(I) = c

∥∥εr(n)
∥∥∣∣∣Iv

r(n)

∣∣∣ wn.

For the case that Jn ⊂ Br(n), let I be a largest square of Jn. By Proposition 11.4, there exists a
square I0 ⊂ Fr(n)(I)⊂ Fr(n)(Jn) such that

l(I0)≥ c

∥∥εr(n)
∥∥∣∣∣Iv

r(n)

∣∣∣ l(I).

Also by Proposition 11.5, there exists a square I j+1 ⊂ φr(n)+ j(I j)⊂Φ
j
r(n) ◦Fr(n)(Jn) such that

l(I j+1) = λr(n)+ jl(I j)

for all 0≤ j < kn. We get

wn+1 ≥ l(Ikn) =

(
kn−1

∏
j=0

λr(n)+ j

)
l(I0)≥ c

∥∥εr(n)
∥∥∣∣∣Iv

r(n)

∣∣∣ l(I) = c

∥∥εr(n)
∥∥∣∣∣Iv

r(n)

∣∣∣ wn.

Remark 11.7. The original proof was based on the area and horizontal cross-section estimates
briefly mentioned in the beginning of this chapter instead of tracking the sizes of the largest square
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11. The Bad Region and the Thickness

subsets. However, the area argument is discarded by two reasons. First, to estimate the horizontal
cross-section of a set, we need to find the lower bound of a/l. This means that we need to repeat the
arguments in Chapter 10 to find the upper bound for l and the lower bound for a. This makes the
argument several times longer than the current one. Second, to select a subset from the wandering
domain after it enters the bad region, the area approach makes it hard to find the upper bound of l
for the subset.

Since ‖εn‖ decreases super-exponentially and |Iv
n| increases exponentially as the number of

renormalizations n approaches to infinity, we can simplify the estimate.

Corollary 11.8. Given δ > 0 and Iv ⊃ Ih c I. There exist constants ε > 0 and c > 0 such that for
all F ∈ Îδ (Ih× Iv,ε), the following property holds:

Assume that J ⊂ A∪B is a compact subset of a wandering domain of F and {Jn}∞

n=0 is the
J-closest approach. Then

wn+1 ≥ c
∥∥εr(n)

∥∥3/2 wn

for all n≥ 0.

11.2. Double sequence

In this section, we study the relationships between the horizontal sizes and the thicknesses of
the elements in a closest approach. We first define a sequence with two indices, called a double
sequence. A double sequence consists of rows. Each row is a closest approach (Definition 7.6) and
represents an entry to the bad region.

Definition 11.9 (Double sequence, Row, and Time span in the good regions). Let δ > 0 and Iv ⊃
Ih c I. Assume that ε > 0 is small and F ∈ Îδ (Ih× Iv,ε) is a non-degenerate open map.

Given a square subset J ⊂ A∪B of a wandering domain of F . Define {J( j)
n }n≥0,0≤ j≤ j, {F

( j)
n =

( f ( j)
n − ε

( j)
n ,x)}n≥0,0≤ j≤ j, and {n( j)}0≤ j≤ j for some j ∈ N∪{0,∞}1 by induction on j.

Base case: For j = 0, set J(0)0 = J and F(0)
0 = F .

Row: The super-script j is called row. The first set J( j)
0 of a row is a square subset of a

wandering domain of F( j)
0 in A(F( j)

0 )∪B(F( j)
0 ). The elements

{
J( j)

n

}∞

n=0
in the row

form a J( j)
0 -closest approach. See Definition 7.6.

Induction step: Consider a row j. If an element from the row enters the bad region, i.e. k( j)
n >

K( j)
r( j)(n)

for some n ≥ 0, let J( j)
n( j) be the first element. The nonnegative integer n( j) is

called the time span in the good region of row j. Define the first element J( j+1)
0 of the

next row j+1 to be a largest square subset of J( j)
n( j)+1

and set F( j+1)
0 = F( j)

r( j)(n( j)+1)
. If

the elements in the row stay in the good region forever, then the construction stops,
set j = j and n( j) = ∞. If the construction never stops, set j = ∞.

1For the case j = ∞, this means that the sequence is defined for all finite positive integers j.
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11.2. Double sequence

J(0)0
//

Square

· · · //

Good

J(0)
n(0)−1

// J(0)
n(0)

Φk(0)

r(n(0))
◦F(0)

r(n(0)) //

Bad

J(0)
n(0)+1

//

largest square subset

��

· · ·

...
...

...
largest square subset

��

J( j−1)
0

// · · · · · · // J( j−1)
n( j−1)−1

// J( j−1)
n( j−1)

Φk( j−1)

r(n( j−1))
◦F( j−1)

r(n( j−1)) // J( j−1)
n( j−1)+1

//

��

· · ·

J( j)
0

// J( j)
1

// · · ·

Good

Figure 11.1.: The construction of a double sequence.

The sequence
{

J( j)
n

}
n≥0,0≤ j≤ j

with two indices is called a double sequence generated by J or a

J-double sequence. The integer j is the total number of rows (enters the bad region j times). Figure
11.1 shows an illustration of the construction.

Remark 11.10. Unlike the J-closest approach, a J-double sequence may not be unique because the
way of selecting a largest square subset of a set may not be unique.

To be consistent, the superscript is assigned to the row and the subscript is assigned to the renor-
malization scale or the index of the element in a closest approach. For example, the superscript
is introduced to the notations: A( j)

n = A(F( j)
n ), B( j)

n = B(F( j)
n ), C( j)

n = C(F( j)
n ), D( j)

n = D(F( j)
n ),

l( j)
n = l(J( j)

n ), h( j)
n = h(J( j)

n ), w( j)
n = w(J( j)

n ), and k( j)
n = k(J( j)

n ). In the following, we write r(n) =
r( j)(n) when the context is clear. For example F( j)

r(n( j)+1)
= F( j)

r( j)(n( j)+1)
. Also, let ε( j) = ε

( j)
r(n( j))

,

K( j) = K( j)
r(n( j))

, and k( j) = k( j)
n( j) . For convenience, set m( j) = n( j)+1.

Example 11.11. Figure 11.2 shows an example of the construction of a double sequence. In
this example, the Hénon-like map is the same map as in Example 7.8. Given a square J(0)0 =

[−0.6642,−0.6632]× [0.320,0.321]⊂ A(0)
0 and let r(0)(0) = 0.

By the construction of the closest approach, J(0)1 = F(0)
r(0)(J

(0)
0 ) and r(0)(1) = r(0)(0) = 0. From

the figure, we see that J(0)1 ⊂ Br(0)(1). The term ε from the Hénon-like map is so large such that

Cr
0(1) intersects the image F0(D0). Thus K(0)

r(1) = K(0)
0 = 0 and J(0)1 is contained in the bad region.

Set n(0) = 1.
Then we start a new row j = 1. Set J(0)

n(0)+1
= Φk(0)

r(n(0))
◦F(0)

r(n(0))
(J(0)

n(0)
) = φ

(0)
0 ◦F(0)

0 (J(0)1 ). At this

moment, the thickness w(0)
n(0)+1

gives a good approximation of the horizontal size l(0)
n(0)+1

as shown

in Figure 11.2d. Let J(1)0 be a largest square subset of J(0)
n(0)+1

(Figure 11.2e) and F(1)
0 = F(0)

n(0)+1
.

We continue to add new rows until the sequence stops to enter the bad region.
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11. The Bad Region and the Thickness

J0
(0)

-0.666 -0.664 -0.662

0.318

0.320

0.322

(a) J(0)0

J
n(0)
(0)

-0.004 -0.002 0.

-0.666

-0.664

-0.662

(b) J(0)
n(0)

F
r n(0)
(0) (J

n(0)
(0) )

0.814 0.816 0.818

-0.004

-0.002

0.

0.002

(c) F(0)
n(0)

(
J(0)

n(0)

)

J
n(0)+1
(0)

(e)

0.908 0.91 0.912 0.914

0.002

0.004

0.006

(d) J(0)
n(0)+1

J
n(0)+1
(0)

J0
(1)

0.911254 0.911256

0.003998

0.004

0.004002

(e) The beginning of a new
row.

Figure 11.2.: An example of a double sequence. The graphs are the domains of F(0)
0 and F(0)

1 =

F(1)
0 from the left to the right. The arrows indicate an iteration or a rescaling from

one element to the other one. The sub-figures (a), (b), (c), (d), and (e) are elements
of the double sequence in a zoomed scale. The scales of (a), (b), (c), and (d) are the
same.
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11.2. Double sequence

Next, we study the relationships between the horizontal sizes and the thicknesses of the elements
in a double sequence. Consider a row j, the first element J( j)

0 of the row is a square. So l( j)
0 = w( j)

0 .
When the elements stay in the good region (n < n( j)), the horizontal sizes of the elements expand
at a definite rate by the expansion estimate l( j)

n+1 ≥ El( j)
n (Proposition 10.11). The horizontal sizes

keep growing until an element J( j)
n( j) enters the bad region. At this moment, the horizontal size l( j)

n( j)+1

of the next element J( j)
n( j)+1

cannot be estimated by the horizontal size l( j)
n( j) of the current element

J( j)
n( j) . To take back control, we have to make use of the thickness w( j)

n( j)+1
to bound the horizontal

size l( j)
n( j)+1

from below. Then we apply Proposition 11.6 to relate the thickness w( j)
n( j)+1

with the

horizontal size l( j)
0 of the first element. Finally, by definition, the horizontal size l( j+1)

0 and the

thickness w( j+1)
0 of the first element J( j+1)

0 of the next row j+1 equal to the thickness w( j)
n( j)+1

.
From the discussion, we are able to control the horizontal size of any element in the double

sequence.

Proposition 11.12. Given δ > 0 and Iv ⊃ Ih c I. There exist constants ε > 0 and E > 1 such that
for all non-degenerate open maps F ∈ Îδ (Ih× Iv,ε), the following properties hold:

Let J ⊂ A∪B be a square subset of a wandering domain of F and
{

J( j)
n

}
n≥0,0≤ j≤ j

be a J-double

sequence. Then

1. ln l( j+1)
0 ≥ 2m( j) ln

∥∥∥ε( j)
∥∥∥+ ln l( j)

0 for all 0≤ j ≤ j−1 and

2. l( j)
n+1 ≥ El( j)

n for all n < n( j) and all 0≤ j ≤ j.

Proof. Let ε > 0 be small enough such that Proposition 10.11 and Corollary 11.8 hold.
By Corollary 11.8, we relate l( j+1)

0 with l( j)
0 by the inequality

l( j+1)
0 = w( j)

n( j)+1

≥

(
n( j)

∏
n=0

c
∥∥∥ε

( j)
r(n)

∥∥∥3/2
)

w( j)
0 ≥

(
c

2
3

∥∥∥ε
( j)
r(n( j))

∥∥∥) 3
2 (n

( j)+1)
w( j)

0

=
(

c
2
3

∥∥∥ε
( j)
∥∥∥) 3

2 m( j)

l( j)
0

where c > 0 is a constant. Apply the nature logarithm to both sides, we get

ln l( j+1)
0 ≥ 3

2
m( j)

(
ln
∥∥∥ε

( j)
∥∥∥+ 2

3
lnc
)
+ ln l( j)

0

≥ 2m( j) ln
∥∥∥ε

( j)
∥∥∥+ ln l( j)

0 .

Here we assume that ε is small enough such that 2
3 lnc ≥ 1

3 ln
∥∥∥ε( j)

∥∥∥ for all 0 ≤ j ≤ j− 1 to
assimilate the constants.

The second inequality follows from Proposition 10.11, the definition of n( j), and a square is
R-regular when ε is small.
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11. The Bad Region and the Thickness

The next proposition relates the perturbation ε of two consecutive rows.

Proposition 11.13. Given δ > 0 and Iv ⊃ Ih c I. There exist constants ε > 0 and α > 0 such that
for all non-degenerate open maps F ∈ Îδ (Ih× Iv,ε), we have

∥∥∥ε
( j+1)

∥∥∥≤ ∥∥∥ε
( j)
∥∥∥‖ε( j)‖−2α

(11.3)

for all 0≤ j ≤ j−1.

Proof. By Proposition 5.26, we have

∥∥∥ε
( j+1)

∥∥∥= ∥∥∥ε
( j+1)
r(n( j+1))

∥∥∥≤ ∥∥∥ε
( j+1)
0

∥∥∥= ∥∥∥ε
( j)
r(n( j)+1)

∥∥∥≤ c
(∥∥∥ε

( j)
r(n( j))

∥∥∥)2k( j)

= c
(∥∥∥ε

( j)
∥∥∥)2k( j)

for some constant c > 0. Apply the logarithm to the both sides, we get

ln
∥∥∥ε

( j+1)
∥∥∥≤ 2k( j)

ln
∥∥∥ε

( j)
∥∥∥+ lnc≤ 2k( j)−1 ln

∥∥∥ε
( j)
∥∥∥ (11.4)

when ε > 0 is small enough.
Consider the entry to the bad region in row j, we have k( j) > K( j). By Proposition 9.4 and the

change base formula, we get

2k( j)
> 2K( j)

=
(

λ
K( j)
) ln2

lnλ ≥ c′
(

1∥∥ε( j)
∥∥
) ln2

2lnλ

(11.5)

for some constant c′ > 0. Let α = ln2
6lnλ

> 0. Combine (11.4) and (11.5), we obtain

ln
∥∥∥ε

( j+1)
∥∥∥≤ c′

2

(
1∥∥ε( j)
∥∥
)3α

ln
∥∥∥ε

( j)
∥∥∥<( 1∥∥ε( j)

∥∥
)2α

ln
∥∥∥ε

( j)
∥∥∥

when ε > 0 is small enough. Note that ln
∥∥∥ε( j)

∥∥∥< 0. Here we also assume that ε is small enough
such that

c′

2

(
1∥∥ε( j)
∥∥
)α

≥ c′

2

(
1
‖ε‖

)α

> 1

for all j ≥ 0. This proves the proposition.

11.3. A closest approach have only finite entries to the bad region

According to Proposition 11.12, a strong contraction applies to the horizontal size whenever an
element in a closest approach enters the bad region. This conflicts our final goal of showing that
the horizontal sizes approach infinity. In this section, we resolve the problem by showing that a
double sequence can have at most finitely many rows, and conclude that the amount of contraction
is bounded.
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11.3. A closest approach have only finite entries to the bad region

row j w( j)
0
‖ε( j)‖

//

︷ ︸︸ ︷
w( j)

1
‖ε( j)‖

// · · ·
‖ε( j)‖

//

contraction
∥∥ε( j)

∥∥n( j)+1

w( j)
n( j)

‖ε( j)‖
// w( j)

n( j)+1

��

row j+1 l( j+1)
0

E //︸ ︷︷ ︸l( j+1)
1

E // · · · E //

expansion En( j+1)

l( j+1)
n( j+1) <

√∥∥ε( j+1)
∥∥∼ ∥∥ε( j)

∥∥‖ε( j)‖−α

Figure 11.1.: The contraction, the expansion, and the sizes of the elements in the j-th and the
( j+1)-th rows.

We first prove the two-row-lemma.

Lemma 11.14 (Two-row-lemma). Given δ > 0 and Iv⊃ Ih c I. There exist constants ε > 0, E > 1,
and α > 0 such that for all non-degenerate open maps F ∈ Îδ (Ih× Iv,ε), the following property
holds:

Let J ⊂ A∪B be a square subset of a wandering domain of F and
{

J( j)
n

}
n≥0,0≤ j≤ j

be a J-double

sequence. Then the time span in the good region n( j) = m( j)−1 of row j is bounded below by

m( j) >
lnE

−2ln
∥∥ε( j)

∥∥m( j+1)+

(
1∥∥ε( j)
∥∥
)α

+
1

−2ln
∥∥ε( j)

∥∥ ln l( j)
0 (11.6)

for all 0≤ j ≤ j−2.

The two-row-lemma is the key lemma. It relates the size of the bad region with the contraction
and the expansion of the horizontal sizes of the elements in two consecutive rows, the j-th and the
( j + 1)-th row. See Figure 11.1 for an illustration. The right hand side of (11.6) contains three
terms. The first term comes from the expansion of the elements in the ( j + 1)-th row, equation
(11.8) from the proof . If the expansion is large, then the contraction of the j-th row is strong
because the size of the element J( j+1)

n( j+1) cannot exceed the size of the bad region. The second term
comes from the size of the bad region of the ( j+ 1)-th row, equation (11.7) from the proof. The
quantity is large since the size of the bad region

∥∥∥ε( j+1)
∥∥∥ of the ( j + 1)-th row is much smaller

than the contraction rate for the thickness
∥∥∥ε( j)

∥∥∥ of row j (Proposition 11.13). This is because a

large amount of rescalings k( j) was applied to the step J( j)
n( j) → J( j)

n( j)+1
during the first entry to the

bad region. The last term comes from the size of the initial element J( j)
0 .

Proof. (Proof of Lemma 11.14) First, we consider the ( j+1)-th row. The horizontal size of J( j+1)
n( j+1)

is bounded by the size of the bad region. By Proposition 9.4, there exists a constant c > 0 such that

l( j+1)
n( j+1) < 2c

√∥∥ε( j+1)
∥∥. (11.7)
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11. The Bad Region and the Thickness

Also, the horizontal sizes of the elements in the ( j+ 1)-th row expands at a definite rate. There
exists a constant E > 1 such that

En( j+1)
l( j+1)
0 ≤ l( j+1)

n( j+1) (11.8)

by Proposition 11.12. After combining the equations (11.7) and (11.8), we get

ln l( j+1)
0 <−m( j+1) lnE +

1
2

ln
∥∥∥ε

( j+1)
∥∥∥+(lnE + ln2c) . (11.9)

Then, we consider the j-th row. The thickness of the elements in the j-th row contracts. By
Proposition 11.12 and (11.9), we have

2m( j) ln
∥∥∥ε

( j)
∥∥∥ ≤ ln l( j+1)

0 − ln l( j)
0

< −m( j+1) lnE +
1
2

ln
∥∥∥ε

( j+1)
∥∥∥+(lnE + ln2c)− ln l( j)

0 .

Since ln
∥∥∥ε( j)

∥∥∥< 0, we solve

m( j) >
lnE

−2ln
∥∥ε( j)

∥∥m( j+1)+
1
4

ln
∥∥∥ε( j+1)

∥∥∥
ln
∥∥ε( j)

∥∥ +
lnE + ln2c
2ln
∥∥ε( j)

∥∥ +
ln l( j)

0

−2ln
∥∥ε( j)

∥∥ .
Finally we apply Proposition 11.13 to simplify the second term. Compute

m( j) >
lnE

−2ln
∥∥ε( j)

∥∥m( j+1)+
1
4

(
1∥∥ε( j)
∥∥
)2α

+
lnE + ln2c
2ln
∥∥ε( j)

∥∥ +
1

−2ln
∥∥ε( j)

∥∥ ln l( j)
0

=
lnE

−2ln
∥∥ε( j)

∥∥m( j+1)+

(
1∥∥ε( j)
∥∥
)α [

1
4

(
1∥∥ε( j)
∥∥
)α

+
lnE + ln2c
2ln
∥∥ε( j)

∥∥ ∥∥∥ε
( j)
∥∥∥α

]
+

1
−2ln

∥∥ε( j)
∥∥ ln l( j)

0

>
lnE

−2ln
∥∥ε( j)

∥∥m( j+1)+

(
1∥∥ε( j)
∥∥
)α

+
1

−2ln
∥∥ε( j)

∥∥ ln l( j)
0 .

Here we assume that ε is sufficiently small such that

1
4

(
1∥∥ε( j)
∥∥
)α

+
lnE + ln2c
2ln
∥∥ε( j)

∥∥ ∥∥∥ε
( j)
∥∥∥α

> 1

for all j ≥ 0 to assimilate the constants.

Next, we use the two-row-lemma to prove that a double sequence have at most finitely many
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11.3. A closest approach have only finite entries to the bad region

rows. Before carrying out a careful proof, we first use a reduced version

m( j) >
1

− ln
∥∥ε( j)

∥∥m( j+1)+

(
1∥∥ε( j)
∥∥
)α

(11.10)

of the inequality (11.6) to give an intuition of how the two-row-lemma works in the proof.
First, we consider the first two rows: the 0-th and 1-st rows. At this moment, we do not have any

information from the time span in the good region m(1) of row 1. The recurrence relation (11.10)
gives a large lower bound from the second term

m(0) > 0+

(
1∥∥ε(0)
∥∥
)α

. (11.11)

The large lower bound comes from the fact that the size of the bad region of the 1-st row is much
smaller than the contraction rate of thickness from the 0-th row.

Then, we include one additional row into the estimation. Consider the first three rows: the 0-th,
1-st, and 2-nd rows. We apply recurrence relation (11.10) to the 1-st and 2-nd rows. By the same
reason, we have

m(1) >

(
1∥∥ε(1)
∥∥
)α

. (11.12)

Then, we apply the recurrence relation (11.10) to the 0-th and 1-st rows

m(0) >
1

− ln
∥∥ε(0)

∥∥
(

1∥∥ε(1)
∥∥
)α

︸ ︷︷ ︸
improvement from the new row

+

(
1∥∥ε(0)
∥∥
)α

. (11.13)

Unlike the lower bound (11.11) estimated from only two rows, the additional row gives an im-
provement to the lower bound by knowing that m(1) is large. In fact, the improvement (the first
term) is much larger than the original estimate (the second term) because of Proposition 11.13.

Then we continue to add more rows. Each time when we include another row, we improve the
lower bound of the time span in the good region. By induction, we will show that the lower bound
approaches infinite if a double sequence has infinitely many rows. Therefore, a double sequence
cannot have infinitely many rows.

The complete argument is done by the following lemma.

Lemma 11.15. Given δ > 0 and Iv ⊃ Ih c I. There exist constants ε > 0 and α > 0 such that for
all non-degenerate open maps F ∈ Îδ (Ih× Iv,ε), the following property holds:

Let J ⊂ A∪B be a square subset of a wandering domain of F and
{

J( j)
n

}
n≥0,0≤ j≤ j

be a J-double

sequence. Then the time span in the good regions n( j) of row j is bounded below by

m( j) = n( j)+1 >
2k∥∥ε( j)
∥∥α +

1
−2ln

∥∥ε( j)
∥∥ ln l( j)

0 (11.14)
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11. The Bad Region and the Thickness

for all j and k with 0≤ j ≤ j−2 and 0≤ k ≤ ( j−2)− j. In particular for the case j = 0

m(0) = n(0)+1 >
2k∥∥ε(0)
∥∥α +

1
−2ln

∥∥ε(0)
∥∥ ln l(0)0 (11.15)

for all 0≤ k ≤ j−2.

Proof. In the lemma, the value k+2 is the number of rows that we use to estimate the lower bound.
We prove that (11.14) holds for all 0 ≤ j ≤ j− k− 2 by induction on k ≤ j− 2. Let ε be small
enough such that Proposition 11.12, Proposition 11.13, and Lemma 11.14 hold.

Consider the base case k = 0. By (11.6), we have

m( j) >
lnE

−2ln
∥∥ε( j)

∥∥m( j+1)+

(
1∥∥ε( j)
∥∥
)α

+
1

−2ln
∥∥ε( j)

∥∥ ln l( j)
0

>
1∥∥ε( j)
∥∥α +

1
−2ln

∥∥ε( j)
∥∥ ln l( j)

0

for all j with 0≤ j ≤ j−2.

Assume that there exists k with 1 ≤ k ≤ j− 2 such that (11.14) holds for all j with 0 ≤ j ≤
j− k− 2. If k+ 1 ≤ j− 2 and 0 ≤ j < j− (k+ 1)− 2, then k ≤ j− 2 and 1 ≤ j+ 1 ≤ j− k− 2.
By the induction hypothesis, we have

m( j+1) >
2k∥∥ε( j+1)
∥∥α +

1
−2ln

∥∥ε( j+1)
∥∥ ln l( j+1)

0 . (11.16)

Substitute (11.16) into (11.6), we get

m( j) >
lnE

−2ln
∥∥ε( j)

∥∥ 2k∥∥ε( j+1)
∥∥α +

lnE
−2ln

∥∥ε( j)
∥∥ 1
−2ln

∥∥ε( j+1)
∥∥ ln l( j+1)

0

+
1

−2ln
∥∥ε( j)

∥∥ ln l( j)
0 . (11.17)

To simplify the first term of (11.17), we apply the inequality lnx < x and Proposition 11.13.
Then

lnE
−2ln

∥∥ε( j)
∥∥ 2k∥∥ε( j+1)

∥∥α > 2k

 lnE
2

(
1∥∥ε( j)
∥∥
)α‖ε( j)‖−2α−1

> 2k+2

(
1∥∥ε( j)
∥∥
)α

.

Here, we assume that ε is small enough such that

lnE
8

>
∥∥∥ε

( j)
∥∥∥
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and
α

∥∥∥ε
( j)
∥∥∥−2α

−2 > α

for all j ≥ 0.
For the second term of (11.17), we apply Proposition 11.12. Compute

lnE
−2ln

∥∥ε( j)
∥∥ 1
−2ln

∥∥ε( j+1)
∥∥ ln l( j+1)

0

>
lnE

2ln
∥∥ε( j+1)

∥∥m( j)+
lnE

−2ln
∥∥ε( j)

∥∥ 1
−2ln

∥∥ε( j+1)
∥∥ ln l( j)

0 .

Combine the results to (11.17), we obtain

m( j) > 2k+2

(
1∥∥ε( j)
∥∥
)α

+
lnE

2ln
∥∥ε( j+1)

∥∥m( j)+
1

−2ln
∥∥ε( j)

∥∥
(

1+
lnE

−2ln
∥∥ε( j+1)

∥∥
)

ln l( j)
0 .

Then (
1+

lnE
−2ln

∥∥ε( j+1)
∥∥
)

m( j)

>2k+2

(
1∥∥ε( j)
∥∥
)α

+
1

−2ln
∥∥ε( j)

∥∥
(

1+
lnE

−2ln
∥∥ε( j+1)

∥∥
)

ln l( j)
0 .

Solve for m( j), we get

m( j) > 2k+2

(
1+

lnE
−2ln

∥∥ε( j+1)
∥∥
)−1(

1∥∥ε( j)
∥∥
)α

+
1

−2ln
∥∥ε( j)

∥∥ ln l( j)
0 .

To simplify the inequality, we assume that ε is small enough such that

lnE
−2ln

∥∥ε( j+1)
∥∥ ≤ lnE
−2lnε

< 1

for all j ≥ 0. Therefore, we showed that the inequality also holds for k+1

m( j) >
2k+1∥∥ε( j)
∥∥α +

1
−2ln

∥∥ε( j)
∥∥ ln l( j)

0

and the lemma is proved by induction.

The lemma shows that the contraction of the size of the bad regions beats the contraction of
thicknesses because lower bound of (11.15) tends to infinity as k approaches infinity. This proves
that

Proposition 11.16. Given δ > 0 and Iv ⊃ Ih c I. There exists a constant ε > 0 such that for all
non-degenerate open maps F ∈ Îδ (Ih× Iv,ε), the following property holds:
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11. The Bad Region and the Thickness

Let J ⊂ A∪B be a square subset of a wandering domain of F and
{

J( j)
n

}
n≥0,0≤ j≤ j

be a J-double

sequence. Then the number of rows j is finite.

11.4. Nonexistence of wandering domains

Finally, we prove the main theorem.

Theorem 11.17. Given δ > 0 and Iv ⊃ Ih c I. There exists a constant ε > 0 such that a open map
F ∈Iδ (Ih× Iv,ε) does not have wandering domains.

Proof. Assume that ε > 0 is small enough such that Proposition 5.26 holds and F ∈Iδ (Ih× Iv,ε).
There exist 0 < δR < δ and I b Ih

R ⊂ Ih such that Fn ∈HδR(I
h
R× Iv

n,ε) for all n≥ 0.
Prove by contradiction. Assume that F has a wandering domain. Let ε

′ > 0 be small enough
such that Proposition 11.12 and Proposition 11.16 holds for δR and Ih

R× Ih
R. By Proposition 5.26,

there exists N ≥ 0 such that FN ∈ ÎδR(I
h
R× Ih

R,ε
′). Set F̂ = FN |Ih

R×Ih
R
.

By Corollary 7.4, FN has a wandering domain J in D(FN) ⊂ Ih(FN)× Iv
N . If J ⊂ B(FN), then

J ⊂ Ih
R× Iv

N and so F2(J)⊂ B(FN)∩
(
Ih
R× Ih

R
)
. If J ⊂ A(FN), there exists n > 0 such that Fn(J)⊂

B(FN) by Proposition 5.16. If J ⊂C(FN), then F(J)⊂ B(FN). Without lose of generality, we may
assume that J ⊂ B(FN)∩

(
Ih
R× Ih

R
)
. Hence, J ⊂ B(F̂) is a wandering domain of the restriction F̂ .

Let Ĵ be a nonempty square subset of J and
{

J( j)
n

}
n≥0,0≤ j≤ j

be a Ĵ-double sequence. By Propo-

sition 11.16, j is finite. Then the second property of Proposition 11.12 implies that

lim
n→∞

l( j)
n = ∞

which is a contraction. Therefore, F does not have wandering domains.

Remark 11.18. Theorem 11.17 also applies to infinitely CLM-renormalizable maps. This is be-
cause without loss of generality, we can always start from a Hénon-like map that is close to the
map G by the hyperbolic of the renormalization operator, and all maps that are close to G are
renormalizable.

As an immediate consequence, we have

Corollary 11.19. Given δ > 0 and Iv⊃ Ih c I. There exists a constant ε > 0 such that for any non-
degenerate open map F ∈Iδ (Ih× Iv,ε), the union of the stable manifolds for the period doubling
periodic points is dense in the domain.

From the classification of the ω-limit sets [GvST89, LM11], almost all orbits approach to the
renormalization Cantor set which is conjugated to the dyadic adding machine. However, the theo-
rem shows that the orbits that do not approach to the Cantor set form a dense set in the domain.
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Nomenclature

Notation Description Page
A, B, C Partition of the domain D for unimodal map 23
A, B, C Partition of the domain D for Hénon-like map 45
c(n) Critcal point and its orbit 23
Cn( j) Subpartition for Cn with rescaling level j 54
Cl

n( j) Left component of Cn( j) 54
Cr

n( j) Right component of Cn( j) 54
D The Hénon-like map is defined to be a self-map on D⊂ Ih× Iv 43
ε Perturbation component for Hénon-like map 41
F Hénon-like map 41
f Unimodal component for Hénon-like map 41
G Fixed point for R 50
g Fixed point for Rc 35
H Nonlinear part of the Hénon rescaling 48
h x-component for Hénon-like map 41
·̂ Reflection point 23
H Class of Hénon-like maps 41
h Vertical size 77
Ih Horizontal domain for a Hénon-like map 41
Iv Vertical domain for a Hénon-like map 41
I Class of infinite renormalizable unimodal maps 24
Iδ Class of infinite renormalizable Hénon-like maps. 50
Jn J-closest approach 76
k Level of rescaling 76
Kn Boundary for good and bad regions 83
l Horizontal size 77
Λ Affine part of the Hénon rescaling 49
λ Universal constant 2.5029 . . . 34
λn s′n 50
n( j) Time span in the good region for row j in a double sequence of wandering

domain
110

pn( j) Periodic point with period 2 j for the unimodal map fn 25
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Nomenclature

Notation Description Page
pn( j) Periodic point with period 2 j for the Hénon-Like map Fn 54
φ Hénon rescaling 49
Φ

j
n Nonlinear rescaling from renormalization level n to n+ j 50

q(n) Periodic point in C with period 2n for g 36
qC( j) g(q( j)) 56
qc(n) Periodic point in B with period 2n for g 36
ql( j) Negative value of qc( j) 63
qr( j) Positive value of qc( j) 63
r(n) Level of renormalization of the sequence of wandering domain Jn 76
Rc Renormalization operator about the critical point 24
Rv Renormalization operator about the critical value 24
s Affine part of the Hénon rescaling 49
sc Affine rescaling about the critical point 24
sv Affine rescaling about the critical value 24
τ The tip of an infinite renormalizable Hénon-like map 62
U Class of unimodal maps 23
U r Class of renormalizable unimodal maps 23
Uδ Class of unimodal maps with holomorphic extension on a δ -neighborhood 41
w Thickness 104
W t(0) Local stable manifolds of p(0) 44
W t(−1) Local stable manifolds of p(−1) 43
W t

n( j) Local stable manifold of pn( j) 54
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12. Outline

The proof for nonexistence of wandering domains is motivated from the case of unimodal maps.
In Chapter 13, we present a proof for the nonexistence of wandering intervals for infinitely renor-
malizable unimodal maps with stationary combinatorics other than period-doubling combinatorics.
The theorem is first proved for the case of admissible combinatorics (Section 13.4) then the result
is extended to other stationary combinatorics (except the period-doubling combinatorics) by the
shifting trick (Example 13.24). The main goal of this chapter is to introduce a Markov partition
formed by gaps and trapping sets (Section 13.3) which is designed to visualize the expansion of
the topology. From the expansion of the topology, we prove an estimate on the hyperbolic length
(Proposition 13.61): the hyperbolic length of a rescaled orbit of a wandering interval, called the
closest approach, expands uniformly. The partition and the expansion estimate will be generalized
to Hénon-like maps (Section 14.6, 17). As a result, if a wandering interval exists, then the hyper-
bolic length of the sequence elements diverges to infinity which leads to a contradiction. Therefore,
wandering intervals cannot exist.

In Chapter 14, we give an introduction to the renormalization of Hénon-like maps. Separators,
vertical strips, and induced unimodal maps (Section 14.2) are the tools which allow us to study the
topology of Hénon-like maps by unimodal maps. The topology of a Hénon-like map is character-
ized by the local stable manifolds of the periodic points. For a strongly dissipative renormalizable
Hénon-like map, the structure of how the local stable manifolds are allocated is similar to a renor-
malizable unimodal map of the same combinatorics type in the macroscopic scale. Therefore, the
Markov partition and its dynamical properties for unimodal maps can be generalized to Hénon-
like maps (Section 14.6) by using the same definitions and proofs. Then we give a review of the
Hénon-renormalization operator based on the framework developed by Hazard [Haz11]. Most of
the other materials in this chapter can be found from the papers [dCLM05, LM11, Haz11].

The proof of the main theorem are covered by Chapters 15, 16, 17, and 18. The idea of the proof
is described as follows.

Assume the contrapositive, a Hénon-like map has a wandering domain J. We define a rescaled
orbit {Jn}n≥0 of J that closest approaches to the tip by iterating and rescaling J. The orbit is
called the J-closest approach (Definition 14.45). Each element is also a wandering domain of
some renormalizations of the Hénon-like map. The transition between two constitutive sequence
elements Jn→ Jn+1 is called one step. The two elements are related by one iteration plus possibly
many rescalings. Motivated from the period-doubling case [Ou17] and the unimodal case (Chapter
13), our goal is to show that the sizes of the orbit elements from a closest approach tends to infinite
and hence wandering domains cannot exist.

Motivated from the proof of the period-doubling case, we define the good region and the bad
region in Chapter 15. The good region is an area in the domain where the Hénon-like map be-
haves like an unimodal map; the bad region is an area where it behaves different from a unimodal
map. In particular, we will show in Chapter 16 that the topological arguments and the expansion
estimates from Chapter 13. On the other hand, a strong contraction occurs whenever an element
from a closest approach enters the bad region. The definition and properties of the good region
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12. Outline

and the bad region from the period-doubling case can also be used in the arbitrary stationary com-
binatorics because the geometric properties used in the definition and proofs are universal for all
combinatorics.

In Chapter 16, we define hyperbolic size to study the expansion of the elements from a closest
approach. The hyperbolic size measures the relative horizontal size of a set in some larger base set
by using the hyperbolic metric. It is a generalization of hyperbolic length to two-dimensions. A
class of C3 curves, called regular curves, is used to measure the hyperbolic size. For each regular
curve, the hyperbolic size of a set on the curve is the hyperbolic length of the intersection of the set
with the curve. The hyperbolic size of a set is the supremum over the measurements on all regular
curves (Definition 16.3 and Figure 16.1).

After defining the hyperbolic size, in Chapter 17, we study the expansion of the orbit elements
in the good regions by using hyperbolic size. This replaces the Euclidean expansion estimates
in the proof of the period-doubling case. We proved that the restriction of the Hénon-like map
or the rescaling map to a regular curves is a map with negative Schwarzian derivative when the
Hénon-like map is close to a unimodal map with negative Schwarzian derivative. And proved that
the class of regular curves is invariant under iteration and rescaling. The two results show that the
hyperbolic size of a set expands under iteration. In fact, the topology of the Hénon-like map also
expands under iteration and rescaling by applying the tools for induced unimodal maps (Section
14.2) to the expansion argument for the unimodal maps (Section 13.6.1). Therefore, the hyperbolic
size of the sequence elements in a closest approach expands uniformly when the elements stay in
the good region (Proposition 17.32).

Finally, we take care of the contraction of hyperbolic size when a sequence element enters the
bad region in Chapter 18. The arguments from the period-doubling case also applies to arbitrary
stationary combinatorics. When a sequence element Jn enters the bad region, the (horizontal)
size of the next element Jn+1 is determined its horizontal cross-section, and the cross-section can
be estimated in terms of the area. Thus, a strong contraction on hyperbolic size is applied to
the step Jn → Jn+1 because the Jacobian of a strongly dissipative Hénon-like map is small. The
key observation is the sequence can enter the bad region at most finitely many times (Proposition
18.11) and hence the total amount of contraction is bounded. Of course, the reader can follow the
original proof from the period-doubling case to reproduce Proposition 18.11. But here we present
a different proof for Proposition 18.11.

To summarize, we study the hyperbolic size of the elements in a closest approach. The expansion
argument shows that the hyperbolic size expands uniformly when the elements stay in the good
regions. However, the size contracts whenever an element enters the bad region. We show that
contraction is bounded and hence the hyperbolic size approach infinity. Therefore, a wandering
domain cannot exist.
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13. Expansion Argument for Unimodal Maps

In this chapter, we study the topological structure of an infinite renormalizable unimodal map with
stationary combinatorics. The topological structure of a map is characterized by its periodic orbits.
We will use the periodic orbits to define three types of intervals: cyclic intervals (Section 13.2),
trapping intervals, and gaps (Section 13.3). The periodic intervals allows us to define unimodal
renormalization. The trapping intervals and gaps form a partition on the domain. We will study
the dynamics of the unimodal map on these intervals.

The main goal of this chapter is to introduce an expansion estimate for hyperbolic length (Propo-
sition 13.61). It can be used to reproduce a classical theorem: an infinite renormalizable unimodal
maps with stationary combinatorics does not have a wandering interval (Theorem 13.63). For
a strongly dissipative infinite renormalizable Hénon-like map with stationary combinatorics, the
topological structure is similar to an infinite renormalizable unimodal map with the same com-
binatorics type in the macroscopic scale. Hence, the three types of intervals and the expansion
estimate can be generalize to Hénon-like maps under some proper conditions. The generalization
of the expansion estimate is one of the key ingredients for proving the nonexistence of wandering
domains for Hénon-like maps.

13.1. Class of Unimodal Maps

Definition 13.1 (Class of unimodal maps). Assume that κ > 0, δ > 0, and Ih is an interval that
contains [−1,1]. Denote Uδ ,κ(Ih) to be the class of real analytic maps f : Ih → Ih that has the
following properties:

1. The map has a unique critical point c such that c ∈ [−1,v−κ] where v = f (c) is the critical
value. The critical point is nondegenerated.

2. The point −1 is the unique expanding fixed point with positive multiplier (derivative) λ ≥
1+κ . It satisfies the identity f (1) = f (−1) =−1.

3. The map can be factorized as f = Q◦φ where Q(x) = v− (v+1)x2 and φ is a R-symmetric
univalent map on Ih(δ ).

4. The map has negative Schwarzian derivative.

Denote Uκ = U0,κ([−1,1]). This means that the map φ in the third condition is a real analytic
map on [−1,1].

Given ε > 0 and a unimodal map g ∈ Uδ ,κ(Ih). An open ε-ball Uδ ,κ(Ih,g,ε) is defined to be
the set of unimodal maps f ∈Uδ ,κ(Ih) with ‖ f −g‖Ih(δ ) < ε .

The notations defined in this chapter will also be adopted to Hénon-like maps. In the remaining
part of the article, we fix κ > 0 to be a small number and suppress it from the subscript Uδ (Ih) =
Uδ ,κ(Ih). If there are multiple unimodal maps in the discussion, the subscript of will be used
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13. Expansion Argument for Unimodal Maps

to distinguish the objects that belongs to a specific unimodal map. For example, the value cg is
defined to be the critical point of g ∈Uδ (Ih).

A unimodal map in interest will always have two fixed points, one has a positive multiplier and
the other one has a negative multiplier. Denote α to be the fixed point with positive multiplier and
β to be the fixed point with negative multiplier. The preimages of the fixed points will contain
a “bar” in their notations. In particular, the point α = −1 and α = 1 from the convention in
the definition and β is the point (on the other side of the critical point) such that f (β ) = β and
β 6= β . For an infinitely renormalizable map which is introduced later, there will also be two
collections of periodic points. Each collection is associated to the fixed point α and the fixed point
β respectively. Those periodic points will also be named by α( j) and β ( j). It means the periodic
points associated to the j-th renormalized map. See definition 13.9. For consistency, set α(0) = α ,
α(0) = α , β (0) = β , and β (0) = β . In the case of Hénon-like maps, there will also be two types of
local stable manifolds that are similar to the period orbits. The two types of local stable manifolds
will inherit the same name α and β .

Another object P( j) is defined for the intervals that are invariant under some number of iterates.
Similarly, the value j means the invariant interval is associated to the j-th renormalized map. For
the class of unimodal maps in the definition, set P(0) = [α(0),α(0)] = [−1,1]. This is an interval
invariant under one iteration. For a renormalizable unimodal map, the interval P(1) will be defined
to be an interval that is invariant under some number of iterations. See Definition 13.2. In the case
of Henon-like maps, each of these intervals will be an area bounded by two vertical local stable
manifolds which is called a vertical strip.

13.2. Renormalization

To define the renormalization of a unimodal map, we need to find an interval P to define the self-
return map on that interval. The construction is as follows.

Definition 13.2 (Cycle). Assume that f ∈ U has a unique fixed point β = β (0) with negative
multiplier. Also assume that the fixed point β is noncontracting. Set β (0) be the solution of
f (x) = β (0) with orientation opposite to β (0). There are two cases: p = 2 and p≥ 3.

For the case p = 2, we focus on the fixed point β (0). Assume that the multiplier λ of β (0)
satisfies λ 2 ≥ 1+κ . Set σ be the two cycle on Z2. Let α(1) = α0(1) = α1(1) = β (0).

For the case p≥ 3, assume that the unimodal map has a periodic orbit of period p with expanding
positive multiplier λ ≥ 1+κ . The unimodal map f acts on the periodic orbit like a cyclic permu-
tation σ on Zp. Let α(1) ∈ (β (0),α(0)) be the largest point in the orbit and α t(1) = f t(α(1)) for
t = 0, · · · , p−1.

For both cases, define the sequence {α t(1)}p−1
t=0 of orbit such that

1. f (α t(1)) = α t+1(1) for t = 0, · · · , p−2,

2. f (α p−1(1)) = α0(1),

3. the map has same orientation at α t(1) and α t(1) for t = 0, · · · , p−2, and

4. the map has opposite orientation at α p−1(1) and α p−1(1).
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13.2. Renormalization

α1(1) α0(1)α0(1)

P1 P0

T 0T 1

β 1(1) β 1(1)

(a) Period-doubling renormalizable

P2

T 2

P1 P0

α2(1)α2(1)

(b) Period-tripling renormalizable

Figure 13.1.: The cyclic intervals of renormalizable unimodal maps

Set α(1) = α0(1).
The sequence {Pt = [α t(1),α t(1)]}p−1

t=0 is a cycle of period p (or of combinatorial type σ ) if
the interior of the intervals are disjoint and f (Pp−1)⊂ P0. An interval in a cycle is called a cyclic
interval. Set P(1) = P0. See Figures 13.1 and 13.1 for illustration.

Remark 13.3. From the definition, a two-cycle exists if and only if f ([β (0),v])⊂ [β (0),β (0)].

Assume that {Pt}p−1
t=0 is a sequence of cycle. By definition, the restriction of f to Pt → Pt+1 is a

diffeomorphism for t = 0, · · · , p−2. Hence, f defines a self-return map on the cycle. This yields
the definition of renormalizable.

Definition 13.4 (Renormalizable). A unimodal map f ∈U is said to be renormalizable with com-
binatorial type σ (or σ -renormalizable) if there exists a cycle with combinatorial type σ . The class
of renormalizable unimodal maps with combinatorial type σ is denoted as U σ .

A cyclic permutation σ is called a unimodal permutation if there is a renormalizable unimodal
map of combinatorial type σ .

Two types of renormalization are introduced here. One is the usual unimodal renormalization
about the critical point. The cyclic interval Pp−1 contains the critical point. The renormalization
operator is defined to be the affine rescaled first return map f p : Pp−1→ Pp−1 on Pp−1. Another is
the Hénon renormalization. The cyclic interval P0 contains the critical value. The renormalization
operator is defined to be the nonlinear rescaled first return map f p : P0→ P0 on P0. This will be
used in Section 14.4 later for Hénon-like maps because Hénon-like maps cannot be renormalized
around the critical point. The definitions are stated below.

Definition 13.5. Assume that σ is a unimodal permutation and f ∈U σ .
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13. Expansion Argument for Unimodal Maps

1. The unimodal renormalization Ru : U σ →U is defined to be Ru f = su ◦ f p ◦ (su)−1 where

su : Pp−1
f → PRu f (0) is the affine map such that su(α p−1

f (1)) = αRu f (0) and su(α p−1
f (1)) =

αRu f (0).

2. The Hénon renormalization Rh : U σ → U is defined to be Rh f = φ ◦ f p ◦ φ−1 where φ :
Pf (1)→ PRh f (0) is a diffeomorphism defined by φ = sh ◦ f p−1 and sh is the affine map that
satisfies φ(α f (1)) = αRh f (0) and φ(α f (1)) = αRh f (0).

One can easily verify from the definition that the two notions of renormalization coincides for
unimodal maps.

Proposition 13.6. Assume that σ is a unimodal permutation and f ∈U σ . Then

1. su = sh and

2. Ru f = Rh f .

From now on, we remove the super scripts u and h because the two definitions are equivalent.
From the definition, it can be possible that a unimodal map is simultaneously renormalizable

under two different combinatorial types. For example, we will show in Section 13.4 that renor-
malizable maps of combinatorial type (1,4,3,5,2,6) is also period-doubling renormalizable and
the renormalization operator is a composition of a period-doubling renormalization with a period-
tripling renormalization. Define prime combinatorics to be the case when the permutation cannot
be decomposed into two nontrivial permutations. If the unimodal map is simultaneous renormal-
izable under two combinatoric types σ and ρ , then the super-scripts Rσ and Rρ will be used to
distinguish the two different renormalizations if necessary.

Given a unimodal permutation σ and a positive integer j. Denote U σ j
= ∩ j−1

n=0R−nU σ to be the
class of j-renormalizable unimodal maps with stationary combinatorics σ .

If a unimodal map can be renormalized recursively infinitely many times, then it is called in-
finitely renormalizable. In this paper, we will only consider infinitely renormalizable maps f such
that f ,R f ,R2 f , · · · are all renormalizable with the same combinatorial type. This is called infinitely
renormalizable with stationary combinatorics. The class of infinitely renormalizable map with sta-
tionary combinatorics σ is denoted as U σ∞

. Both prime and periodic combinatorics are covered
in the case of stationary combinatorics. When the combinatorics σ is not a prime, it is infinitely
renormalizable with periodic combinatorics. For a unimodal map f ∈U σ∞

, write fn = Rn f . The
value n is called the renormalization level. The subscript n is used to indicate the associate renor-
malization level of an object. For example, βn is the fixed point with negative multiplier for fn.
Also define Φ

j
n = φn+ j−1 ◦ · · · ◦ φn for j ≥ 1 and Φ0

n = id. The map Φ
j
n is a diffeomorphism that

maps from the renormalization level n to level n+ j.
For each unimodal permutation σ , there exists a unique fixed point of the renormalization op-

erator R with combinatorial type σ . The existence of such map is provided by [EL81, CER82]
for period-doubling case and [Sul92] for other combinatorics. The fixed point will be denoted
as fσ with the associate affine rescaling map sσ (x) = λσ x where |λσ | > 1. By the hyperbolic-
ity of the renormalization operator [Lyu99], the renormalization Rn f converges to the fixed point
geometrically.

For an infinitely renormalizable unimodal map with stationary combinatorics, the critical point
and the critical value satisfy the relations:
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13.3. Topological Structure of a Renormalizable Map

Proposition 13.7. Assume that f ∈U σ∞

where σ is a unimodal permutation and p = |σ |. Then

1. cn = f p−1
n ◦φ−1

n (cn+1) and

2. φn(vn) = vn+1

for all n≥ 0.

Proof. Since cn+1 is the critical point of fn+1, we have

0 = f ′n+1(cn+1) =
(
φn ◦ f p

n ◦φ
−1
n
)′
(cn+1).

Then f ′n ◦ f t
n ◦φn(cn+1) = 0 for some t ∈ {0, · · · , p−1} by the chain rule. In fact, t = p−1 because

fn is a diffeomorphism from P0
n , · · · ,P

p−1
n to their images. This proves the first equality.

The second equality follows directly from the first equality and the definition of renormalization.

As a consequence of the first equality, we have the following.

Corollary 13.8. Assume that f ∈U σ∞

where σ is a unimodal permutation and p = |σ |. Then cn

belongs to the forward orbit of
(

Φ
j
n

)−1
(cn+ j).

13.3. Topological Structure of a Renormalizable Map

The topological structure of a renormalizable unimodal map is studied in this section. The topology
is determined by the orbit of its periodic points. There are two types of periodic point in interested.
Each type is related to the fixed point α and the fixed point β respectively. A Markov partition
will be defined by using those periodic points. The dynamics of wandering interval will be studied
inside the partition.

Definition 13.9 (Periodic Points from deeper levels). Assume that f ∈ U σN+1
where σ is a uni-

modal permutation and N ∈ {0,1, · · · ,∞}.
Define α( j) =

(
Φ j)−1

(α j), α( j) =
(
Φ j)−1

(α j), β ( j) =
(
Φ j)−1

(β j), β ( j) =
(
Φ j)−1

(β j),
and P( j) =

(
Φ j)−1

(Pj(0)) for integers 0 ≤ j ≤ N. The definition is consistent with the previous
definition of α( j), α( j), and P( j) for j = 0 and 1.

Remark 13.10. For p 6= 2, the points α( j) and β ( j) are both periodic points of f with period p j.
For p = 2, the points coincide α(1) = β (0). Unlike the p 6= 2 case, the points α(0) and α(1)

are both fixed points of f and α( j) is a periodic point of f with period 2 j−1 for j ≥ 1.

Remark 13.11. The rescaling map Φ
j
n is a differomorphism from Pn( j) to Pn+k( j−k) for 0≤ k≤ j.

Next, we focus on the periodic point β (1) ∈ int(P0) and its orbit. The point β (1) is also a
periodic point of period p for f . The orbits {β t(1)}p−1

t=0 and {β t(1)}p−1
t=0 are defined to be similar

to the orbits {α t(1)}p−1
t=0 and {α t(1)}p−1

t=0 as follows.
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13. Expansion Argument for Unimodal Maps

Definition 13.12 (Period orbit β t(1)). Assume that f ∈U σ2
where σ is a unimodal permutation

and p = |σ |.
Define β t(1) = f t(β (1)) and β t(1) = f t(β (1)) for t = 0, · · · , p−1.
For the point β (1), the preimage f−1(β (1)) contains two points. Define θ L and θ R to be the left

and right point of the preimage respectively.

Remark 13.13. By definition, the points form an orbit θ L,θ R→ β 0(1)→···→ β p−1(1)→ β 0(1)→
·· · → β p−1(1)→ β 0(1).

By using the periodic orbits, we define a partition on the domain by trapping intervals and gaps.

Definition 13.14 (Trapping Interval and Gap). Assume that f ∈U σ2
where σ is a unimodal per-

mutation and p = |σ |.
A trapping interval for f is an interval of the form T t = [β t(1),β t(1)] where 0≤ t ≤ p−1.
A gap is an interval between two neighboring trapping intervals. Precisely, it is a connected

component of [β 1(1),β 0(1)]\∪p−1
t=2 T t .

The center trapping interval is T p−1 and the center cyclic interval is Pp−1.
See Figure 13.1 for an illustration of the cases p = 3 and p = 5.

Whether a trapping interval or gap contains its boundaries or not is not important for studying
the dynamics of a wandering interval because a wandering interval cannot contain any periodic or
pre-periodic point. In the remaining discussion, we will be careless about the boundaries of those
intervals.

The next proposition summarizes the topological properties of the trapping intervals, cyclic
intervals, and gaps.

Proposition 13.15 (Topology of trapping intervals, cyclic intervals, and gaps). Assume that f ∈
U σ2

where σ is a unimodal permutation and p = |σ |.
1. Each cyclic interval P j contains a unique trapping interval T j and T j b P j.

2. Any two distinct trapping intervals contains at least one gap in between.

3. The leftmost cyclic interval is P1 and the rightmost cyclic interval is P0. The order of the
points in those intervals are α1(1) < β 1(1) < β 1(1) < α1(1) and α(1) < β (1) < β (1) <
α(1).

4. The unimodal map is monotone on each gap, trapping interval, and cyclic interval except
the center trapping interval and the center cyclic interval.

Proof. The proposition is left to the reader.

13.4. Admissible Permutation

Admissible permutation is a restriction applying to the combinatorics σ . The condition includes
all prime combinatorics with p≥ 3 and all non-prime combinatorics with odd order. To proof the
nonexistence of wandering domain for Hénon-like maps (or nonexistence of wandering intervals
for unimodal maps), we will first prove the case for admissible permutations then extend the result
to non admissible permutations with p ≥ 3 by applying a shifting trick. See Example 13.24 and
the proof of Theorem 13.63. The condition is defined as follows.
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(a) The period doubling case p = 2.
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(b) The period tripling case p = 3.
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(c) The case for σ = (1,3,4,2,5).
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(d) The case for σ = (1,2,4,3,5).
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(e) The case for σ = (1,2,3,4,5).

Figure 13.1.: The cyclic intervals, trapping intervals, and gaps.
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Definition 13.16 (Admissible Permutation). Assume that σ ∈ Zp is a unimodal permutation of
order p. The permutation σ is not admissible if the order p = 2n is even and σ({1, · · · ,n}) =
{n+ 1, · · · ,2n}. This condition automatically implies that σ({n+ 1, · · · ,2n}) = {1, · · · ,n}. The
converse is called admissible.

Example 13.17. 1. The first nontrivial period is p = 4. The period has two unimodal permu-
tations. The first one is (1,3,2,4). This is not an admissible permutation and the renor-
malization operator is a composition of two period-doubling renormalization operators. The
second one is (1,2,3,4). This is an admissible prime permutation.

2. The second nontrivial period is p = 6. The period has five unimodal permutations. The
first one is (1,4,3,5,2,6). This is not an admissible permutation and the renormalization
operator is a composition of the period-doubling renormalization operator with the period-
tripling renormalization operator. The second one is (1,3,5,2,4,6). This is an admissible
permutation and the renormalization operator is a composition of the 3-renormalization op-
erator with the 2-renormalization operator. The remaining permutations are (1,2,4,5,3,6),
(1,2,3,5,4,6), and (1,2,3,4,5,6). The permutations are all admissible and prime.

The goal of this section is to prove Proposition 13.22. The proposition gives the relation be-
tween non admissible permutations and period-doubling renormalization. It’s corollary also gives
a topological property that will be used in Proposition 13.30 to prove that a rescaled orbit of a
wandering interval will always stays in the domain in interested.

The proof of the proposition will be separated into several lemmas. The first lemma proves a
topological property for non admissible permutation.

Lemma 13.18. Assume that σ is a unimodal permutation. If the permutation σ is not admissible
then β f (0)< α1

f (1) for all f ∈U σ .

Proof. The lemma is true for p = 2 by the definition of period-doubling renormalization. The
unimodal permutation for p = 3 is admissible. We will only consider the case for p≥ 4.

If the conclusion is not true, then α1(1) < β (0). The unimodal map is increasing on [α(0),c].
After iterating the inequality, we get α1(1)<α2(1)< β (0). Since f (x)> x for all x< β (0) and the
cyclic intervals are disjoint, we get α2(1)<α3(1). However, this contradicts to σ is not admissible
because α1(1)< α2(1)< α3(1)< α0(1). Therefore, the inequality β (0)< α1(1) holds.

The next lemma proves that the topological property implies period-doubling renormalizable.

Lemma 13.19. Assume that σ is a unimodal permutation. If β f (0) < α1
f (1) for some unimodal

map f ∈ U σ , then f ([β (0),v]) ⊂ [β (0),β (0)]. In particular, the unimodal map f is period-
doubling renormalizable.

Proof. By the definition of the fixed point β , we have f ([β (0),β (0)]) = [β (0),v].
The interval [β (0),v] can be decomposed into two subintervals [β (0),v]⊂ [β (0),α0(1)]∪[α0(1),

α0(1)]. The iteration of the first subinterval becomes f ([β (0),α0(1)]) = [α1(1),β (0)] ⊂ [β (0),
β (0)] by the assumption β (0) < α1(1). The iteration of the second interval is f ([α0(1),α0(1)])
= [α1(1),α1(1)]. Since the interior of the interval [α1(1),α1(1)] cannot contain β (0) and it is the
left most cyclic interval, we get β (0) ≤ α1(1) < α1(1) ≤ α p−1(1) ≤ β (0) and hence f ([α0(1),
α0(1)])⊂ [β (0),β (0)]. Therefore, f ([β (0),v])⊂ [β (0),β (0)].
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13.4. Admissible Permutation

Lemma 13.20. Assume that f ∈U σ ∩U µ where µ is the two cycle, then Pp−1 ⊂ [β (0),β (0)].

Proof. The lemma is true because the two points α p−1(1) and α p−1(1) are the preimage of α(1),
α(1) ⊂ [β (0),v), the restrictions f : [β (0),c]→ [β (0),v] and f : [c,β (0)]→ [β (0),v] are homeo-
morphisms, and the intermediate value theorem.

The last lemma proves that period-doubling renormalizable implies non admissible. In addition,
the renormalization operator of a non admissible permutation can be factorized into a period-
doubling renormalization with another renormalization.

Lemma 13.21. Assume that σ is a unimodal permutation. If there exists a σ -renormalizable map
f ∈U σ that is also period doubling renormalizable, then σ is not admissible.

In addition, if p 6= 2, then there exists a unique unimodal permutation ρ with order |σ |/2
such that ρ acts like σ2 on the even numbers. The period-doubling renormalization Rµ f is a
ρ-renormalizable map and the renormalization operator has a factorization Rσ f = Rρ ◦Rµ f .

Proof. Let µ be the two cycle and β (0) = αµ,0(1). For a period-doubling renormalizable map, the
interval Pµ,0∪Pµ,1 = [β (0),β (0)] is invariant under iteration. Let {Pt = [α t(1),α t(1)]}p−1

t=0 be a
σ -cycle. Since the center cyclic interval Pp−1 is contained inside the interval by Lemma 13.20, the
whole cycle must stays inside the interval under iteration. Also, the interior of a cyclic interval can-
not contain the fixed point β (0). Thus, a cyclic interval must belongs to either Pµ,1 = [β (0),β (0)]
or Pµ,0 = [β (0),β (0)]. Since the two intervals are mapped to each other under iteration, the per-
mutation σ is not admissible. In fact, one can check that all the odd cyclic intervals P1, · · · ,P2p−1

are in Pµ,1 and all the even cyclic intervals P0, · · · ,P2p−2 are in Pµ,0.
Assume that p 6= 2. Let φ µ be the rescaling for the period-doubling renormalization. Set

α t
Rµ f (1) = φ µ(α2t(1)) and α t

Rµ f (1) = φ µ(α2t(1)) for t = 0, · · · , p/2. The points {α t
Rµ f (1)}

p/2
t=0

form a periodic orbit for Rµ f and the renormalized map Rµ f acts on the orbit as a cyclic permu-
tation ρ on Zp/2 that preserves the natural order. One can easily check that the orbit defines a
ρ-cycle and Rσ f = Rρ ◦Rµ f .

By combining the lemmas, we obtain the equivalent relations for non admissible permutations.

Proposition 13.22. Let σ be a unimodal permutation and µ be the two cycle. The following
conditions are equivalent:

1. The permutation σ is not admissible.

2. For all f ∈U σ , the inequality β f (0)< α1
f (1) holds.

3. There exists a map f ∈U σ such that the inequality β f (0)< α1
f (1) holds.

4. The inclusion U σ ⊂U µ holds.

In addition, if p 6= 2 and one of the conditions holds, there exists a unique unimodal permutation ρ

with order |σ |/2 such that ρ acts like σ2 on the even numbers. The inclusion RµU σ ⊂U ρ holds
and the renormalization operator has the factorization Rσ = Rρ ◦Rµ .
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13. Expansion Argument for Unimodal Maps

Proof. The second property follows from the first property by Lemma 13.18. The second property
automatically implies the third property. The last property follows from the second property by
Lemma 13.19. And the first property and the factorization of the renormalization operator follows
from the last property by Lemma 13.21 or follows from the third property by Lemmas 13.19 and
13.21.

Similarly, the converse also satisfies the properties.

Corollary 13.23. Let σ be a unimodal permutation and µ be the two cycle. The following condi-
tions are equivalent:

1. The permutation σ is admissible.

2. For all f ∈U σ , the inequality α1
f (1)< β f (0) holds.

3. There exists a map f ∈U σ such that the inequality α1
f (1)< β f (0) holds.

4. The two classes of renormalizable maps are disjoint U σ ∩U µ = φ .

Example 13.24 (Shifting trick). For an infinitely renormalizable unimodal map with non admis-
sible stationary combinatorics (1,4,3,5,2,6) (periodic renormalizable of the two-three type), the
proposition says that the period-doubling renormalization of the map is an infinitely renormalizable
unimodal map with admissible stationary combinatorics (1,3,5,2,4,6) (periodic renormalizable of
the three-two type). Thus, if a unimodal map is not infinitely period-doubling renormalizable, the
problem of non admissible combinatorics can always be reduced to the problem of admissible
combinatorics by applying some number of period-doubling renormalizations. This is called the
shifting trick.

13.5. Dynamics of Wandering Intervals

The goal of this section is to study the dynamics of wandering intervals in the Markov partition
formed by trapping intervals and gaps. We will focus on the case of admissible permutations due
to the second property of Proposition 13.29 and the second property of Proposition 13.30.

First, recall the definition of wandering interval.

Definition 13.25 (Wandering Interval). A wandering interval J of a unimodal map f ∈ U is a
nontrivial interval int(J) 6= φ such that

1. the orbit intervals J, f (J), · · · are pairwise disjoint and

2. the orbit intervals do not tend to a periodic orbit.

From the definition, a wandering interval can be constructed by iteration and rescaling as fol-
lows.

Proposition 13.26. Assume that f ∈U σ where σ is a unimodal permutation.

1. If J ⊂ P(0) is a wandering interval of f , then f (J)⊂ P(0) is also a wandering interval of f .
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13.5. Dynamics of Wandering Intervals

2. If J ⊂ Pf (1) is a wandering interval of f , then φ(J)⊂ PR f (0) is also a wandering interval of
R f .

Unlike the period-doubling case, the dynamics of a wandering interval will be studied inside the
smaller intervals, iteration interval and rescaling interval, instead of the larger intervals, P(0) and
P(1). The reason is to visualize the expansion from the topology to gain uniform expansion on the
hyperbolic length. The intervals are defined as

Definition 13.27. Assume that f ∈U σ2
where σ is a unimodal permutation.

The iteration interval is D = [β 1(1),β 0(1)]. The rescaling interval is R = [β 0(1),v].
The prerescaling interval is Q = [θ L,θ R]. Its left and right components are QL = [θ L,c] and

QR = [c,θ R].
See Figure 13.1b for an illustration of the period-tripling case.

Remark 13.28. The iteration interval D and rescaling interval R here are smaller than the sets
defined for the period-doubling case (Definition 4.4). In the period-doubling case, the iteration
interval is P(0)\P(1) and the rescaling interval is P(1). The adjustments are necessary to obtain
uniform expansion of the hyperbolic length.

The rescaling interval R and the prerescaling interval Q satisfy the following properties:

Proposition 13.29. Assume that f ∈U σ2
where σ is a unimodal permutation.

1. The restrictions f : QL→ R and f : QR→ R are homeomorphisms.

2. The inclusions T p−1(1)b Q b Pp−1(1) hold. In addition, if p≥ 3, then Pp−1(1)b D.

We will consider wandering intervals that belongs to the iteration interval D or the iteration
interval R. A wandering interval will be iterated or rescaled by the following rules:

1. If the wandering interval is in the iteration interval D, then it is iterated by f .

2. If the wandering interval is in the rescaling interval R, then it is rescaled by φ .

The next proposition shows that the rescaled orbit of a wandering interval that follows the rule
always stays inside the iteration interval and the rescaling interval.

Proposition 13.30. Assume that f ∈U σ∞

where σ is a unimodal permutation. The iteration and
rescaling intervals satisfies the following properties:

1. fn(Dn) = Dn∪Rn.

2. In addition, if σ is admissible, then φn(Rn)⊂ Dn+1∪Rn+1.

Proof. The iteration interval Dn contains two branches [β 1
n (1),c] and [c,β 0

n (1)]. The unimodal
map fn maps [β 1

n (1),c] homeomorphically to [β 2
n (1),v] and maps [c,β 0

n (1)] homeomorphically to
[β 1

n (1),v]. Thus, the first property follows.
The second property follows from Proposition 13.7 and the second equivalent condition of

Corollary 13.23.

137



13. Expansion Argument for Unimodal Maps
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(a) Brief diagram of the dynamics in different levels.
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(b) Details of the step Dn
fn→Dn are illustrated in the rectangle. The double arrows

⇒ are the steps where uniform expansion occurs.

Figure 13.1.: The dynamics of a wandering interval on the partition when the permutation is ad-

missible. The arrow
fn→means iterated by fn,

φn→means rescaled by φn, and ↪→means
belong to the target interval without iteration or rescaling.

Under the rules, the dynamics of a wandering interval on the partition follows the diagram in
Figure 13.1. Figure 13.1a is the diagram obtained from Proposition 13.29 and Proposition 13.30.
Figure 13.1b contains the details of the step D→ D.

Trapping intervals and gaps form a partition on the iteration interval D. A wandering interval
cannot intersect the boundaries of those intervals because it cannot contain periodic or pre-periodic
points. Thus, it must be contained fully inside a trapping interval or a gap. In the remaining part
of this chapter, we will study the expansion of hyperbolic length on the partition.

If a wandering interval is inside a gap, then it can be mapped either to a gap or to a trapping
interval because the boundaries of a gap are mapped to boundaries of gaps and trapping intervals.
If a wandering interval is simultaneously inside a gap and the prerescaling interval Qn, then the
gap must be adjacent to the center trapping interval T p−1

n .
If a wandering interval is inside a trapping interval T j, then the orbit must follows the path

T 2
n → ··· → T p−1

n ⊂ Qn→ Rn by definition.
If a wandering interval is inside the prerescaling interval Qn, first it is mapped into the rescaling

interval Rn. Then it gets rescaled into either the iteration interval Dn+1 or the rescaling interval
Rn+1 of the next level of renormalization. If it enters the rescaling interval again, then we repeat
rescaling the wandering interval. Finally, the rescaling stops when it enters the iteration interval
Dn+k of some renormalization level. The whole process then repeats. The maximal number of
possible rescaling is called the rescaling level:

Definition 13.31 (Rescaling level). Assume that f ∈U σ∞

and J ⊂Dn∪Rn is a wandering interval
where σ is a unimodal permutation. Define the rescaling level k(J) as follows. If J ⊂ Rn, define
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13.6. Expansion Estimate

k(J)≥ 1 to be the maximal integer such that Φ
k(J)
n (J)⊂Dn+k(J); if J ⊂Qn, define k(J) = k◦ fn(J);

otherwise if J ⊂ Dn\Qn, define k(J) = 0.

It is sufficient to consider the problem of wandering intervals in the smaller domains D and R
due to the following proposition.

Proposition 13.32. Assume that σ is a unimodal permutation and f ∈U σ . If f has a wandering
interval in P(0), then f has a wandering interval in [β (0),β (0)]. In particular, if σ is an admissible
permutation and f ∈U σ2

, then f has a wandering interval in D.

Proof. The interval P(0) can be partitioned into three subintervals: [α(0),β (0)], [β (0),β (0)], and
[β (0),α(0)]. The last interval [β (0),α(0)] is mapped into the first two by definition. The first
interval [α(0),β (0)] is mapped into the first two. By the definition of unimodal maps, we have
minx∈[y,β (0)] ( f (x)− x)> 0 for all y ∈ (α(0),β (0)]. Thus, the orbit of a wandering interval cannot
stay in the first interval forever and the proposition is proved by applying Proposition 13.26.

If σ is an admissible permutation, then [β (0),β (0)] ⊂ D by the second equivalent condition of
Corollary 13.23.

Finally, we define a rescaled orbit of a wandering interval, called closest approach, by following
the rules of iteration and rescaling.

Definition 13.33 (Closest approach). Assume that σ is an admissible unimodal permutation, f ∈
U σ∞

, and J ⊂ D does not contain any periodic point and preimages of a periodic point. Define a
sequence {Jn}∞

n=0 and the associate renormalization level {r(n)}∞

n=0 by induction such that Jn ⊂
Dr(n) for all n≥ 0 as follows.

1. Set J0 = J and r(0) = 0.

2. Abbreviate the rescaling level kn = k(Jn) whenever Jn is defined.

3. If Jn ⊂ Dr(n)\Qr(n), set Jn+1 = fr(n)(Jn) and r(n+1) = r(n).

4. If Jn ⊂ Qr(n), set Jn+1 = Φ
kn
r(n) ◦ fr(n)(Jn) and r(n+1) = r(n)+ kn.

The transition between two constitutive sequence element Jn → Jn+1, one iteration together plus
some number of rescaling if possible, is called one step. The sequence {Jn}∞

n=0 is called the
rescaled iterations of J that closest approaches to the critical value, or J-closest approach for short.

In the remaining sections, we will study the expansion of hyperbolic length for the elements in
a closest approach.

13.6. Expansion Estimate

In this section, we will introduce a way of measuring the hyperbolic lengths of the elements in
a closest approach. While the elements stay in the trapping intervals and gaps by definition, we
will measure the hyperbolic length in a larger interval that is called the base interval. We will
show that the base intervals are designed to visualize the expansion of the topology and produces
a definite expansion to the hyperbolic length. Our final goal is to show that the hyperbolic lengths
of the sequence elements expand at a uniform rate (Proposition 13.61). This will be generalized to
Hénon-like maps in Chapter 17.
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13. Expansion Argument for Unimodal Maps

13.6.1. Expansion from iteration

We first study the expansion of hyperbolic length while the sequence elements in a closest ap-
proach stays in the iteration interval D. The iteration interval D is partitioned by trapping intervals
and gaps. To measure the hyperbolic length of a wandering interval, an interval, called the base
interval, is assigned to each partition element. The hyperbolic length of a wandering interval will
be measured inside the base instead of the partition element that it belongs to. It is defined as
follows.

Definition 13.34 (Base interval). Assume that f ∈U σ2
where σ is a unimodal permutation.

1. If T j is a trapping interval with 2≤ j ≤ p−1, define its base interval to be Base(T j) = P j.

2. If G is a gap, define its base interval to be Base(G) = TL∪G∪TR where TL and TR are the
two adjacent trapping intervals of G.

A side of the base interval Base(S) is a connected component of Base(S)\S. Each base interval has
two sides, one on the left and the other on the right of the partition element S.

Remark 13.35. From Propositions 2.12 and 2.13, the hyperbolic length measured inside the base
set is comparable with the Euclidean length because the two sides have definite length.

Definition 13.36. If J ⊂ Dn is a wandering interval, the base interval of the wandering interval is
defined to be Base(J) = Base(S) where S a partition element containing J. Denote the hyperbolic
length of the wandering interval as

l(J) = |J|Base(J) .

Uniform expansion of hyperbolic length comes from the expansion of the unimodal map’s topol-
ogy. The partition and the base intervals are designed to produce the expansion. A base element
contains its associate partition element (trapping interval or gap) and an extra spacing on each side
of the partition element. The reason to include the two extra spacing is to gain uniform expan-
sion from the expansion of the topology. When a partition element S is iterated several times, the
iterated set expands and not only covers another partition element but also contains its base set
(Lemmas 13.42 and 13.44). The two extra spacings from the base set of the original partition ele-
ment visualizes the expansion of the topology. We will show that the number of iterations for this
to happen is bounded and the embedding of a wandering interval from the base set of the original
partition element Base(S) to the partition element S yields uniform expansion to the hyperbolic
length by applying Proposition 2.17.

Assume the case when a wandering interval belongs to a gap. The image of the gap is partitioned
by trapping intervals and gaps which has the form of GT · · ·GT G or GT · · ·GT 0 where G represents
a gap and T represents a trapping interval. This is because of Lemma 13.44 later and the boundaries

of a gap are mapped to boundaries of the trapping intervals and gaps. For the case G
f→ T 0, the

wandering interval inside G is also contained in Q because T 0 ⊂ R. This is the case when the
iterated wandering interval leaves the iteration interval D and will be studied later in Section 13.6.2

for the case of Q
f→ R. The case G

f→ T 1 cannot happen because the iteration interval does not
contain T 1 and Proposition 13.30. Thus, there are only two possible itineraries when a wandering

interval is inside a gap: G
f→ G and G

f→ T j for j = 2, · · · , p−1.
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Figure 13.1.: A summary of all expansion estimates. The arrow → represents expansion and the
arrow⇒ represents uniform expansion.

Assume the case that a wandering interval belongs to a trapping interval T j with j 6= 0,1, p−1.
The map f maps T j→ T j+1 bijectively by definition (Lemma 13.46).

In the remaining part of this section, the expansion of topology will be studied separately in the
three cases:

1. G
f→ G,

2. G
f→ T j with j = 2, · · · , p−1, and

3. T j f→ T j+1 with j = 2, · · · , p−2.

The expansion estimates are summarized in Figure 13.1. The goal of this section is to build of the
proof for the next two propositions.

Proposition 13.37 (Expansion for one iteration). Assume that f ∈ U σ2
where σ is a unimodal

permutation and J is a wandering interval of f . If the two intervals J and f (J) are both in D, then

l( f (J))≥ l(J).

Proof. The proof follows by Corollary 13.41 (G
f→ G), Corollary 13.45 (G

f⇒ T j), and Corollary

13.47 (T j f→ T j+1) later.

Proposition 13.38 (Uniform expansion for iterations). Assume that σ is a unimodal permutation,
f ∈ U σ2

, min0≤ j≤p−1
∣∣T j
∣∣ ≥ K for some constant K > 0, and J is a wandering interval of f . If

the intervals J, f (J), · · · , f p(J) are all in D, then

l( f p(J))≥ E · l(J) (13.1)

for some constant E > 1 that depends only on K.

Proof. Assume the expansion theorems in the later subsections.

If J, f (J), · · · , f p(J) all belong to gaps, then (13.1) follows by Corollary 13.43 (G
f p

⇒ G).
If f t(J)⊂ T j for some 0≤ t ≤ p−1, let t be the smallest integer. The integer t 6= 0 because T 0

and T 1 are not in D. This means that the prior intervals J, · · · , f t−1(J) belongs to some gaps and
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13. Expansion Argument for Unimodal Maps

the later intervals f t(J), · · · , f p(J) belong to some trapping intervals. Then

l( f t−1(J))≥ ·· · ≥ l(J) (13.2)

by Corollary 13.41 (G
f→ G),

l( f t(J))≥ E · l( f t−1(J)) (13.3)

by Corollary 13.45 (G
f⇒ T ), and

l( f p(J))≥ ·· · ≥ l( f t(J)) (13.4)

by Corollary 13.47 (T j f→ T j+1). The inequality (13.1) follows by combining (13.2), (13.3), and
(13.4).

It follows from the proposition that

Corollary 13.39. Given an admissible unimodal permutation σ and a unimodal map f ∈ U σ2
.

If the unimodal map f has a wandering interval in the iteration interval D, then it also has a
wandering interval in the rescaling interval R.

Proof. Assume that f has an wandering interval J ⊂ D. Set K = min0≤ j≤p−1
∣∣T j
∣∣.

By Proposition 13.38, the hyperbolic length of the orbit of J diverges to infinity if the orbit
stays in the iteration interval D forever. This cannot happen because the hyperbolic length of the
partition elements are uniformly bounded in their base intervals. Thus, the orbit of the wandering
interval eventually leaves D, i.e. there exists an integer n > 0 such that f n(J) ⊂ R ⊂ P(1). By
Proposition 13.26, the set f n(J) is a wandering interval in R.

The case G
f→ G The first lemma shows the expansion of the topology for the case G

f→ G in
one iteration.

Lemma 13.40 (Topological expansion for G
f→ G). Assume that σ is a unimodal permutation,

f ∈U σ2
, and the intervals G1 and G2 are gaps. If f (G1) contains G2, then there exists an interval

I ⊂ Base(G1) such that the interval is disjoint from T p−1 and Base(G2)⊂ f (I).

Proof. Let TL and TR be the two trapping intervals adjacent to G1.
If both TL and TR are not T p−1, then set I = Base(G1).
Otherwise, without lose of generality, assume that TR = T p−1. Set I = TL ∪G1. Then f (I)

is bounded between the two trapping intervals f (TL) and T0. See Figure 13.2. Thus, f (I) ⊃
Base(G2).

From the topological expansion, one deduce the expansion of hyperbolic length as follows.

Corollary 13.41 (Expansion for G
f→ G). Assume that σ is a unimodal permutation, f ∈ U σ2

,
and the intervals G1 and G2 are gaps. If J ⊂ G1 and f (J)⊂ G2, then

| f (J)|Base(G2) ≥ |J|Base(G1) .
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I

G1 T p−1T j

f
extra spacing

G2
β 0(1) β 0(1) v

T 0T j+1

Figure 13.2.: The case of G
f→ G when T p−1 is adjacent to one of the boundaries.

Proof. Let I be given by Lemma 13.40. Since f has negative Schwarzian derivative and f is
injective on I, we get

| f (J)|Base(G2) ≥ | f (J)| f (I) ≥ |J|I ≥ |J|Base(G1)

by Proposition 2.10 and Corollary 2.15.

Uniform expansion may not be guaranteed from one iteration. The proof of Lemma 13.40 only
shows the possibility of getting a extra spacing from one side of the base interval. To obtain
uniform expansion, it requires extra spacing from both sides of the base set by Proposition 2.17.
We will see that extra spacings on both sides can be obtained in a bounded number of iterations by
tracking the orbit of the boundaries.

Assume that a wandering interval J belongs to a gap G. The two sides of its base set Base(G)
are trapping intervals. Fix a side T j and study the orbit of that side. Under iteration, there are two
cases:

1. no trapping interval sits between f (J) and the side T j+1 (Figure 13.3a) and

2. a new trapping interval T l sits between f (J) and the side T j+1 (Figure 13.3b).

For the first case, the adjacent trapping interval T j+1 of the gap that contains f (J) is inherited
from the adjacent trapping interval T j of the original gap G. No extra spacing is gained from the
base interval Base(G) on that side.

For the second case, the side of Base(J) is changed. The new adjacent trapping interval T l sits
between the wandering interval and the inherited adjacent trapping interval T j+1. The side T j can
be excluded when comparing the hyperbolic length between J and f (J). Thus, an extra spacing T j

is obtained from the base interval Base(G) whenever the side is changed (comes from a different
orbit).

Furthermore, both sides are changed within p iterations as shown in Figure 13.3c. The figure
shows the orbit of a fixed side of a gap. The orbit starts from the gap containing the boundary
β 2(1) because no gap contains the boundary β 1(1). The side that shares the boundary β 2(1) is
T 2. After p− 3 iterations, the side becomes T p−1 (second row of Figure 13.3c). Then we iterate
the gap and the trapping interval T p−1 again. In this step, the trapping interval T p−1 is mapped
to
[
β 0(1),v

]
⊂ R and T 0 is adjacent to the interval. If the orbit of a wandering interval still

stays inside a gap, then the new trapping interval T 0 sits between the wandering interval and the
inherited side

[
β 0(1),v

]
. Thus, an extra spacing is gained from T p−1. This procedure repeats in
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T j

J
G

T j+1

f (J)
f (G)
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(a) Side maps to side. 0≤ j ≤ p−2

T j

J
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T j+1T l

f (J)
f (G)

extra spacingf

(b) Change of side: a new trapping interval T l

sits between the origin boundary and the
wandering interval.

β 2(1) β 2(1)
T 2

G

f
...
f

β p−1(1) β p−1(1)
T p−1

G
θ

f extra spacing

β 0(1) β 0(1) v

T 0
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f
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β p−1(1) β p−1(1)
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G
θ

f extra spacing

β 0(1) β 0(1) v

T 0

G

(c) Orbit of a side. The superscript of θ is not labeled be-
cause it depends on the combinatorics σ .

Figure 13.3.: Iteration on one side of a gap.

every p-iterations if no trapping interval T j with j 6= 0 sits between the wandering interval and the
boundary. Therefore, an extra spacing from a side is gained within p iterations.

This argument visualizes the expansion of topology in a bounded number of iterations. It is
summarized as follows.

Lemma 13.42 (Topological expansion for G
f p

⇒ G). Assume that σ is a unimodal permutation,
f ∈ U σ2

, and
{

G j}p
j=0 is a sequence of gaps. If f (G j) ⊃ G j+1 for all 0 ≤ j ≤ p− 1 then there

exists a sequence of intervals
{

I j}p
j=0 such that

1. the intervals I j are disjoint from the center trapping interval T p−1,

2. f (I j)⊃ I j+1 for j = 0, · · · , p−1,

3. I0 = G0, I j ⊃ G j for j = 1, · · · , p−1, and Ip = Base(Gp).

Proof. First, we define the intervals I j. Write G j = [a j,b j] for 0 ≤ j ≤ p so that f (a j) ≤ a j+1 <

b j+1 ≤ f (b j) if f (a j) < f (b j) and f (a j) ≥ a j+1 > b j+1 ≥ f (b j) if f (a j) > f (b j). Also, set T j
L

and T j
R be the trapping intervals adjacent to G j such that a j is the common boundary of T j

L and G j
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13.6. Expansion Estimate

and b j is the common boundary of G j and T j
R . Let

L j =

T j
L if a j+1 = f (a j), · · · ,ap = f (ap−1), and

φ otherwise

and

R j =

T j
R if b j+1 = f (b j), · · · ,bp = f (bp−1), and

φ otherwise.

Define I j = L j∪G j∪R j.
By definition, I j ⊂ Base(G j) for j = 0, · · · , p−1 and Ip = Base(Gp).
To show that the intervals I j are disjoint from the center trapping interval T p−1, it suffice

to prove that L j and R j are not the center trapping interval T p−1. If T j
L = T p−1, then a j ∈

{β p−1(1),β p−1(1)} and
a j+1 ≤ β 0(1)� β

0(1) = f (a j).

Thus, L j = φ by definition. The case when T j
R = T p−1 is similar.

Now we prove the second property I j+1 ⊂ f (I j). If T j+1
L = f (T j

L ), then either L j+1 = f (L j) 6= φ

or L j+1 = L j = φ . If T j+1
L 6= f (T j

L ), then T j+1
L ⊂ f (G j) because G j+1 ⊂ f (G j). For any of those

cases, we get L j+1 ⊂ f (L j∪G j). Similarly, R j+1 ⊂ f (R j∪G j). Consequently, I j+1 ⊂ f (I j).
Finally, the last property follows from L0 = R0 = φ because the change of side a j+1 6= f (a j) or

b j+1 6= f (b j) (Figure 13.3b) happens within p iterations.

From the expansion of topology, the uniform expansion of hyperbolic length is obtained as
follows.

Corollary 13.43 (Uniform expansion for G
f p

⇒ G). Assume that σ is a unimodal permutation,
f ∈U σ2

, min0≤ j≤p−1
∣∣T j
∣∣≥ K for some constant K > 0, and

{
G j}p

j=0 is a sequence of gaps. If J
is a set such that f j(J)⊂ G j for 0≤ j ≤ p, then

| f p(J)|Base(Gp) > E |J|Base(G0)

for some constant E > 1 that depends only on K.

Proof. Let
{

I j}p
j=0 be given by Lemma 13.42. Let L and R be the left and the right component of

Base(G0)\I0 respectively. Then, L
Base(G0)

, R
Base(G0)

> K
2 . By Proposition 2.17, we get

|J|I0 > E |J|Base(G0) (13.5)

for some constant E > 1 that depends on K.
Since f has negative Schwarzian derivative and f is injective on I j for all j, we obtain

| f p(J)|Base(Gp) ≥ | f
p(J)| f (Ip−1) ≥

∣∣ f p−1(J)
∣∣
Ip−1 ≥

∣∣ f p−1(J)
∣∣

f (Ip−2)
≥ ·· · ≥ |J|I0 (13.6)

by Proposition 2.10 and Corollary 2.15.
The corollary follows by combining (13.5) and (13.6).
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L RG

f
extra spacing extra spacing

T jG G
P j

Figure 13.4.: The case G→ T j.

The case G
f→ T . The next lemma shows if the image of a gap contains a trapping interval T j

with j 6= 0, then it also contains its associated cyclic interval P j. This also shows that the allocation
of the image of a gap must be either GT · · ·GT G or GT · · ·GT GT 0 where G represents a gap and
T represents a trapping interval.

Lemma 13.44 (Topological expansion for G
f⇒ T ). Assume that σ is a unimodal permutation,

f ∈U σ2
, and G is a gap. If f (G) contains a trapping interval T j with j 6= 0, then f (G)⊃ P j.

Proof. First we prove that f (G) and T j does not share a common boundary by contradiction.
Assume that f (G) and T j has a common boundary.

If the common boundary has the form β j(1) for 1≤ j≤ p−1, then β j−1(1) must be a boundary
of G. This is because the boundaries of G belongs to {β 0(1), · · · ,β p−1(1),β 0(1), · · · ,β p−1(1)}
and the points follow the orbit

β 0(1)→ ·· ·β p−1(1)→ β
0(1)→ ·· · → β

p−1(1)→ β
0(1).

Thus, G and T j−1 shares the same boundary β j−1(1) and j−1 6= p−1. By Proposition 13.15, f
has the same orientation on the both intervals G and T j−1. It implies that the gap G contains T j−1

because f (G) contains T j. This is impossible by the definition of gaps. Thus, f (G) and T cannot
share a common boundary.

The case when f (G) and T has a common boundary of the form β j(1) is similar.
Therefore, f (G) c T j. It follows that f (G) ⊃ P j because the only trapping interval that inter-

sects P j is T j and the boundaries of T j is in the interior of f (G).

The corollary provides the uniform expansion to the hyperbolic length as follows.

Corollary 13.45 (Uniform expansion for G
f⇒ T ). Assume that σ is a unimodal permutation,

f ∈U σ2
, min0≤ j≤p−1

∣∣T j
∣∣≥ K for some constant K, and G is a gap. If J ⊂G and f (J)⊂ T j with

j 6= 0, then
| f (J)|Base(T j) > E |J|Base(G)

for some constant E > 1 that depends only on K.

Proof. Let L and R be the left and the right component of Base(G)\G respectively. See Figure
13.4. Then, L

Base(G) ,
R

Base(G) >
K
2 . By Proposition 2.17, we get

|J|G > E |J|Base(G)
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13.6. Expansion Estimate

for some constant E > 1 that depends on K.
Also, since f has negative Schwarzian derivative and f is injective on G, we obtain

| f (J)|Base(T j) ≥ | f (J)| f (G) ≥ |J|G

by Proposition 2.10, Corollary 2.15, and Lemma 13.44. This completes the proof of the corollary.

The case T
f→ T The next lemma studies the steps T 1 f→ ·· · f→ T p−1 in Figure 13.1.

Lemma 13.46. Assume that f ∈U σ2
where σ is a unimodal permutation. The following iterations

are diffeomorphisms.

T 0 f→ T 1 f→ ··· f→ T p−1

P0 f→ P1 f→ ·· · f→ Pp−1

Proof. The lemma follows from the definition of the intervals.

Corollary 13.47 (Expansion for T
f→ T ). Assume that f ∈U σ2

where σ is a unimodal permuta-
tion. If J ⊂ T j where 0≤ j ≤ p−2, then

| f (J)|Base(T j+1) > |J|Base(T j) .

Proof. The corollary follows from Lemma 13.46 and Proposition 2.10.

13.6.2. Expansion from rescaling

We then study the expansion of hyperbolic length when a sequence element of a closest approach
enters the rescaling interval R. To study the hyperbolic length in the rescaling and prerescaling
interval, the hyperbolic length will also be measured inside of the base interval instead of the
rescaling and prerescaling interval itself. The base intervals are defined as follows.

Definition 13.48 (Base interval). Assume that f ∈U σ2
(Ih) where σ is a unimodal permutation.

1. For the prerescaling interval Q, define the base intervals to be Base(QL) = [α p−1,L(1),c]
and Base(QR) = [c,α p−1,R(1)] where α p−1,L(1),α p−1,R(1)∈ {α p−1(1),α p−1(1)} such that
α p−1,L(1)< α p−1,R(1).

2. For the rescaling interval R, define its base interval to be Base(R) = [α0(1),v].

See Figure 13.1b for an illustration of the period tripling case.

Remark 13.49. The definition of base interval for the prerescaling and rescaling interval cannot
be generalized directly to Hénon-like maps. It is because a Hénon-like map does not have critical
point. See Definition 17.16 and Remark 17.17 later for Hénon-like maps.
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13. Expansion Argument for Unimodal Maps

When an element enters the prerescaling interval, the step follows the path

Dn∩Qn ↪→ Qn
fn→ Rn

φn→ ··· φn+k−2→ Rn+k−1
φn+k−1⇒ Dn+k

where k is the rescaling level of the element. The step that involves rescaling is separated into three
itineraries

1. G,T p−1 ↪→ Q,

2. Q
f→ R,

3. Rn
φn→ Rn+1, and Rn

φn⇒ Dn+1.

In the remaining part of this section, the expansion of topology will be analyzed separately in the
three cases. The expansion theorems are summarized in Figure 13.1. The goal of this section is to
prove the following proposition.

Proposition 13.50 (Uniform expansion for rescaling). Assume that σ is a unimodal permutation,
f ∈ U σ2

, K ≤
∣∣β 1

n+1(0)−αn+1(0)
∣∣ , ∣∣vn+1−β 0

n+1(1)
∣∣ for some constant K > 0, and J is a wan-

dering domain of fn. If J ⊂ Qn and cn /∈ J, then

l(Φk(J)
n ◦ fn(J))≥ E · l(J)

for some constant E > 1 that depends only on K.

Proof. Assume the expansion theorems in the later subsections.
Since cn /∈ J, we have J ⊂ Qi

n where i = L or R. By Corollary 13.52 (G ↪→ Q) and Corollary
13.54 (T p−1 ↪→ Q), we have

|J|Base(Qi
n)
≥ l(J). (13.7)

By Corollary 13.56 (Q
f→ R), we have

| fn(J)|Base(Rn)
≥ |J|Base(Qi

n)
. (13.8)

Also by Corollary 13.58 (Rn
φn→ Rn+1) and Corollary 13.60 (Rn

φn→ Dn+1), we get

l(Φk(J)
n ◦ fn(J))≥ E · | fn(J)|Base(Rn)

(13.9)

where the constant E > 1 is obtained by Corollary 13.60 (Rn
φn⇒ Dn+1).

The lemma follows by combining (13.7), (13.8), and (13.9).

The case G ↪→ Q. The following lemma allows us to convert the hyperbolic length from the
base of G to Q.

Lemma 13.51. Assume that σ is a unimodal permutation, f ∈U σ2
, and G is a gap. If G∩Qi 6= φ

where i = L or R, then Base(Qi)⊂ Base(G).
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Q
cθ θβ p−1(1) β p−1(1)α p−1(1) α p−1(1)
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Figure 13.5.: The case Q→ R.

Proof. If G∩Qi 6= φ , then T p−1 is one of the neighbor trapping interval of G and G⊃ [α p−1,i(1),β p−1,i(1)].
Thus

Base(Qi) = [α p−1,i(1),β p−1,i(1)]∪ [β p−1,i(1),c]⊂ G∪T p−1 ⊂ Base(G).

Corollary 13.52 (Expansion for G ↪→ Q). Assume that σ is a unimodal permutation, f ∈ U σ2
,

and G is a gap. If J ⊂ G∩Qi where i = L or R, then

|J|Base(Qi) ≥ |J|Base(G) .

Proof. The corollary follows directly by Lemma 13.51 and Corollary 2.15.

The case T p−1 ↪→ Q. The following lemma allows us to convert the hyperbolic length from
the base of T p−1 to Q.

Lemma 13.53. Assume that σ is a unimodal permutation and f ∈U σ2
. Then Base(QL),Base(QR)⊂

Base(T p−1).

Proof. The lemma follows by the definition of the intervals.

Corollary 13.54 (Expansion for T p−1 ↪→ Q). Assume that σ is a unimodal permutation and f ∈
U σ2

. If J ⊂ T p−1∩Qi where i = L or R, then

|J|Base(Qi) ≥ |J|Base(T p−1) .

Proof. The corollary follows directly by Lemma 13.53 and Corollary 2.15.

The case Q
f→ R.

Lemma 13.55. Assume that σ is a unimodal permutation and f ∈U σ2
. The following maps are

homeomorphisms

QL f→ R,QR f→ R

Base(QL)
f→ Base(R),Base(QR)

f→ Base(R)

Proof. The lemma follows by the definition of the intervals. See Figure 13.5.
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13. Expansion Argument for Unimodal Maps

Corollary 13.56 (Expansion for Q
f→ R). Assume that σ is a unimodal permutation and f ∈U σ2

.
If J ⊂ Qi where i = L or R, then

| f (J)|Base(R) ≥ |J|Base(Qi) .

Proof. The corollary follows from Lemma 13.55 and Proposition 2.10.

The case Rn
φn→ Rn+1

Lemma 13.57. Assume that σ is a unimodal permutation and f ∈ U σ2
. Then Base(Rn+1) ⊂

φn(Base(Rn)).

Proof. The Lemma is true because φn(Base(Rn))= [αn+1(0),vn+1]⊃Base(Rn+1)= [α0
n+1(1),vn+1].

Corollary 13.58 (Expansion for Rn
φn→ Rn+1). Assume that σ is a unimodal permutation and f ∈

U σ2
. If J is a wandering interval of fn such that J ⊂ Rn and φn(J)⊂ Rn+1, then

|φn(J)|Base(Rn+1)
≥ |J|Base(Rn)

.

Proof. The corollary follows from Lemma 13.57, Proposition 2.10, and Corollary 2.15.

The case Rn
φn⇒ Dn+1

Lemma 13.59 (Topological expansion for Rn
φn⇒ Dn+1). Assume that σ is an admissible uni-

modal permutation, f ∈ U σ2
, and S ⊂ Dn+1 is a trapping interval or a gap. Then Base(S) ⊂

φn(Base(Rn)). In fact, φn(Base(Rn))\Base(S) has two components adjacent to the two sides
of Base(S): the left component contains

[
αn+1(0),β 1

n+1(0)
]

and the right component contains[
β 0

n+1(1),vn+1
]
.

Proof. The Lemma is true because φn(Base(J))= [αn+1(0),vn+1] contains the base of any trapping
interval and gap in Dn+1. The two intervals

[
αn+1(0),β 1

n+1(0)
]

and
[
β 0

n+1(1),vn+1
]

are contained
in φn(Base(Rn)) but disjoint from Base(S).

Corollary 13.60 (Uniform expansion for Rn
φn⇒ Dn+1). Assume that σ is an admissible unimodal

permutation, f ∈U σ2
, and K ≤

∣∣β 1
n+1(0)−αn+1(0)

∣∣ , ∣∣vn+1−β 0
n+1(1)

∣∣ for some constant K > 0.
If J ⊂ Rn and φn(J)⊂ Dn, then

|φn(J)|Base(φn(J)) > E |J|Base(Rn)

for some constant E > 1 that depends only on K.

Proof. Let L and R be the left and the right component of φn(Base(Rn))\Base(φn(J)) respectively.
Then, L

Base(φn(J))
, R

Base(φn(J))
> K

I by Lemma 13.59 since L contains [αn+1(0),β 1
n+1(0)] and R con-

tains [β 0
n+1(1),vn+1]. By Proposition 2.17, we get

|φn(J)|Base(φn(J)) > E |φn(J)|φn(Base(Rn))
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13.7. Nonexistence of wandering intervals

for some constant E > 1 determined by K.
Also, since φn = sn ◦ f p−1

n has negative Schwarzian derivative and φn is a diffeomorphism from
Base(Rn) to its image, we obtain

|φn(J)|φn(Base(Rn))
≥ |J|Base(Rn)

by Proposition 2.10. This completes the proof of the corollary.

13.6.3. The expansion estimate for a closest approach

Finally, we summarize the expansion estimates by Proposition 13.61. The proposition says that the
hyperbolic lengths of the elements in a closest approach expand at a definite rate. It can be used to
prove the absence of wandering intervals (Theorem 13.63).

Proposition 13.61 (Uniform expansion). Assume that σ is an admissible unimodal permutation.
There exist ε > 0 and E > 1 such that for all f ∈U σ∞

with ‖ fn− fσ‖< ε for n≥ 0, the following
property holds:

Assume that J ⊂ D is a wandering interval of f and {Jn}∞

n=0 is the closest approach of J. If
cr(n) /∈ Jn for all n≥ 0, then

ln ≥ En−p · l0
for all n≥ 0.

Proof. Let K be a positive constant such that K < inf f min
{∣∣∣T 0

f

∣∣∣ , · · · , ∣∣∣T p−1
f

∣∣∣ , ∣∣∣β 1
f (0)−α f (0)

∣∣∣ , ∣∣∣v f −β 0
f (1)

∣∣∣}
where the infimum is evaluated over all unimodal maps f ∈U σ2

with ‖ f − fσ‖< ε . The constant
K can be chosen to be positive when ε > 0 is small enough.

The proposition follows by Proposition 13.37 (Dn
fn→ Dn), Proposition 13.38 (Dn

f p
n⇒ Dn), and

Proposition 13.50 (Qn
Φk

n◦ fn⇒ Dn+ j).

In any p steps Jt → ··· → Jt+p, if the rescaling Qn
Φk

n◦ fn⇒ Dn+ j occurs, then uniform expansion

happens in the p steps by Proposition 13.50 (Qn
Φk

n◦ fn⇒ Dn+ j). Otherwise, the wandering domain

are all in the iteration interval Dn for some n. Then Proposition 13.38 (Dn
f p
n⇒Dn) provides uniform

expansion for the p steps.

13.7. Nonexistence of wandering intervals

In this section, we present a proof for the nonexistence of wandering intervals by using the expan-
sion estimate (Proposition 13.61). This is a classical theorem [Guc79, dMvS88, dMvS89, Lyu89,
BL89, MdMvS92]. The strategy of the proof in this article motivates the proof for the Hénon-like
maps.

By the following proposition and the hyperbolicity of the renormalization operator, without lose
of generality, we may start from a deep level of renormalization and assume that the map is close
to the limiting map fσ .
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13. Expansion Argument for Unimodal Maps

Proposition 13.62. Assume that σ is an admissible unimodal permutation and f ∈ U µ ∪U σ2

where µ is the two-cycle. The unimodal map f has a wandering interval in Pf (0) if and only if its
renormalization R f has a wandering interval in PR f (0).

Proof. The converse follows directly from Proposition 13.26.
For the period-doubling case, we may assume that f has a wandering interval J in P1 by Propo-

sition 13.32. Then φ ◦ f (J) is a wandering interval of R f in PR f (0) by Proposition 13.26.
For the admissible permutation case, the unimodal map f has a wandering interval D f by Propo-

sition 13.32. Also, by Corollary 13.39 later, the map has a wandering interval in R f . Finally, by
Proposition 13.26, the renormalization R f has a wandering interval in PRF .

As an consequence, we obtain

Theorem 13.63. Assume that the unimodal map f is infinitely remormalizable with stationary
combinatorics but not period-doubling infinitely renormalizable. Then the map does not have a
wandering interval.

Proof. Prove by contradiction. Assume that f ∈ U σ∞

has a wandering interval. By the shifting
trick and Proposition 13.62, we may assume that the map f is admissible.

We can assume that the unimodal map f is sufficient close to the hyperbolic fixed point fσ by
Proposition 13.62 and the hyperbolicity of the renormalization operator. That is, ‖ fn− fσ‖< ε for
all n ≥ 0 where ε is given by Proposition 13.61. Also, we may also assume that J is a wandering
interval of f such that the J-closest approach is disjoint from the critical point in its associate
renormalization level by selecting some forward iterates of a wandering interval and Corollary
13.8.

Proposition 13.61 shows that hyperbolic length of the J-closest approach diverges to infinity.
However, this is impossible because the hyperbolic length of gaps and trapping intervals are uni-
formly bounded when the unimodal map is close enough to fσ . Therefore, a wandering interval
cannot exist.
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14. Hénon-like Maps

An introduction to the theory of Hénon-like maps developed by the articles [dCLM05, LM11,
Haz11] is given in this chapter. The tool for vertical graphs in Section 14.2 are new in addition
to the papers which allows us to study the topology of the stable manifolds by the results from
unimodal maps.

14.1. Class of Hénon-like maps

Definition 14.1 (Hénon-like map). Assume that Ih and Iv are compact intervals with Iv ⊃ Ih c I
and δ > 0. A Hénon-like map on Ih× Iv is a map F of the form

F(x,y) = (h(x,y),x)

where h(x,y) is an R-symmetric holomorphic map defined on Ih(δ )× Iv(δ ) and f (x) ≡ h(x,x) ∈
Uδ (Ih). Define ε(x,y) = f (x)−h(x,y) to be the perturbation. The reason to choose this convention
is to ensure that the fixed points are preserved when varying ε . The Hénon-like map can be written
as its standard form

F(x,y) = ( f (x)− ε(x,y),x).

Denote the class of Hénon-like maps as Hδ (Ih× Iv).
We are interested in strongly dissipative Hénon-like maps, the case when the perturbation ε is

small (h is close to a unimodal map). Assume that ε > 0 is small. The class Hδ (Ih× Iv,ε) are the
maps F = ( f − ε,πx) ∈Hδ (Ih× Iv) such that

‖ε‖Ih(δ )×Iv(δ ) ≤ ε.

Fix a unimodal map g ∈Uδ (Ih). The subset Hδ (Ih× Iv,g,ε) is the class of the Hénon-like maps
F = ( f − ε,πx) ∈Hδ (Ih× Iv,ε) such that f ∈Uδ (Ih,g,ε). This is an open ε-cylinder centered at
the degenerate Hénon-like map i(g).

Degenerate Hénon-like maps are important examples of Hénon-like maps. They are maps that
has zero perturbation ε = 0. In this case, the x-component h is exactly the unimodal map f and the
dynamics of the Hénon-like map is fully determined by the unimodal dynamics of f . Unimodal
maps Uδ (Ih) can be identified with degenerate Hénon-like maps Hδ (Ih× Iv,0) by i( f ) = ( f ,πx)
for f ∈ Uδ (Ih). The difference between degenerate and non-degenerate Hénon-like maps lead to
the main difficulty of proving the absence of wandering domains.

For a Hénon-like map, the point a = a(0) = (−1,−1) is a fixed point of F . When ε is small, the
fixed point a is saddle. It has two multipliers λ1 and λ2 with 0≤ |λ1|< d and λ2 ≥ 1+κ−d > 1
where d is a small number that has the order of ε and κ > 0 is the value defined for Uκ . The sign
of the contracting direction λ1 is determined by the sign of Jacobian detDF = ∂ε

∂y at the fixed point
and the sign of λ2 is positive.
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14. Hénon-like Maps

14.2. Separators and Lipschitz curves

Separators and Lipschitz curves are introduced in this section to study the topology of a Hénon-like
map. For a strongly dissipative Hénon-like map, a periodic point has a stable manifold of dimen-
sion one that is associated to the perturbation ε . Some connected components of the manifolds
are separators. They are used to define a partition on the domain which is similar to the partition
defined for unimodal maps.

Definition 14.2 (Separator). Assume that Ih and Iv are intervals. Identify Ih× Iv as a subset in the
R2 plane.

A separator ω is the vertical graph ω = {(u(t), t); t ∈ Iv} of a continuous curve u : Iv→ Ih. The
separator ω is said to have Lipschitz constant L if the curve u is a Lipschitz function with constant
L.

A simple (total) order � can be defined on a collection of disjoint separators X by the order of
the intersection of separators with any horizontal line. The order does not depend on the choice of
horizontal line because a separator intersect a horizontal line at a unique point and the separators
are disjoint. A collection of disjoint separators has the induced order topology [Mun00, Section
14]. The notion of intervals on a ordered set from Section 2.1 is used here.

Definition 14.3 (Vertical Strip). Assume that X is a collection of disjoint separators and I ⊂X is
an interval. A vertical strip S induced by I is the set consists of all points (x1,x2) ∈ Ih× Iv between
any two separators α and β in I. If a vertical strip S is induced by an interval of the form I = [α,β ],
then the vertical strip S is called a vertical strip with boundaries and the separators α and β are
called the boundaries of S. In this article, vertical strips will be identified with intervals of disjoint
separators whenever there is no confusion.

Lipschitz curves are graph of Lipschitz functions which are transverse to separators. In Chapter
16 later, Lipschitz curves will be used to measure the hyperbolic size of a set. The proof of
nonexistence of wandering domain relies on the study of the hyperbolic size for the orbit of a
wandering domain.

Definition 14.4 (Lipschitz Curve). A Lipschitz curve with constant R≥ 0 is the graph Γ= {(t,r(t));
t ∈ Ir} of a Lipschitz function r : Ir→ Iv with constant R defined on a subinterval Ir ⊂ Ih.

Lemma 14.5. Assume that R and L are non-negative constants with 0 ≤ RL < 1. Then the inter-
section of a Lipschitz curve with constant R and a separator with Lipschitz constant L have at most
one point.

Proof. Prove by contradiction. Let r be a Lipschitz function with constant R and ω be the vertical
graph of a Lipschitz curve u with constant L. Assume that the Lipschitz curve of r intersects the
separator ω at two distinct points (a,r(a)) and (b,r(b)).

For the Lipschitz curve r, since r is a Lipschitz function with constant R, we have

|r(b)− r(a)| ≤ R |b−a| . (14.1)

For the separator ω , since u is a Lipschitz function with constant L, we have

|b−a|= |u(r(b))−u(r(a))| ≤ L |r(b)− r(a)| . (14.2)
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Combine (14.1) and (14.2) and the inequality RL < 1, we get

|b−a|< |b−a|

which is a contradiction. This proves the lemma.

Next, we show that the order of a collection of disjoint separators is preserved on the intersection
of the separators with a Lipschitz curve.

Proposition 14.6. Assume that X is a collection of disjoint separators with Lipschitz constant L,
r : [a,b]→ Iv is a Lipschitz function with constant R, 0≤ RL < 1, and α,β ∈X .

1. If α ≺ β and the graph of r intersects α and β at (a,r(a)) and (b,r(b)) respectively, then
a < b.

2. In addition, if ω ∈ (α,β ), then the graph of r intersects ω at a unique point (w,r(w)) with
a < w < b.

Proof. For the first property, if r(a) = r(b) then the intersection belongs to the same horizontal
line y = r(a). Thus, the property follows from the definition of α ≺ β .

Assume the case that r(a) 6= r(b). Let (c,r(b)) be the intersection of the horizontal line y = r(b)
with α . By the definition of α ≺ β , we have c < b. Then

b−a > c−a≥−|c−a| . (14.3)

Since α is a vertical graph of a Lipschitz curve with constant L, we have

|c−a| ≤ L |r(b)− r(a)| (14.4)

Also, since r is a Lipschitz function with constant R, we have

|r(b)− r(a)| ≤ R |b−a| . (14.5)

Combine (14.3), (14.4), and (14.5), we obtain

a−b < L |r(b)− r(a)| ≤ RL |b−a|< |b−a| .

The only possibility to make this inequality holds is a < b. This proves the proposition.
The second property follows from connectivity. The separator ω splits the whole domain

into two connected components: one contains α and the other contains β . The segment Γ =
{(t,r(t)); t ∈ [v,w]} must intersects ω because the two endpoints belong to different components.
Therefore, the inequality follows from the first property and the uniqueness follows from Lemma
14.5.

14.2.1. Induced unimodal map

Induced unimodal map is a tool to study the dynamics of a Hénon-like map on a partition formed by
separators. Strongly disspative Hénon-like maps are similar to unimodal maps in the macroscopic
scale. Induced unimodal map characterizes the similarities of the topology between the two types
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of maps. It will be used later to generalize the dynamical properties on the partition from unimodal
maps to Hénon-like maps.

Compatible separators for Hénon-like maps are analogs of the periodic orbits for unimodal
maps. An example will be given in the next section. It is defined by the following.

Definition 14.7 (Compatible Separators and Induced Map). Given constants ε > 0 and δ > 0,
intervals Ih and Iv with I b Ih ⊂ Iv, and a Hénon-like map F ∈Hδ (Ih× Iv,ε). A pair of collection
of disjoint separators (X ,Y ) for F is compatible if for all α ∈X , there exists β ∈ Y such that
F(α) ⊂ β . The separator β is unique because separators in Y are disjoint. The induced map
f s : X → Y on the pair is defined to be f s(ξ ) = ψ if F(ξ ) ⊂ ψ for ξ ∈X and ψ ∈ Y . A
collection of separators X itself is compatible if (X ,X ) is compatible.

An induced map f s is said to be increasing (resp. decreasing) on an interval I ⊂X if f s(ψ)≺
f s(ξ ) (resp. f s(ψ) � f s(ξ )) whenever α ≺ β for α,β ∈ X . The induced map is said to be
monotone on an interval I ⊂X if it is either increasing or decreasing on the interval. An induced
map g is said to be unimodal if there exists a union X = XL∪XR of nonempty disjoint intervals
XL and XR with ψ ≺ ζ for all ψ ∈XL and ζ ∈XR such that

1. f s is increasing on XL and decreasing on XR and

2. if ψ ∈Xi for i = L or R then F−1( f s(ψ))∩ S(Xi) = ψ where S(Y ) is the vertical strip in
Ih× Iv induced by the interval Xi.

In the remaining part of the article, the function f s will be the induced unimodal map of the
Hénon-like map of interest and the domain of compatible separators will contain all local stable
manifolds in interest.

The first proposition says that we can enlarge the domain of an induce map by taking the union
of two smaller domains.

Proposition 14.8. Given constants ε > 0 and δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, and a
Hénon-like map F ∈Hδ (Ih× Iv,ε). If Y and Z are two collections of compatible separators,
then X = Y ∪Z is also a collection of compatible separators.

In addition, if the two induced maps on Y and Z are both unimodal and the two collections
of separators YL ∪ZL and YR ∪ZR are disjoint intervals in X where Y = YL ∪YR and Z =
ZL∪ZR are the decomposition of the increasing and decreasing intervals, then the induced map
is also unimodal on X .

Proof. The proposition follows from definition.

The next two propositions are important applications of induced unimodal map. One can think
of the induced maps are maps that record the combinatorics properties of a unimodal map or a
Hénon-like map. The first proposition says that if the combinatorics properties of a unimodal map
g and the induced map f s are the same which is identified by the monotone map ι , then the induced
unimodal map f s acts like the unimodal map g on a monotone branch.

Proposition 14.9. Let g : Ih → Ih be a unimodal map, the set X is a collection of compatible
separators, and the induced map f s on X is unimodal. Assume that there exists a monotone map
ι : X ⊂ Ih →X such that g(X) ⊂ X, ι ◦ g = f s ◦ ι and maps points in a monotone branch of g
to the associated monotone branch of f s. If α1,β1,α2,β2 ∈ X, g is monotone on [α1,β1], and
g([α1,β1]) = [α2,β2], then f s([ι(α1), ι(β1)]) = [ι(α1), ι(β1)].
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Proof. Since g is monotone on [α1,β1], boundary points are mapped to boundary points. Without
lose of generality, we assume that g(α1) = α2 and g(β1) = β2. Then f s ◦ ι(α1) = α2 and f s ◦
ι(β1) = β2 since f s is conjugate to g. This shows that f s([ι(α1), ι(β1)]) = [ι(α1), ι(β1)] since f s

is monotone on [ι(α1), ι(β1)].

The second proposition says that the Hénon-like map F acts like the induced unimodal map on
a monotone branch. The two propositions together allow us to generalize the dynamical properties
from unimodal maps to Hénon-like maps of the same combinatorics type.

Proposition 14.10. Assume that X is a collection of compatible separators and the induced map
f s on X is unimodal. If α1,β1,α2,β2 ∈X , f s is monotone on [α1,β1], and f s([α1,β1]) = [α2,β2],
then F([α1,β1])⊂ [α2,β2].

Proof. Let X = Y ∪Z be the decomposition into the increasing and decreasing intervals. As-
sume the case that [α1,β1]⊂ Y . The other case [α1,β1]⊂Z is similar.

Prove by contradiction. Assume that z1 is a point in the vertical strip [α1,β1] and z2 = F(z1)
such that z2 6∈ [α2,β2].

Let Γ be the horizontal line segment connecting α1 and β1 that intersects z1. Then Γ ⊂ L and
the image F(Γ) is a curve connecting α2 and β2 that intersects z2. Since z2 6∈ [α2,β2], the interior
of the curve F(Γ) intersects a boundary of the vertical strip [α2,β2] at some point by connectivity.
Without lose of generality, assume the case that F(Γ) intersects α2 at F(u) where u ∈ Γ. Thus,
u ∈ α1 because F−1(α2)∩S(Y ) = α1 by the definition of induced unimodal map where S(Y ) is
the vertical strip induced by Y . This contradicts to the fact that a horizontal line have at most one
intersection with a separator.

Therefore, F([α1,β1])⊂ [α2,β2].

Remark 14.11. In the statement of the proposition, the equality f s([α1,σ1]) = [α2,β2] means the
interval [α1,β1] ⊂X is mapped to the interval [α2,β2] ⊂X by the induced unimodal map f s.
The equation F([α1,β1]) ⊂ [α2,β2] means the vertical strip [α1,β1] is mapped to a subset of the
vertical strip [α2,β2] by the Hénon-like map F . This type of identification between intervals and
vertical strips will also be used later in this article. The reader should not be confused with this.

14.3. Cycle and Renormalizable

In this section, we begin to study the dynamics of a Hénon-like map by defining two vertical strips
P(0) and P(1) on Ih× Iv that are invariant under some iterations. The set P(0) turns the Hénon-
like map into a self-map which enables us to study the dynamics. The other set P(1) defines a first
return map of a Hénon-like map which allows us to setup the notion of Hénon renormalizable. The
vertical strips are similar to the intervals and the boundary separators are similar to the periodic
orbits that are defined for unimodal maps. The same notation for the intervals and periodic orbits
from unimodal maps will be adopted to Hénon-like maps in this section.

A Hénon-like map in interest has two saddle fixed points. First, consider the fixed point a(0)
with the expanding positive multiplier as follows.

Definition 14.12. Given ε > 0 small, δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, and a Hénon-like
map F ∈Hδ (Ih× Iv,ε). The fixed point a(0) is saddle. The expanding multiplier is positive and

157



14. Hénon-like Maps

associated to the direction tangent to the graph of the unimodal part f . The contracting multiplier
is associated to the strongly dissipative part ε . We focus on the stable manifold associated to the
contracting multiplier.

1. If the connect component of the stable manifold that contains a(0) is a separator, define α(0)
to be the component.

2. If the preimage F−1(α(0)) has two components, one of the component is α(0) itself. Define
α(0) to be the other component if it is also a separator.

3. Define P(0) to be the vertical strip [α(0),α(0)].

Then, consider the other fixed point b(0) with the expanding negative multiplier as follows.

Definition 14.13. Given ε > 0 small, δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, and a Hénon-like
map F ∈Hδ (Ih× Iv,ε). Write F = ( f − ε,x). Assume that f has a unique fixed point bx with
negative multiplier that satisfies λ 2 ≥ 1+κ and ε � κ . Then the Hénon-like map has a saddle
fixed point b = b(0)≡ (bx,bx). The contracting multiplier is associated to the strongly dissipative
part ε . And the expanding multiplier is negative. The separators β (0) and β (0) are components of
the stable manifold for b(0) that are defined similar to the stable manifolds in Definition 14.12.

The domain P(0) turns the Hénon-like map to be a self-map as follows.

Proposition 14.14. Given δ > 0 and intervals Ih and Iv with I b Ih ⊂ Iv. There exist ε = ε(κ)> 0
and c > 0 such that for all F ∈Hδ (Ih× Iv,ε), the following properties hold:

1. The separators α(0) and α(0) exist. They are separators with Lipschitz constant c‖ε‖.

2. The set {α(0),α(0)} forms a collection of compatible separators and f s is an induced uni-
modal map on the separators.

3. F(P(0))⊂ P(0).

In addition, if f has a unique fixed point bx that satisfies the properties in Definition 14.13, then

4. The separators β (0) and β (0) exist. They are also separators with Lipschitz constant c‖ε‖.

5. The set {α(0),α(0),β (0),β (0)} forms a collection of compatible separators and f s is an
induced unimodal map on the separators.

Proof. The first and second properties follow from the graph transformation. See [LM11, Lemma
3.1, 3.2] for the period-doubling case.

The third property follows from the definition of the local stable manifolds when ε = ε(κ)> 0
is sufficiently small.

Cyclic sets are analog of cyclic intervals for the unimodal maps in Definition 13.2. They are
defined as follows.

Definition 14.15 (Cycle). Given δ > 0, intervals Ih and Iv with I b Ih⊂ Iv, a unimodal permutation
σ , a unimodal map g ∈ U σ

δ
(Ih), and ε > 0 small. Assume F ∈Hδ (Ih× Iv,g,ε) is a Hénon-like

map and the two separators β (0) and β (0) exist. Let p = |σ |.
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1. First, we assume that there exist a periodic orbit {at(1)}p−1
t=0 and an orbit of separators

{α t(1)}p−1
t=0 which are all local stable manifolds containing the periodic points that satisfy

the following properties. There are two different cases: p = 2 and p≥ 3.
For the case p = 2, set a(1) = a0(1) = a1(1) = b(0) and α(1) = α0(1) = α1(1) = β (0).
For the case p≥ 3, when ε is small, assume the map has a saddle periodic orbit {at(1)}p−1

t=0
on P(0) with period p that is close to the periodic orbit of the degenerate map i(g). The orbit
has two multipliers. The contracting multiplier is associated to the strongly dissipative part
ε . The expanding multiplier is positive and satisfies λ2 ≥ 1+κ−d > 1. For each point z in
the periodic orbit, assume that the connected component of the stable manifold that contains
z is a separator. The p separators are disjoint and defines an order mentioned in Definition
14.2. Define α(1) to be the largest separator containing the periodic point a(1). Also, define
at(1) = F t(a(1)) and α t(1) be the separator that contains at(1) for t = 0, · · · , p− 1. The
order of the separators coincide with the order of the periodic points of g and the induced
map f s acts like the unimodal permutation σ on the separators.

2. Assume the preimage F−1(α0(1)) has two components. The component containing the
periodic point ap−1(1) is α p−1(1). Define α p−1(1) to be the other component if it is also a
separator. The vertical strip Pp−1 = [α p−1(1),α p−1(1)] is called the center cyclic set. The
complement P(0)\ int(Pp−1) contains two components L and R. One can think L and R are
the orientation preserving and reversing parts of the Hénon-like map. The sets L and R will
be extended to some larger sets that are monotone later in Definition 14.35.

3. Define {α t(1)}p−1
t=0 by induction in the reverse order on t. Assume that α t+1(1) exists. If

α t(1) ⊂ L, define α t(1) = F−1(α t+1(1))∩ L if it is a separator. Similarly, if α t(1) ⊂ R,
define α t(1) = F−1(α t+1(1))∩R if it is a separator. Set α(1) = α0(1).

4. Define Pt be the vertical strip [α t(1),α t(1)] for t = 0, · · · , p−1.

5. Assume that the sets {Pt}p−1
t=0 exists. The collection {Pt}p−1

t=0 is called a cycle if the sets are
disjoint and F(Pp−1)⊂ P0. A set in cycle is called a cyclic set. Set P(1) = P0.

See Table 14.1 for a summary of the notations.

Remark 14.16. By definition, the local stable manifolds form an orbit α0(1)→ ··· → α p−1(1)→
α0(1)→ ··· → α p−1(1)→ α0(1) of the induced map f s.

Remark 14.17. By identifying the periodic orbits of the unimodal map g with the orbits of the local
manifolds, the unimodal map g is conjugated to the induced unimodal map f s from the periodic
orbits to the local stable manifolds because orbit points are mapped to orbit points. See Figure 14.1.
The identification is monotone because the order is preserved by the definition of renormalizable.
Thus, the topological results for the unimodal map g also holds for the induced unimodal map f s

by Proposition 14.9. Moreover, the topological properties for the induced unimodal map f s (on
a monotone branch) can be generalized to the Hénon-like map F by Proposition 14.10. This will
be used later in the proof of the expansion argument to generalize the topological properties for
unimodal maps to Hénon-like maps.

The next proposition and corollary show the existence of the objects and allow us to define a
first return map for the Hénon-like map.
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Figure 14.1.: The relation between the unimodal map, induced unimodal map, and the Hénon-like
map.

Proposition 14.18. Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, a unimodal permutation
σ , and a unimodal map g ∈ U σ

δ
(Ih). There exist ε = ε(σ) > 0 and c > 0 such that for all F ∈

Hδ (Ih× Iv,g,ε) the following properties hold:

1. The periodic orbit at(1) and the separators α t(1) and α t(1) exist for t = 0, · · · , p− 1. In
fact, α t(1) and α t(1) are separators with Lipschitz constant c‖ε‖.

2. The set {α(0),α(0),α0(1),α0(1), · · · ,α p−1(1),α p−1(1)} forms a collection of compatible
separators and f s is an induced unimodal map on the separators. The map f s is increas-
ing on [α(0),α p−1,L(1)] and decreasing on [α p−1,R(1),α(0)] where α p−1,L(1),α p−1,R(1)∈
{α p−1(1),α p−1(1)} with α p−1,L(1)≺ α p−1,R(1).

Proof. The first and second properties are proved by graph transformation. See [LM11, Lemma
3.1, 3.2] for the period-doubling case.

Corollary 14.19. Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, a unimodal permutation σ ,
and a unimodal map g∈U σ

δ
(Ih). There exists ε = ε(σ)> 0 such that for all F ∈Hδ (Ih× Iv,g,ε)

the sets {Pt}p−1
t=0 exists and F(Pt)⊂ Pt+1 for 0≤ t < p−1.

Proof. The corollary follows from f s(Pt) = Pt+1, f s is monotone on Pt , and Propositions 14.10
and 14.18.

Remark 14.20. The corollary does not say that the inclusion F(Pp−1)⊂P0 holds for all Hénon-like
maps close to the degenerate map g. In other words, it does not guarantee that the sets Pt form a
cycle.

Finally, renormalizable is defined as follows.

Definition 14.21 (Renormalizable). Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, a unimodal
permutation σ , a unimodal map g ∈ U σ

δ
(Ih), and ε = ε(σ) > 0 small. A Hénon-like map F ∈

Hδ (Ih× Iv,g,ε) is said to be renormalizable of combinatorial type σ if

1. the map has a cycle {Pt}p−1
t=0 and

2. the order of the separators α(0), α(0), β (0), β (0), α0(1), · · · , α p−1(1), α0(1), · · · , α p−1(1)
coincide with the order of the corresponding periodic points for a renormalizable unimodal
map g.
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The class of renormaizable Hénon-like maps of combinatorial type σ is denoted as H σ

δ
(Ih×

Iv,g,ε). Set H σ

δ
(Ih× Iv,ε) = ∪g∈U σ

δ
(Ih)H

σ

δ
(Ih× Iv,g,ε).

Remark 14.22. From the definition, the topological properties for unimodal maps can be general-
ized to induced unimodal maps on separators because the order of the separators is preserved for
all renormalizable maps with the same combinatorics σ by definition. Proposition 14.10 can be
used to generalize the dynamical properties from unimodal maps to Hénon-like maps.

14.4. Renormalization operator

When a Hénon-like map is renormalizable, the cyclic sets forms a periodic orbit

P(1) = P0→ ··· → Pp−1→ P0.

Thus, a first return map can be defined on P(1). However, it is no longer a Hénon-like map by
direct computation. The article by [Haz11] generalized the renormalization operator to arbitrary
stationary combinatorics. It introduced a nonlinear rescaling H(x,y) ≡ (πx ◦F p−1(x,y),y) to turn
the first return map into a Hénon-like map. The following proposition defines the renormalization
operator.

Proposition 14.23 (Renormalization operator). Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv,
and a unimodal permutation σ . There exist constants ε > 0 and c > 0 such that for all F ∈
H σ

δ
(Ih× Iv,ε) there exists an R-symmetric affine map s = s(F) that depends continuously on F

and its orientation depends only on σ so that the following properties hold:
Let Λ(x,y) = (s(x),s(y)) and φ = Λ◦H.

1. The renormalization RF ≡ φ ◦F p◦φ−1 is an Hénon-like map in the class of H σ

δ
(Ih× Iv) for

some δR > 0 and intervals Ih
R and Iv

R. The intervals satisfy Iv
R ⊃ Ih

R c [−1,1] and Iv
R = s(Iv).

2. The domain Ih
R× Iv

R contains PRF(0).

3. The rescaling map φ : PF(1)→ PRF(0) is a diffeomorphism on the restriction. It has a
holomorphic extension on some complex neighborhood of PF(1) with image containing
Ih
R(δR)× Iv

R(δR). It preserves the orientation on the x-direction.

4. The renormalization has the representation RF = ( fR−εR,x) where fR ∈UδR(I
h
R). It satisfies

the relations
‖ fR−R f‖Ih

R(δR)
< c‖ε‖

and
‖εR‖Ih

R(δR)×Iv
R(δR)

< c‖ε‖p . (14.6)

Proof. See [dCLM05, Section 3.5] for the period-doubling case and [Haz11, Section 3.2] for arbi-
trary stationary combinatorics.

From the renormalization operator, we are able to define infinitely renormalizable maps for
strongly dissipative Hénon-like maps.
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Definition 14.24 (infinitely Renormalizable). Assume that ε > 0 is sufficiently small, δ > 0, in-
tervals Ih and Iv with I b Ih ⊂ Iv, and σ is a unimodal permutation. Denote H σ∞

δ
(Ih× Iv,ε) ⊂

H σ

δ
(Ih× Iv,ε) to be the class of infinitely renormalizable Hénon-like map with stationary combi-

natorics σ .
For an infinitely renormalizable map F ∈ H σ∞

δ
(Ih× Iv,ε), define Fn = RnF . The subscript

n is called the renormalization level. Subscript is used to indicate the associate renormalization
level of an object. For example, the maps Hn, sn, Λn, and φn with subscript n are the rescaling
functions for Fn in Proposition 14.23. The vertical domain Iv

n satisfies Iv
0 = Iv and the recurrent

relation Iv
n+1 = sn(Iv

n) for all n ≥ 0. The points an(0) and bn(0) are the saddle fixed points of Fn.
The separators αn(0), αn(0), βn(0), βn(0), αn(1), and αn(1) are the local stable manifolds for
Fn defined in Definitions 14.12 and 14.15. The sets Pn(0) and Pn(1) are the vertical strips for Fn
defined in Definitions 14.12 and 14.15.

Also, define Φ
j
n = φn+ j−1 ◦ · · · ◦φn for j ≥ 1, Φ0

n = id, and λn = s′n(x).

Recall from page 130 that fσ ∈ U is the fixed point of the unimodal renormalization operator
with combinatorics σ and λσ is its rescaling constant.

The renormalization operator is hyperbolic. The following proposition summarizes the proper-
ties of an infinitely renormalizable Hénon-like map.

Proposition 14.25 (Hyperbolicity of the Renormalization operator). Given δ > 0, intervals Ih and
Iv with I b Ih ⊂ Iv, and a unimodal permutation σ . There exist ρ < 1 (universal), ε > 0, c > 0
such that for all F ∈H σ∞

δ
(Ih× Iv,ε) there exist a constant δR with 0 < δR < δ , an interval Ih

R with
I b Ih

R ⊂ Ih, and a constant b = b(F) ∈ R so that the following properties hold:
Let Fn = RnF be the n-th renormalization of F. Then Fn ∈H σ

δR
(Ih

R× Iv
n,ε) for all n ≥ 0 and its

representation Fn = ( fn− εn,x) satisfies

1. ‖ fn− fσ‖Ih
R(δR)

< cρn ‖F− i( fσ )‖Ih
R(δR)×Iv(δR)

,

2.
∥∥εn+ j

∥∥
Ih
R(δR)×Iv

n+ j(δR)
< c‖εn‖p j

Ih
R(δR)×Iv

n(δR)
,

3. εn(x,y) = bpn
aσ (x)(y− x)(1+O(ρn)) (universality)

for all n ≥ 0 where aσ (x) is a universal analytic positive function. The value δR in the estimates
can be replaced by any smaller positive number.

Proof. See [dCLM05, Theorem 3.5, 4.1, 7.9, and Lemma 7.4] for the period-doubling case and
[Haz11, Theorems 3.10, 3.11, and 6.1] for arbitrary stationary combinatorics.

Remark 14.26. The value b is called the average Jacobian of F . See [dCLM05, Section 6] and
[Haz11, Definition 3.19].

Abbreviate ‖εn‖= ‖εn‖Ih
R(δR)×Iv

n(δR)
when the context is clear.

To study wandering domain, it is enough to consider Hénon-like maps that are close to the
hyperbolic fixed point i( fσ ). By Proposition 18.12 later, an infinitely renormalizable Hénon-like
map F has a wandering domain in D(F) if and only if Fn has a wandering domain in D(Fn) for
all n ≥ 0. Also, the n-th renormalized map converges to the fixed point i( fσ ) as n→ ∞ by the
hyperbolicity of the renormalization operator (Proposition 14.25). Thus, without lose of generality,
we may focus on a small neighborhood of the fixed point i( fσ ).
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14.5. Topological Structure of Infinitely Renormalizable Maps

Definition 14.27. Given ε > 0 small, δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, and a unimodal
permutation σ . Define I σ

δ
(Ih× Iv,ε) to be the class of non-degenerate infinitely renormalizable

Hénon-like maps F ∈ H σ∞

δ
(Ih × Iv,ε) that are sufficiently close to the hyperbolic fixed point

i( fσ ): ‖Fn− i( fσ )‖< ε , the partial derivative ∂ jπx◦Ft
n

∂x j is ε-close to the limiting case D j( f t
σ ) for t ∈

{1,2, · · · , p} and j ∈ {1,2,3}, |λn−λσ | < ε , ‖sn(x)− (−λσ )x‖Ih < ε , and
∥∥∥∂εn

∂y

∥∥∥
Ih×Iv

n

≥ c
|Iv

n |
‖εn‖

for all n≥ 0.

Remark 14.28. The technical conditions for the partial derivatives are required by Propositions
17.3, 17.26, and 17.29. These theorems are used to generalize the expansion of hyperbolic length
under the iteration by unimodal maps with negative Schwarzian derivative to Hénon-like maps.
Remark 14.29. For any Hénon-like map F ∈H σ∞

δ
(Ih× Iv,ε) with ε > 0 sufficiently small, the

condition
∥∥∥∂εn

∂y

∥∥∥
Ih×Iv

n

≥ c
|Iv

n |
‖εn‖ from Definition 14.27 holds for all n large enough. The condition

comes from the universality of the tip. See Lemma 5.31 for the proof of the period-doubling case.
It controls the Jacobian of the map and is required by the area argument (Proposition 18.2) later.

14.5. Topological Structure of Infinitely Renormalizable Maps

Stable manifolds form the topology of a Hénon-like map. The macroscopic scale of the topology
is characterized by the stable manifolds of the fixed points a and b. If the Hénon-like map is
renormalizable, it means that the microscopic structure of the topology is controlled by the pull-
back of a similar topology from some deeper level of renormalization using the rescaling map.
Therefore, the condition infinitely renormalizable builds a self-similarity of the topology between
the macroscopic and microscopic scale.

In this article, two types of local stable manifolds α( j) and β ( j) are used to study the topology.
They are associated to the two types of fixed points a (with a positive expanding multiplier) and b
(with a negative expanding multiplier) respectively. The value j means the associate scale (pulled
back from j-deeper level) of the local stable manifold. The definitions are as follows.

Definition 14.30 (Periodic Points). Given ε > 0 sufficiently small, δ > 0, intervals Ih and Iv with
I b Ih ⊂ Iv, a unimodal permutation σ , and F ∈H σ∞

δ
(Ih× Iv,ε). See Table 14.1 for a summary

of the notations.
Define an( j) =

(
Φ

j
n

)−1
(an+ j) and bn( j) =

(
Φ

j
n

)−1
(bn+ j) for integers n≥ 0 and j ≥ 0.

Define αn( j) =
(

Φ
j
n

)−1
(αn+ j), αn( j) =

(
Φ

j
n

)−1
(αn+ j), βn( j) =

(
Φ

j
n

)−1
(βn+ j), βn( j) =(

Φ
j
n

)−1
(βn+ j), and Pn( j) =

(
Φ

j
n

)−1
(Pn(0)) for integers n≥ 0 and j ≥ 0.

Remark 14.31. The definition is consistent with the previous definition of a( j), α( j), α( j), and
P( j) for j = 1.

The next proposition summarizes the properties of the local stable manifolds for an infinitely
renormalizable Hénon-like map with stationary combinatorics.

Proposition 14.32. Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, and a unimodal permutation
σ . There exist ε > 0, c > 0, and c′ > 1 such that for all F ∈ H σ∞

δ
(Ih× Iv,ε), the following

properties hold for all n≥ 0:
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14. Hénon-like Maps

lettert,( j)
n (k)

letter

F Hénon-like map
φ Rescaling map

Φ
j
n Rescaling from level n to level n+ j

a Periodic or fixed point with a positive expanding multiplier
b Periodic or fixed point with a negative expanding multiplier
t Tip

Greek Separator (or local stable manifold): α , β , τ

α Local stable manifold of a
β Local stable manifold of b
τ Stable manifold of the tip t

capital Vertical strip: B, C, D, P, T , Q, R
B The vertical strip [β 0(1),α0(1)]
C The vertical strip [α1(1),β 1(1)]
D Iteration set
P Cyclic set (Sets invariant under iterations)
T Trapping set
Q Prerescaling set / Prerescaling level
R Rescaling set / Rescaling level

n Renormalization level. The object belongs to the domain of Fn = RnF .

t
Time. The superscript is neglected when t = 0.
e.g. F t

n = Fn ◦ · · · ◦Fn (t times) , Φt
n = φn+t−1 ◦ · · · ◦φn+1 ◦φn

e.g. Pn(1) = P0
n , P0

n
Fn→ P1

n
Fn→ P2

n
Fn→ ·· · Fn→ Pp−1

n

( j) Row. See Definition 18.4.

k

Rescaling level. The point or set that is pulled back from k levels deeper.

e.g. Pn(2)
φn→ Pn+1(1)

φn+1→ Pn+2(0),

e.g. F p2

n (Pn(2))⊂ Pn(2), F p
n (Pn(1))⊂ Pn(1), F p0

n (Pn(0))⊂ Pn(0)

e.g. Rn(2)
φn→ Rn+1(1)

φn+1→ Rn+2(0)⊂ Dn+2∪Bn+2

Table 14.1.: Summary of notations.
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14.5. Topological Structure of Infinitely Renormalizable Maps

1. The points an( j) and bn( j) are periodic points of Fn. When p 6= 2, the points an( j) and bn( j)
has period p j for all j≥ 0. When p = 2, the points coincide an( j+1) = bn( j) and bn( j) has
period p j for all j ≥ 0.

2. The sets αn( j) and αn( j) are local stable manifolds of the periodic point an( j) and the sets
βn( j) and βn( j) are local stable manifolds of the periodic point bn( j).

3. (analog of the critical value) The intersection contains exactly one point

{tn}= ∩∞
j=0
(
Φ

j
n
)−1
(

Pn+ j(0)∩
(

Ih× Ih
))

.

The point tn is called the tip of the Hénon-like map Fn.

4. (geometric property) The local stable manifolds αn( j), αn( j), βn( j), and βn( j) are separa-
tors with Lipschitz constant c‖εn‖ for all j ≥ 0. The local stable manifolds all converges to
the “local stable manifold of the tip” τn as j→∞. On the horizontal slice that intersects the
tip tn, the manifolds satisfies the inequality

1
c′

(
1

λσ

)2 j

< |zn( j)− tn|< c′
(

1
λσ

)2 j

where zn( j) is the intersection point of any one of the local stable manifolds αn( j), αn( j),
βn( j), and βn( j) with the horizontal line that intersects the tip tn.

5. (self-similarity) The local stable manifolds satisfies the order

αn( j)≺ βn( j)≺ βn( j)≺ αn( j+1)≺ αn( j+1)≺ αn( j)

for all j ≥ 0.

Proof. The first two properties follow from the definition of the rescaling map φn and the definition
of renormalization.

The third property comes from [dCLM05, Chapter 5] for the period-doubling case and [Haz11,
Section 3.4 and Chapter 5] for the arbitrary stationary combinatorics case.

The proof of the fourth property is similar to [LM11, Proposition 3.5]. The next lemma, Lemma
14.34, proves that the local manifolds are separators with Lipschitz constant c‖εn‖. The estimation
of the cross-section comes from [Haz11, Proposition 5.6]. They all converges to the same set τn
as j→ ∞ because no open sets can be rescaled infinity many times since the horizontal domain is
bounded.

The fifth property is true because it holds for j = 0 by the definition of renormalizable. The
property also holds for other j values because the rescaling map φn preserves the orientation along
the x-direction.

Remark 14.33. One can also define the orbit at( j) = F t(a( j)) of the periodic point a( j) for t =
0, · · · , p j− 1. The reason to start from the index t = 0 here and in Definition 14.15 is because of
the equality at

n+1( j) = φn(a
pt
n ( j+1)) for t = 0, · · · , p j−1.
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14. Hénon-like Maps

Lemma 14.34. Given δ > 0, c > 0, intervals Ih and Iv with I b Ih ⊂ Iv, and a unimodal permuta-
tion σ . There exists ε > 0 such that for all F ∈H σ

δ
(Ih× Iv,ε) the following property holds for all

n≥ 0:
Assume that ω is a separator with Lipschitz constant c‖εRF‖ in PRF(0). Then χ = φ−1(ω) is a

separator with Lipschitz constant c‖εF‖ in PF(1).

Proof. The proof is similar to [LM11, Proposition 3.5].

14.6. Trapping Sets and Gaps

Trapping sets and gaps are introduced in this section. They are generalizations of the intervals
from Definition 13.14. Extending the topological properties from unimodal maps to Hénon-like
maps are routine but not trivial. It relies on the tools developed in Section 14.2 and the definition
of Hénon-renormalization. Justifications will be left to the reader for properties that are similar
to unimodal maps. To obtain the uniform expansion of the hyperbolic size, the dynamics of the
Hénon-like map will be studied on a smaller set partitioned by trapping sets and gaps instead of
the larger domain P(0).

Definition 14.35 (Trapping Set and Gap). Given ε > 0 sufficiently small, δ > 0, intervals Ih and
Iv with I b Ih ⊂ Iv, a unimodal permutation σ , and F ∈H σ∞

δ
(Ih× Iv,ε).

Define β 0(1) = β (1) and β 0(1) = β (1). The sequence of local stable manifolds {β t(1)}p−1
t=0

and {β t(1)}p−1
t=0 are defined similar to the local stable manifolds {α t(1)}p−1

t=0 and {α t(1)}p−1
t=0 . See

Definition 14.15.
The trapping sets are defined to be T t = [β t(1),β t(1)] for t = 0, · · · , p−1. The set T p−1 is called

the center trapping set.
A gap is a vertical strip between two neighboring trapping intervals. Precisely, it is a connected

component of [β 1(1),β 0(1)]\∪p−1
t=2 int(T t).

For the local stable manifold β (1), assume the preimage F−1(β (1)) contains two components
and the two components are separators. Define θ L and θ R to be the left and right components of
the preimage respectively.

Figure 14.1a shows an example for the period-tripling case.

The following proposition summarizes the geometric properties of the local stable manifolds.

Proposition 14.36. Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, and a unimodal permutation
σ . There exist ε > 0 and c > 0 such that for all F ∈H σ∞

δ
(Ih× Iv,ε), the following properties

hold:

1. The separators β t(1), β t(1), θ L, and θ R exist for t = 0, · · · , p− 1. In fact, the local stable
manifolds are separators with Lipschitz constant c‖ε‖.

2. The set {α(0),α(0),β (0),β (0),α0(1),α0(1),β 0(1),β 0(1), · · · ,α p−1(1),α p−1(1),β p−1(1),
β p−1(1),θ L,θ R} forms a collection of compatible separators and f s is an induced unimodal
map on the separators. The induced unimodal map f s is increasing on [α(0),β p−1,L(1)]
and decreasing on [β p−1,R(1),α(0)] where β p−1,L(1),β p−1,R(1)∈{β p−1(1),β p−1(1)}with
β p−1,L(1)≺ β p−1,R(1).
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14. Hénon-like Maps

Proof. The first and second properties are proved by graph transformation. See [LM11, Lemma
3.1, 3.2] for the period-doubling case.

Corollary 14.37. Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, and a unimodal permutation
σ . There exists ε > 0 such that for all F ∈H σ∞

δ
(Ih× Iv,ε), we have

1. F(T t)⊂ T t+1 for 0≤ t < p−1 and

2. F(T p−1)⊂ [β 0(1),α0(1)].

Proof. The first property follows from g(T t) = T t+1, Propositions 14.10, and 14.36.
For the second property, we have F(T p−1) ⊂ [α0(1),α0(1)] = P0 by the definition of a renor-

malizable map. The image F(T p−1) is disjoint from the interior of the vertical strip [α0(1),β 0(1)]
because that the interior of the preimage F−1([α0(1),β 0(1)]) = [α p−1(1),β p−1(1)]∪ [β p−1(1)
,α p−1(1)] is disjoint from T p−1.

14.7. Dynamics of Wandering Domain

The dynamics of a wandering domain is studied in this section. Recall the definition of a wandering
domain.

Definition 14.38 (Wandering domain). Given ε > 0 sufficiently small, δ > 0, and intervals Ih

and Iv with I b Ih ⊂ Iv. Assume that F ∈ Hδ (Ih× Iv,ε), P(0) exists, and F is an open map
(diffeomorphism from P(0) to its image). A nonempty connected open set J ⊂ P(0) is a wandering
domain of F if the orbit elements {Fn(J)}n≥0 are disjoint from the stable manifolds of any periodic
point.

A wandering domain can be constructed from a wandering domain by iteration and rescaling.

Proposition 14.39. Assume that ε > 0 is sufficiently small, δ > 0, Ih and Iv are intervals with
I b Ih ⊂ Iv, σ is a unimodal permutation, and F ∈H σ

δ
(Ih× Iv,ε).

1. If J ⊂ P(0) is a wandering domain of F, then F(J)⊂ P(0) is also a wandering domain of F.

2. If J ⊂ PF(1) is a wandering domain of F, then φ(J)⊂ PRF(0) is a wandering domain of RF.

A wandering domain will be iterated or rescaled based on the dynamics on the iteration set and
the rescaling set. The sets are similar to the intervals defined for the unimodal case with some
adjustments due to the fact that F(Pp−1) 6⊂ [α0(1),τ] for the non-degenerate case where τ is the
local stable manifold of the tip t defined in Proposition 14.32. The sets are defined as follows.

Definition 14.40. Given ε > 0 sufficiently small, δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, a
unimodal permutation σ , and F ∈H σ∞

δ
(Ih× Iv,ε).

The iteration set is defined to be D = [β 1(1),β 0(1)].
The rescaling set is defined to be R = [β 0(1),α(2)]. The rescaling level j in R is defined to be

R( j) = RL( j)∪RR( j) where RL( j) = [β ( j),β ( j+1)] and RR( j) = [α( j+2),α( j+1)] for j ≥ 0.
Let RL = ∪∞

j=1RL( j) and RR = ∪∞
j=1RR( j).
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14.7. Dynamics of Wandering Domain

The prerescaling set is defined to be Q = [θ L,θ R]. The rescaling level j in Q is defined to be
Q( j) = F−1(R( j)) for j ≥ 1.

Define B = [β 0(1),α0(1)] and C = [α1(1),β 1(1)].
See Figure 14.1 for an example of the period-tripling case.

Remark 14.41. The rescaling levels in Q cannot be defined by boundary separators. This is because
that the preimage of the local stable manifolds may not be separator in general. The levels where
this happen are the locations where the expansion argument breaks down. See Figure 6.1, Figure
9.1, and Proposition 15.2 later.

The rescaling level of a set on the rescaling set R or the prerescaling set Q is defined as follows.

Definition 14.42 (Rescaling level). Assume that U ⊂ R is a connected set that does not intersect
any stable manifolds. The rescaling level of U in the rescaling set R is the positive integer k(U)
such that U ⊂ R(k(U)).

Similarly, if U ⊂ Q is a connected set that does not intersect any stable manifolds, the rescaling
level of U in the prerescaling set Q is the positive integer k(U) such that U ⊂ Q(k(U)). For
convenience, set k(U) = 0 if U ⊂ B∪C∪ (D\Q).

We will consider wandering domains that belongs to B, C, D, or R. A wandering domain will be
iterated or rescaled by the following rules:

1. If the wandering domain is in B, C, or D, then it is iterated by F .

2. If the wandering domain is in R, then it is rescaled by φ .

The next goal is to shows that the rescale orbit of a wandering domain that follows the rule always
stays inside the sets B, C, D, and R. The vertical strips B and C, which are addition to the unimodal
case, come from the case when the orbit of a wandering domain enters the bad region which will be
defined later in Chapter 15. The following proposition generalizes Proposition 13.30 to Hénon-like
maps.

Proposition 14.43. Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, and a unimodal permutation
σ . There exists ε > 0 such that for all F ∈ H σ∞

δ
(Ih× Iv,ε) and n ≥ 0, the iteration set and

rescaling set satisfy the following properties:

1. Fn(Qn)⊂ T 0∪B = Rn∪RR
n (0).

2. Fn(Dn)⊂ Dn∪Rn∪RR
n (0).

3. Fn(Bn)⊂Cn.

4. Fn(Cn)⊂ Gn ⊂ Dn if p≥ 3 where Gn is the gap left to T 2
n .

5. Rn =∪∞
j=1Rn( j). For j≥ 1, φn(Rn( j))=Rn+1( j−1), φn(RL

n( j))=RL
n+1( j−1), and φn(RR

n ( j))
= RR

n+1( j−1).

6. φn(Rn) = Rn+1(0)∪Rn+1 and RR
n (0)⊂ Bn. If σ is admissible, then RL

n(0)⊂ Dn.
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14. Hénon-like Maps

In addition, when the map F is close to the fixed point i( fσ ), i.e. F ∈I σ

δ
(Ih× Iv,ε) for some small

ε > 0, the first two conditions can be improved as

1. Fn(Qn)⊂ Rn and

2. Fn(Dn)⊂ Dn∪Rn.

Proof. The first property is true because Fn(T
p−1

n )⊂ [β 0
n (1),α0

n (1)] by Corollary 14.37 and f s
n([θ

L
n ,

β
p−1,L
n (1)]) = f s

n([β
p−1,R
n (1),θ R

n ]) = T 0
n where β

p−1,L
n (1),β p−1,R

n (1) ∈ {β p−1
n (1),β p−1

n (1)} and
β

p−1,L
n (1)≺ β

p−1,R
n (1). Thus, Fn(Qn)⊂ Rn∪ [αn(2),αn(1)] by Proposition 14.10.

To prove the second property, the iteration set Dn can be separated into three parts [β 1
n (1),θ

L
n ],

[θ R
n ,β

0
n (1)], and Qn. The iteration of the first two components are

f s
n([β

1
n (1),θ

L
n ]) = [β 2

n (1),β 0
n (1)]⊂ Dn

and
f s
n([θ

R
n ,β

0
n (1)]) = [β 1

n (1),β 0
n (1)]⊂ Dn.

Thus, the second property follows from Proposition 14.10.
The third property follows from f s

n(Bn) =Cn and Proposition 14.10.
The fourth property follows from f s

n(Cn) = [α2(1),β 2(1)], Proposition 14.10, and the vertical
strip [α2(1),β 2(1)] is inside the gap left to T 2

n when p≥ 3.
The fifth property follows from definition of the boundary local stable manifolds and Proposition

14.32.
For the last property, φn(Rn) = Rn+1(0)∪Rn+1 follows from the fifth property. The property

RR
n (0) ⊂ Bn follows from the fifth property of Proposition 14.32. See Figure 14.1b. If σ is ad-

missible, then the property RL
n(0)⊂ Dn holds because Hénon-like maps preserves the order of the

period orbits from unimodal maps. See the second property of Proposition 13.30 for the proof.
Note that the results for admissible permutations also apply to Hénon-like maps.

When the map is close to the fixed point i( fσ ), we have Fn(Pn(0))∩RR
n (0) = φ by Proposition

15.2 (first property of the good region) later. This gives the improvement of the first two conditions.

It is sufficient to study the problem of wandering domain in the iteration set because of the
following proposition.

Proposition 14.44. Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, and a unimodal permutation
σ . There exists ε > 0 such that if F ∈H σ

δ
(Ih× Iv,ε) has a wandering domain in P(0), then it

also has a wandering domain in the vertical strip [β (0),β (0)]. In particular, if σ is an admissible
permutation and F ∈H σ2

δ
(Ih× Iv,ε), then F has a wandering domain in D.

Proof. The proof is similar to the unimodal case Proposition 13.32. The vertical strip P(0) can be
partitioned into three components: [α(0),β (0)], [β (0),β (0)], and [β (0),α(0)]. The components
satisfy f s([α(0),β (0)]) = f s([β (0),α(0)]) = [α(0),β (0)]∪ [β (0),β (0)]. Thus, we only need to
consider the orbit of a wandering domain on the vertical strip [α(0),β (0)]. When a wandering
domain is close to the saddle fixed point a(0), its orbit follows the unstable manifold and moves
away from the point. When a wandering domain is far from the saddle fixed point, the x-component
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14.7. Dynamics of Wandering Domain

RR
n−1

φn−1 //

φn−1

!!

RR
n

φn // · · ·

Bn
Fn //Cn

Fn // Dn
� � //

Fn

��
Qn

Fn

��

Fn
??

RL
n−1

φn−1 //

φn−1

44

RL
n

φn // · · ·
(a) Brief diagram of the dynamics in different levels.

Cn
Fn // Dn �

y

++RL
n(0) // Dn

� � //� w

**

Gn

Fn��

Fn

��
� � // Gn∩Qn� s

&&
T 2

n
Fn // · · · // T j

n
Fn // · · · Fn→ T p−1

n
� � // Qn

(b) Details of the step Dn→ Dn are illustrated in the rectangle.

Figure 14.1.: The dynamics of a wandering domain on the partition when the Hénon-like map is
close to the hyperbolic fixed point of the renormalization operator. The arrow Fn→
means iterated by Fn, the arrow

φn→ means rescaled by φn, and the arrow ↪→ means
belongs to the target interval without iteration and rescaling. The dashed arrow 99K
emphasizes the paths that are addition to the unimodal case (compare Figure 13.1).

of its orbit is increasing when ε = ε(κ)> 0 is sufficiently small. Therefore, the proposition follows
by Proposition 14.39.

The dynamics of a wandering domain will be studied on the iteration set and the rescaling set.
Figure 14.1a describes the dynamics on the iteration set and the rescaling set from Proposition
14.43 when the Hénon-like map is close to the hyperbolic fixed point i( fσ ) of the renormalization
operator. Similar to the unimodal case, the iteration set can be partitioned by trapping sets and
gaps. A wandering domain is contained fully inside a partition element because it cannot intersect
any stable manifolds. Thus, the dynamics of a wandering domain follows the dynamics of trapping
sets and gaps. A more detail diagram for the dynamics on the partition elements is illustrated in
Figure 14.1b. The details are left to the reader.

Finally, if a Hénon-like map has a wandering domain, a subsequence of a rescaled orbit of
the wandering domain, called the closest approach, can be constructed to study the dynamics of
the wandering domain. The construction follow the rules for iteration set and rescaling set. The
sequence is defined as follows.

Definition 14.45 (Closest approach). Assume that ε > 0 is sufficiently small, δ > 0, Ih and Iv are
intervals with I b Ih ⊂ Iv, an admissible unimodal permutation, and F ∈H σ∞

δ
(Ih× Iv,ε).

Given a set J ⊂ B∪C ∪D that does not intersect any of the stable sets. Define a sequence
of sets {Jn}∞

n=0 and the associate renormalization level {r(n)}∞

n=0 by induction such that Jn ⊂
Br(n)∪Cr(n)∪Dr(n) for all n≥ 0 as follows.

171



14. Hénon-like Maps

1. Set J0 = J and r(0) = 0.

2. Abbreviate the rescaling level kn = k(Jn) whenever Jn is defined.

3. If Jn ⊂ Br(n)∪Cr(n)∪ (Dr(n)\Qr(n)), set Jn+1 = Fr(n)(Jn) and r(n+1) = r(n).

4. If Jn ⊂ Qr(n), set Jn+1 = Φ
kn
r(n) ◦Fr(n)(Jn) and r(n+1) = r(n)+ kn.

The transition between two constitutive sequence element Jn → Jn+1, one iteration together plus
some number of rescaling if possible, is called one step. The sequence {Jn}∞

n=0 is called the
rescaled iterations of J that closest approaches to the tip, or J-closest approach for short.
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15. The Good Region and the Bad Region

In this chapter, the rescaling levels {Rn( j)}∞

j=1 and prerescaling levels {Qn( j)}∞

j=1 will be grouped
into two regions, called the good region and the bad region.

The regions were introduced in Chapter 9 to prove the nonexistence of wandering domain for
the period-doubling case. The good region is an area when the rescaling levels j are small. In the
good region, the topology and the dynamics of a Hénon-like map behave similar to a unimodal
map. In particular, a prerescaling level is the union of two vertical strips (Figure 15.1a) and the
expansion argument holds. On the contrary, the bad region is an area when rescaling levels j are
large. It is a special feature in higher dimension: a degenerate Hénon-like map does not have bad
region. In the bad region, the topology and the dynamics behave different from a unimodal map.
In particular, a prerescaling level has only one component which looks like an arc (Figure 15.1b)
and the expansion argument fails.

The concept of the regions can be generalized from the period-doubling case to arbitrary sta-
tionary combinatorics directly. Recall the definition from the period-doubling case (Definition
9.1).

Definition 15.1 (The Good Region and the Bad Region). Fix a constant b> 0. Assume that ε > 0 is
sufficiently small and F ∈I σ

δ
(Ih× Iv,ε) so that geometric properties of the local stable manifolds

αn( j), αn( j), βn( j), and βn( j) hold (Proposition 14.32). For each n ≥ 0, define Kn = Kn(b) to be
the largest positive integer such that∣∣∣πxz(0)n (Kn)−πxtn

∣∣∣> b‖εn‖

where z(0)n (Kn) is the intersection point of αn(Kn) with the horizontal line through the tip tn.
The rescaling level Rn( j) (resp. prerescaling level Qn( j)) is said to be in the good region if

t

F−1

F−1

prerescaling
level

rescaling
level

image

(a) Good region

t

F−1

prerescaling
level

rescaling
level

image

(b) Bad region

Figure 15.1.: Topology of the good region and the bad region
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15. The Good Region and the Bad Region

j ≤ Kn; in the bad region if j > Kn. The sequence Kn is called the boundary for the good region
and the bad region.

The next proposition summarizes the properties of the good region and the bad region.

Proposition 15.2 (Geometric properties for the good region and the bad region). Given δ > 0,
intervals Ih and Iv with I b Ih ⊂ Iv, and a unimodal permutation σ . There exist ε > 0, b > 0, and
c > 1 such that for all F ∈I σ

δ
(Ih× Iv,ε) the following properties hold for all n≥ 0:

The boundary Kn = Kn(b) satisfies the estimation

1
c

1√
‖εn‖

≤ λ
Kn
σ ≤ c

1√
‖εn‖

. (15.1)

In the good region, we have

1. RR
n ( j)∩Fn(Pn(0)) = φ for 0≤ j ≤ Kn +1,

2. |πxz−πxtn|> 1
c ‖εn‖ for all z ∈ Rn( j)∩Fn(Pn(0)) and 1≤ j ≤ Kn +1,

3.
∣∣πxz−πytn

∣∣> 1
c

√
‖εn‖ for all z ∈ Qn( j) and 1≤ j ≤ Kn +1,

4.
∣∣∣∂hn

∂x (z)
∣∣∣> 1

c

√
‖εn‖ for all z ∈ Qn( j) and 1≤ j ≤ Kn +1,

5. The preimage F−1
n (βn( j)) contains exactly two components for 1 ≤ j ≤ Kn + 2. The two

components are both separators with Lipschitz constant c
√
‖εn‖. Denote the left and right

components as θ L
n ( j) and θ R

n ( j) respectively. The prerescaling level Qn( j) is the union of two
disjoint vertical strips QL

n( j) and QR
n ( j) for 1≤ j≤Kn+1 where QL

n( j) = [θ L
n ( j),θ L

n ( j+1)]
and QR

n ( j) = [θ R
n ( j+1),θ R

n ( j)].

In the bad region j > Kn, we have

1. |πxz−πxtn|< c‖εn‖ for all z ∈ Rn( j)∩Fn(Pn(0)) and

2.
∣∣πxz−πx ◦F−1

n (tn)
∣∣= ∣∣πxz−πytn

∣∣< c
√
‖εn‖ for all z ∈ Qn( j).

Proof. The fourth property of the good region follows from the third property and the proof of
Lemma 6.21.

The sixth property of the good region follows from the graph transformation and the fourth
property.

Other properties are similar to the period-doubling case. The proof depends only on the pertur-
bation ε and the geometric structure of the local stable manifolds and the tip which are the same
as the period-doubling case. See Proposition 6.27 and Proposition 9.4 for the proof.

Remark 15.3. By definition, θ L
n (1) = θ L

n and θ R
n (1) = θ R

n .

In the remaining part of this article, the parameter b will be a fixed large value that makes the
proposition hold so the boundaries Kn are also constants that depends only on the Hénon-like map.
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16. Hyperbolic Size

Hyperbolic size is introduced in this chapter. It is a generalization of the hyperbolic length from the
dimension one setting. It measures the relative horizontal displacement of a set inside a vertical
strip. The expansion of hyperbolic size for the sequence elements in a closest approach will be
studied later to prove the nonexistence of wandering domain.

Regular curves are used to measure the hyperbolic size of a set inside a vertical strip. It is defined
as follows.

Definition 16.1 (Regular curve). Given a parameter R > 0. The graph of a C3 function r : [a,b]⊂
Ih→ Iv is said to be R-regular (with respect to the Hénon-like map F) if

1. ‖r′‖< R
‖ε‖1/4 ,

2. ‖r′′‖< R
‖ε‖ ,

3. ‖r′′′‖< R
‖ε‖ , and

4. ‖r′‖‖r′′‖< R
‖ε‖ .

Remark 16.2. These are the conditions that make the restriction of a Hénon-like map to a regular
curve preserves the property of negative Schwarzian derivative. This produces the expansion of
hyperbolic size for a set under iteration. See the proof of Lemma 17.1 and Remark 17.2 later.
Chapter 10 has a geometric explanation for the first condition.

An R-regular curve is also a Lipschitz curve with constant R
‖ε‖1/4 . The tools for Lipschitz curves

in Section 14.2 applies to regular curves.
If a set is inside a vertical strip, then we can measure the hyperbolic size of the set by R-regular

curves.

Definition 16.3 (Hyperbolic Size). Assume that ε > 0, δ > 0, Ih and Iv are intervals with I b Ih ⊂
Iv, F ∈Hδ (Ih× Iv,ε) is a Hénon-like map, R and L are positive constants with RL < 1, and X is a
collection of disjoint separators with Lipschitz constant L‖ε‖1/4. Given a vertical strip S = [α,β ]
and a set J ⊂ S where α,β ∈X .

The hyperbolic size of J in S is defined to be

|J|S ≡ sup
(r,c,d)

|[c,d]|[a,b]

where the supremum is evaluated over all R-regular curves r : [a,b]→ Iv and all constants c,d ∈
(a,b) that satisfies

1. the two ends (a,r(a)) and (b,r(b)) of the graph are attached to the two boundaries α and β

of the strip S respectively and
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16. Hyperbolic Size

(a,r(a)) (b,r(b))(c,r(c)) (d,r(d))

J

α βS

r

a c d b
( )[ ]

Figure 16.1.: Hyperbolic size measured by regular curves.

2. the two points (c,r(c)) and (d,r(d)) on the graph belong to the set J.

See Figure 16.1 for illustration.

The following proposition is an analog of Corollary 2.15. It says that the hyperbolic size is
larger when measuring the hyperbolic size inside a smaller base set.

Proposition 16.4. Assume that ε > 0, δ > 0, Ih and Iv are intervals with I b Ih ⊂ Iv, F ∈Hδ (Ih×
Iv,ε) is a Hénon-like map, R and L are positive constants with RL < 1, and X is a collection of
disjoint separators with Lipschitz constant L‖ε‖1/4.

If S1 and S2 are vertical strips with boundaries in X such that S2 ⊂ S1, then

|J|S2
≥ |J|S1

for all subsets J in the vertical strip S2 where the hyperbolic size is measured by R-regular curves.

Proof. Assume that S1 = [α1,β1] and S2 = [α2,β2] with α1 ≺ β1 and α2 ≺ β2. Then α1 � α2 ≺
β2 � β1.

Let r : [a1,b1]→ Iv be an R-regular curve that intersects J at (c,r(c)) and (d,r(d)) with c< d and
the two endpoints (a1,r(a1)) and (b1,r(b1)) are attached to α1 and β1 respectively. By Proposition
14.6, the curve intersects α2 and β2 at (a2,r(a2)) and (b2,r(b2)) respectively and a1 ≤ a2 < c <
d < b2 ≤ b1. Then

|J|S2
≥ |[c,d]|[a2,b2]

≥ |[c,d]|[a1,b1]

by Corollary 2.15 and the definition of hyperbolic size. Therefore, the proposition follows because
r, c, and d are arbitrary chosen.

The next proposition is an analog of Proposition 2.17. It is an important property that allows us
to quantify the expansion of hyperbolic size when a wandering domain is embedded from a larger
vertical strip to a smaller vertical strip. The expansion depends on the two spacing between the
larger vertical strip and the smaller vertical strip. In Chapter 17 later, the proposition will be used
to estimate the size of the expansion given by the expansion from the topology.

Define the minimal displacement of two separators α and β as

SDisp(α,β ) = inf{|ax−bx| ;(ax,ay) ∈ α,(bx,by) ∈ β} (16.1)
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and the maximal displacement as

LDisp(α,β ) = sup{|ax−bx| ;(ax,ay) ∈ α,(bx,by) ∈ β}.

Proposition 16.5. Assume that ε > 0, δ > 0, Ih and Iv are intervals with I b Ih ⊂ Iv, F ∈Hδ (Ih×
Iv,ε) is a Hénon-like map, R and L are positive constants with RL < 1, and X is a collection of
disjoint separators with Lipschitz constant L‖ε‖1/4.

If S1 = [α1,β1] and S2 = [α2,β2] are vertical strips with α1 ≺ α2 ≺ β2 ≺ β1, SDisp(α1,α2)
LDisp(α1,β1)

> M,

and SDisp(β1,β2)
LDisp(α1,β1)

> M for some constant M > 0, then

|J|S2
≥ 1

1−M
|J|S1

for all subsets J in the vertical strip S2 where the hyperbolic size is measured by R-regular curves.

Proof. The proof is similar to Proposition 16.4.
Let r : [a1,b1]→ Iv be an R-regular curve that intersects J at (c,r(c)) and (d,r(d)) with c < d

and the two endpoints (a1,r(a1)) and (b1,r(b1)) are attached to α1 and β1 respectively. By Lemma
14.6, the curve intersects α2 and β2 at (a2,r(a2)) and (b2,r(b2)) respectively and a1 < a2 < c <
d < b2 < b1. Then

|a2−a1|
|b1−a1|

≥ M∣∣Ih
∣∣ and

|b1−b2|
|b1−a1|

≥ M∣∣Ih
∣∣ .

By Proposition 2.17 and the definition of hyperbolic size, we get

|J|S2
≥ |[c,d]|[v2,w2]

>
1

1−M/
∣∣Ih
∣∣ |[c,d]|[v1,w1]

.

Therefore, the proposition follows because r, c, and d are arbitrary chosen.

The hyperbolic size can be compared with the Euclidean size. The first proposition says that
if the two sides have definite size, then the hyperbolic size is bounded above by the horizontal
Euclidean displacement.

Proposition 16.6. Assume that ε > 0, δ > 0, Ih and Iv are intervals with I b Ih ⊂ Iv, F ∈Hδ (Ih×
Iv,ε) is a Hénon-like map, R and L are positive constants with RL < 1, and X is a collection of
disjoint separators with Lipschitz constant L‖ε‖1/4.

If S1 = [α1,β1] and S2 = [α2,β2] are vertical strips with α1 ≺ α2 ≺ β2 ≺ β1, SDisp(α1,α2)≥M,
and SDisp(β1,β2)≥M for some constant M > 0, then there exists c = c(M)> 0 such that

|J|S1
≤ 2

M
· sup{|x2− x1| : (x1,y1),(x2,y2) ∈ J}

for all subsets J in the vertical strip S2 where the hyperbolic size is measured by R-regular curves.

Proof. Assume that r is an R-regular curve such that its graph is attached to α1 and β1 at (a,r(a))
and (b,r(b)) respectively and intersects the set J at (c,r(c)) and (d,r(d)) from left to right. Also,
let (a′,r(a′)) and (b′,r(b′)) be the intersection of the graph with α2 and β2 respectively. Then

177



16. Hyperbolic Size

|[c,d]|[a,b] ≤
(

1
c−a

+
1

b−d

)
(d− c)≤ 2

M
· sup{|x2− x1| : (x1,y1),(x2,y2) ∈ J} (16.2)

by Proposition 2.13. Therefore, the proposition follows because the regular curve r is arbitrary
chosen.

The next proposition says that the hyperbolic size is bounded below by the size of the horizontal
cross-section.

Proposition 16.7. Assume that ε > 0, δ > 0, Ih and Iv are intervals with I b Ih ⊂ Iv, F ∈Hδ (Ih×
Iv,ε) is a Hénon-like map, R and L are positive constants with RL < 1, and X is a collection of
disjoint separators with Lipschitz constant L‖ε‖1/4.

If S = [α,β ] is a vertical strips with α ≺ β , then there exists c > 0 such that

|J|S1
≥ c

LDisp(α,β )
· sup{|x2− x1| : (x1,y),(x2,y) ∈ J}

for all subsets J in the vertical strip S where the hyperbolic size is measured by R-regular curves.

Proof. We may assume that J is compact. Let x→ (x,y0) be a horizontal line that intersects J and
u2− u1 = sup{|x2− x1| : (x1,y),(x2,y) ∈ J} for some (u1,y0),(u2,y0) ∈ J. Also let r(x) = y0 be
the constant function. It is clear that r is R-regular. The curve intersects the boundaries α and β at
points a and b respectively. Then

l(J)≥ |[u1,u2]|[a,b] .

By Proposition 2.12, there exists a constant c > 0 such that

|[u1,u2]|[a,b] ≥ c
u2−u1

b−a
≥ c

LDisp(α,β )
· sup{|x2− x1| : (x1,y),(x2,y) ∈ J}.
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17. Expansion of Hyperbolic Size in the Good Region

This chapter generalize the expansion argument from unimodal maps to Hénon-like maps. The
proof follows the work from Chapter 13 with three necessary adjustments:

1. Expansion from iteration by generalizing the measurements from hyperbolic length to hy-
perbolic size. (Propositions 17.3, 17.26, and 17.29)

2. Adjustments of the base sets for the prerescaling set and the rescaling set to avoid regular
curves intersecting the bad region. (Definition 17.16)

3. Additional steps that comes from the Hénon rescaling. (B F→C and C F⇒ D)

Figure 17.1 summarizes all the expansion estimates. The goal of this chapter is to prove Proposition
17.32, the hyperbolic size of the elements in a closest approach expands uniformly.

17.1. Expansion from iteration

This section will generalize the expansion argument from unimodal maps to Hénon-like maps for
the steps containing only iteration without rescaling. Our first goal is to prove Proposition 17.3, a
generalization of Proposition 2.10. It states that the hyperbolic size of a set expands under iteration
when the set is away from the center trapping set.

To prove the proposition, we first show that the tools for negative Schwarzian diffeomorphisms
apply to a Hénon-like map when the map is close to a unimodal map with negative Schwarzian
derivative. The first condition says that the restriction of the Hénon-like map to an R-regular curve
is also a map with negative Schwarizan derivative. The second condition says that the class of
R-regular curves is invariant under iterations. This allows us to generalize the expansion estimates
from unimodal maps to Hénon-like maps.

B0Lem 17.10

F0 //C0Lem 17.11

F0 +3 G0
F0+3 · · ·

Lem 17.12&17.13

F0 +3 G0

Lem 17.14 F0
��

� �

Lem 17.19
// Q0( j) (good)

D0
0�

AA

� � // T j
0

F0 // · · ·
Lem 17.15

F0 // T p−1
0

, �
Lem 17.20

::

� �

Lem 17.31
// Q0( j) (bad)

Q0( j) (good)
Cor 17.27

φ0◦F0 // RL
1( j−1)

φ1 // · · ·
Cor 17.30

φ j−1 // RL
j (0)
� �

Lem 17.31
+3 D j // · · ·

Figure 17.1.: A summary of all expansion estimates. The arrow → represents expansion and the
arrow⇒ represents uniform expansion. The dash arrows are the paths addition to the
unimodal case (compare Figure 13.1).
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17. Expansion of Hyperbolic Size in the Good Region

Lemma 17.1. Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, a unimodal permutation σ , and a
unimodal map g∈U σ∞

δ
(Ih). For all R> 0 sufficiently small (depending on g) and ε > 0 sufficiently

small (depending on g and R)1, there exists c = c(g) > 0 such that the following properties hold
for all F ∈H σ∞

δ
(Ih× Iv,g,ε):

Assume that r1 : [a1,b1]→ Iv is an R-regular curve (associated to F). Let f̂ (x) = πx ◦F(x,r1(x))
= h(x,r1(x)). If the graph of r1 is disjoint from the center trapping set T p−1, then

1. the map f̂ is diffeomorphic to its image and has negative Schwarzian derivative and

2. the image of the graph of r1 (under the iteration of F) is the graph of an R-regular curve r2 :
[a2,b2]→ Iv. In fact, the derivatives of the curve r2 are uniformly bounded ‖r′2‖ ,‖r′′2‖ ,‖r′′′2 ‖<
c.

Proof. Proposition 2.7 is used to prove the first property. To estimate the C2 norm of f̂ ′, compute

∣∣ f̂ ′(x)−g′(x)
∣∣= ∣∣∣∣( f ′−g′

)
+

∂ε

∂x
+

∂ε

∂y
·
(
r′1
)∣∣∣∣

≤ c1 ‖ f −g‖+ c1 ‖ε‖+ c1R‖ε‖3/4 , (17.1)

∣∣ f̂ ′′(x)−g′′(x)
∣∣= ∣∣∣∣( f ′′−g′′

)
+

∂ 2ε

∂x2 +2
∂ 2ε

∂x∂y
·
(
r′1
)
+

∂ 2ε

∂y2 ·
(
r′1
)2

+
∂ε

∂y
·
(
r′′1
)∣∣∣∣

≤c1 ‖ f −g‖+ c1 ‖ε‖+ c1R‖ε‖3/4 + c1R2 ‖ε‖1/2 + c1R, (17.2)

and∣∣ f̂ ′′′(x)−g′′′(x)
∣∣= ∣∣∣∣( f ′′′−g′′′

)
+

∂ 3ε

∂x3 +3
∂ 3ε

∂x2∂y
·
(
r′1
)
+3

∂ 3ε

∂x∂y2 ·
(
r′1
)2

+
∂ 3ε

∂y3 ·
(
r′1
)3

+3
∂ 2ε

∂x∂y
·
(
r′′1
)
+3

∂ 2ε

∂y2 ·
(
r′1
)(

r′′1
)
+

∂ε

∂y
·
(
r′′′1
)∣∣∣∣

≤c1 ‖ f −g‖+ c1 ‖ε‖+3c1R‖ε‖3/4 +3c1R2 ‖ε‖1/2 + c1R3 ‖ε‖1/4 +7c1R.
(17.3)

In the equations, the partial derivatives are evaluated at (x,r1(x)). Also, the derivatives are esti-
mated by the C0 norm using Lemma 2.1 and c1 is the positive constant. The inequalities show
that the map f̂ ′ is C2 close to g′. Since g is a map with negative Schwarzian derivative, the map
f̂ also has negative Schwarzian derivative by Proposition 2.7 when ε and R are sufficiently small
(depending on g).

Next, we show that f̂ is diffeomorphic to its image. Note that the curve r2 is exactly the inverse
f̂−1 because the two curves r1 and r2 satisfy the relation

( f̂ (t), t) = F(t,r1(t)) = (x,r2(x)).

1This means that there exists R̂ > 0 depending on g. And for all R with 0 < R < R̂, there exists ε̂ > 0 depending on
R. Then the properties hold for all ε with 0 < ε < ε̂ .
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17.1. Expansion from iteration

Let c2 > 0 be a constant such that
∣∣∣∂h

∂x (x,y)
∣∣∣ ≥ c2 whenever (x,y) /∈ T p−1. The constant exists

because the points are away from the critical locus, and the constant is chosen so that the estimate
holds for all Hénon maps F close to the degenerate map i(g) (ε is sufficiently small). Then

∣∣ f̂ ′(x)∣∣≥ ∣∣∣∣∂h
∂x

(x,r1(x))
∣∣∣∣− ∣∣∣∣∂ε

∂y
(x,r1(x))

∣∣∣∣ ∣∣r′1(x)∣∣≥ c2−
1
δ
‖ε‖

∥∥r′1
∥∥

≥ c2−
1
δ

R‖ε‖3/4 ≥ c2

2

when ε and R are small. By the inverse function theorem (Lemma A.1), the curve r2 = f̂−1 exists
and is C3.

It remains to prove that r2 is R-regular. The derivatives of f̂ are uniformly bounded on Ih because
they are close to derivatives of g by (17.1), (17.2), and (17.3) and Ih is compact. By computing the
derivatives of the inverse function, we have∣∣r′2 ◦ f̂ (x)

∣∣= 1∣∣ f̂ ′(x)∣∣ ≤ 2/c2 ≤ c3,

∣∣r′′2 ◦ f̂ (x)
∣∣= ∣∣ f̂ ′′(x)∣∣∣∣ f̂ ′(x)∣∣2 ≤ 4

c2
2

∣∣ f̂ ′′(x)∣∣≤ c3,

and

r′′′2 ◦ f̂ (x) =− 1[
f̂ ′(x)

]5 { f̂ ′(x) f̂ ′′′(x)−3
[

f̂ ′′(x)
]2}

∣∣r′′′2 ◦ f̂ (x)
∣∣≤( 2

c2

)5{∣∣ f̂ ′(x) f̂ ′′′(x)
∣∣+3

∣∣ f̂ ′′(x)∣∣2}≤ c3

for some constant c3 > 0. We get ∥∥r′2
∥∥≤ c3 <

R

‖ε‖1/4 ,∥∥r′′2
∥∥≤ c3 <

R
‖ε‖

,

∥∥r′′′2
∥∥≤ c3 <

R
‖ε‖

,

and ∥∥r′2
∥∥∥∥r′′2

∥∥≤ c2
3 <

R
‖ε‖

whenever ε is sufficiently small (depending on R). Therefore, the curve r2 is R-regular.

Remark 17.2. The condition regular is defined to ensure the inequalities (17.1), (17.2), and (17.3)
are small.

Finally, the proposition generalizes Proposition 2.10 to Hénon-like maps. It says that when a
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17. Expansion of Hyperbolic Size in the Good Region

Hénon-like map is close to a unimodal map with negative Schwarzian derivative, the hyperbolic
size of a set away from the center expands under iteration.

Proposition 17.3. Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, a unimodal permutation σ ,
and a unimodal map g ∈ U σ∞

δ
(Ih). For all R > 0 sufficiently small (depending on g) and ε > 0

sufficiently small (depending on g and R), the following property holds for all F ∈H σ∞

δ
(Ih×

Iv,g,ε):
Assume that f s : X → Y is an induced unimodal map on the pair of compatible separators

X and Y with Lipschitz constant L‖ε‖1/4 and RL < 1. If S1 and S2 are vertical strips of X
and Y respectively, S1 is disjoint from the center trapping region T p−1, and f s(S1) = S2, then the
hyperbolic size expands under iteration:

|F(J)|S2
≥ |J|S1

for all J ⊂ S1. The hyperbolic size is measured by R-regular curves.

Proof. Let R and ε be the constants given by Lemma 17.1. Given an R-regular curve r1 : [a1,b1]→
Iv
n such that the two endpoints (a1,r1(a1)) and (b1,r1(b1)) of its graph are attached to the two

boundaries of S1 and the two points (c1,r1(c1)) and (d1,r1(d1)) on the graph belong to J.
By Lemma 17.1, the image of the graph of r1 is the graph of an R-regular curve r2 : [a2,b2]→

Iv
n . The endpoints (a2,r2(a2)) and (b2,r2(b2)) of its graph are attached to the two boundaries

of S2 because boundaries of S1 maps to boundaries of S2. Also, the two points (c2,r2(c2)) and
(d2,r2(d2)) belong to F(J) where c2 = f̂ (c1), d2 = f̂ (d1), and f̂ (x) = πx ◦F(x,r1(x)). Hence, r2
is an R-regular curve that satisfies the conditions for measuring the hyperbolic size. We get

|F(J)|S2
≥ |[c2,d2]|[a2,b2]

. (17.4)

Moreover, the map f̂ has negative Schwarizan derivative by Lemma 17.1. This yields the ex-
pansion of hyperbolic length

|[c2,d2]|[a2,b2]
=
∣∣[ f̂ (c1), f̂ (d1)]

∣∣
[ f̂ (a1), f̂ (b1)]

≥ |[c1,d1]|[a1,b1]
(17.5)

by Proposition 2.10. Combine (17.4) and (17.5), we get

|F(J)|S2
≥ |[c1,d1]|[a1,b1]

.

The inequality holds for all R-regular curves r1 that satisfy the conditions for measuring the hyper-
bolic size. Therefore, the proposition is proved.

The proposition does not guarantee that the expansion of hyperbolic size is uniform. Propo-
sition 16.5 is the tool that allows us to estimate the size of expansion from the expansion of the
topology. The topological results from Section 13.6.1 showing the expansion of a unimodal map’s
topology also apply to this context with the help of the induced unimodal map f s. This produces
the expansion of topology for a Hénon map in a bounded number of iterations and ensures definite
expansion on the hyperbolic size.

Fix the induced unimodal map f s defined by Proposition 14.36. Given R > 0 sufficiently
small by Proposition 17.3. The local stable manifolds are separators with Lipschitz constant
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17.1. Expansion from iteration

L‖ε‖ = (L‖ε‖3/4)‖ε‖1/4 by Propositions 14.18 and 14.36. Thus, the separators satisfy the con-
dition R(L‖ε‖3/4) < 1 when the perturbation ε is sufficiently small. Therefore, Propositions
16.4, 16.5, and 17.3 apply to the vertical strips defined by the separators α(0),α(0),β (0),β (0),
α0(1),α0(1),β 0(1),β 0(1), · · · ,α p−1(1),α p−1(1),β p−1(1),β p−1(1),θ L,θ R.

To measure the hyperbolic size of a wandering domain, a base set is assigned to each partition
element: B, C, trapping set, and gap. The hyperbolic size of a wandering domain will be measured
inside the base set of the partition element that contains the wandering domain instead of the
partition element itself. It is defined as follows.

Definition 17.4 (Base set). 1. If T j is a trapping set with 2 ≤ j ≤ p− 1, define its base set as
Base(T j) = P j.

2. If G is a gap, define its base set as Base(G) = TL ∪G∪ TR where TL and TR are the two
adjacent trapping sets of G.

3. The base set of B is Base(B) = [β (0),α(0)].

4. The base set of C is Base(C) = [α(0),β (0)].
If J ⊂ B∪C∪D is a wandering domain, its base set is defined to be Base(J) = Base(S) where

S is one of the vertical strips above that contains J. Denote the hyperbolic size of the wandering
domain as

l(J) = |J|Base(J) .

Remark 17.5. The third and fourth definitions are new in the Hénon setting. See Proposition 14.43
and Figure 14.1.

The final goal of this section is to prove the following two propositions. The first proposition
shows that the hyperbolic size of a set expands under iteration.

Proposition 17.6 (Expansion for one iteration). Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv,
a unimodal permutation σ , and a unimodal map g ∈ U σ∞

δ
(Ih). For all R > 0 sufficiently small

(depending on g) and ε > 0 sufficiently small (depending on g and R), the following property holds
for all F ∈H σ∞

δ
(Ih× Iv,g,ε):

Assume that J is a wandering domain of F. If J ⊂ D and F(J)⊂ D then

l(F(J))≥ l(J)

where the hyperbolic size is measured by R-regular curves.

Proof. Assume the expansion estimates in the later subsections hold. The proposition follows from
Lemma 17.12 (G F→ G), Lemma 17.14 (G F⇒ T j), and Lemma 17.15 (T j F→ T j+1) later.

The next proposition shows that a definite amount of expansion can be obtained in a bounded
number of iterations.

Proposition 17.7 (Uniform expansion for iterations). Given δ > 0, intervals Ih and Iv with I b
Ih ⊂ Iv, a unimodal permutation σ , and a unimodal map g ∈U σ∞

δ
(Ih). For all R > 0 sufficiently

small (depending on g) and ε > 0 sufficiently small (depending on g and R), the following property
holds for all F ∈H σ∞

δ
(Ih× Iv,g,ε):
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17. Expansion of Hyperbolic Size in the Good Region

Assume that J is a wandering domain of F and min0≤t≤p−1 SDisp(β t(1),β t(1)) ≥ K for some
constant K > 0. If the sets J,F(J), · · · ,F p(J) are all in the iteration set D, then

l(F p(J))≥ E · l(J)

for some constant E > 1 that depends only on K/
∣∣Ih
∣∣. The hyperbolic size is measured by R-regular

curves.

Proof. Assume the expansion estimates in the later subsections hold. If the sets J,F(J), · · · ,F p(J)
all belong to gaps, then

l(F p(J))≥ E · l(J)

by Lemma 17.13 (G F p
⇒ G).

If F t(J)⊂ T j for some 0≤ t ≤ p−1, let t be the smallest integer. The integer t 6= 0 because T 0

and T 1 are disjoint from D. Then

l(F t(J))≥ E · l(F t−1(J)) (17.6)

by Lemma 17.14 (G F⇒ T j). The sets F t(J), · · · ,F p(J) belong to trapping intervals implies that

l(F p(J))≥ ·· · ≥ l(F t(J)) (17.7)

by Lemma 17.15 (T j F→ T j+1). Also, the sets J, · · · ,F t−1(J) belong to gaps implies that

l(F t−1(J))≥ ·· · ≥ l(J) (17.8)

by Lemma 17.12 (G F→ G). After combining (17.6), (17.7), and (17.8), we obtain

l(F p(J))≥ E · l(J).

An immediate consequence is the orbit of an wandering domain cannot stay in the iteration set
forever. The orbit must eventually enters the prerescaling set and the rescaling set.

Corollary 17.8. Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, a unimodal permutation σ , and
a unimodal map g ∈ U σ∞

δ
(Ih). For all ε > 0 sufficiently small (depending on g), the following

property holds for all F ∈H σ∞

δ
(Ih× Iv,g,ε):

If the map F has a wandering domain in D, then it also has a wandering domain in the rescaling
set R.

Proof. Let σ be a unimodal permutation, g ∈ U σ

δ
(Ih) be a unimodal map, R > 0 and ε > 0 be

two constants sufficiently small by Proposition 17.7, F ∈H σ∞

δ
(Ih× Iv,g,ε), and K = min0≤t≤p−1

SDisp(β t(1),β t(1))> 0. Assume that J is a wandering domain of F .
By Proposition 17.7, the hyperbolic size of the orbit of J diverges to infinity if the orbit stays in

the iteration set D forever. This cannot happen because the hyperbolic size of gaps and trapping
sets are bounded inside their base sets. Thus, F t(J) ⊂ R for some t ≥ 0. By Proposition 14.39,
F t(J) is a wandering domain in R.
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17.1. Expansion from iteration

α(0) α(0)

α1(1) β 1(1) β 1(1)
α1(1)C T 1

β (0)
Base(C) Base(B)

α0(1)
β 0(1) β 0(1) α0(1)

T 0 B

Figure 17.1.: The iteration from B to C.

Another immediate consequence is the expansion constant E can be chosen to be uniform when
the Hénon-like map F it is sufficiently close to the hyperbolic fixed point i( fσ ) of the renormaliza-
tion operator.

Corollary 17.9. Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, and a unimodal permutation σ .
There exists a constant E > 1 such that for all R > 0 sufficiently small and ε > 0 sufficiently small
(depending on R), the following property holds for all F ∈I σ

δ
(Ih× Iv,ε):

Assume that J is a wandering domain of F. If J,F(J), · · · ,F p(J)⊂ D, then

l(F p(J))≥ E · l(J)

where the hyperbolic size is measured by R-regular curves.

Proof. Set g = fσ in Proposition 17.7. The constant K > 0 can be chosen to be uniform for all
Hénon-like maps close enough to i( fσ ). Thus, the expansion constant E is uniform.

The remaining part of this section generalizes the expansion argument in the iteration set by
using Proposition 17.3. For the unimodal map, the expansion of the hyperbolic length is fully de-
termined by the expansion of the topology under iteration. For Hénon-like maps, the topology of a
Hénon-like maps inside the good region behaves like unimodal maps under iteration. Precisely, the
order of the local stable manifolds for a renormalizable Hénon-like map are the same as the order
of the associate periodic points for a renormalizable unimodal map with the same combinatoric
type. Thus, the expansion argument for unimodal maps can be fully adopted to Hénon-like maps
by using the induced unimodal map f s. The following subsections will study the expansion case
by case according to Figure 14.1. The three cases G F→G (Subsection 17.1.3), G F⇒ T j (Subsection
17.1.4), and T j F→ T j+1 (Subsection 17.1.5) are similar to Section 13.6.1. The two cases B F→C
(Subsection 17.1.1) and C F⇒ G (Subsection 17.1.2) are addition in the Hénon settings.

17.1.1. B F→C

Lemma 17.10 (Expansion for B F→C). Given δ > 0, intervals Ih and Iv with I b Ih⊂ Iv, a unimodal
permutation σ , and a unimodal map g ∈ U σ∞

δ
(Ih). For all R > 0 sufficiently small (depending

on g) and ε > 0 sufficiently small (depending on g and R), the following property holds for all
F ∈H σ∞

δ
(Ih× Iv,g,ε):

If J ⊂ B, then
|F(J)|Base(C) ≥ |J|Base(B)

where the hyperbolic size is measured by R-regular curves.
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17. Expansion of Hyperbolic Size in the Good Region

F

α(0)

α(0)α1(1)β 1(1) β 1(1)
C T 1 β (0) β p−1,L(1) β p−1,R(1)

β (0)
Base(C)

α(0) α(0)
spacing

T 1

α2(1) β 2(1) β 2(1)
G

F(C) T 2

spacing

β (0)
β 0(1) β 0(1)

T 0

Figure 17.2.: The iteration from C to G.

Proof. By definition, the vertical strip Base(B) is disjoint from the center trapping set T p−1 and
f s(Base(B)) = Base(C). See Figure 17.1. The lemma follows from Proposition 17.3.

17.1.2. C F⇒ G

Lemma 17.11 (Expansion for C F⇒ G). Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, a uni-
modal permutation σ , p ≥ 3, and a unimodal map g ∈ U σ∞

δ
(Ih). For all R > 0 sufficiently small

(depending on g) and ε > 0 sufficiently small (depending on g and R), the following property holds
for all F ∈H σ∞

δ
(Ih× Iv,g,ε):

Assume that SDisp(β 0(1),β 0(1)) ≥ K and SDisp
(
α(0),β 1(1)

)
≥ K for some constant K > 0.

If J ⊂C and F(J)⊂ G for some gap G, then

|F(J)|Base(G) ≥ E |J|Base(C)

for some constant E > 1 that depends only on K/
∣∣Ih
∣∣. The hyperbolic size is measured by R-regular

curves.

Proof. See Figure 17.2 for illustration. Assume that β p−1,L(1) be the left separator in {β p−1(1),
β p−1(1)}. Then C ⊂ [α(0),β p−1,L(1)]⊂ Base(C). We get

|J|[α(0),β p−1,L(1)] ≥ |J|Base(C) (17.9)

by Proposition 16.4.
Then we iterate the sets J and [α(0),β p−1,L(1)]. The vertical strip [α(0),β p−1,L(1)] is disjoint

from the center trapping set T p−1 and f s([α(0),ω]) = [α(0),β 0(1)]. By Proposition 16.4, we get

|F(J)|[α(0),β 0(1)] ≥ |J|[α(0),β p−1,L(1)] . (17.10)

Consider the images F(J) and [α(0),β 0(1)]. The set [α(0),β 0(1)]\Base(G) contains a compo-
nent on each side of the vertical strip Base(G). The left component contains [α(0),β 1(1)] and the
right component contains [β 0(1),β 0(1)] because p≥ 3. By Proposition 16.5, we obtain

|F(J)|Base(G) ≥ E |F(J)|[α(0),β 0(1)] . (17.11)
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17.1. Expansion from iteration

for some constant E > 1 determined by K/
∣∣Ih
∣∣. The lemma follows by combining (17.9), (17.10),

and (17.11).

17.1.3. G F→ G

Lemma 17.12 (Expansion for G F→ G). Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, a
unimodal permutation σ , and a unimodal map g ∈ U σ∞

δ
(Ih). For all R > 0 sufficiently small

(depending on g) and ε > 0 sufficiently small (depending on g and R), the following property holds
for all F ∈H σ∞

δ
(Ih× Iv,g,ε):

If J ⊂ G1 and F(J)⊂ G2 for some gaps G1 and G2 in D, then

|F(J)|Base(G2) ≥ |J|Base(G1)

where the hyperbolic size is measured by R-regular curves.

Proof. The proof is similar to Corollary 13.41.
The result of Lemma 13.40 can be generalized to Hénon-like maps. There exists a vertical strip

I that is disjoint from the center trapping set T p−1 such that Base(G1)⊃ I and f s(I)⊃ Base(G2).
By Proposition 16.4 and Proposition 17.3, we get

|Fn(J)|Base(G2) ≥ |Fn(J)| f s(I) ≥ |J|I ≥ |J|Base(G1) .

Lemma 17.13 (Uniform expansion for G F p
⇒G). Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv,

a unimodal permutation σ , and a unimodal map g ∈ U σ∞

δ
(Ih). For all R > 0 sufficiently small

(depending on g) and ε > 0 sufficiently small (depending on g and R), the following property holds
for all F ∈H σ∞

δ
(Ih× Iv,g,ε):

Assume that min0≤t≤p−1 SDist(β t(1),β t(1)) ≥ K for some constant K > 0. If F j(J) ⊂ G j for
0≤ j ≤ p where G j are gaps in D, then

|F p(J)|Base(Gp) ≥ E |J|Base(G0)

for some constant E > 1 that depends only on K/
∣∣Ih
∣∣. The hyperbolic size is measured by R-regular

curves.

Proof. The proof is similar to Corollary 13.43.
The result of Lemma 13.42 can be generalized to Hénon-like maps. Let

{
I j}p

j=0 be vertical
strips similar to the intervals in the lemma. The vertical strips satisfy the properties:

1. the vertical strips I j are disjoint from the center trapping set T p−1,

2. f s(I j)⊃ I j+1 for j = 0, · · · , p−1,

3. I0 = G0, I j ⊃ G j for j = 1, · · · , p−1, and Ip = Base(Gp).
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17. Expansion of Hyperbolic Size in the Good Region

The two components of Base(G0)\I0 are both trapping sets. By Proposition 16.5, we have

|J|I0 ≥ E |J|Base(G0) (17.12)

for some constant E > 1 determined by K/
∣∣Ih
∣∣.

Since f s(I j) ⊃ I j+1 for j = 0, · · · , p− 1 and the vertical strips I j are disjoint from the center
trapping set T p−1, we get

|F p(J)|Base(Gp) ≥ |F
p(J)| f s(Ip−1) ≥

∣∣F p−1(J)
∣∣
Ip−1 ≥

∣∣F p−1(J)
∣∣

f s(Ip−2)
≥ ·· · ≥ |J|I0 (17.13)

by Proposition 16.4 and Proposition 17.3. The lemma follows by combining (17.12) and (17.13).

17.1.4. G F⇒ T j with j 6= 0,1

Lemma 17.14 (Uniform expansion for G F⇒ T j). Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv,
a unimodal permutation σ , and a unimodal map g ∈ U σ∞

δ
(Ih). For all R > 0 sufficiently small

(depending on g) and ε > 0 sufficiently small (depending on g and R), the following property holds
for all F ∈H σ∞

δ
(Ih× Iv,g,ε):

Assume that min0≤t≤p−1 SDist(β t(1),β t(1)) ≥ K for some constant K > 0. If J ⊂ G for some
gap G, F(J)⊂ T j with j 6= 0, then

|F(J)|Base(T j) ≥ E |J|Base(G)

for some constant E > 1 that depends only on K/
∣∣Ih
∣∣. The hyperbolic size is measured by R-regular

curves.

Proof. The proof is similar to Corollary 13.45.
The set Base(G)\G has a component on each side of G. Both components are trapping sets. By

Proposition 16.5, the hyperbolic size has definite expansion

|J|G ≥ E |J|Base(G) (17.14)

for some constant E > 1 determined by K/
∣∣Ih
∣∣.

Moreover, by Proposition 17.3, the hyperbolic size expands under iteration

|F(J)| f s(G) ≥ |J|G . (17.15)

The result from Lemma 13.44 can be generalized to Hénon-like maps: f s(G)⊃ P j. Hence,

|F(J)|Base(T j) ≥ |F(J)| f s(G) (17.16)

by Proposition 16.4.
The lemma follows by combining (17.14), (17.15), and (17.16).
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17.1.5. T j F→ T j+1 with j ≤ p−2

Lemma 17.15 (Expansion for T → T ). Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, a uni-
modal permutation σ , and a unimodal map g ∈ U σ∞

δ
(Ih). There exist R > 0 sufficiently small

(depending on g) and ε > 0 sufficiently small (depending on g and R) such that the following
property holds for all F ∈H σ∞

δ
(Ih× Iv,g,ε):

If J ⊂ T j where 0≤ j ≤ p−2, then

|F(J)|Base(T j+1) ≥ |J|Base(T j)

where the hyperbolic size is measured by R-regular curves.

Proof. By the definition of the trapping sets, we have F(J) ⊂ T j+1 and f s(P j) = P j+1. The
inequality follows from Proposition 17.3.

17.2. Expansion from rescaling

In this section, we study the expansion of hyperbolic size for the case when a step in a closest
approach contains rescaling.

Recall from Proposition 15.2, the constant Kn is the boundary for the good region and the bad
region of Fn and θ L

n ( j) and θ R
n ( j) are the two separators such that F−1

n (βn( j)) = θ L
n ( j)∪θ R

n ( j) and
θ L

n ( j) ≺ θ R
n ( j) for j = 1, · · · ,Kn + 2. Fix the induced unimodal map f s

n : Xn→ Yn where Xn =

{α p−1
n (1),α p−1

n (1),θ L
n (1),θ

R
n (1),θ

L
n (2),θ

R
n (2), · · · ,θ L

n (Kn + 2),θ R
n (Kn + 2)} and Yn = {α0

n (1),
βn(1),βn(2), · · · ,βn(Kn +2)}.

To measure the hyperbolic size in the rescaling set and the prerescaling set, a base set is assigned
to each level as follows.

Definition 17.16 (Base set). Assume that ε > 0 is sufficient small such that Proposition 15.2 holds,
F ∈I σ

δ
(Ih× Iv,ε), and 1≤ j ≤ Kn.

1. The base set of RL
n( j) = [βn( j),βn( j+1)] is defined to be

Base(RL
n( j)) = [αn(0),βn( j+2)] = [αn(0),βn( j)]∪RL

n( j)∪RL
n( j+1)

for all j ≥ 0. See Figure 14.1b for an illustration of the base sets of RL
n .

2. The base set of Qi
n( j) = [θ i

n( j),θ i
n( j+1)] is defined to be

Base(Qi
n( j)) = [α p−1,i

n (1),θ i
n( j+2)] = [α p−1,i

n (1),θ i
n( j)]∪Qi

n( j)∪Qi
n( j+1)

for i=L or R where α
p−1,L
n (1),α p−1,R

n (1)∈{α p−1
n (1),α p−1

n (1)}with α
p−1,L
n (1)≺α

p−1,R
n (1).

Remark 17.17. Compare to the unimodal case, the definition for the base sets of the prerescaling
set and the rescaling set here are adjusted to avoid an R-regular curve intersecting the bad region.
Compare with Definition 13.48.

The hyperbolic size for the step containing rescaling will be studied in four separated parts:
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17. Expansion of Hyperbolic Size in the Good Region

1. Conversion of the hyperbolic size from the iteration set to the prerescaling set (Subsection
17.2.1 D ↪→ Q).

2. Expansion of the hyperbolic size under one iteration plus one rescaling (Subsection 17.2.2

Qn( j) Fn→ RL
n( j)

φn→ RL
n( j−1)).

3. Expansion of the hyperbolic size under the remaining rescalings (Subsection 17.2.3 RL
n( j)

φn→
RL

n+1( j−1)).

4. Conversion of the hyperbolic size from the rescaling set back to the iteration set (Subsection
17.2.4 RL

n(0)⇒ Dn).

The final goal of this section is to prove the following proposition.

Proposition 17.18 (Uniform expansion for rescaling). Given δ > 0, intervals Ih and Iv with I b
Ih ⊂ Iv, and an admissible unimodal permutation σ . For all R > 0 sufficiently small and ε > 0
sufficiently small (depending on R), there exists E > 1 such that the following property holds for
all F ∈I σ

δ
(Ih× Iv,ε) and all n≥ 0:

Assume that J is a wandering domain of Fn. If J ⊂ Qn is in the good region, then

l(Φk(J)
n ◦Fn(J))≥ E · l(J)

where the hyperbolic size is measured by R-regular curves.

Proof. Assume the expansion estimates in the later subsections. Fix the cylindrical neighborhood
to be centered at the fixed point g = fσ in Lemmas 17.19, 17.20, and 17.31. Also, select a constant
K for Lemma 17.31 (RL

n(0)→Dn) such that SDisp
(
αF(0),β 1

F(1)
)
≥K and SDisp

(
βF(1),βF(2)

)
≥

K for all F ∈ I σ

δ
(Ih× Iv,ε). The constant K can be chosen to be positive when the Hénon-like

maps are sufficiently close to the hyperbolic fixed point i( fσ ), i.e. ε > 0 is sufficiently small. Thus,
the expansion constant E from Lemma 17.31 (RL

n(0)→ Dn) is uniform on I σ

δ
(Ih× Iv,ε).

By Lemma 17.19 (G ↪→ Q) and Lemma 17.20 (T ↪→ Q), we have

|J|Base(Qi
n(k(J)))

≥ l(J) (17.17)

where i= L or R such that J⊂Qi
n(k(J)). Also, by Corollary 17.27 (Qn( j) Fn→RL

n( j)
φn→RL

n+1( j−1)),
we have

|φn ◦Fn(J)|Base(RL
n+1(k(J)−1)) ≥ |J|Base(Qi

n(k(J)))
. (17.18)

Finally, by Corollary 17.30 (RL
n( j)

φn→ RL
n+1( j−1)) and Lemma 17.31 (RL

n(0)⇒ Dn), we get

l(Φk(J)
n ◦Fn(J))≥ E · |φn ◦Fn(J)|Base(RL

n+1(k(J)−1)) (17.19)

where the constant E > 1 is obtained by Lemma 17.31 (RL
n(0)⇒ Dn).

The lemma follows by combining (17.17), (17.18), and (17.19).
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17.2. Expansion from rescaling

17.2.1. Dn ↪→ Qn good

When a wandering domain is in the prerescaling set Q, it can be in either the center trapping set
T p−1 or the gap adjacent to the center trapping set. The first lemma studies the case of gap.

Lemma 17.19 (Expansion for G ↪→ Q(1)). Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv,
a unimodal permutation σ , and a unimodal map g ∈ U σ∞

δ
(Ih). For all R > 0 sufficiently small

(depending on g) and ε > 0 sufficiently small (depending on g and R), the following property holds
for all F ∈H σ∞

δ
(Ih× Iv,g,ε):

If J ⊂ G∩Qi(1) for some gap G and i = L or R, then

|J|Base(Qi(1)) ≥ |J|Base(G)

where the hyperbolic size is measured by R-regular curves.

Proof. If G∩Qi(1) 6= φ , then T p−1 is one of the adjacent trapping set of G. So Base(G) ⊃
Base(Qi(1)) by definition. The lemma follows from Proposition 16.4.

The next lemma studies the case in the center trapping set.

Lemma 17.20 (Expansion for T p−1 ↪→ Q). Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv,
a unimodal permutation σ , and a unimodal map g ∈ U σ∞

δ
(Ih). For all R > 0 sufficiently small

(depending on g) and ε > 0 sufficiently small (depending on g and R), the following property holds
for all F ∈H σ∞

δ
(Ih× Iv,g,ε):

If J ⊂ T p−1∩Qi(k(J)), i = L or R, and 1≤ k(J)≤ KF , then

|J|Base(Qi(k(J))) ≥ |J|Base(T p−1)

where the hyperbolic size is measured by R-regular curves.

Proof. By definition, Base(T p−1) = Pp−1 ⊃ Base(Qi( j)). The lemma follows from Proposition
16.4.

17.2.2. Qn( j) Fn→ RL
n( j)

φn→ RL
n( j−1) where 1≤ j ≤ Kn

The goal of this section is to prove Proposition 17.26, the hyperbolic size of a wandering domain
expands under one iteration plus one rescaling. Unlike the unimodal case, the combination of it-
eration and rescaling cannot be separated into two parts. This is because the class of R-regular
curves is not invariant under one iteration when the curves are close to the bad region. The trick is
to apply one additional rescaling to make the curves to be R-regular in the next level of renormal-
ization because the size of the perturbation term ε is contracted by taking the power of p whenever
the map is renormalized by Proposition 14.23.

Similar to Proposition 17.3, we first prove that the property of negative Schwarzian derivative is
preserved when restricting the combination of iteration and rescaling to an R-regular curve and the
class of regular curves is invariant under the composed map.

Lemma 17.21. Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, a unimodal permutation σ , and
p≥ 3. For all R > 0 sufficiently small and ε > 0 sufficiently small (depending on R), the following
properties hold for all F ∈I σ

δ
(Ih× Iv,ε) and n≥ 0:

191



17. Expansion of Hyperbolic Size in the Good Region

Assume that r1 : [a1,b1]→ Iv
n is an R-regular curve (associated to Fn). If the graph of r1 lies in

the vertical strip [α p−1,L
n (1),θ L

n (Kn + 2)] or [θ R
n (Kn + 2),α p−1,R

n (1)] where α
p−1,L
n (1),α p−1,R

n (1)

∈ {α p−1
n (1),α p−1

n (1)} with α
p−1,L
n (1)≺ α

p−1,R
n (1), then

1. the map x→ πx ◦φn ◦Fn(x,r1(x)) is injective with negative Schwarzian derivative and

2. the image of the graph of r1 under φn ◦Fn is the graph of an R-regular (associated to Fn+1)
curve r2 : [a2,b2]→ Iv

n+1.

Remark 17.22. The two vertical strips [α p−1,L
n (1),θ L

n (Kn + 2)] and [θ R
n (Kn + 2),α p−1,R

n (1)] are
exactly the union of all base sets of Q in the good region.

To prove the lemma, we need the estimates for the partial derivatives of πx◦H p−1
n . The estimates

will also be used to prove Lemma 17.28 later.

Lemma 17.23. Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, a unimodal permutation σ ,
and an integer t ∈ {1,2, · · · , p}. For all ε > 0 sufficiently small (independent of t), there exists
c = c(t)> 0 such that for all F ∈I σ

δ
(Ih× Iv,ε) and n≥ 0 the inequalities hold∣∣∣∣∂πx ◦F t

n
∂y

∣∣∣∣ , ∣∣∣∣∂ 2πx ◦F t
n

∂x∂y

∣∣∣∣ , ∣∣∣∣∂ 2πx ◦F t
n

∂y2

∣∣∣∣ , ∣∣∣∣∂ 3πx ◦F t
n

∂x2∂y

∣∣∣∣ , ∣∣∣∣∂ 3πx ◦F t
n

∂x∂y2

∣∣∣∣ , ∣∣∣∣∂ 3πx ◦F t
n

∂y3

∣∣∣∣< c‖εn‖

for all points in Pn(0).

Proof. By Lemma 2.1, there exists a constant c1 = c1(δ )> 0 such that∣∣∣∣∂εn

∂y

∣∣∣∣ , ∣∣∣∣ ∂ 2εn

∂x∂y

∣∣∣∣ , ∣∣∣∣∂ 2εn

∂y2

∣∣∣∣ , ∣∣∣∣ ∂ 3εn

∂x2∂y

∣∣∣∣ , ∣∣∣∣ ∂ 3εn

∂x∂y2

∣∣∣∣ , ∣∣∣∣∂ 3εn

∂y3

∣∣∣∣< c1 ‖εn‖

for all points in Pn(0).
Prove by induction on t.
For the case t = 1, we have ∂πx◦Fn

∂y = ∂εn
∂y . Also, the partial derivatives can be estimated by the

C0 norm ‖εn‖ using Lemma 2.1. Hence, the lemma holds for t = 1.
Assume the induction hypothesis for t. For the case t +1, apply the chain rule. We get

∂πx ◦F t+1
n

∂y
=

∂πx ◦F t
n

∂x
◦Fn ·

∂εn

∂y
,∣∣∣∣∂πx ◦F t+1

n
∂y

∣∣∣∣≤c1

∣∣∣∣∂πx ◦F t
n

∂x
◦Fn

∣∣∣∣‖εn‖ ,

∂ 2πx ◦F t+1
n

∂x∂y
=

∂ 2πx ◦F t
n

∂x2 ◦Fn ·
∂hn

∂x
· ∂εn

∂y
+

∂ 2πx ◦F t
n

∂x∂y
◦Fn ·

∂εn

∂y
+

∂πx ◦F t
n

∂x
◦Fn ·

∂ 2εn

∂x∂y
,∣∣∣∣∂ 2πx ◦F t+1

n
∂x∂y

∣∣∣∣≤ c1c2
2 ‖εn‖+ c(t)c1 ‖εn‖2 + c1c2 ‖εn‖ ,
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17.2. Expansion from rescaling

∂ 2πx ◦F t+1
n

∂y2 =
∂ 2πx ◦F t

n
∂x2 ◦Fn ·

(
∂εn

∂y

)2

+
∂πx ◦F t

n
∂x

◦Fn ·
∂ 2εn

∂y2 ,∣∣∣∣∂ 2πx ◦F t+1
n

∂y2

∣∣∣∣≤c2
1c2 ‖εn‖2 + c1c2 ‖εn‖ ,

∂ 3πx ◦F t+1
n

∂x2∂y
=

∂ 3πx ◦F t
n

∂x3 ◦Fn ·
(

∂hn

∂x

)2

· ∂εn

∂y
+2

∂ 3πx ◦F t
n

∂x2∂y
◦Fn ·

∂hn

∂x
· ∂εn

∂y

+
∂ 3πx ◦F t

n
∂x∂y2 ◦Fn ·

∂εn

∂y
+

∂ 2πx ◦F t
n

∂x2 ◦Fn ·
(

∂ 2hn

∂x2 ·
∂εn

∂y
+2

∂hn

∂x
· ∂ 2εn

∂x∂y

)
+2

∂ 2πx ◦F t
n

∂x∂y
◦Fn ·

∂ 2εn

∂x∂y
+

∂πx ◦F t
n

∂x
◦Fn ·

∂ 3εn

∂x2∂y
,∣∣∣∣∂ 3πx ◦F t+1

n
∂x2∂y

∣∣∣∣≤c1c3
2 ‖εn‖+2c(t)c1c2 ‖εn‖2 + c(t)c1 ‖εn‖2 + c2 (c1c2 ‖εn‖+2c1c2 ‖εn‖)

+2c(t)c1 ‖εn‖2 + c1c2 ‖εn‖ ,

∂ 3πx ◦F t+1
n

∂x∂y2 =
∂ 3πx ◦F t

n
∂x3 ◦Fn ·

∂hn

∂x
·
(

∂εn

∂y

)2

+
∂ 3πx ◦F t

n
∂x2∂y

◦Fn ·
(

∂εn

∂y

)2

+
∂ 2πx ◦F t

n
∂x2 ◦Fn ·

(
2

∂εn

∂y
· ∂ 2εn

∂x∂y
+

∂hn

∂x
· ∂

2εn

∂y2

)
+

∂πx ◦F t
n

∂x
◦Fn ·

∂ 3εn

∂x∂y2 ,∣∣∣∣∂ 3πx ◦F t+1
n

∂x∂y2

∣∣∣∣≤c2
1c2

2 ‖εn‖2 + c(t)c2
1 ‖εn‖3 + c2

(
2c2

1 ‖εn‖2 + c1c2 ‖εn‖
)
+ c1c2 ‖εn‖ ,

and

∂ 3πx ◦F t+1
n

∂y3 =
∂ 3πx ◦F t

n
∂x3 ◦Fn ·

(
∂εn

∂y

)3

+3
∂ 3πx ◦F t

n
∂x2∂y

◦Fn ·
∂εn

∂y
· ∂

2εn

∂y2 +
∂ 3πx ◦F t

n
∂x∂y2 ◦Fn ·

∂ 3εn

∂y3 ,∣∣∣∣∂ 3πx ◦F t+1
n

∂y3

∣∣∣∣≤c3
1c2 ‖εn‖3 +3c(t)c2

1 ‖εn‖3 + c(t)c1 ‖εn‖2 .

Note that the partial derivatives ∂ jπx◦Ft
n

∂x j and ∂ jhn
∂x j for j ∈ {1,2,3} are uniform bounded above by

the constant c2 because the map Fn is close to the hyperbolic fixed point i( fσ ) by the definition of
I . This proves the induction step t +1.

Remark 17.24. Lemma 2.1 does not apply to the partial derivatives of ∂πx◦Ft
n

∂y directly because the

lemma requires ∂πx◦Ft
n

∂y to be defined on a complex neighborhood of Pn(0) and the constant depends
on the size of the neighborhood. It is not easy to find a neighborhood such that all maps are defined
on the same neighborhood.

Finally, we prove the lemma for the iteration and rescaling of a regular curve.

Proof of Lemma 17.21. Let F̂ = Hn ◦Fn and f̂ (x) = πx ◦ F̂(x,r1(x)) = πx ◦F p(x,r1(x)). For the
first property, it is sufficient to prove that f̂ has negative Schwarzian derivative because sn ◦ f̂ (x) =
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17. Expansion of Hyperbolic Size in the Good Region

πx ◦φn ◦Fn(x,r1(x)) and sn is an affine map. Let ε > 0 be small such that the estimates in Lemma
17.23 hold.

Proposition 2.7 is used to prove the first property. To estimate the C2 norm of f̂ ′, we apply
Lemma 17.23 and the definition of I . Compute

f̂ ′(x)−
(

f p
σ

)′
(x) =

[
∂πx ◦F p

∂x
−
(

f p
σ

)′]
+

∂πx ◦F p

∂y
·
(
r′1
)
,∣∣∣ f̂ ′(x)− ( f p

σ

)′
(x)
∣∣∣≤ε + c1R‖εn‖3/4 , (17.20)

f̂ ′′(x)−
(

f p
σ

)′′
(x) =

[
∂ 2πx ◦F p

∂x2 −
(

f p
σ

)′′]
+2

∂ 2πx ◦F p

∂x∂y
·
(
r′1
)
+

∂ 2πx ◦F p

∂y2 ·
(
r′1
)2

+
∂πx ◦F p

∂y
·
(
r′′1
)
,∣∣∣ f̂ ′′(x)− ( f p

σ

)′′
(x)
∣∣∣≤ε +2c1R‖εn‖3/4 + c1R2 ‖εn‖1/2 + c1R, (17.21)

and

f̂ ′′′(x)−
(

f p
σ

)′′′
(x) =

[
∂ 3πx ◦F p

∂x3 −
(

f p
σ

)′′′]
+3

∂ 3πx ◦F p

∂x2∂y
·
(
r′1
)
+3

∂ 3πx ◦F p

∂x∂y2 ·
(
r′1
)2

+
∂ 3πx ◦F p

∂y3 ·
(
r′1
)3

+3
∂ 2πx ◦F p

∂x∂y
·
(
r′′1
)
+3

∂ 2πx ◦F p

∂y2 ·
(
r′1
)(

r′′1
)

+
∂πx ◦F p

∂y
·
(
r′′′1
)
,∣∣∣ f̂ ′′′(x)− ( f p

σ

)′′′
(x)
∣∣∣≤ε +3c1R‖εn‖3/4 +3c1R2 ‖εn‖1/2 + c1R3 ‖εn‖1/4 +7c1R (17.22)

for some constant c1 > 0 given by Lemma 17.23. In the equations, the partial derivatives are
evaluated at the point (x,r1(x)). Also, the derivatives are estimated by the C0 norm using Lemma
2.1. The inequalities show that the map f̂ ′ is C2 close to f p′

σ where f p
σ is a map with negative

Schwarzian derivative. Thus, f̂ has negative Schwarzian derivative by Proposition 2.7 when ε and
R are small (depending on g).

Next we show that the map x→ πx ◦ φn ◦Fn(x,r1(x)) is diffeomorphic to its image and prove
the existence of the curve by finding the inverse function f̂−1 using the inverse function theorem.
Observe that if the graph of u is the image of the graph of r1 under F̂ , then r2 = sn ◦ u ◦ s−1

n and
u = f̂−1 because the two curves r1 and u satisfy the relation

( f̂ (t), t) = F̂(t,r1(t)) = (x,u(x)).

By the third property of the good region from Proposition 15.2, there exists a constant c2 > 0
such that

∣∣∣∂hn
∂x (x,y)

∣∣∣ > c2
√
‖εn‖ whenever the point (x,y) belongs to one of the vertical strips
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[α p−1,L
n (1),θ L

n (Kn +2)] or [θ R
n (Kn +2),α p−1,R

n (1)] . Compute

f̂ ′(x) =
∂πx ◦F p−1

n

∂x
◦F(x,r1(x)) ·

∂hn

∂x
(x,r1(x))+

∂πx ◦F p−1
n

∂y
◦F(x,r1(x))

+
∂πx ◦F p

∂y
(x,r1(x)) · r′1(x)∣∣ f̂ ′(x)∣∣≥c2c3 ‖εn‖1/2− c1 ‖εn‖− c1 ‖εn‖

∥∥r′1
∥∥

≥c2c3 ‖εn‖1/2− c1 ‖εn‖− c1R‖εn‖3/4 ≥ c2c3

2
‖εn‖1/2

whenever ε and R are sufficiently small. For the first term, the partial derivative
∣∣∣∂πx◦F p−1

n
∂x

∣∣∣ is
bounded below by a constant c3 on (x,y) ∈ Pn(1) because Pn(0) is away from the critical locus.
The constant c3 can be chosen to be independent of the Hénon-like map Fn when it is close to the
fixed point i( fσ ). The estimates for the remaining terms come from Lemma 17.23. Consequently,
the curve u = f̂−1 exists and is C3 by the inverse function theorem (Lemma A.1).

It remains to prove that r2 is R-regular. The derivatives of f̂ are uniformly bounded on Ih because
they are close to derivatives of the limiting map f p

σ by (17.20), (17.21), and (17.22). By computing
the derivatives of the inverse function, we get

u′ ◦ f̂ (x) =
1

f̂ ′(x)
,∣∣u′ ◦ f̂ (x)

∣∣≤ 2
c2c3
‖εn‖−1/2 ≤ c4 ‖εn‖−1/2 ,

u′′ ◦ f̂ (x) =− f̂ ′′(x)[
f̂ ′(x)

]2 ,
∣∣u′′ ◦ f̂ (x)

∣∣≤ ∣∣ f̂ ′′(x)∣∣( 2
c2c3

)2

‖εn‖−1 ≤ c4 ‖εn‖−1 ,

and

u′′′ ◦ f̂ (x) =− 1[
f̂ ′(x)

]5 { f̂ ′(x) f̂ ′′′(x)−3
[

f̂ ′′(x)
]2}

,

∣∣u′′′ ◦ f̂ (x)
∣∣≤{∣∣ f̂ ′(x) f̂ ′′′(x)

∣∣+3
∣∣ f̂ ′′(x)∣∣2}( 2

c2c3
‖εn‖−1/2

)5

≤ c4 ‖εn‖−5/2

for some constant c4 > 0 when ε and R are sufficiently small.

By the definition of I , the constant λn is close to λσ . We have |λn| ≥ c5 for some constant
c5 > 0 when ε is sufficiently small. By (14.6), we get∥∥r′2

∥∥= ∥∥u′
∥∥≤ c4 ‖εn‖−1/2 ≤ c4c6 ‖εn+1‖−1/2p <

R

‖εn+1‖1/4 , (17.23)
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17. Expansion of Hyperbolic Size in the Good Region

∥∥r′′2
∥∥= 1
|s′n|
∥∥u′′
∥∥≤ c4

|λn|
‖εn‖−1 ≤ c4c6

c5
‖εn+1‖−1/p <

R
‖εn+1‖

,

∥∥r′′′2
∥∥= 1

|s′n|
2

∥∥u′′
∥∥≤ c4

|λn|2
‖εn‖−5/2 ≤ c4c6

c2
5
‖εn+1‖−5/2p <

R
‖εn+1‖

(17.24)

and ∥∥r′2
∥∥∥∥r′′2

∥∥≤ c2
4c2

6
c5
‖εn+1‖−3/2p <

R
‖εn+1‖

for some constant c6 > 0 given by (14.6) whenever p≥ 3 and ε is sufficiently small (depending on
R). Therefore, the curve r2 is R-regular.

Remark 17.25. The estimates (17.23) and (17.24) are the inequalities that do not work for p = 2.

The proposition generalizes Proposition 2.10 to the step in the good region of Qn.

Proposition 17.26. Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, a unimodal permutation
σ , and p ≥ 3. For all R > 0 sufficiently small and ε > 0 sufficiently small (depending on R), the
following property holds for all F ∈I σ

δ
(Ih× Iv,ε) and n≥ 0:

Assume that Xn is a collection of separators on Ih× Iv
n with Lipschitz constant L‖εn‖1/4, Zn+1

is a collection of separators on Ih× Iv
n+1 with Lipschitz constant L‖εn+1‖1/4, and RL < 1. If S1

and S2 are vertical strips of Xn and Zn respectively, S1 is in the base set of the good region for
the prerescaling set Base(Qi

n( j)) where i = L or R, and the boundaries of S1 are mapped to the
boundaries of S2 by φn ◦Fn, then

|φn ◦Fn(J)|S2
≥ |J|S1

for all J ⊂ S1. Here, the hyperbolic size of the sets are measured by R-regular curves on the sets’
associate renormalization level.

Proof. Let R and ε be the constants given by Lemma 17.21. Given an R-regular curve r1 : [a1,b1]→
Iv
n associate to Fn such that the two endpoints (a1,r1(a1)) and (b1,r1(b1)) of its graph belong on

the two boundaries of S1 and the two points (c1,r1(c1)) and (d1,r1(d1)) on the graph belong to J.
By Lemma 17.21, the image of the graph of r1 is the graph of an R-regular curve r2 : [a2,b2]→

Iv
n+1 associate to Fn+1. The boundaries (a2,r2(a2)) and (b2,r2(b2)) of its graph belong to the

two boundaries of S2 because boundaries of S1 maps to boundaries of S2. Also, the two points
(c2,r2(c2)) and (d2,r2(d2)) belong to φn ◦Fn(J) where c2 = f̂ (c1), d2 = f̂ (d1), and f̂ (x) = πx ◦
φn ◦Fn(x,r1(x)). Hence, r2 is an R-regular curve that satisfies the conditions for computing the
hyperbolic size. We get

|φn ◦Fn(J)|S2
≥ |[c2,d2]|[a2,b2]

. (17.25)

Moreover, the map f̂ has negative Schwarizan derivative by Lemma 17.21. It implies the expan-
sion of hyperbolic length

|[c2,d2]|[a2,b2]
=
∣∣[ f̂ (c1), f̂ (d1)]

∣∣
[ f̂ (a1), f̂ (b1)]

≥ |[c1,d1]|[a1,b1]
(17.26)

by Proposition 2.10. Combine (17.25) and (17.26), we get

|φn ◦Fn(J)|S2
≥ |[c1,d1]|[a1,b1]

.
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17.2. Expansion from rescaling

This inequality holds for all R-regular curves r1 that satisfy the conditions for measuring the hy-
perbolic size. Therefore, the proposition is proved.

Finally, we conclude the expansion of hyperbolic size in the base sets from one iteration plus
one rescaling.

Corollary 17.27 (Expansion for Qn( j) Fn→ RL
n( j)

φn→ RL
n( j− 1)). Given δ > 0, intervals Ih and Iv

with I b Ih ⊂ Iv, a unimodal permutation σ , and p≥ 3. For all R > 0 sufficiently small and ε > 0
sufficiently small (depending on R), the following property holds for all F ∈ I σ

δ
(Ih× Iv,ε) and

n≥ 0:
If J ⊂ Qi

n( j) for some 1≤ j ≤ Kn and i = L or R, then

|φn ◦Fn(J)|Base(RL
n+1( j−1)) ≥ |J|Base(Qi

n( j))

where the hyperbolic size is measured by R-regular curves in the sets renormalization levels.

Proof. By definition, the boundary separators of Base(Qi
n( j)) are mapped to the boundaries of

Base(RL
n+1( j− 1)) by φn ◦Fn. The boundary separators of Base(Qi

n( j)) have Lipschitz constant

L‖εn‖1/2 =
(

L‖εn‖1/4
)
‖εn‖1/4 by the fifth property of the good region from Proposition 15.2 and

the boundary separators of Base(RL
n+1( j−1)) have Lipschitz constant L‖εn+1‖ =

(
L‖εn+1‖3/4

)
· ‖εn+1‖1/4 by Proposition 14.32. Also, the inequalities RL‖εn‖1/4 < 1 and RL‖εn+1‖3/4 < 1 hold
when ε is small enough. Therefore, Proposition 17.26 applies to this corollary.

17.2.3. RL
n( j)

φn→ RL
n+1( j−1)

When a wandering domain enters the rescaling set, it is then rescalied by φn according to the
procedure of defining a closest approach. This section will study the expansion of hyperbolic size
during the step of rescaling.

Again, we repeat the work done in the proof of Propositions 17.3 and 17.26. We first prove
that the property of negative Schwarzian derivative is preserved under rescaling when the rescaling
map is restricted to an R-regular curve.

Lemma 17.28. Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, and a unimodal permutation
σ . For all R > 0 sufficiently small and ε > 0 sufficiently small (depending on R), the following
properties hold for all F ∈I σ

δ
(Ih× Iv,ε) and n≥ 0:

Assume that r1 : [a1,b1]→ Iv
n is an R-regular curve (associated to Fn). If the graph of r1 is in

Pn(1), then

1. the map x→ πx ◦ φn(x,r1(x)) is diffeomorphic to its image and has negative Schwarzian
derivative and

2. the rescaling φn of the graph of r1 is the graph of an R-regular curve r2 : [a2,b2]→ Iv
n+1

associated to Fn+1.

197



17. Expansion of Hyperbolic Size in the Good Region

Proof. Proposition 2.7 is used to prove the first property. Let φ̂(x) = πx ◦ φn(x,r1(x)) and f̂ (x)
= πx ◦Hn(x,r1(x)) = πx ◦F p−1

n (x,r1(x)). Then φ̂(x) = sn ◦ f̂ (x). It is sufficient to estimate the C2

norm of f̂ ′ because sn is an affine map. By Lemma 17.23 and the definition of I , compute

f̂ ′(x)−
(

f p−1
σ

)′
(x) =

[
∂πx ◦F p−1

n

∂x
−
(

f p−1
σ

)′]
+

∂πx ◦F p−1
n

∂y
·
(
r′1
)
,∣∣∣∣ f̂ ′(x)−( f p−1

σ

)′
(x)
∣∣∣∣≤ε + c1R‖εn‖3/4 , (17.27)

f̂ ′′(x)−
(

f p−1
σ

)′′
(x) =

[
∂ 2πx ◦F p−1

n

∂x2 −
(

f p−1
σ

)′′]
+2

∂ 2πx ◦F p−1
n

∂x∂y
·
(
r′1
)

+
∂ 2πx ◦F p−1

n

∂y2 ·
(
r′1
)2

+
∂πx ◦F p−1

n

∂y
·
(
r′′1
)
,∣∣∣∣ f̂ ′′(x)−( f p−1

σ

)′′
(x)
∣∣∣∣≤ε +2c1R‖εn‖3/4 + c1R2 ‖εn‖1/2 + c1R, (17.28)

and

f̂ ′′′(x)−
(

f p−1
σ

)′′′
(x) =

[
∂ 3πx ◦F p−1

n

∂x3 −
(

f p−1
σ

)′′′]
+3

∂ 3πx ◦F p−1
n

∂x2∂y
·
(
r′1
)
+3

∂ 3πx ◦F p−1
n

∂x∂y2 ·
(
r′1
)2

+
∂ 3πx ◦F p−1

n

∂y3 ·
(
r′1
)3

+3
∂ 2πx ◦F p−1

n

∂x∂y
·
(
r′′1
)
+3

∂ 2πx ◦F p−1
n

∂y2 ·
(
r′1
)(

r′′1
)

+
∂πx ◦F p−1

n

∂y
·
(
r′′′1
)
,∣∣∣∣ f̂ ′′′(x)−( f p−1

σ

)′′′
(x)
∣∣∣∣≤ε +3c1R‖εn‖3/4 +3c1R2 ‖εn‖1/2 + c1R3 ‖εn‖1/4 +3c1R+3c1R+ c1R

(17.29)

for some constant c1 > 0 from Lemma 17.23. The derivatives in the equations are evaluated at the
point (x,r1(x)). Thus, f̂ has negative Schwarzian derivative when ε and R are sufficiently small by
Proposition 2.7.

Next, we prove that the map x→ πx ◦φn(x,r1(x)) is diffeomorphic to its image and the curve r2
exists by finding the inverse function of f̂ . Observe that the two curves r1 and r2 satisfy the relation(

sn ◦ f̂ (t),sn ◦ r1(t)
)
= φn(t,r1(t)) = (x,r2(x)).

Thus, r2 = sn ◦ r1 ◦ f̂−1 ◦ s−1
n .

To prove the existence of the inverse function f̂−1, compute

∣∣ f̂ ′(x)∣∣≥ ∣∣∣∣∣∂πx ◦F p−1
n

∂x
(x,r1(x))

∣∣∣∣∣−
∣∣∣∣∣∂πx ◦F p−1

n

∂y
(x,r1(x))r′1(x)

∣∣∣∣∣
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17.2. Expansion from rescaling

≥ c2− c1 ‖εn‖
∥∥r′1
∥∥≥ c2− c1R‖εn‖3/4 ≥ c2/2

when ε and R are small. The first term is bounded below by the constant c2 > 0 because Pn(0)
is away from the critical locus. The constant c2 can be chosen to be uniform for all maps in a
neighborhood of i( fσ ). The second term is estimated by Lemma 17.23 and the definition of R-
regular curves. Consequently, the inverse function f̂−1 exists and is C3 by the inverse function
theorem (Lemma A.1).

It remains to prove that r2 is R-regular. The derivatives of f̂ are uniformly bounded on Ih

because they are close to derivatives of the limiting map f p−1
σ by (17.27), (17.28), (17.29) and Ih

is compact. By evaluating the derivatives of the inverse function, we have∣∣∣( f̂−1)′ ◦ f̂ (x)
∣∣∣= 1∣∣ f̂ ′(x)∣∣ ≤ 2

c2
≤ c5,

(
f̂−1)′′ ◦ f̂ (x) =− f̂ ′′(x)[

f̂ ′(x)
]2 ,∣∣∣( f̂−1)′′ ◦ f̂ (x)

∣∣∣≤( 2
c2

)2 ∣∣ f̂ ′′(x)∣∣≤ c3

and (
f̂−1)′′′ ◦ f̂ (x) =− 1[

f̂ ′(x)
]5 { f̂ ′(x) f̂ ′′′(x)−3

[
f̂ ′′(x)

]2}
,

∣∣∣( f̂−1)′′′ ◦ f̂ (x)
∣∣∣≤( 2

c2

)3{∣∣ f̂ ′(x) f̂ ′′′(x)
∣∣+3

∣∣ f̂ ′′(x)∣∣2}≤ c3

for some constant c3 > 0. By (14.6), we get

r′2 =
[
r′1 ◦ f̂−1 ◦ s−1

n
][(

f̂−1)′ ◦ s−1
n

]
,∣∣r′2∣∣≤c3R‖εn‖−1/4 ≤ c3c4R‖εn+1‖−1/4p ≤ R‖εn+1‖−1/4 ,

r′′2 =
1
λn

{(
r′′1 ◦ f̂−1 ◦ s−1

n
)[(

f̂−1)′ ◦ s−1
n

]2
+
(
r′1 ◦ f̂−1 ◦ s−1

n
)[(

f̂−1)′′ ◦ s−1
n

]}
,∣∣r′′2 ∣∣≤ 1

c5

[
c2

3R‖εn‖−1 + c3R‖εn‖−1/4
]
≤ c4

c5

[
c2

3 ‖εn+1‖(p−1)/p + c3 ‖εn+1‖(4p−1)/4p
]

R‖εn+1‖−1

≤ R‖εn+1‖−1 ,

r′′′2 =
1

λ 2
n

{(
r′′′1 ◦ f̂−1 ◦ s−1

n
)[(

f̂−1)′ ◦ s−1
n

]3
+3
(
r′′1 ◦ f̂−1)[( f̂−1)′ ◦ s−1

n

][(
f̂−1)′′ ◦ s−1

n

]
+
(
r′1 ◦ f̂−1)[( f̂−1)′′′ ◦ s−1

n

]}
,
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17. Expansion of Hyperbolic Size in the Good Region

∣∣r′′′2
∣∣≤ 1

c2
5

[
c3

3R‖εn‖−1 +3c2
3R‖εn‖−1 + c3R‖εn‖−1/4

]
≤c4

c2
5

[
c3

3 ‖εn+1‖(p−1)/p +3c2
3 ‖εn+1‖(p−1)/p + c3 ‖εn+1‖(4p−1)/4p

]
R‖εn+1‖−1

≤R‖εn+1‖−1 ,

and ∣∣r′2∣∣ ∣∣r′′2 ∣∣≤ c3c2
4

c5

[
c2

3R‖εn+1‖(4p−5)/4p + c3R‖εn+1‖(2p−1)/2p
]

R‖εn+1‖−1 < R‖εn+1‖−1

for some constant c4 > 0 given by (14.6) whenever ε and R are sufficiently small. The constant
λn also has a bound |λn| ≥ c5 for some constant c4 > 0 when ε is sufficiently small because λn is
close to λσ by the definition of I . Therefore, the curve r2 is R-regular associated to Fn+1.

Proposition 17.29. Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, and a unimodal permutation
σ . For all R > 0 sufficiently small and ε > 0 sufficiently small (depending on R), the following
property holds for all F ∈I σ

δ
(Ih× Iv,ε) and n≥ 0:

Assume that Yn is a collection of separators on Ih× Iv
n with Lipschitz constant L‖εn‖1/4, Zn+1

is a collection of separators on Ih× Iv
n+1 with Lipschitz constant L‖εn+1‖1/4, and RL < 1. If S1

and S2 are vertical strips of Yn and Zn respectively, S1 is in Pn(1), and the boundaries of S1 are
mapped to the boundaries of S2 by φn, then

|φn(J)|S2
≥ |J|S1

for all J ⊂ S1. Here, the hyperbolic size of the sets are measured by R-regular curves in their
renormalization level.

Proof. Let R and ε be the constants given by Lemma 17.28. Given an R-regular curve r1 : [a1,b1]→
Iv
n associate to Fn such that the two endpoints (a1,r1(a1)) and (b1,r1(b1)) of its graph belong on

the two boundaries of S1 and the two points (c1,r1(c1)) and (d1,r1(d1)) on the graph belong to J.
By Lemma 17.28, the image of the graph of r1 is the graph of an R-regular curve r2 : [a2,b2]→

Iv
n+1 associate to Fn+1. The boundaries (a2,r2(a2)) and (b2,r2(b2)) of its graph belong to the

two boundaries of S2 because boundaries of S1 maps to boundaries of S2. Also, the two points
(c2,r2(c2)) and (d2,r2(d2)) belong to φn(J) where c2 = φ̂(c1), d2 = φ̂(d1), and φ̂(x) = πx ◦
φn(x,r1(x)). Hence, r2 is an R-regular curve that satisfies the conditions for measuring the hy-
perbolic size. We get

|φn(J)|S2
≥ |[c2,d2]|[a2,b2]

. (17.30)

Moreover, the map φ̂ has negative Schwarizan derivative by Lemma 17.28. It implies the ex-
pansion of hyperbolic length

|[c2,d2]|[a2,b2]
=
∣∣[φ̂(c1), φ̂(d1)]

∣∣
[φ̂(a1),φ̂(b1)]

≥ |[c1,d1]|[a1,b1]
(17.31)

by Proposition 2.10. Combine (17.30) and (17.31), we get

|φn(J)|S2
≥ |[c1,d1]|[a1,b1]

.
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Figure 17.1.: The rescaling of the last step from R to D.

This inequality holds for all R-regular curves that satisfy the conditions for measuring the hyper-
bolic size. Therefore, the proposition is proved.

Finally, we obtain the expansion of hyperbolic size in the base sets from rescaling.

Corollary 17.30 (Expansion for RL
n( j)

φn→ RL
n( j− 1)). Given δ > 0, intervals Ih and Iv with I b

Ih ⊂ Iv, and a unimodal permutation σ . For all R > 0 sufficiently small and ε > 0 sufficiently small
(depending on R), the following property holds for all F ∈I σ

δ
(Ih× Iv,ε) and n≥ 0:

If J ⊂ RL
n( j) and j ≥ 1, then

|φn(J)|Base(RL
n+1( j−1)) ≥ |J|Base(RL

n( j))

where the hyperbolic size of the sets are measured by R-regular curves in their renormalization
level.

Proof. First, [αn(1),βn( j+2)]⊂ [αn(0),βn( j+2)] = Base(RL
n( j)). By Proposition 16.4, we have

|J|[αn(1),βn( j+2)] ≥ |J|Base(RL
n( j)) (17.32)

The vertical strip [αn(1),βn( j+2)] is in Pn(1) and its boundaries are mapped to the bound-
aries of Base(RL

n+1( j−1)) by the rescaling map φn. Also, the separators αn(1) and βn( j+2) have

Lipschitz constant L‖εn‖=
(

L‖εn‖3/4
)
‖εn‖1/4 and the boundary separators of Base(RL

n+1( j−1))

have Lipschitz constant L‖εn+1‖=
(

L‖εn+1‖3/4
)
‖εn+1‖1/4. Then RL‖εn‖3/4 < 1 and RL‖εn+1‖3/4 <

1 hold when ε > 0 is sufficiently small. Thus, Proposition 17.29 applies to the vertical strips and
the rescaling map. We get

|φn(J)|Base(RL
n+1( j−1)) ≥ |J|[αn(1),βn( j+2)] . (17.33)

Therefore, the corollary follows by combining (17.32) and (17.33).

17.2.4. RL
n(0)⇒ Dn (G or T j

n )

Lemma 17.31 (Expansion for RL
n(0)⇒ Dn). Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, an

admissible unimodal permutation σ , and a unimodal map g ∈U σ∞

δ
(Ih). For all R > 0 sufficiently
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17. Expansion of Hyperbolic Size in the Good Region

small (depending on g) and ε > 0 sufficiently small (depending on g and R), the following property
holds for all F ∈H σ∞

δ
(Ih× Iv,g,ε):

Assume that SDisp
(
αF(0),β 1

F(1)
)
≥K and SDisp

(
βF(1),βF(2)

)
≥K for some constant K > 0.

If J ⊂ S where S is a trapping set or gap in Dn, then

|J|Base(S) ≥ E |J|Base(RL
n(0))

for some constant E > 1 that depends only on K/
∣∣Ih
∣∣. The hyperbolic size is measured by R-regular

curves.

Proof. See Figure 17.1. The set Base(RL
n(0))\Base(S) contains a component on each side of

Base(S). The left component contains [αn(0),β 1
n (1)] and the right component contains [βn(1),βn(2)].

By Proposition 16.5, we get
|J|Base(S) ≥ E |J|Base(RL

n(0))
(17.34)

for some constant E > 1 determined by K/
∣∣Ih
∣∣.

17.3. Uniform expansion in the good region

This section summarize the uniform expansion of the hyperbolic length for a closest approach by
the following proposition.

Proposition 17.32 (Uniform expansion in the good region). Given δ > 0, intervals Ih and Iv with
I b Ih ⊂ Iv, and an admissible unimodal permutation σ . For all R > 0 sufficiently small and ε > 0
sufficiently small (depending on R), the following property holds for all F ∈I σ

δ
(Ih× Iv,ε):

Assume that J ⊂ B∪C∪D is a wandering domain of F and {Jn}∞

n=0 is the J-closest approach.
If J0, · · · ,Jn−1 belong to the good region, that is, 0≤ kr(m)(Jm)≤ Kr(m) for all 0≤ m < n, then

ln ≥ En−p · l0

for some constant E > 1 where the hyperbolic length is measured by R-regular curves.

Sketch of the proof. The proposition follows by Lemma 17.10 (Bn
Fn→ Cn), Lemma 17.11 (Cn

Fn⇒
Dn), Proposition 17.6 (Dn

Fn→ Dn), Proposition 17.7 (Dn
F p

n⇒ Dn), and Proposition 17.18 (Dn ↪→

Qn
Φ

j
n◦Fn⇒ Dn+ j).

In any p steps Jt → ··· → Jt+p, if Cn
Fn⇒ Dn or the rescaling Dn ↪→ Qn

Φ
j
n◦Fn⇒ Dn+ j occurs, then

uniform expansion happens due to Lemma 17.11 (Cn
Fn⇒Dn) and Proposition 17.18 (Dn ↪→Qn

Φ
j
n◦Fn⇒

Dn+ j). Otherwise, the wandering domain are all in Dn for some n. In the later case, expansion of

definite size is provided by Proposition 17.7 (Dn
F p

n⇒ Dn) for every p steps inside Dn.
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18. Bad region and Thickness

When an element Jn from a closest approach enters the bad region, the expansion estimate breaks
down and the hyperbolic sizes have a strong contraction when the element is iterated and rescaled
from Jn to Jn+1. This leads to the main difficulty of showing that the horizontal sizes approach
infinity. Our goal is to prove that the closest approach have at most finite entries to the bad regions
to show that the total amount of contraction is bounded.

To estimate the size of contraction, we first introduce the quantity “thickness” (Definition 18.1)
. Thickness gives a good estimation for the lower bound of the hyperbolic size when the expansion
estimate breaks down. To study the number of entries to the bad regions, we define a sequence
with two indices, called a double sequence (Definition 18.4). The sequence consists of rows. Each
row is associated to one entry to the bad region. Then we study the relationships between the
hyperbolic sizes and the thicknesses of the elements in a double sequence. From Propositions
18.5, 18.6, and 18.7, we have a full control over the hyperbolic sizes and the thicknesses of all
elements in a double sequence.

Finally, we prove that the number of rows in a double sequence is bounded to show that the
amount of contraction is bounded (Proposition 18.11). Of course, the reader can replicate the
proof from the period-doubling case. We proved a similar version of the expansion estimate for
hyperbolic size and contraction estimate for thickness for the case of other stationary combina-
torics. However, here we present a different but shorter proof.

As a result, if a wandering domain exists, then we study the sizes of the elements in a closest
approach. We showed that the hyperbolic sizes expand at a definite rate while the elements are in
the good regions (Chapter 17), and the sizes have a strong contraction during every entries to the
bad regions which is estimated by the thickness (Section 18.1). The total amount of contraction is
bounded because the elements have at most finite entries to the bad regions (Proposition 18.11).
This shows that the hyperbolic sizes approach infinity. However, the hyperbolic size of the gaps
and trapping sets are uniform bounded, and the sizes of the elements are bounded by the sizes of
the gaps and trapping sets. This is a contradiction. Therefore, a wandering domain cannot exist.

18.1. Thickness and largest square subset

Thickness is a quantity to estimate the size of the contraction when the expansion argument breaks
down. It was first introduced in Chapter 11 to prove the nonexistence of wandering domain for
the period-doubling case. Whenever an element Jn in a closest approach enters the bad region,
the hyperbolic size of the next sequence element Jn+1 is determined by the set’s horizontal cross-
section. Thickness is defined to estimate the size of the horizontal cross-section in terms of area,
roughly speaking. Moreover, the element Jn+1 is very thin because the area is contracted by the
size of its Jacobian which is very small for a strongly dissipative Hénon-like map. Thus, a strong
contraction on the hyperbolic length applies to the step Jn→ Jn+1.

The universality for the tip [dCLM05, Section 7.3] is the key property that allows us to estimate
the contraction of thickness in the period-doubling case. It gives a lower bound for estimating
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18. Bad region and Thickness

the Jacobian ∂ε

∂y in terms of the size of perturbation ε . For the arbitrary stationary combinatorics
case, there is also a version for the universality [Haz11, Section 6.1]. Therefore, the techniques
for thickness and largest square subset can be generalized to this context without making any
adjustment.

This section gives a brief review of thickness and largest square subset from Section 11.1. Most
of the properties will be stated without proof.

Definition 18.1 (Square, Largest square subset, and Thickness). A set I ⊂ R2 is a square if I =
[x1,x2]× [y1,y2] with x2− x1 = y2− y1. This means that I is a closed square with horizontal and
vertical sides.

Given a set J ⊂ R2. Define the thickness of J to be the quantity w(J) = sup
I
{|I|} where the

supremum is evaluated over all square subsets I ⊂ J. A subset I ⊂ J is a largest square subset of
J if I is a square such that |I|= w(J). A largest square subset of a compact set always exists. See
Figure 11.1 for illustration.

For a closest approach {Jn}∞

n=0, write wn = w(Jn). The contraction rate of the thickness is
estimated by

Proposition 18.2. Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, and a unimodal permutation
σ . There exist ε > 0 sufficiently small and c > 0 such that the following property holds for all
F ∈I σ

δ
(Ih× Iv,ε):

Assume that J ⊂ B∪C∪D is a wandering domain of F and {Jn}∞

n=0 is the J-closest approach.
Then

wn+1 ≥ c

∥∥εr(n)
∥∥∣∣∣Iv

r(n)

∣∣∣ wn

for all n≥ 0.

Proof. The proof is similar to Proposition 11.6. It depends on the universality of Hénon-like maps
in Proposition 14.25.

Since ‖εn‖ decreases super-exponentially and |Iv
n| increases exponentially, we can simplify

Corollary 18.3. Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, and a unimodal permutation
σ . There exist ε > 0 sufficiently small and c > 0 such that the following property holds for all
F ∈I σ

δ
(Ih× Iv,ε):

Assume that J ⊂ B∪C∪D is a compact subset of a wandering domain of F and {Jn}∞

n=0 is the
J-closest approach. Then

wn+1 ≥ c
∥∥εr(n)

∥∥3/2 wn

for all n≥ 0.

18.2. Double sequence

Next, we study the number of times that a closest approach enters the bad region by defining a
double sequence of sets. The definition is the same as in the period-doubling case Definition 11.9.
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18.2. Double sequence

A double sequence is a sequence with two indices, one index represents the rows and the other
represents the columns. Each row in a double sequence is associated to entering the bad region
once. The total number of rows is the number of times that a closest approach enters the bad region.

Recall the definition.

Definition 18.4 (Double sequence, Row, and Time span in good region). Given δ > 0, intervals Ih

and Iv with I b Ih ⊂ Iv, and a unimodal permutation σ . Assume that ε > 0 be sufficiently small so
that Proposition 15.2 holds and F ∈I σ

δ
(Ih× Iv,ε) is a non-degenerate open map.

Given a square subset J ⊂ B∪C∪D of a wandering domain for F . Define sets
{

J( j)
n

}
n≥0,0≤ j≤ j

,

Hénon-like maps
{

F( j)
n = ( f ( j)

n − ε
( j)
n ,x)

}
n≥0,0≤ j≤ j

, and non-negative integers
{

n( j)
}

0≤ j≤ j
for

some j ∈ N∪{0,∞}1 by induction on j such that the following properties hold.

Base For j = 0, set J(0)0 = J and F(0)
0 = F .

Row The super-script j is called row. The first set J( j)
0 of a row j is a square subset of a wan-

dering domain of F( j)
0 in B(F( j)

0 )∪C(F( j)
0 )∪D(F( j)

0 ). Each row j is a J( j)
0 -closest approach.

Precisely, if J( j)
0 and F( j)

0 are defined, set F( j)
n = RnF( j)

0 and K( j)
n be the boundary for the

good region and the bad region of F( j)
n . Let

{
J( j)

n

}∞

n=0
and

{
r( j)(n)

}∞

n=0
be the J( j)

0 -closest
approach. See Definition 14.45 and Definition 15.1.

Induction step For a row j, if an element in the row enters the bad region, i.e. k( j)
n > K( j)

r( j)(n)
for

some n ≥ 0, set J( j)
n( j) to be the first element. The nonnegative integer n( j) is called the time

span in good region of row j. Define the first element J( j+1)
0 of the next row j+ 1 to be a

largest square subset of the next element J( j)
n( j)+1

and set F( j+1)
0 =F( j)

r( j)(n( j)+1)
. If the row never

enters the bad region, then the construction stops, set j = j and n( j) = ∞. If the procedure
never stops, set j = ∞.

The two dimensional sequence
{

J( j)
n

}
n≥0,0≤ j≤ j

is called a double sequence generated by J or a

J-double sequence. The integer j is called the number of rows in the double sequence. It means
the double sequence enters the bad region j times.

Figure 11.1 illustrates the construction.

To be consistent and avoid confusion, the superscript is assigned for the row and the subscript
is assigned for the renormalization level or the index of sequence element in the closest approach.
For example, abbreviate D( j)

n = D(F( j)
n ), R( j)

n = B(F( j)
n ), T i,( j)

n = T i(F( j)
n ), Pi,( j)

n = Pi(F( j)
n ), l( j)

n =

l(J( j)
n ), w( j)

n = w(J( j)
n ), and k( j)

n = k(J( j)
n ) as before.

In the following, write r( j)(n)= r(n) when the context is clear, for example F( j)
r(n( j)+1)

=F( j)
r( j)(n( j)+1)

.

Also, set ε( j) = ε
( j)
r(n( j))

, K( j) = K( j)
r(n( j))

, and k( j) = k( j)
n( j) . The quantities ε( j), K( j), and k( j) are the

representative quantities of those objects in the row. For convenience, let m( j) = n( j)+1.
1For the case j = ∞, this means that the sequence is defined for all finite positive integers j.
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18. Bad region and Thickness

First, we study the relations of hyperbolic size and thickness in a double sequence. The expan-
sion of hyperbolic size in a row was proved by Proposition 17.32. The result is rephrased in terms
of double sequence by the next proposition.

Proposition 18.5. Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, and an admissible unimodal
permutation σ . There exist constants E > 1, R > 0, and ε > 0 sufficiently small such that the
following property holds for all non-degenerate open maps F ∈I σ

δ
(Ih× Iv,ε):

Let J ⊂ B∪C∪D be a square subset of a wandering domain of F and
{

J( j)
n

}
n≥0,0≤ j≤ j

be a

J-double sequence. Then
l( j)
n ≥ En−pl( j)

0

for all n≤ n( j) and 0≤ j ≤ j. The hyperbolic size is measured by R-regular curves.

The relation of sizes between two consecutive rows are connected by the thickness. By defini-
tion, the first element J( j+1)

0 in row j+1 is a largest square subset of the sequence element J( j)
n( j)+1

in row j. This yields the relation w( j+1)
0 = w( j)

n( j)+1
. The hyperbolic size of the elements in row j+1

cannot be obtained from the hyperbolic size of the elements in row j because the hyperbolic size
of J( j)

n( j) fails to expand under iteration. The next proposition summarizes the relation of thickness
between two rows.

Proposition 18.6. Given δ > 0, intervals Ih and Iv with I b Ih⊂ Iv, and a unimodal permutation σ .
There exists ε > 0 sufficiently small such that the following property holds for all non-degenerate
open maps F ∈I σ

δ
(Ih× Iv,ε):

Let J ⊂ B∪C∪D be a square subset of a wandering domain of F and
{

J( j)
n

}
n≥0,0≤ j≤ j

be a

J-double sequence. Then
lnw( j+1)

0 ≥ 2m( j) ln
∥∥∥ε

( j)
∥∥∥+ lnw( j)

0

for all 0≤ j ≤ j−1.

Proof. The proof is similar to the proof of Proposition 11.12. See also Corollary 18.3. The details
are left to the reader.

The next proposition allows us to relate the horizontal size with the thickness for the first element
in a row.

Proposition 18.7. Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, and a unimodal permutation
σ . There exist ε > 0 sufficiently small and c = c(Ih)> 0 such that the following property holds for
all non-degenerate open maps F ∈I σ

δ
(Ih× Iv,ε):

Let J ⊂ B∪C∪D be a square subset of a wandering domain of F and
{

J( j)
n

}
n≥0,0≤ j≤ j

be a

J-double sequence. Then
l( j)
0 ≥ cw( j)

0

for all 0≤ j ≤ j.

Proof. The proposition follows from Proposition 16.7 and the set J( j)
0 is a square by definition.
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18.2. Double sequence

Next, we relate the perturbation ε between two rows as follows.

Proposition 18.8. Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, and a unimodal permutation
σ . There exist ε > 0 sufficiently small and α > 0 such that the following property holds for all
non-degenerate open maps F ∈I σ

δ
(Ih× Iv,ε):

Let J ⊂ B∪C∪D be a square subset of a wandering domain of F and
{

J( j)
n

}
n≥0,0≤ j≤ j

be a

J-double sequence. Then ∥∥∥ε
( j+1)

∥∥∥≤ ∥∥∥ε
( j)
∥∥∥‖ε( j)‖−α

(18.1)

for all 0≤ j ≤ j−1.

Proof. The proof is similar to Proposition 11.13.
By the definition of ε( j) and Proposition 14.25, we have

∥∥∥ε
( j+1)

∥∥∥= ∥∥∥ε
( j+1)
r(n( j+1))

∥∥∥≤ ∥∥∥ε
( j+1)
0

∥∥∥= ∥∥∥ε
( j)
r(n( j)+1)

∥∥∥≤ c
∥∥∥ε

( j)
r(n( j))

∥∥∥pk( j)

= c
∥∥∥ε

( j)
∥∥∥pk( j)

for some constant c > 0. Here we assume that ε > 0 is sufficiently small so that the size of the
perturbation ε is decreasing in each row. Apply logarithm to both sides, we get

ln
∥∥∥ε

( j+1)
∥∥∥≤ pk( j)

ln
∥∥∥ε

( j)
∥∥∥+ lnc≤ 1

2
pk( j)

ln
∥∥∥ε

( j)
∥∥∥ . (18.2)

Here we assume that ε > 0 is small enough such that

lnc <−1
2

pk( j)
ln
∥∥∥ε

( j)
∥∥∥

for all j ≥ 0.
The element J( j)

n( j) enters the bad region, we have k( j) > K( j). By Proposition 15.2 and the change
base formula, we get

pk( j)
> pK( j)

=
(

λ
K( j)
) ln p

lnλ ≥ c′
(

1∥∥ε( j)
∥∥
) ln p

2lnλ

(18.3)

for some constant c′ > 0. Let α = ln p
4lnλ

> 0. Combine (18.2) and (18.3), we obtain

ln
∥∥∥ε

( j+1)
∥∥∥≤ c′

2

(
1∥∥ε( j)
∥∥
)2α

ln
∥∥∥ε

( j)
∥∥∥<( 1∥∥ε( j)

∥∥
)α

ln
∥∥∥ε

( j)
∥∥∥ .

Here we also assume that ε is small enough such that

c′

2

(
1∥∥ε( j)
∥∥
)α

> 1

for all j ≥ 0. This proves the proposition.
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18. Bad region and Thickness

18.3. Closest approach cannot enter the bad region infinitely many
times

From the vertical line argument, a strong contraction applies to the horizontal size whenever an
element in a closest approach enters the bad region. This conflicts our final goal of showing that
the horizontal sizes approach infinity. In this section, we prove that the total amount of contraction
is bounded. This is done by showing that a double sequence has at most finite number of rows
(Proposition 18.11).

When an element in a closest approach enters the bad region, a restriction also applies to the
element: the size of the element cannot exceed the size of the bad region. This is the key condition
that is used to prove Proposition 18.11. The next lemma estimates an upper bound of the hyperbolic
size if an element is in the bad region.

Lemma 18.9. Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, and a unimodal permutation
σ . There exist ε > 0 sufficiently small and c > 0 such that the following property holds for all
non-degenerate open maps F ∈I σ

δ
(Ih× Iv,ε) and n≥ 0:

If the set J ⊂ Qn is in the bad region, then

l(J)≤ c
√
‖εn‖.

Proof. The set J is in the center trapping set T p−1
n because J lands in the bad region. Since the

both sides of T p−1
n has definite size, the hyperbolic size of J is bounded by

l(J)≤ c1 · sup{|x2− x1| : (x1,y1),(x2,y2) ∈ J}

for some constant c1 > 0 by Proposition 16.6. Also, the size of the bad region bounds the Euclidean
size of the set J by

sup{|x2− x1| : (x1,y1),(x2,y2) ∈ J} ≤ c2
√
‖εn‖

for some constant c2 > 0 by Proposition 15.2 (second property of the bad region). Therefore, the
lemma follows.

Now, we had prepared all of the ingredients, Proposition 18.5, Proposition 18.6, Proposition
18.8, Proposition 18.7, and Lemma 18.9, in order to prove Proposition 18.11. Of course, the
reader can follow the arguments from the period doubling case (Section 11.3) to obtain the same
result. Here, we present a different proof.

First, we derive a recurrence relation for the thickness.

Lemma 18.10. Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, and an admissible unimodal
permutation σ . There exist ε > 0 sufficiently small and a constant c > 0 such that the following
property holds for all non-degenerate open maps F ∈I σ

δ
(Ih× Iv,ε) and n≥ 0:

Let J ⊂ B∪C∪D be a square subset of a wandering domain of F and
{

J( j)
n

}
n≥0,0≤ j≤ j

be a

J-double sequence. Then the recurrence relation

lnw( j+1)
0 ≥ ca2

j +a j lnw( j)
0 (18.4)
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18.3. Closest approach cannot enter the bad region infinitely many times

holds for all j with 0≤ j ≤ j−1 where a j =− 4
lnE ln

∥∥∥ε( j)
∥∥∥> 0.

Proof. The element J( j)
n( j) from the j-th row enters the bad region. By Lemma 18.9, the hyperbolic

size is bounded by

l( j)
n( j) ≤ c1

√∥∥ε( j)
∥∥ (18.5)

for some constant c1 > 0. From Proposition 18.5 and Proposition 18.7, we have

l( j)
n( j) ≥ En( j)

l( j)
0 ≥ c2En( j)

w( j)
0 (18.6)

for some constants c2 > 0 and E > 1. Combine (18.5) and (18.6), we get

n( j) ≤ 1
lnE

[
lnc1− lnc2 +

1
2

ln
∥∥∥ε

( j)
∥∥∥− lnw( j)

0

]
≤ 1

4lnE
ln
∥∥∥ε

( j)
∥∥∥− 1

lnE
lnw( j)

0 (18.7)

when ε is small.
By Proposition 18.6 and (18.7), we have

lnw( j+1)
0 ≥2

[
1

lnE

(
lnc1− lnc2 +1+

1
2

ln
∥∥∥ε

( j)
∥∥∥− lnw( j)

0

)]
ln
∥∥∥ε

( j)
∥∥∥+ lnw( j)

0

=
1

lnE

[
2(lnc1− lnc2 +1)+ ln

∥∥∥ε
( j)
∥∥∥] ln

∥∥∥ε
( j)
∥∥∥+(1− 2

lnE
ln
∥∥∥ε

( j)
∥∥∥) lnw( j)

0

≥ 1
2lnE

(
ln
∥∥∥ε

( j)
∥∥∥)2

+
4

lnE

(
− ln

∥∥∥ε
( j)
∥∥∥) lnw( j)

0

when ε > 0 is small since ln
∥∥∥ε( j)

∥∥∥< 0.

Then, we use the recurrence relation to conclude that a double sequence has finite number of
rows.

Proposition 18.11. Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, and an admissible unimodal
permutation σ . There exists a constant ε > 0 sufficiently small such that the following property
holds for all non-degenerate open maps F ∈I σ

δ
(Ih× Iv,ε) and n≥ 0:

Let J ⊂ B∪C ∪D be a square subset of a wandering domain of F and
{

J( j)
n

}
n≥0,0≤ j≤ j

be

J-double sequence. Then the number of rows j is finite.

Proof. Prove by contradiction. If the double sequence have infinite number of rows, then (18.4)
holds for all j ≥ 0. We get

lnw( j+1)
0 ≥ca2

j + ca ja2
j−1 + · · ·+ c

(
j

∏
k=1

ak

)
a2

0 +

(
j

∏
k=0

ak

)
lnw(0)

0

≥

(
j

∏
k=0

ak

)(
c

a2
j

∏
j
k=0 ak

+ lnw(0)
0

)
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18. Bad region and Thickness

for some constant c > 0.
In order to estimate the size of the lower bound, we estimate the ratio a j+1/a j. By Proposition

18.8, we have

a j+1

a j
=

ln
∥∥∥ε( j+1)

∥∥∥
ln
∥∥ε( j)

∥∥ ≥ ∥∥∥ε
( j)
∥∥∥−α

for some constant α > 0 since ln
∥∥∥ε( j)

∥∥∥ < 0. Apply the inequality x > lnx to x =
∥∥∥ε( j)

∥∥∥−α/2
, we

get
a j+1

a j
≥ c′

∥∥∥ε
( j)
∥∥∥−α/2

a j (18.8)

for some constant c′ > 0.
Finally, we estimate the size of the term a2

j/∏
j
k=0 ak. By (18.8), we have

a2
j

∏
j
k=0 ak

≥
j−1

∏
k=0

(
c′
∥∥∥ε

(k)
∥∥∥−α/2

)
a0.

However, this implies that lim j→∞ lnw( j+1)
0 = ∞ which is a contradiction. Therefore, the number

of rows j is finite.

18.4. Nonexistence of wandering domains

Finally, we put all of the ingredients together to prove the main theorem, an infinitely renormaliz-
able Hénon-like map with arbitrary stationary combinatorics does not have a wandering domain.
The proof assumes the contradictory, there exists a wandering domain. By the next proposition,
we may assume without lose of generality that the combinatorics is admissible by the shifting trick
(Example 13.24) and the Hénon-like map is close to the hyperbolic fixed point of the renormaliza-
tion operator with the same combinatorics (Propositions 14.25, 14.44, and 18.12).

Proposition 18.12. Given δ > 0 and intervals Ih and Iv with I b Ih ⊂ Iv. Assume that σ is an
admissible unimodal permutation and µ is a two-cycle and g ∈ U µ

δ
(Ih)∪U σ∞

δ
(Ih). Set H =

H µ

δ
(Ih× Iv,g,ε) if g ∈U µ

δ
(Ih) and H = H σ∞

δ
(Ih× Iv,g,ε) if g ∈U σ∞

δ
(Ih). There exists ε > 0

(depending on g ) such that the following property holds for all Hénon-like maps F ∈H :
The Hénon-like map F has a wandering domain in PF(0) if and only if its renormalization RF

has a wandering domain in PRF(0).

Proof. The proof is similar to the unimodal case Proposition 13.62. The proposition follows from
Proposition 14.44 and Corollary 17.8.

Finally, we prove the main theorem.

Theorem 18.13. Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, a unimodal permutation σ

that is not the two cycle, and g ∈ U σ∞

δ
(Ih). There exists ε > 0 (depending on g) such that every

non-degenerate open Hénon-like map F ∈H σ∞

δ
(Ih× Iv,g,ε) does not have a wandering domain.
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18.4. Nonexistence of wandering domains

Proof. Prove by contradiction. Assume that F has a wandering domain. Without lose of generality,
we may assume that the combinatorics σ is admissible and the Hénon-like map F is close to the
fixed point i( fσ ) by the shifting trick, Proposition 18.12, and Proposition 14.25. We may also
assume that the wandering domain is in DF by 14.44.

Let J be a square subset of a wandering domain in DF and
{

J( j)
n

}
n≥0,0≤ j≤ j

be a J-double

sequence. By Proposition 18.11, the number of rows j is finite. This implies that the amount of
contraction is bounded and

lim
n→∞

l( j)
n = ∞

by Proposition 18.5. However, this is impossible because the hyperbolic size of the trapping sets
and gaps are uniform bounded in their base sets when a Hénon-like map is close enough to the
hyperbolic fixed point i( fσ ). Therefore, a wandering domain cannot exist.

As a consequence, the absence of wandering domain shows the size of the strange attractor is
small in the topological sense.

Corollary 18.14. Given δ > 0, intervals Ih and Iv with I b Ih ⊂ Iv, and an admissible unimodal
permutation σ . There exists ε > 0 such that for every non-degenerate open Hénon-like map F ∈
I σ

δ
(Ih× Iv,ε), the union of the stable manifolds of the period points is dense in the domain PF(0).
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Nomenclature

Notation Description Page
a Fixed point with a positive multiplier associate to its noncontracting di-

rection for a Hénon-like map
153

at(1) Periodic orbit of period p with a positive multiplier for a Hénon-like map 159
a( j) The family of periodic points with a positive multiplier for an infinite

renormalizable Hénon-like Map
163

α(0) (unimodal) Fixed point with positive multiplier 128
α(0) (Hénon) The connected component of the stable manifold of a(0) that

contains the point
158

α(0) (unimodal) The preimage of the fixed point α(0) 128
α(0) (Hénon) The connected component of the preimage of α(0) that does not

contain the point
158

α t(1) (unimodal) Periodic orbit of period p with positive multiplier 128
α t(1) (Hénon) The connected component of the stable manifold of at(1) that

contains the point
159

α t(1) (unimodal) Preimages of the periodic orbit α t(1), page 128 129
α t(1) (Hénon) Preimages of α(1) that forms an orbit of local stable manifolds 159
α( j) (unimodal) The family of periodic points with positive multiplier 131
α( j) (Hénon) A component of the stable manifolds containing the periodic

point a( j)
163

B The vertical strip [β 0(1),α0(1)] 169
b Fixed point with a negative multiplier associate to its noncontracting di-

rection for a Hénon-like map
158

b( j) The family of periodic points with a negative multiplier for an infinite
renormalizable Hénon-like Map

163

β (0) (unimodal) Fixed point of the unimodal map with negative multiplier 128
β (0) (Hénon) The connected component of the stable manifold of b(0) that

contains b(0)
158

β (0) (unimodal) The preimage of the fixed point β (0) 128
β (0) (Hénon) The connected component of the preimage of β (0) that does not

contain b(0)
158

β t(1) (unimodal) Periodic orbit of period p with negative multiplier 132
β t(1) (Hénon) The connected component of the stable manifold of bt(1) that

contains the point
166

β t(1) (unimodal) Preimages of the fixed point β (1), page 132 132
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Nomenclature

Notation Description Page
β t(1) (Hénon) Preimages of β (1) that forms an orbit of local stable manifolds 166
β ( j) (unimodal) The family of periodic points with negative multiplier 131
β ( j) (Hénon) A component of the stable manifolds containing the periodic

point b( j)
163

C The vertical strip [α1(1),β 1(1)] 169
D (unimodal) Iteration interval 137
D (Hénon) Iteration set 168
ε Perturbation part of a Hénon-like map 153
F Hénon-like map 153
f Unimodal map 127
f s Induced unimodal map on separators 156
fσ The fixed point of the unimodal renormalization operatior with combina-

torial type σ

130

G Gap 132, 166
H Nonlinear part of the Hénon rescaling 161
h The x-component of the Hénon-like map 153
H σ

δ
Class of renormaizable Hénon-like maps of combinatorial type σ 161

Hδ Class of Hénon-like maps with holomorphic extension on a δ -
neighborhood

153

i( f ) Degenerate Hénon-like map 153
Ih Horizontal domain for a Hénon-like map 153
Iv Vertical domain for a Hénon-like map 153
I σ Class of infinite renormalizable Hénon-like maps with stationary combi-

natorics σ

162

I σ

δ
The class of infinite renormalizable Hénon-like maps with combinatoric
type σ that are close to the fixed point i( fσ )

163

j Number of rows in a double sequence 205
Jn The J-closest approach 139, 171
J( j)

n A J-double sequence 205
k Rescaling level 138, 169
Kn Boundary for good region and bad region 173
l (unimodal) Hyperbolic length 140
l (Hénon) Hyperbolic size 183
Λ Affine part of the Hénon rescaling 161
λn The scaler s′n 162
λσ The rescaling factor for the fixed point fσ 130
n( j) Time span in the good region for row j in a double sequence of wandering

domain
205
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Nomenclature

Notation Description Page
P(0) (unimodal)The interval [α(0),α(0)]. The unimodal map is a self-map on

the interval
128

P(0) (Hénon) The vertical strip of [α(0),α(0)] that makes the Hénon-like map
to be a self-map

158

Pt (unimodal) Cyclic intervals 129
Pt (Hénon) Cyclic sets 159
φ Hénon rescaling 130, 161
Φ

j
n Nonlinear rescaling from renormalization level n to n+ j 162

Q (unimodal) Prerescaling interval 137
Q (Hénon) Prerescaling set 169
R Renormalization operator 130, 161
r(n) Renormalization scale of the closest approach Jn 139, 171
R Parameter for regular curves 175
R (unimodal) Rescaling interval 137
R (Hénon) Rescaling set 168
s (unimodal) Affine rescaling for the unimodal renormalization 130
s (Hénon) Affine part of the Hénon rescaling 161
σ Unimodal permutation 128
t Tip of a Hénon-like map 165
T t (unimodal) Trapping intervals 132
T t (Hénon) Trapping sets 166
θ Preimage of β (1) 132, 166
U Class of unimodal maps 127
Uδ Class of unimodal maps with holomorphic extension on a δ -

neighborhood
127

U σ Class of renormaizable unimodal maps of combinatorial type σ 129
w Thickness 204
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A. Tools

Lemma A.1 (Inverse function theorem). Assume that f : [a,b]→ [c,d] is C3 onto. If f ′(x) 6= 0 for
all a ∈ [a,b], then f has a inverse function s : [c,d]→ [a,b] that is C3 and

1. s′ ◦ f (x) = 1
f ′(x) ,

2. s′′ ◦ f (x) =− f ′′(x)
[ f ′(x)]2

, and

3. s′′′ ◦ f (x) =− 1
[ f ′(x)]5

{
f ′(x) f ′′′(x)−3 [ f ′′(x)]2

}
.

Proof. The lemma follows directly from the inverse function theorem and chain rule. See for
example [Rob99, P.140].

Lemma A.2. Assume that d > 0 and f , g are continuous function on J = [p− d, p+ d]. If f is
decreasing and has a fixed point at p and ‖ f −g‖J < d, then g has a fixed point in (p−d, p+d).

Proof. Consider the function x→ x−g(x). Compute

p+d−g(p+d) = (p+d− p)− ( f (p+d)− p)+ f (p+d)−g(p+d)
≥ d−‖ f −g‖J > 0

and

p−d−g(p−d) = (p−d− p)− ( f (p−d)− p)+ f (p−d)−g(p−d)
≤ −d +‖ f −g‖J < 0.

Therefore, g has a fixed point in (p−d, p+d) by the intermediate value theorem.

The following technical lemma estimates the change of the root when a function is perturbed.

Lemma A.3. Let J = [c,d], m > 0, and ε > 0 with d− c > 2ε

m . Assume that f ,g ∈C1(J) such that
‖ f −g‖J < ε and | f ′| , |g′|> m. If f (u) = g(v) for some u,v ∈ [c+ ε

m ,d−
ε

m ], then

|u− v|< ε

m
.

Proof. Without lose of generality, we may assume that f ′ > m > 0 by multiplying −1 to f . By the
mean value theorem, there exist ξ ∈ (u− ε

m ,u) and η ∈ (u,u+ ε

m) such that

f (u)− f (u− ε

m
) = f ′(ξ )

ε

m
> ε

and
f (u+

ε

m
)− f (u) = f ′(η)

ε

m
> ε.
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A. Tools

Since
∣∣ f (u− ε

m)−g(u− ε

m)
∣∣< ε and

∣∣ f (u+ ε

m)−g(u+ ε

m)
∣∣< ε , we get g(u− ε

m)< g(v) and g(u+
ε

m) > g(v). It follows by the intermediate value theorem, the unique solution v lies in the interval(
u− ε

m ,u+
ε

m

)
. That is, |u− v|< ε

m .

We also need

Lemma A.4. For all α > 0, we have xα lnx < 0 for all 0 < x < 1 and

lim
x→0+

xα lnx = 0.

Proof. The limit follow directly from the L’Hôpital’s rule.
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B. Comparison of the Notations

In Part I and Part II, we used two different systems of notations to express periodic orbits, local
stable manifolds, and vertical strips. Here, we give a conversion table to relate the notations.
Assume that the Hénon-like map is infinitely period-doubling renormalizable.

• Point:

Part I Part II

p(−1) = a(0)
p( j) = a( j+1) = b( j)

τ = t

• Local stable manifold:

Part I Part II

W 0(−1) = α(0)
W 2(−1) = α(0)

W 0(0) = α(1) = β (0)
W 1(0) = α1(1) = β (0)
W 2(0) = α0(1)
W 0( j) = α( j+1) = β ( j)
W 2( j) = α( j+1)

• Vertical Strip:

Part I Part II

B = P1

C = P0 = P(1)
D = P(0)
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Index

bad region, 21, 83, 83, 85, 89–90, 103, 173,
see also good region, 174, 174, 208,
203–210

boundary, see good region
base interval, 140

gap, 140
rescaling interval, 147
side, 140
trapping interval, 140
wandering interval, 140

base set, 183
gap, 183
prerescaling set, 189
rescaling set, 189
trapping set, 183
wandering domain, 183

Cantor set, 62
closest approach, 21, 76, 110, 125, 202, 205

step, 76
closest approach (Hénon), 172

step, 172
closest approach (unimodal), 139

step, 139
closure, 11
critical point, 12, 23, 24, 26, 72

orbit, 23
orbit of renormalization fixed point, 37

critical value, 12, 24, 28, 38, 68, 71, 139
cycle (Hénon), see cyclic set
cycle (unimodal), see cyclic interval
cyclic interval, 129, 135, 140, 146

center, 132, 132
cyclic set, 159, 160, 183

center, 159

decreasing, see increasing
double sequence, 111, 205

number of rows, 111, 119, 205, 209

Euclidean length, 14, 15, 16
expansion estimate, 93, 102

degenerate, 81

Feigenbaum-Cvitanović functional equation,
34, 35

fixed point, 12

gap (Hénon), 166, 183, 186–188
gap (unimodal), 132, 140, 142–147, 148
good region, 21, 83, 83, 85, 86–89, 91, 93,

102, 173, 173, 174, 202, 179–202
boundary, 110, 174, 174, 205

Hénon-like map, 41, 153
degenerate, 42, 79, 153
strongly dissipative, 153

horizontal endpoints, 77
horizontal size, 21, 77, 102, 113, 115
hyperbolic length, 15, 15, 14–17, 151, 139–

151
wandering interval, 140

hyperbolic size, 175, 176, 177, 178, 182, 183,
185, 190, 196, 197, 200, 201, 202,
175–202, 206, 208

wandering domain, 183

increasing, 12
induced map, 156

induced map, 156, 155–157
unimodal, 156, 156

infinitely renormalizable, 50
unimodal map, 24

interior, 11
interval, 11
inverse function theorem, 217
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Index

iteration interval, 137, 137, 137, 138, 141,
140–147

iteration set, 168, 169, 169, 170, 182, 183,
184, 185, 179–189

Jacobian, 12
average, 162

λ , 34
Lipschitz continuous, 11
Lipschitz curve, 154, 154, 155, 154–157, 175
local stable manifold, 43, 44, 43–46, 54, 54,

63, 64
degenerate, 79
existence, 58, 60

monotone, 12
induced map, 156

multipliers, 12

norm
Cn, 11
sup, 11

orientation, see monotone

partition
degenerate, 79
Hénon-like map, see also local stable man-

ifold, 43, 45, 45, 54, 160, 166, 171
unimodal, 131, 136, 138, 140
unimodal map, 23

periodic point, 12
renormalization fixed point, 37

permutation, 12, 128
admissible, 134, 132–136, 169, 170
cyclic, 12

length, 12
unimodal, 129, 158

preperiodic point, 12
prerescaling interval, 137
prerescaling level (Hénon), 173, 174
prerescaling set, 169, 184, 191, 196, 197
projection, 12

regular, 93, 175, 175, 176, 177, 180, 191, 197
renormalizable

Hénon-like, 45
unimodal map, 23

renormalizable (Hénon), 160
infinite, 162

renormalizable (unimodal), 129
infinite, 130
periodic combinatorics, 130
prime combinatorics, 130
stationary combinatorics, 130

renormalization
degenerate, 80
fixed point, 35

renormalization (Hénon), 210
level, 162, 171
operator, 161

hyperbolicity, 162
renormalization (unimodal)

Hénon, 130
level, 130, 139
unimodal, 130

renormalization operator
Hénon-like map, 48

hyperbolicity, 50
unimodal map, 24

renormalization scale, 25, 50
rescaling interval, 137, 137, 137, 147–151
rescaling level, 25, 53, 54

Hénon-like, 76
rescaling level (Hénon), 168, 169, 173, 174
rescaling level (unimodal), 138, 148
rescaling set, 168, 169, 169, 190, 197, 200,

201, 189–202
rescaling trick, 80, 99
row, see also double sequence, 110, 114, 115,

117, 119, see also double sequence,
205, 207, 209

Schwarzian derivative, 13
negative, 13, 13, 15, 180, 191, 197

self-map, 43, 158
separator, 154, 154, 155, 157, 154–157, 163,

166
compatible, 156
disjoint, 154
displacement, 176
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Index

order, 154
shadowing theorem, 70
shifting trick, 132, 136, 152, 210
square, 104, 105, 107, 204, 206

largest square subset, 104, 110, 204, 205
stable manifold, 12

local, 12
stable set, 12

thickness, 21, 103, 104, 104, 109, 204, 204,
203–204, 206

time span in good region, 110, 205, 206
time span in the good regions, 22, 113, 115,

117
tip, 21, 62, 63, 68, 71, 72, 76, 165, 172, 174
trapping interval, 132, 141, 146–147, 149

center, 132, 132
trapping set, 166, 168, 183, 188–189
two-row-lemma, 115

unimodal case, see degenerate Hénon-like map
unimodal map, 12, 21, 23, 41, 127, 156

vertical graph, 43
vertical line argument, 83
vertical size, 77
vertical strip, 154, 157, 158, 159, 166, 168,

175, 176, 177, 182, 196, 200
boundary, 154

wandering domain, 75, 75, 168, 168, 169, 170,
184, 210

double sequence, see double sequence, see
double sequence

nonexistence, 120, 210
sequence, see closest approach, see clos-

est approach
wandering interval, 21, 26, 81, 81, 136, 136,

137, 141, 151
nonexistence, 152
sequence, see closest approach
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