
Renormalization of Lorenz Maps
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Abstract

This thesis is a study of the renormalization operator on Lorenz
maps with a critical point. Lorenz maps arise naturally as first-return
maps for three-dimensional geometric Lorenz flows. Renormalization
is a tool for analyzing the microscopic geometry of dynamical systems
undergoing a phase transition.

In the first part we develop new tools to study the limit set of
renormalization for Lorenz maps whose combinatorics satisfy a long
return condition. This combinatorial condition leads to the construc-
tion of a relatively compact subset of Lorenz maps which is essentially
invariant under renormalization. From here we can deduce topologi-
cal properties of the limit set (e.g. existence of periodic points of renor-
malization) as well as measure theoretic properties of infinitely renor-
malizable maps (e.g. existence of uniquely ergodic Cantor attractors).
After this, we show how Martens’ decompositions can be used to
study the differentiable structure of the limit set of renormalization.
We prove that each point in the limit set has a global two-dimensional
unstable manifold which is a graph and that the intersection of an un-
stable manifold with the domain of renormalization is a Cantor set.
All results in this part are stated for arbitrary real critical exponents
α > 1.

In the second part we give a computer assisted proof of the ex-
istence of a hyperbolic fixed point for the renormalization operator
on Lorenz map with quadratic critical points of the simplest possi-
ble nonunimodal combinatorial type. We then show how this can be
used to deduce both universality and rigidity for maps with the same
combinatorial type as the fixed point.
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Sammanfattning

Denna avhandling är ett studium av renormaliseringsoperatorn
på Lorenzavbildningar som har en kritisk punkt. Sådana avbildningar
uppstår naturligt som förstaåterkomstavbildningar för geometriska
Lorenzflöden i tre dimensioner. Renormalisering är ett verktyg som
kan användas för att analysera den mikroskopiska geometrin hos dy-
namiska system som genomgår en fasövergång.

I del ett utvecklar vi nya verktyg för att analysera gränsmängden
för renormaliseringsoperatorn på Lorenzavbildningar vars kombina-
torik uppfyller ett långt återkomsttidsvillkor. Detta villkor används
för att konstruera en relativt kompakt mängd av Lorenzavbildningar
som i stort sett är invariant under renormalisering. Utifrån detta kan
vi bevisa topologiska egenskaper hos gränsmängden (t.ex. existens
av periodiska punkter för renormaliseringsoperatorn) samt måtteo-
retiska egenskaper för oändligt renormaliserbara Lorenzavbildningar
(t.ex. existens av entydigt ergodiska Cantorattraktorer). Därefter visar
vi hur Martens dekompositioner kan avändas för att analysera den
differentierbara strukturen hos gränsmängden för renormalisering.
Vi visar att varje punkt i gränsmängden har en tvådimensionell global
instabil mångfald som är en graf samt att snittet av den instabila mång-
falden med domänen av renormalisering är en Cantormängd. Alla
resultat i denna del gäller för godtyckliga reella kritiska exponenter
α > 1.

I del två bevisar vi att renormaliseringsoperatorn har en hyper-
bolisk fixpunkt av enklast möjliga ickeunimodala kombinatorik. Be-
viset stöder sig på ett datorprogram för att utföra vissa rigorösa upp-
skattningar. Vi visar även hur existens av en sådan fixpunkt medför
universalitet och stelhet för avbildningar av samma kombinatorik.
Denna del gäller endast för kritisk exponent α = 2.
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CHAPTER 1

Introduction

1.1 Background

To get a feel for the subject of this thesis before getting into the details I will
begin by relating something of a mystery that occurs in the physical world.

Imagine a narrow tap which has very precise control over the flow of
water coming out of it. The flow is controlled by turning a knob which has
a dial indicating the angle the knob is turned. To begin with no water is
flowing. After turning the knob ever so slightly water starts dripping. At
this point the first interesting thing happens: as the knob is slowly being
turned the frequency with which the water drips will not change, until all
of a sudden the water starts dripping twice as fast as before. Now this pat-
tern repeats itself; as the knob is turned the frequency of the drips does not
change, until all of a sudden the frequency doubles again. This frequency
doubling can be observed a couple of times until the water starts flowing in
a steady stream. In very general terms we call this a phase transition (with
dripping and flowing water being the two phases) via a period-doubling1

cascade.
Let a1 denote the angle the knob was turned when the tap started drip-

ping, a2 the angle of the knob when the frequency doubled for the first
time, a3 the angle of the second frequency doubling, etc. If this experiment
was performed on another tap the recorded angles would most likely dif-

1The way we have presented this example it is the frequency which is doubling. How-
ever, if we perform the experiment “in reverse,” then it is the period which is doubling.

1



2 Chapter 1. Introduction

fer wildly. However, and this is the mysterious part, the asymptotic relative
distance between these angles is independent of the tap! That is, if d1 = a2 − a1
is the distance between the first two recorded angles, d2 = a3 − a2 the dis-
tance between the next two angles, and so on, then the sequence of ratios
d1/d2, d2/d3, . . . approaches a number which has nothing to do with the
tap used for the experiment:

di

di+1
→ δ ≈ 4.6692 . . .

The number δ is called the Feigenbaum delta (or the first2 Feigenbaum
constant). The particular value of δ is not so interesting on its own, but what
is interesting is that it has a tendency to turn up in (dissipative) systems that
undergo a phase transition via a period-doubling cascade.

Another, seemingly unrelated, system where the Feigenbaum delta ap-
pears is in oscillating electric circuits. This example is not as appealing to
the intuition as the dripping tap so I will not go into too many details. The
setup is a simple; connect a resistor, an inductor, and a diode and feed this
circuit by a sinusoidal signal. By increasing the amplitude of the input sig-
nal, the voltage measured across the diode will exhibit the same frequency
doubling characteristic as the dripping tap. That is, if the input amplitude
is increased slowly, the voltage measured over the diode will double in fre-
quency at specific values of the amplitude, call these V1, V2, V3, etc. As
before, if we form relative distances between these values d1 = V2 − V1,
d2 = V3 −V2, etc., then di/di+1 → δ.

The topic of this thesis, renormalization, is a tool for analyzing systems
which, like the above examples, are undergoing a phase transition. On one
level it explains why seemingly unrelated systems such as the dripping tap
and the oscillating circuit exhibit the same behavior during a transition, but
on a deeper level it allows us to give a precise description of the mathemat-
ics underlying this phenomenon.

1.2 Renormalization

The phenomenon presented in the previous section was not discovered by
some mad scientist playing with dripping taps in a lab — it was first ob-
served in the computer experiment outlined below. Only later did people

2There is also a second Feigenbaum constant but its description is a lot less intuitive.
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come up with clever ways of reproducing the results in physical systems
(see e.g. Libchaber and Maurer, 1979; Linsay, 1981; Martien et al., 1985). The
computer experiment itself was inspired by phase transitions in statistical
mechanics.

The computer experiment goes something like this: pick a family of
quadratic maps which depend on one parameter, for example the logistic
family

fµ(x) = µx(1− x), x ∈ [0, 1], µ > 0.

Now iterate the critical point (x = 1/2) of this map and see where it ends up
after many iterations for different values of the parameter µ. The observed
behavior is shown in Figure 1.1 on the following page. For small values of µ
the critical point always ends up in a fixed point whose position is given by
the curve coming in from the left in the figure; after µ = 3 all of a sudden
the critical point ends up in a period two orbit given by the split into two
curves; a little later the curves split again and now the critical point follows
a period four orbit, and so on. Around µ = 3.6 it is no longer clear where
the critical point ends up — it may tend to a periodic orbit but the map may
also be chaotic.

The reason why we look at the fate of the critical point is because it can
be shown that it reflects the behavior of almost all other points in [0, 1] (the
obvious exceptions are x = 0 and x = 1, but there may be others). Another
way of saying this is that the Figure 1.1 on the next page shows what the
attractor of fµ looks like for different values of the parameter µ.

Now let µ1 be the parameter value where the curve coming in from the
left splits in two, µ2 where the two curves split into four, etc. (that is, the pa-
rameter values µi record where a bifurcation takes place). As before, form
distances d1 = µ2 − µ1, d2 = µ3 − µ2, . . . , then consider the ratios d1/d2,
d2/d3, and so on. By now it should come as no surprise that the ratios con-
verge to the Feigenbaum delta. Also, if the experiment is repeated for any
other one-parameter family of maps with a quadratic critical point3 (e.g.
families of sine functions) then the same behavior will be observed. The ex-
act values where the bifurcations take place will be different, but the ratio
of distances will still converge to the Feigenbaum delta. This phenomenon
is called universality.4

3That is, any family which can be written h(x2) in a neighborhood of the critical point,
where h is a homeomorphism.

4Actually, there is more to universality. What we describe here is known as univer-
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Figure 1.1: Bifurcation diagram for the logistic family x 7→ µx(1 − x).
Given a value for the parameter µ on the horizontal axis, the vertical axis
shows where the critical point ends up after many iterations. For µ < 3 it
goes to one spot, after that it may be in one of two spots, then four, then
eight, then . . . chaos.

The above experiment was carried out by Coullet and Tresser (1978),
and independently by Feigenbaum (1978, 1979). In order to explain uni-
versality they introduced the period-doubling operator T which is loosely
defined as follows. Consider the space U of real-analytic unimodal5 maps
with a quadratic critical point. Take some f ∈ U . If there is an interval C
around the critical point to which the restriction f 2|C is affinely conjugate to
some g ∈ U , then define T f = g (one should also assume that C is maximal
for T to be well-defined). Conjugations preserve periodic points so a prop-
erty of T is that f has a periodic point of period 2n if and only if T f has a

sality in the parameter plane, but there is also universality in the phase space, or metric
universality, which is described in Remark 6.2.4.

5Unimodal here means with exactly one turning point.
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periodic point of period n. Hence, if Σn ⊂ U denotes the codimension one6

surface of maps undergoing a bifurcation from 2n−1–periodic behavior to
2n–periodic behavior (corresponding to a split in the bifurcation diagram
on the facing page), then T(Σn+1) ⊂ Σn, for n ≥ 1.

Now assume that: (i) T has a hyperbolic fixed point f∗, (ii) the spec-
trum of the derivative of T at f∗ is discrete with one expanding eigenvalue
equal to δ and all other eigenvalues strictly contained in the complex unit
disc, and (iii) the surface Σn transversally intersects the unstable manifold
of f∗ for n sufficiently large. These assumptions, called the renormalization
conjectures by the above authors, allowed them to explain universality as
follows.

Since T(Σn+1) ⊂ Σn the λ–lemma implies that the surfaces converge
towards the stable manifold of f∗ and that the rate of convergence is de-
termined by δ (since the action of T on a local unstable manifold is simply
multiplication by δ). A one-parameter family of unimodal maps is a curve
in U , so we can record parameter values an at which the curve crosses Σn.
These values converge (for generic7 families) and the rate of convergence,
which is described by the ratios (an+1 − an)/(an − an−1), asymptotically
equals 1/δ. In particular, this only depends on properties of the fixed point
and not on the family under consideration, thereby explaining universality.

Proving the renormalization conjectures turned out to be difficult and
when the first partial proof was announced by Lanford (1982, 1984) it neces-
sitated the use of a computer in order to perform some of the calculations.8

A novelty of Lanford’s proof was the use of interval arithmetic in order to
make rigorous computer estimates on an infinite-dimensional space. Note
that Lanford did not prove the transversality conjecture, this was done by
Eckmann and Wittwer (1987) also using the computer-assisted methods pi-
oneered by Lanford. In Part II we recreate Lanford’s methods to prove a
similar result for maps with a discontinuity.

6The bifurcation surface Σn is characterized by a condition on the critical value of each
map in the surface. This is a one-dimensional condition, which explains why Σn has codi-
mension one.

7By generic we essentially mean families which cross Σn transversally for all n ≥ N,
where N is some large number.

8As Lanford (1982) puts it in a remark: “Although done by computer, the computations
involved in proving the results stated are just on the boundary of what it is feasible to
verify by hand. I estimate that a carefully chosen minimal set of estimates sufficient to
prove Theorems 1 and 3 could be carried out, with the aid only of a nonprogrammable
calculator, in a few days.”
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The period-doubling operator is defined in terms of the second iterate
of maps; this is a restriction of the more general renormalization opera-
tor R. Briefly, f ∈ U is renormalizable if there exists an interval C around
the critical point such that f n|C is affinely conjugate to a map g ∈ U for
some n > 1, and we define R f = g (take C maximal for R to be well-
defined). Also, there is no reason to insist that the critical point is quadratic,
instead we should consider the space Uα of unimodal maps with critical
exponent α > 1, that is if f ∈ Uα then | f (x) − f (c)| = h(|x − c|α) in a
neighborhood of the critical point c for some homeomorphism h.

Intuitively we think of renormalization as a microscope. If f is renor-
malizable, then this means that the interesting dynamics for f takes place
on the subset C (together with the forward orbit of C). Renormalization
takes C and “zooms in” on this interval and gives us a new mapR f which
describes the dynamics on C. For certain f (the so-called infinitely renor-
malizable maps) this zooming can be repeated countably many times on
smaller and smaller intervals and this typically means that the dynamics
of f lives on a complicated fractal set. The geometry of such a fractal set
is intimately linked to the topology of the map itself. Renormalization al-
lows us to study the microscopic geometry of maps; it is particularly useful
in connection with phase transitions between maps of different topologi-
cal types. The prototypical example is that of the period-doubling phase
transition to chaos in the logistic family that we described above.

Let us now get back to the historical development of the theory of renor-
malization. Even though computer-assisted methods can be successfully
employed in the special case of the period-doubling operator, they are not
of much use when trying to say something about the renormalization op-
erator. Other methods were needed in order to proceed.

The first conceptual description of the renormalization operator was
given by Sullivan (1992) where he introduced new complex analytic tools
in order to study the limit set of the renormalization operator (note that
the limit set contains the period-doubling fixed point). The idea is that the
limit set is a hyperbolic Cantor set and that the renormalization operator
acts as the full shift on the limit set (this is colloquially referred to as the
renormalization horseshoe). This was proved over the course of several
years by different authors, most notably Sullivan (1992); McMullen (1996);
Lyubich (1999).

A downside with the approach of the above authors is that it relies on
complex analytic methods which only work for even critical exponents (we
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will have more to say about why this is dissatisfying in the next section).
For this reason people have been looking for alternative proofs which do
not rely on complex analysis, without much success so far. A notable ex-
ception is Martens (1998) who proves the existence of periodic points of
the renormalization operator on unimodal maps for any critical exponent.
However, that paper does not touch on the subject of hyperbolicity of the
limit set of renormalization.

In Part I we give a (partial) proof of the existence of a renormalization
horseshoe for a class of maps with a discontinuity. Our approach does
not use complex analysis and works for any critical exponent α > 1. To
our knowledge this is the first result about the structure of a limit set of
renormalization which works for any critical exponent. Moreover, it is one
of very few results on maps having both a discontinuity and a critical point
that goes beyond the purely topological aspects of the dynamics of such
maps.

1.3 Lorenz flows

The previous section discussed the renormalization part of the title of this
thesis. This section concerns the second part, that is Lorenz maps, but first
we need to talk about Lorenz flows.

Historically speaking, a Lorenz flow is a flow associated with the fol-
lowing system of ordinary differential equations in three dimensions called
the Lorenz equations:

(1.1)
ẋ = −σx + σy,
ẏ = −xz + rx− y,
ż = xy− bz,

This system is a simplified model of convection in the atmosphere. It was
investigated by Lorenz (1963) and has played an important role in the de-
velopment of the subject of Dynamical Systems (see Viana, 2000, for an
overview and recent results). For parameter values σ = 10, b = 8/3 and
r = 28 this system exhibits the well-known Lorenz attractor depicted in
Figure 1.2 on the next page.

The Lorenz attractor is the prototypical example of a nonperiodic and
chaotic attractor. Let us take some time to explain what we mean by this.
By attractor we essentially mean a set with an open neighborhood such that
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Figure 1.2: The Lorenz attractor.

any trajectory that passes through this neighborhood approaches the at-
tractor; that is, it has a large basin of attraction. In order for a set to be
an attractor it is also usually assumed that it cannot be decomposed into
smaller parts. This is true for the Lorenz attractor because it has a dense
periodic orbit. By chaotic we mean that the system exhibits sensitive depen-
dence on initial conditions; any two points will eventually separate under
time evolution of the system, no matter how close they initially started out.
Sensitive dependence on initial conditions epitomizes chaotic behavior in
dynamical systems. Finally, by nonperiodic we mean that the attractor is not
simply a periodic orbit. Typically this means that the appearance of the
attractor is very intricate and one glance at Figure 1.2 should be enough to
convince the reader that this certainly is true in the case of the Lorenz at-
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S

Wu
W s

O

Figure 1.3: Illustration of a geometric Lorenz flow. The origin O is an equi-
librium point of saddle type. The plane cutting the figure in two is part
of the stable manifoldW s and the curves emanating left and right from O
is the unstable manifoldWu. The flow is linear on the middle piece which
looks like an inverted T and nonlinear in the two hooks. The nonlinear part
forces the flow to return to the domain S. This ensures that the first-return
map to S is well-defined outside the line down the middle of S, which rep-
resents the intersection S ∩W s. Points on this line tend to the origin. One
should also imagine that there is an invariant foliation of S, for example by
lines parallel to the line which cuts S in half.

tractor. Note that a periodic attractor can exhibit chaotic behavior (think of
the doubling map on a circle) even though geometrically it will look very
tame. See Milnor (1985) for a classical discussion on the concept of attractor.

A rigorous mathematical analysis of the system (1.1) for the parameters
given above proved to be quite difficult. It was unknown for a very long
time whether (1.1) really did exhibit a nonperiodic chaotic attractor or if
computer generated pictures like Figure 1.2 on the preceding page were in
fact only showing solution curves approaching a very long stable periodic
orbit. A proof that the Lorenz attractor is nonperiodic and chaotic was
finally announced by Tucker (1998). The proof uses a computer to make
rigorous estimates that would take too long to verify by hand, much like
the first proof of the renormalization conjectures.

It was already known that flows having the same geometric character-
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istic as the flow of (1.1) do exhibit nonperiodic chaotic attractors. Such ge-
ometric Lorenz flows were introduced in Guckenheimer (1976). These days
the name Lorenz flow usually refers to a geometrically defined flow, the con-
struction of which we will now discuss (a detailed description can be found
in Guckenheimer and Williams, 1979).

Figure 1.3 on the preceding page illustrates the construction of a geo-
metric Lorenz flow. Roughly speaking, it is defined by the associated vector
field X having an equilibrium point of saddle type at the origin. This sad-
dle should have a two-dimensional stable manifold and a one-dimensional
unstable manifold. The vector field X is chosen to be linear near the origin
but away from the origin it is nonlinear so that it returns in a controlled
manner. Namely, there should be a two-dimensional domain S which in-
tersects the stable manifold in a curve and any flow trajectory which hits S
outside this curve does so transversally and eventually returns to S. This
means that the first-return map F to S is a well-defined map off the sta-
ble manifold. To simplify the analysis of the geometric flow further, it is
assumed that there exists a foliation of S which is F–invariant and whose
leaves are exponentially contracted by F. Hence the first-return map acts
on the leaves of the foliation and by taking a quotient over leaves we are
left with an interval map which is undefined at the point corresponding to
the stable manifold. Such a map is called a Lorenz map, see Figure 1.4 on
the next page.

The discontinuity of a Lorenz map corresponds to the crossing of the
domain S and the stable manifold in the associated flow. This discontinu-
ity appears because trajectories which hit S on the right side of the stable
manifold will flow through the right hook, whereas trajectories to the left
will flow through the left hook (see Figure 1.3 on the preceding page). On
a one-sided neighborhood of the point of discontinuity a Lorenz map is
topologically conjugate to |x|α restricted to a one-sided neighborhood of
the origin. The number α is called the critical exponent and is given by the
absolute value of the ratio between the weak stable and unstable eigenval-
ues at the saddle point of the associated flow. In particular, α may assume
any positive real value. An important consequence of this is that if we want
to be able to understand physical systems (of which the Lorenz equations is
but one example) then we need to be able to analyze maps of any positive
critical exponent, since nature does not have a preferred value for α. We
stress this point since it explains why the search for renormalization tools
that work for any critical exponent is not purely academic.
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α = 1/2 α = 2

Figure 1.4: A Lorenz map for different values of the critical exponent α.

Guckenheimer and Williams (1979) show that there is an open set of
vector fields on R3 with the structure of a geometric Lorenz flow (that is,
there are many such flows, intuitively speaking). They consider the case
α < 1 with the additional assumption that the Lorenz map is expanding in
the sense that the derivative is bounded from below by

√
2. In this situation

they use symbolic dynamics on the Lorenz map to show that the associated
flow supports a nonperiodic chaotic attractor.

We will consider the case when α > 1 which is significantly harder to
analyze due to the presence of contraction around the point of discontinu-
ity (think tent maps vs. unimodal maps). Instead of focusing on properties
of the associated flow we will concentrate on the Lorenz map itself, with the
understanding that results about Lorenz maps can be transferred to results
about Lorenz flows. The presence of contraction leads to a much wider va-
riety of dynamics than in the more traditional expanding case which makes
these Lorenz maps an interesting study in their own right. Perhaps more
important is that we wish to further the understanding of one-dimensional
dynamical systems, and in this sense the study of Lorenz maps can be seen
as a natural next step now that unimodal dynamics is well understood.
Of course, Lorenz maps are also important due to their connection with
flows on R3. The presence of a discontinuity introduces significant new
difficulties that do not appear for unimodal maps. We have been forced
to invent new tools to study the renormalization of Lorenz maps and our
hope has been to perhaps use the insight gained from this to better under-
stand unimodal renormalization for arbitrary critical exponents. Our idea
of using decompositions (see the next section) to compute the derivative of
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the renormalization operator seems promising in this respect.

1.4 Statement of results

A Lorenz map f on [0, 1] \ {c} is a monotone increasing differentiable map
which fixes 0 and 1, and which has a unique critical point at c ∈ (0, 1).
Note that c is not in the domain of f , so when saying that c is a critical
point of f what we mean is that D f (x) → 0 as x → c. Figure 1.5 on the
next page illustrates the graph of a typical Lorenz map. The critical point
has critical exponent α > 1 which will be fixed once and for all (noninteger
α are permitted).9 We will generally assume that f (c−) > c > f (c+), where

f (c−) = lim
x↑c

f (x) and f (c+) = lim
x↓c

f (x)

denote the critical values of f . If f (c−) ≤ c or f (c+) ≥ c, then f is triv-
ial, otherwise it is nontrivial.10 Note that f maps its domain [0, 1] \ {c}
onto [0, 1] and that the inverse of f has two branches, unless f is trivial.
For the sake of simplicity we will assume that f is C3 and has negative
Schwarzian derivative even though most of our arguments work, or can be
made to work, for f ∈ C2.

Given an interval C ⊂ [0, 1] we define the first-return map f̃ to C for f
by f̃ (x) = f n(x)(x), for x ∈ C \ {c}, where n(x) is the smallest positive
integer such that f n(x)(x) ∈ C.

A Lorenz map is renormalizable if there exists an interval C ⊂ (0, 1)
containing c such that the first-return map to C is affinely conjugate to a
nontrivial Lorenz map g on [0, 1] \ {c′} for some c′ ∈ (0, 1). The renormal-
ization of f is then defined by R f = g, where C is assumed to be maximal
for R to be well-defined. Note that c′ 6= c in general; this turns out to be
one of the most difficult problems to handle for renormalization of Lorenz
maps.

9One could also consider Lorenz maps with different critical orders on either side of the
critical point. We choose not to pursue this generalization in the name of simplicity. Also,
the first-return maps of geometric Lorenz flows has the same critical order on both sides of
the critical point so this generalization is somewhat unnatural.

10All points of a trivial map converge to a fixed point under iteration, which explains
the name trivial.
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0 1c

1

c−

c+

Figure 1.5: The graph of a Lorenz map on [0, 1] \ {c}.

The type of renormalization is given by the pair of words ω = (ω−, ω+)
where

ω−(i) =

{
0, if f i(c−) < c,
1, if f i(c−) > c,

ω+(j) =

{
0, if f j(c+) < c,
1, if f j(c+) > c,

for i = 0, . . . , a and j = 0, . . . , b, and where a and b are the smallest positive
integers such that f a+1(c−) ∈ C and f b+1(c+) ∈ C, respectively. The type
ω = (ω−, ω+) is called monotone if ω− = 01 · · · 1 and if ω+ = 10 · · · 0.
Note that the combinatorial description of Lorenz maps is simplified due
to the fact that Lorenz maps are increasing so there is no need to introduce
permutations as in the case of unimodal maps.

IfRk f is renormalizable for k = 0, . . . , n− 1 then we say that f is n times
renormalizable; if this holds for all n ≥ 1, then we say that f is infinitely
renormalizable. In the latter case we define the combinatorial type of f to
be the sequence ω̄ = (ω0, ω1, . . . ) such thatRk f is ωk–renormalizable11 for
all k ≥ 0. If the lengths of both words of ωi are uniformly bounded (in i)
then we say that f has bounded combinatorial type.

11“ω–renormalizable” is just shorthand for “renormalizable of type ω.”
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We will now fix a finite set Ω of monotone types satisfying the long
return condition of Section 3.1. Roughly speaking, Ω satisfies this condition
if

bαc ≤ |ω−| − 1 ≤ b2α− 1c and b− ≤ |ω+| − 1 ≤ b+,

for all ω = (ω−, ω+) ∈ Ω. The constant b− must be sufficiently large
and b+ depends on the choice of b−. We emphasize that Ω essentially only
depends on b−, which is large (compared to 2α− 1). It is also worth noting
that b+ can in general be chosen much larger than b− so the set Ω is not
small.

The condition on Ω may seem artificial and in all honesty so it is but
it allows us to make some serious estimates. The idea is that increasing
the return time of one branch while keeping the other constant forces the
critical point (of the renormalization) to move into a corner and in this way
we get some control over where the critical point is. Also, by increasing
the return time we push one critical value closer to a fixed point in the
boundary which causes the derivative along the orbit of this critical value
to grow. The combination of control over the position of the critical point
and large return derivatives is what makes all our estimates work.

In Section 3.1 it is shown that there exists a relatively compact set K
such that if f ∈ K is twice renormalizable, then R f ∈ K. Note that here
and from now on when we say “renormalizable” we mean “renormalizable
of type ω with ω ∈ Ω,” unless we specify otherwise. Because of this result
we colloquially call K an “invariant set” even though it is not really invari-
ant (since R f need not be twice renormalizable!). The proof is a series of
estimates that rely on the conditions on Ω; in fact, the conditions on Ω were
chosen so that these estimates work.

From this result we are immediately able to prove existence of the so-
called a priori bounds (see Section 3.2):

Theorem A (A priori bounds). If f ∈ K is infinitely renormalizable with com-
binatorial type in ΩN, then {Rn f }n≥0 is a relatively compact family.

The name a priori (real) bounds was coined by Sullivan (1992). In the
unimodal case Sullivan proves these bounds by employing a shortest in-
terval argument, however in the Lorenz case this argument breaks down
(essential due to the fact that the critical point is not fixed by renormaliza-
tion) which is why we have to work fairly hard for a proof.



1.4. Statement of results 15

The a priori bounds are a basis for understanding the structure of in-
finitely renormalizable maps. With them we can prove the following:

Theorem B (Infinitely renormalizable maps). If f ∈ K is infinitely renor-
malizable with combinatorial type in ΩN, then f is ergodic and has no wandering
intervals. Furthermore, if Λ denotes the closure of the critical orbits of f , then:

1. Λ is a Cantor set with zero Lebesgue measure and Hausdorff dimension
in (0, 1),

2. the basin of Λ has full Lebesgue measure, and
3. Λ is uniquely ergodic.

The proof of ergodicity and nonexistence of wandering intervals uses
the concept of generalized renormalization introduced by Martens (1994).
Specifically, we adapt the definition of the weak Markov property to Lorenz
maps (see Section 2.2). Note that Lorenz maps may have wandering inter-
vals in general, for example if they renormalize to a trivial map (regardless
whether the critical point is flat or not). Finding necessary conditions for a
Lorenz map to not have wandering intervals is still an open problem.

Since Lorenz maps have two critical orbits it is possible to construct
Lorenz maps with a Cantor attractor which supports two ergodic invari-
ant measures. In Section 2.3 we adapt the techniques of Gambaudo and
Martens (2006) to Lorenz maps and use this to construct such a map as well
as to show that bounded combinatorial type is sufficient but not necessary
for the Cantor attractor to be uniquely ergodic.

Having described the structure of the infinitely renormalizable maps
we turn to the more complex task of studying the renormalization operator
itself. Ultimately we want to describe the limit set of the renormalization
operator, but before we get there we address the question of existence of
periodic points (note that periodic points are contained in the limit set).

Martens (1998) proves the existence of periodic points for the renormal-
ization operator on unimodal maps. This is done by studying the action of
the renormalization operator on the boundary of the renormalizable maps
and then using a mapping degree argument to show existence of finite di-
mensional approximate periodic points in a purely topological way (the
“bottom-down, top-up” lemma). The actual periodic points are then found
as limits of the approximate periodic points.

A natural generalization of the “bottom-down, top-up” lemma which
works for any dimension of the parameter plane is given in Appendix A.1.
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R

X

Rn

Bn × X

R(Bn × X)

Figure 1.6: Illustration of the action of a renormalization operator R (uni-
modal, Lorenz, . . . ). The domain of R is the product of an n–dimensional
ball Bn and an infinite-dimensional space X. The action ofR is to wrap the
domain around the outside of itself in the parameter directions. By Theo-
rem A.1.1 there is a fixed point of R in the intersection of the two boxes.
This is just an intuitive picture, in general the domain might be more com-
plicated (although in our situation it is essentially this simple).

The general idea is that renormalization acts on a space Bn × X, where the
ball Bn ⊂ Rn represents parameter space and X is some infinite dimen-
sional function space. The parameters in this situation are the critical val-
ues, so n = 1 for unimodal maps and n = 2 for Lorenz maps. The action
of renormalization on sections Bn × {x} is to stretch in the general direc-
tion of Bn and wrap the boundary Sn−1×{x} around the outside of Bn×X
in such a way that the degree of this map is nonzero. Also, there should
be a bounded subset of X which is invariant under renormalization. See
Figure 1.6 for an illustration. This is a rough description of how both the
unimodal and Lorenz renormalization operators act and it seems natural
to think that other renormalization operators are similar. Theorem A.1.1 is
directly suited to this situation.

We apply this fixed point theorem to find periodic points of the renor-
malization operator. The relatively compact “invariant” set K allows us to
construct the periodic points directly without having to take limits of ap-
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proximate periodic points like Martens (1998). This simplifies the argument
considerably. In Section 3.3 we prove the following result:

Theorem C (Periodic points of renormalization). The renormalization oper-
ator has a periodic point for every periodic combinatorial type (ω1, . . . , ωn)∞ ∈
ΩN.

Note that we only prove existence and not uniqueness (even though
presumably there is a unique periodic point for each combinatorial type).

After this we turn to studying the limit set of the renormalization oper-
ator. Let AΩ denote the maps with a complete past, and let BΩ denote the
maps with a complete future. That is f ∈ AΩ if and only if

f = Rω−1 f−1, f−1 = Rω−2 f−2, f−2 = Rω−3 f−3, . . . ,

for some left infinite sequence (. . . , f−2, f−1) of maps with ω−i ∈ Ω, and
f ∈ BΩ if f is infinitely renormalizable with combinatorial type in ΩN.12

Think of AΩ as the “attractor” for R. The limit set of renormalization is
the intersection ΛΩ = AΩ ∩ BΩ. We should perhaps not say the limit set
here since there are in fact many such sets (we can choose Ω in countably
many different ways!) but we think of Ω as being fixed so the terminology
should not cause any confusion.

Every f ∈ ΛΩ has a bi-infinite sequence of words

(. . . , ω−2, ω−1, ω0, ω1, ω2, . . . ),

associated to it as explained above; explicitly, Rn f is ωn–renormalizable,
for every n ∈ Z. Note that if f is associated with the sequence {ωi}i∈Z,
then then R f is associated with the sequence {ωi+1}i∈Z, so R shifts the
sequence to the left. This indicates that R should be conjugate to a shift
operator, and conjecturallyR is conjugate to the full shift on symbols in Ω.
Unfortunately, we cannot prove that each f ∈ ΛΩ has a unique bi-infinite
sequence associated with it, nor can we prove that each bi-infinite sequence
has a unique f ∈ ΛΩ associated with it, so we are unable to define the
potential conjugacy. However, R|ΛΩ

is at least semi-conjugate to the one-
sided shift on symbols in Ω via the map which sends f ∈ BΩ to its combi-
natorial type.

12Rω is shorthand for the restriction ofR to the set of ω–renormalizable maps.
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The above paragraph describes the topological structure of the limit set
but we are also able to say something about its differentiable structure.
Conjecturally, the limit set is a horseshoe, that is a hyperbolic set on which
R is conjugate to the full shift. We only prove “half” of the hyperbolicity
statement, namely that each point f ∈ ΛΩ has a global unstable manifold
Wu( f ). By global we essentially mean that the unstable manifold stretches
across all domains of renormalization, that is

Wu( f ) ∩ Lω̄ 6= ∅ and ∂Wu( f ) ∩ Lω̄ = ∅, ∀ω̄ ∈
⋃

n>0

Ωn.

Theorem D (Renormalization horseshoe). The renormalization operator on
the limit set ΛΩ is semi-conjugate to the one-sided shift on symbols in Ω.

For every f ∈ ΛΩ there exists a unique global two-dimensional unstable man-
ifoldWu( f ) which is C1.

The intersection ofWu( f ) with the renormalizable maps of a given type in Ω is
diffeomorphic to a square, the intersection with the infinitely renormalizable maps
of a given combinatorial type in ΩN is a point, and the union of all such points is
a Cantor set.

The proof of existence of unstable manifolds can be found in Section 5.4.
It is based on results in Section 5.3 where we show that there exists a cone
field which is invariant and expanded under the action of DR. In order to
prove this we compute the derivative ofR in Section 5.1.

We are able to prove the uniqueness statement on the intersections of
renormalizable maps with the unstable manifolds by carefully looking at
the structure of the parameter plane of families of Lorenz maps (see Sec-
tion 5.2). The parameters in this respect are essentially the critical values.

In order to compute the derivative of the renormalization operator we
introduce the machinery of decompositions (Martens, 1998). Since this rep-
resents a certain amount of effort let us discuss why we choose to take this
route. First of all, the renormalization operator is not differentiable on a
Ck–space (since it is essentially just a composition operator) so we need
to make some restriction on the space in order to compute the derivative.
With decompositions we need not worry about this too much as the renor-
malization operator on decompositions contracts exponentially to a subset
where it is differentiable (see Proposition 4.2.8). The second, more fun-
damental problem is that there are “too many” directions in which to de-
form a general diffeomorphism thereby making estimates on the derivative
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very difficult to handle. With decompositions there are “only” countably
many directions to deform in and, more importantly, all deformations are
monotone (in a sense that will be explained in Section 5.1) which makes the
estimates manageable. Any results obtained for decompositions can be au-
tomatically transferred back to Lorenz maps by composing as explained
in Section 4.1.

This concludes the results of Part I. In Part II we make something of
a historical detour. We consider the renormalization operator Rω of the
simplest possible nonunimodal13 type, namely ω = (01, 100). We then
recreate Lanford’s computer-assisted proof of the existence of a fixed point
of the period-doubling operator on unimodal maps and adapt it to Rω.
Note that the results of Part I do not cover this case, so there is no overlap.

Theorem E (Hyperbolic renormalization fixed point). Let ω = (10, 011).
The restriction ofRω acting on a space of real analytic Lorenz maps with quadratic
critical point has a fixed point f?. The derivative DRω( f?) at f? is compact and
has no eigenvalues on the unit circle.

This theorem has two shortcomings: (i) it does not say anything about
the number of unstable eigenvalues (i.e. the dimension of the unstable man-
ifold), and (ii) there is no conclusion regarding the intersection of the unsta-
ble manifold with the bifurcation surfaces Σn as in the original renormal-
ization conjectures. The first item is a problem with our proof, the second is
a shortcoming of Lanford’s method which can be corrected as in Eckmann
and Wittwer (1987) but we chose not do this as it makes the computer esti-
mates more difficult.

The proof basically amounts to turning Rω into a contraction (without
changing the set of fixed points) via a Newton iteration and then using a
variant of the contraction mapping theorem. The verification that the mod-
ified operator is a contraction uses a computer to make rigorous estimates.
We provide the source code used to make these estimates in Chapter 7.
Given a copy of this chapter it is possible to feed it into a compiler and get
an executable that will perform the estimates. Of course, reading source
code is always rather difficult but we would like to stress that the amount
of code is small enough to include in its entirety complete with documen-
tation.

13Exactly what we mean by nonunimodal is explained in Remark 6.1.4.
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Finally, in Section 6.2 we discuss consequences of the existence of a hy-
perbolic renormalization fixed point. Some of these topics have already
been discussed in Part I, such as the existence of a Cantor attractor for
infinitely renormalizable maps. Hyperbolicity allows us to go a little fur-
ther and show that the conjugacy between Cantor attractor of two infinitely
renormalizable maps of combinatorial type (01, 100)∞ extends to a differ-
entiable map whose derivative is Hölder continuous. This important result
is known as rigidity.

1.5 Previous results

Lorenz maps and geometric Lorenz flows were introduced by Gucken-
heimer (1976), but the first investigations of critical Lorenz maps seem to be
by Arneodo, Coullet, and Tresser (1981); Collet, Coullet, and Tresser (1985).
There is a vast literature on expanding Lorenz maps, probably because
these are the ones that arise naturally in the traditional Lorenz system, but
not much seems to have been published on critical Lorenz maps.

Martens and de Melo (2001) contains many results and ideas used in
this thesis. Their paper contains a proof of the full family theorem, a proof
of density of hyperbolicity, a description of quasi-conjugacy classes, as well
as a description of the archipelago structure of domains of renormalizabil-
ity in the parameter plane.

Another source of results for Lorenz maps with a critical point is the
PhD thesis of St. Pierre (1999). It contains, among other things, a construc-
tion of Markov extensions on Lorenz maps, and an admissibility condition
for kneading invariants.

1.6 Future work

The most important piece that is missing from this thesis is the proof of
existence of a codimension two stable manifold at each point in the limit
set of renormalization. Some progress towards this result has been made
but is not yet completed.

Other than that it would of course be desirable to prove the results in
this thesis for any finite set Ω of renormalization types (without the restric-
tions imposed by monotone combinatorics and the long return condition).
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However, this will require new methods as this work cannot handle the sit-
uation when both return times are comparable. It may however be possible
to use the idea of looking at pure decomposed maps in order to compute
the derivative of the renormalization operator for more general combina-
torics.

It would be interesting to get a complete classification of which Lorenz
maps satisfy the weak Markov property as is done for unimodal maps in
Martens (1994). The fact that Lorenz maps have two independent cycles of
renormalization means that the shortest interval argument no longer works
which makes things a lot more difficult.

I think that it should be relatively straightforward to use the methods in
this thesis to give a description of the limit set of renormalization for uni-
modal maps with long return time. This has partly been done in Eckmann
et al. (1984) but their result only holds for critical exponent α = 2 and their
method does not generalize to arbitrary α > 1.
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CHAPTER 2

Preliminaries

This chapter serves as an introduction to Lorenz maps with adaptations of
some well known results for unimodal maps. In Section 2.1 we define the
renormalization operator on Lorenz maps and introduce notation that will
be used throughout the thesis. This is followed by a description of general-
ized renormalization for Lorenz maps in Section 2.2 which is used to derive
ergodicity and non-existence of wandering intervals. Finally, Section 2.3
discusses invariant measures on Cantor attractors for Lorenz maps.

2.1 The renormalization operator

In this section we define the renormalization operator on Lorenz maps and
introduce notation that will be used throughout.

Definition 2.1.1. The standard Lorenz family (u, v, c) 7→ Q(x) is defined
by

(2.1) Q(x) =

u ·
(

1−
( c−x

c

)α
)

, if x ∈ [0, c),

1 + v ·
(
−1 +

( x−c
1−c

)α
)

, if x ∈ (c, 1],

where u ∈ [0, 1], v ∈ [0, 1], c ∈ (0, 1), and α > 1. The parameter α is called
the critical exponent and will be fixed once and for all.

Remark 2.1.2. The parameters (u, v, c) are chosen so that: (i) u is the length
of the image of [0, c), (ii) v is the length of the image of (c, 1], (iii) c is the

25
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f−1
0 (c)

f−1
1 (c)c−1

c+1
0 1c

Figure 2.1: Illustration of the graph of a (01, 1000)–renormalizable Lorenz
map.

critical point (which is the same as the point of discontinuity). Note that u
and 1− v are the critical values of Q.

Definition 2.1.3. A Ck–Lorenz map f on [0, 1] \ {c} is any map which can
be written as

(2.2) f (x) =

{
φ ◦Q(x), if x ∈ [0, c),
ψ ◦Q(x), if x ∈ (c, 1],

where φ, ψ ∈ Dk are orientation-preserving Ck–diffeomorphisms on [0, 1],
called the diffeomorphic parts of f . See Figure 2.1 for an illustration of a
Lorenz map. The set of Ck–Lorenz maps is denoted Lk; the subset LS ⊂ L3

denotes the Lorenz maps with negative Schwarzian derivative (see Ap-
pendix A.3 for more information on the Schwarzian derivative).

A Lorenz map has two critical values which we denote

c−1 = lim
x↑c

f (x) and c+1 = lim
x↓c

f (x).
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If c+1 < c < c−1 then f is nontrivial, otherwise all points converge to some
fixed point under iteration and for this reason f is called trivial. Unless
otherwise noted, we will always assume all maps to be nontrivial.

We make the identification

Lk = [0, 1]2 × (0, 1)×Dk ×Dk,

by sending (u, v, c, φ, ψ) to f defined by (2.2). Note that (u, v, c) defines
Q in (2.2) according to (2.1). For k ≥ 2 this identification turns Lk into a
subset of the Banach space R3 × Dk × Dk. Here Dk is endowed with the
Banach space structure of Ck−2 via the nonlinearity operator. In particular,
this turns Lk into a metric space. For k < 2 we turn Lk into a metric space
by using the usual Ck metric onDk. See Appendix A.2 for more information
on the Banach space Dk.

Remark 2.1.4. It may be worth emphasizing that for k ≥ 2 we are not using
the linear structure induced from Ck on the diffeomorphismsDk. Explicitly,
if φ, ψ ∈ Dk and N denotes the nonlinearity operator, then

aφ + bψ = N−1 (aNφ + bNψ) , ∀a, b ∈ R,

and
‖φ‖Dk = ‖Nφ‖Ck−2 .

We call this norm on Dk the Ck−2–nonlinearity norm. The nonlinearity op-
erator N : Dk → Ck−2 is a bijection and is defined by

Nφ(x) = D log Dφ(x).

See Appendix A.2 for more details on the nonlinearity operator.

We now define the renormalization operator for Lorenz maps.

Definition 2.1.5. A Lorenz map f is renormalizable if there exists an inter-
val C ( [0, 1] (properly containing c) such that the first-return map to C is
affinely conjugate to a nontrivial Lorenz map. Choose C so that it is maxi-
mal with respect to these properties. The first-return map affinely rescaled
to [0, 1] is called the renormalization of f and is denoted R f . The oper-
ator R which sends f to its renormalization is called the renormalization
operator.
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Explicitly, if f is renormalizable then there exist minimal positive inte-
gers a and b such that the first return map f̃ to C is given by

f̃ (x) =

{
f a+1(x), if x ∈ L,
f b+1(x), if x ∈ R,

where L and R are the left and right components of C \ {c}, respectively.
The renormalization of f is defined by

R f (x) = h−1 ◦ f̃ ◦ h(x), x ∈ [0, 1] \ {h−1(c)},

where h : [0, 1] → C is the affine orientation-preserving map taking [0, 1]
to C. Note that C is chosen maximal so thatR f is uniquely defined.

Remark 2.1.6. We would like to emphasize that the renormalization is as-
sumed to be a nontrivial Lorenz map. It is possible to define the renormal-
ization operator for maps whose renormalization is trivial but we choose
not to include these in our definition. Such maps can be thought of as de-
generate and including them makes some arguments more difficult which
is why we choose to exclude them.

Next, we wish to describe the combinatorial information encoded in a
renormalizable map.

Definition 2.1.7. A branch of f n is a maximal open interval B on which f n

is monotone (here maximality means that if A is an open interval which
properly contains B, then f n is not monotone on A).

To each branch B of f n we associate a word w(B) = σ0 · · · σn−1 on sym-
bols {0, 1} by

σj =

{
0 if f j(B) ⊂ (0, c),
1 if f j(B) ⊂ (c, 1),

for j = 0, . . . , n− 1.

Definition 2.1.8. Assume f is renormalizable and let a, b, L and R be as
in Definition 2.1.5. The forward orbits of L and R induce a pair of words
ω = (w(L̂), w(R̂)) called the type of renormalization, where L̂ is the branch
of f a+1 containing L and R̂ is the branch of f b+1 containing R. In this situ-
ation we say that f is ω–renormalizable. See Figure 2.2 on the facing page
for an illustration of these definitions.
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L Rcf (R) f (L)

f b f b+1(R)

f af a+1(L)

Figure 2.2: Illustration of the dynamical intervals of a Lorenz map which is
ω–renormalizable, with ω = (011, 100000), a = 2, b = 5.

Let ω̄ = (ω0, ω1, . . . ). IfRn f is ωn–renormalizable for n = 0, 1, . . . , then
we say that f is infinitely renormalizable and that f has combinatorial type
ω̄. If the length of both words of ωk is uniformly bounded in k, then f is
said to have bounded combinatorial type.

The set of ω–renormalizable Lorenz maps is denoted Lω. We will use
variations of this notation as well; for ω̄ = (ω0, . . . , ωn−1) we let Lω̄ de-
note the set of Lorenz maps f such that Ri f is ωi–renormalizable, for i =
0, . . . , n − 1, and similarly if n = ∞. Furthermore, if Ω is a set of types
of renormalization, then LΩ denotes the set of Lorenz maps which are ω–
renormalizable for some ω ∈ Ω.

We will almost exclusively restrict our attention to monotone combina-
torics, that is renormalizations of type

ω = (0

a︷ ︸︸ ︷
1 · · · 1, 1

b︷ ︸︸ ︷
0 · · · 0).

In what follows we will need to know how the five-tuple representa-
tion of a Lorenz map changes under renormalization. It is not difficult to
write down the formula for any type of renormalization but it becomes a
bit messy so we restrict ourselves to monotone combinatorics. However,
first we need to introduce the zoom operator.

Definition 2.1.9. The zoom operator Z takes a diffeomorphism and rescales
it affinely to a diffeomorphism on [0, 1]. Explicitly, let g be a map and I an
interval such that g|I is an orientation-preserving diffeomorphism. Define

Z(g; I) = ζ−1
g(I) ◦ g ◦ ζ I ,

where ζA : [0, 1] → A is the orientation-preserving affine map which takes
[0, 1] onto A. See Appendix A.2 for more information on zoom operators.
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Remark 2.1.10. The terminology “zoom operator” is taken from Martens
(1998), but our definition is somewhat simpler since we only deal with
orientation-preserving diffeomorphisms. We will use the words ‘rescale’
and ‘zoom’ synonymously.

Lemma 2.1.11. If f = (u, v, c, φ, ψ) is renormalizable of monotone combina-
torics, then

R f = (u′, v′, c′, φ′, ψ′)

is given by

u′ =
|Q(L)|
|U| , v′ =

|Q(R)|
|V| , c′ =

|L|
|C| ,

φ′ = Z( f a
1 ◦ φ; U), ψ′ = Z( f b

0 ◦ ψ; U),

where U = φ−1 ◦ f−a
1 (C) and V = ψ−1 ◦ f−b

0 (C).

Proof. This follows from two properties of zoom operators: (i) the map
q(x) = xα on [0, 1] is ‘fixed’ under zooming on intervals adjacent to the crit-
ical point, that is Z(q; (0, t)) = q for t ∈ (0, 1) (technically speaking we have
not defined Z in this situation, but applying the formula for Z will give this
result), and (ii) zoom operators satisfy Z(h ◦ g; I) = Z(h; g(I)) ◦Z(g; I).

Notation. The notation introduced in this section will be used repeatedly
throughout. Here is a quick summary.

A Lorenz map is denoted either f or (u, v, c, φ, ψ) and these two nota-
tions are used interchangeably. Sometimes we write f0 or f1 to specify that
we are talking about the left or right branch of f , respectively. Similarly,
when talking about the inverse branches of f , we write f−1

0 and f−1
1 . The

subscript notation is also used for the standard family Q (so Q0 denotes the
left branch, etc.).

A Lorenz map has one critical point c and two critical values which we
denote c−1 = limx↑c f (x) and c+1 = limx↓c f (x). The critical exponent is
denoted α and is always assumed to be fixed to some α > 1.

In general we use primes for variables associated with the renormaliza-
tion of f . For example (u′, v′, c′, φ′, ψ′) = R f . Sometimes we use paren-
theses instead of primes, for example c−1 (R f ) denotes the left critical value
of R f . In order to avoid confusion, we try to use D consistently to denote
derivative instead of using primes.
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With a renormalizable f we associate a return interval C such that C \
{c} has two components which we denote L and R. We use the notation
a + 1 and b + 1 to denote the return times of the first-return map to C from
L and R, respectively. The letters U and V are reserved to denote the pull-
backs of C as in Lemma 2.1.11. We let U1 = φ(U), Ui+1 = f i(U1) for
i = 1, . . . , a, and V1 = ψ(V), Vj+1 = f j(V1) for j = 1, . . . , b (note that
Ua+1 = C = Vb+1). We call {Ui} and {Vj} the cycles of renormalization.

2.2 Generalized renormalization

In this section we adapt the idea of generalized renormalization introduced
by Martens (1994). The central concept is the weak Markov property which
is related to the distortion of the monotone branches of iterates of a map.

Definition 2.2.1. An interval C is called a nice interval of f if: (i) C is open,
(ii) the critical point of f is contained in C, and (iii) the orbit of the boundary
of C is disjoint from C.

Remark 2.2.2. A ‘nice interval’ is analogous to a ‘nice point’ for unimodal
maps (see Martens, 1994). The difference is that for unimodal maps one
point suffices to define an interval around the critical point (the ‘other’
boundary point is a preimage of the first), whereas for Lorenz maps the
boundary points of a nice interval are independent. The term ‘nice’ is per-
haps a bit vague but its use has become established by now.

Definition 2.2.3. Fix f and a nice interval C. The transfer map to C induced
by f ,

T :
⋃

n≥0

f−n(C)→ C,

is defined by T(x) = f τ(x)(x), where

τ :
⋃

n≥0

f−n(C)→N

is the transfer time to C; that is τ(x) is the smallest nonnegative integer n
such that f n(x) ∈ C.

Remark 2.2.4. Note that: (i) the domain of T is open, since C is open by
assumption, and f−1(U) is open if U is open (even if U contains a critical
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value), since the point of discontinuity of f is not in the domain of f , (ii) T
is defined on C and T|C equals the identity map on C.

Proposition 2.2.5. Let T be the transfer map of f to a nice interval C. If I is a
component of the domain of T, then τ|I is constant and I is mapped monotonically
onto C by f τ(I). Furthermore I, f (I), . . . , f τ(I)(I) are pairwise disjoint.

Remark 2.2.6. This means in particular that the components of the domain
of T are the same as the branches of T. In what follows we will use the
terminology “a branch of T” interchangeably with “a component of the
domain of T”.

Proof. If I = C then the proposition is trivial since T|C is the identity map
on C, so assume that I 6= C.

Pick some x ∈ I and let n = τ(x). Note that n > 0 since I 6= C. We
claim that the branch B of f n containing x is mapped over C. From this it
immediately follows that τ|I = n and f n(I) = C.

Since f n|B is monotone and f (x) ∈ C it suffices to show that f n(∂B) ∩
C = ∅. To this end, let y ∈ ∂B. Then there exists 0 ≤ i < n such that
f i(y) ∈ {0, c, 1}.

If f i(y) ∈ {0, 1} then we are done, since these points are fixed by f .
So assume that f i(y) = c and let J = (x, y). Then f i(J) ∩ ∂C 6= ∅

since f i(x) /∈ C by minimality of τ(x). Consequently f n(y) /∈ C, otherwise
f n(J) ⊂ C which would imply f n−i(∂C) ∩ C 6= ∅. But this is impossible
since C is nice and hence the claim follows.

From τ(I) = n it follows that I, . . . , f n(I) are pairwise disjoint. Suppose
not, then J = f i(I) ∩ f j(I) is nonempty for some 0 ≤ i < j ≤ n. But then
the transfer time on I ∩ f−i(J) is at most i + (n− j) which is strictly smaller
than n, and this contradicts the fact that τ(I) = n.

Proposition 2.2.7. Assume that f has no periodic attractors and that S f < 0.
Let T be the transfer map of f to a nice interval C. Then the complement of the
domain of T is a compact, f –invariant and hyperbolic set (and consequently it has
zero Lebesgue measure).

Proof. Let U = dom T and let Γ = [0, 1] \U.
Since U is open Γ is closed and hence compact (since it is obviously

bounded).
By definition f−1(U) ⊂ U which implies f (Γ) ⊂ Γ.
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We can characterize Γ as the set of points x such that f n(x) /∈ C for
all n ≥ 0. Since S f < 0 it follows that f cannot have nonhyperbolic peri-
odic points (Misiurewicz, 1981, Theorem 1.3) and by assumption f has no
periodic attractors so Γ must be hyperbolic (de Melo and van Strien, 1993,
Lemma III.2.1) .1

Finally, it is well known that a compact, invariant and hyperbolic set
has zero Lebesgue measure if f is at least C1+Hölder (de Melo and van Strien,
1993, Theorem III.2.6) .1

Definition 2.2.8. A map f is said to satisfy the weak Markov property if
there exists a K < ∞ and a decreasing sequence C1 ⊃ C2 ⊃ · · · of nice in-
tervals whose lengths tend to 0, such that the transfer map to Cn is defined
almost everywhere and has distortion bounded by K, for every n.

Remark 2.2.9. That a “transfer map T has distortion bounded by K” is sim-
ply a convenient way of saying that T|B has distortion bounded by K, for
every branch B of T.

Theorem 2.2.10. If f satisfies the weak Markov property, then f has no wandering
intervals.

Proof. In order to reach a contradiction assume that there exists a wander-
ing interval W which is not contained in a strictly larger wandering inter-
val.

Note that W must accumulate on at least one side of c. Otherwise there
would exist an interval V disjoint from the orbit of W with c ∈ cl V. We
could then modify f on V in such a way that the resulting map would
be a bimodal C2–map with nonflat critical points and W would still be a
wandering interval for the modified map, see Figure 2.3 on the next page.
However, such maps do not have wandering intervals (Martens et al., 1992).

Now let {Ck} be the sequence of nice intervals that we get from the
weak Markov property. Since W accumulates on at least one side of c there
exists a sequence of nonnegative integers {nk} such that f nk(W) ⊂ Ck. Let
Bk be the branch of f nk containing W.

The weak Markov property now shows that the distortion of f nk : W →
Ck is uniformly bounded (in k), so there exists a δ > 0 (independent of k)

1The theorems from de Melo and van Strien (1993) that are referenced in this proof are
stated for maps whose domain is an interval but their proofs go through, mutatis mutandis,
for Lorenz maps.
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V

Figure 2.3: Illustration showing why wandering intervals must accumulate
on the critical point. If f has a wandering interval whose orbit does not
intersect some (one-sided) neighborhood V of the critical point, then by
modifying f on V according to the gray curve we create a bimodal map
with a wandering interval. This is impossible since bimodal maps with
nonflat critical points do not have wandering intervals.

such that f nk(Bk) contains a δ–scaled neighborhood of Ck. This Koebe space
can be pulled back and by applying the Macroscopic Koebe Lemma we see
that Bk contains a δ′–scaled neighborhood of W, for every k (where δ′ only
depends on δ).

The above argument shows that B =
⋂

Bk strictly contains W. Since c /∈
Bk for any k by definition we also have that B is a wandering interval. Thus
B is a wandering interval which strictly contains the wandering interval W,
but this contradicts the maximality of W. Hence f cannot have wandering
intervals.

Theorem 2.2.11. If f satisfies the weak Markov property, then f is ergodic.

Proof. In order to reach a contradiction, assume that there exist two invari-
ant sets X and Y such that |X| > 0, |Y| > 0 and |X ∩ Y| = 0. Let {Ck} be
the sequence of nice intervals that we get from the weak Markov property.
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We claim that

|X ∩ Ck|
|Ck|

→ 1 and
|Y ∩ Ck|
|Ck|

→ 1, as k→ ∞.

Thus we arrive at a contradiction since this shows that |X ∩Y| > 0.
Let Γk be the complement of the domain of the transfer map to Ck. By

the weak Markov property |Γk| = 0, hence
⋃

Γk also has zero measure. This
and the assumption that |X| > 0 implies that there exists a density point
x which lies in X as well as in the domain of the transfer map to Ck, for
every k.

Let Bk be the branch of the transfer map to Ck containing x, and let τk
be the transfer time for Bk. We contend that |Bk| → 0. If not, there would
exist a subsequence {ki} such that B =

⋂
Bki had positive measure, and

thus B would be contained in a wandering interval (which is impossible by
Theorem 2.2.10). Here we have used that Ck is a nice interval so the orbit
of Bk satisfies the disjointness property of Proposition 2.2.5.

Since f τk(Bk) = Ck, since f (X) ⊂ X, and since there exists a K < ∞
bounding the distortion of each transfer map we get

|Ck \ X|
|Ck|

≤ | f
τk(Bk \ X)|
| f τk(Bk)|

≤ K
|Bk \ X|
|Bk|

→ 0, as k→ ∞.

The last step follows from x being a density point, since |Bk| → 0.
Now apply the same argument to Y and the claim follows.

2.3 Invariant measures

Let f be an infinitely renormalizable map of any combinatorial type2 and
let Λ be the closure of the orbits of the critical values and assume that this
is a Cantor set (in Section 3.2 we prove that Λ is a Cantor set, although
our proof is only valid for some combinatorial types). In this section we
describe the invariant measures supported on Λ. The techniques employed
are an adaptation of (Gambaudo and Martens, 2006) which also contains
proofs for all the statements we choose not to provide proofs for here.

2Contrary to other sections, in this section we consider general combinatorial types and
not just monotone types.
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Theorem 2.3.1. If f is infinitely renormalizable (of any combinatorial type) with
a Cantor attractor Λ, then Λ supports one or two ergodic invariant probability
measures.

If the combinatorial type of f is bounded then Λ is uniquely ergodic. Fur-
thermore, it is possible to choose the combinatorial type so that Λ has two distinct
ergodic invariant probability measures.

Remark 2.3.2. Bounded combinatorial type is sufficient for Λ to be uniquely
ergodic, but is not necessary as Example 2.3.13 shows.

An infinitely renormalizable map naturally defines a sequence of finer
and finer covers of Λ. We now describe the construction of these covers
and how they in turn can be identified with certain directed graphs.

Definition 2.3.3. Since f is infinitely renormalizable we get a nested se-
quence of nice intervals {Cn}. Let an = τ(c−1 ) and bn = τ(c+1 ) denote the
transfer times of the critical values to the nice interval Cn. Let {Ui

n} and
{Vi

n} be the pull-backs of Cn along the orbits of the critical values, that is

f i−1(c−1 ) ∈ Ui
n and f an+1−i(Ui

n) = Cn, i = 1, . . . , an + 1,

f i−1(c+1 ) ∈ Vi
n and f bn+1−i(Vi

n) = Cn, i = 1, . . . , bn + 1.

The intervals {Ui
n} and {V j

n} cover the Cantor set Λ and they satisfy a
disjointness property expressed by the following lemma. Intuitively, for a
fixed n these sets are pairwise disjoint except that if they overlap at some
time, then all remaining intervals follow the same orbit.

Lemma 2.3.4. There exists kn ≥ 0 such that Uan+1−i
n = Vbn+1−i

n for i =
0, . . . , kn, and

Λ′n = {Ui
n}an−kn

i=1 ∪ {Vi
n}bn+1

i=1

is a pairwise disjoint cover of Λ for all n.

Remark 2.3.5. Note that kn = 0 if f has monotone combinatorial type.

Proof. Since Cn is nice it follows that if Uan+1−k
n ∩ Vbn+1−k

n 6= ∅ for some k,
then Uan+1−i

n = Vbn+1−i
n for all i = 0, . . . , k. Define kn to be the largest such k

(which exists since Uan+1
n = Cn = Vbn+1

n ).
By Proposition 2.2.5 {Ui

n}i is a pairwise disjoint collection and so is
{Vi

n}i which proves the disjointness property of Λ′n.
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Finally, Λ′n covers Λ since the critical values are contained in U1
n and V1

n ,
both of which are eventually mapped inside Cn.

Definition 2.3.6. The n–th cover of Λ is defined by

Λn = {I ∩Λ | I ∈ Λ′n}.

The covers come with natural projections

πij : Λj → Λi, i ≤ j,

defined by I = πij(J), where I ∈ Λi is the unique element which contains
J ∈ Λj. These projections satisfy πii = id and πij = πik ◦ πkj if i ≤ k ≤ j.
Hence we get an inverse system ({Λi}i, {πij}i≤j). The inverse limit of this
system can be identified with Λ via the natural projections

pn : Λ→ Λn,

defined by pn(x) = I, where I ∈ Λn is the unique element containing x ∈
Λ. Explicitly, p : Λ→ lim←−Λn is defined by

p(x) = (p1(x), p2(x), . . . ).

Remark 2.3.7. Note that p is: (i) well-defined, since pi = πij ◦ pj, (ii) surjec-
tive, since if (xi)i ∈ lim←−Λn then x = lim xi exists and p(x) = (x1, x2, . . . ),
(iii) injective, since if x, y ∈ Λ are distinct then pn(x) 6= pn(y) for some n
due to the fact that the diameter of elements in Λn tends to zero as n→ ∞.

We think of Λn as the directed graph where each element in Λn is a node
and where an edge connects I to J if and only if f (I) ∩ J 6= ∅. Note that if
there is an edge from I to J, then f (I) = J unless I = Zn = Cn ∩Λ. The
image of Zn is contained in the nodes E1

n = U1
n ∩Λ and E2

n = V1
n ∩Λ. For

example, Λn could look like:

Zn = Cn ∩Λ

E1
n = U1

n ∩Λ

E2
n = V1

n ∩Λ

U2
n ∩Λ

U3
n ∩Λ = V5

n ∩Λ

V2
n ∩ΛV3

n ∩ΛV4
n ∩Λ
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We now describe how the invariant measures on Λ can be identified
with a subset of an inverse limit of “almost invariant” measures on Λn. We
define the “almost invariant” signed measures on Λn as follows.

Definition 2.3.8. Let Σn be the σ–algebra generated by Λn. Note that Λn
consists of exactly two loops, by which we mean a maximal collection
{Ik ∈ Λn}k such that f (Ik) = Ik+1 or Ik = Zn. These loops start in Ei

n
and terminate in Zn. Each loop defines a loop measure,

νi
n : Σn → R,

by νi
n(I) = 1 if and only if I is a node on the i–th loop of Λn.

Let H1(Λn) denote R–module generated by {ν1
n, ν2

n} and letM(Λ) de-
note the R–module of signed invariant measures on Λ.

Remark 2.3.9. Note that the (signed) measures in H1(Λn) are almost invari-
ant since νi

n( f−1(I)) = νi
n(I) if I ∈ Λn \ {E1

n, E2
n}, but invariance fails since

f−1(Ei
n) /∈ Σn. The notation H1(Λn) comes from the fact that H1(Λn) is

isomorphic to the first homology module of the graph Λn.

Now consider the push-forward

(pn)∗µ = µ ◦ p−1
n

of µ ∈ M(Λ) under the projection pn:

Lemma 2.3.10. The push-forward of pn is a homomorphism (pn)∗ : M(Λ) →
H1(Λn) and

(pn)∗(µ) = µ(E1
n)ν

1
n + µ(E2

n)ν
2
n.

The push-forward under the projections πij induces an inverse system

({H1(Λi)}i, {(πij)∗}i≤j).

Because of the previous lemma and the identification of Λ with lim←−Λn, the
inverse limit lim←−H1(Λn) is isomorphic toM(Λ) via the isomorphism

p∗(µ) =
(
(p1)∗µ, (p2)∗µ, . . .

)
.

Definition 2.3.11. Let I(Λ) ⊂ M(Λ) denote the subset of positive invari-
ant measures.
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Using the above one can check that I(Λ) is identified with lim←−H+
1 (Λn),

where
H+

1 (Λn) =
{

x1ν1
n + x2ν2

n | xi ≥ 0
}

are the (positive) almost invariant measures on Λn.

Lemma 2.3.12. Let Wn = (wij) be the winding matrix defined by

wij = #{I ⊂ Ei
n | I is an element of the j–th loop of Λn}.

Then Wn is the representation of the push-forward (πn,n+1)∗ if we use the loop
measures {ν1

k , ν2
k} as bases of H1(Λk), for k = n, n + 1.

Proof of Theorem 2.3.1. By the above every invariant measure is represented
by an inverse limit

{(z1, z2, . . . ) | zi = Wizi+1, zi ∈ K},

where K ⊂ R2 is the cone {(x1, x2) | xi ≥ 0}. This suggests that we should
look at the sets

In =
⋂

m>n
Wn · · ·Wm−1K,

since zn ∈ In. The winding matrices have positive integer entries, so either
In is a one-dimensional or a two-dimensional subspace, for all n ≥ 1.

If In has dimension two then it is the convex hull of two points and
hence In ∩ {x1 + x2 = 1} has exactly two extremal points. This implies that
there are two ergodic invariant probability measures. Since In cannot have
have dimension higher than two, this also shows that there can be no more
than two ergodic invariant probability measures. In Example 2.3.13 we
construct a map with exactly two ergodic invariant probability measures.

To see that Λ is uniquely ergodic in the bounded combinatorial type
case we introduce the Hilbert metric (also known as the hyperbolic metric)
on the interior of K. This metric is defined as in the following figure:

x1

x2

w
z

z′

w′

d(z, z′) = log
{

1 + |z−z′||w−w′|
|w−z||z′−w′|

}
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Here w and w′ are the points on ∂K closest to z and z′, respectively, on the
line through z and z′. Note that d(z, z′) equals the log of one plus the cross-
ratio of (w, z, z′, w′). The cross-ratio is well-defined since these four points
are collinear. The Hilbert metric is contracted by positive matrices because:
(i) linear maps preserve cross-ratio, (ii) WK ⊂ K, if W is a positive matrix,
and (iii) the cross-ratio of (w, z, z′, w′) decreases if w is moved further away
from z on the line through these four points (and similarly for w′ and z′).

If f has bounded combinatorial type, then there is a bound on the con-
traction constant for the winding matrices Wn which is independent of n.
This implies that In is one-dimensional and hence there is a unique ergodic
probability measure.

Example 2.3.13. If f is of monotone combinatorial type {(ω−n , ω+
n )}n≥0 with

an = |ω−n | − 1 and bn = |ω+
n | − 1, then we can compute the winding matrix:

Wn =

(
1 bn+1

an+1 1

)
.

Thus

Wn−1Wn =

(
1 + an+1bn bn + bn+1
an + an+1 1 + anbn+1

)
= anbn

(
sn + (anbn)−1 a−1

n (1 + rn)
b−1

n (1 + sn) rn + (anbn)−1

)
where sn = an+1/an and rn = bn+1/bn. Assuming an, bn → ∞ we see that
the above matrix modulo the multiplicative term is asymptotically equal to(

sn 0
0 rn

)
.

If we let

Im
n =

m⋂
i=n

(
WnWn+1

)
· · ·
(
WmWm+1

)
K,

then Im
n is two-dimensional for all m if we let an and bn grow sufficiently

fast. Thus the sets In in the proof of Theorem 2.3.1 will be two-dimensional,
giving rise to two ergodic invariant probability measures.
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It is possible to compute the contraction constant of the Hilbert metric
in this example (see Bushell, 1973). It is given by

kn−1 =

√
anbn − 1√
anbn + 1

.

This constant is an exact bound on the contraction, meaning that there exist
x, y such that d(Wnx, Wny) = knd(x, y).

By choosing an and bn such that ∏ kn = 0 we get that the sets In are lines
which means that Λ is uniquely ergodic. In particular, we could choose
{an} and {bn} unbounded but growing slowly enough for ∏ kn = 0 to
hold, hence showing that bounded combinatorial type is not necessary for
Λ to be uniquely ergodic.





CHAPTER 3

Invariance

The central result of this chapter is the existence of an ‘invariant’ set K
for the renormalization operator in Section 3.1. This result is exploited in
Section 3.2 to prove a priori bounds which in turn has consequences for the
Cantor attractor for infinitely renormalizable maps. A careful investigation
of the action of the renormalization operator on K in Section 3.3 is then
used to exhibit periodic points of the renormalization operator.

3.1 The invariant set

In this section we construct an ‘invariant’ and relatively compact set for the
renormalization operator. This construction works for types of renormal-
ization where the return time of one branch is much longer than the other.
This result will be exploited in the following sections.

Definition 3.1.1. Let ε = 1− c. This notation will be used from now on.
Note that ε depends on f . Define

K = { f ∈ L1 | ε− ≤ ε ≤ ε+, Dist φ ≤ δ, Dist ψ ≤ δ}

and

Ω = {(0
a︷ ︸︸ ︷

1 · · · 1, 1

b︷ ︸︸ ︷
0 · · · 0) | a− ≤ a ≤ a+, b− ≤ b ≤ b+}.

We are going to show howK and Ω can be chosen so thatK is invariant1

under the restriction ofR to types in Ω. As always, assume that the critical
1Exactly what we mean by ‘invariant’ is expressed in Theorem 3.1.5.

43
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exponent α > 1 has been fixed once and for all. The critical exponent will
essentially determine a− and a+ (this is not entirely natural as we would
expect to be able to choose a+ as large as we please but some estimates will
not work then). Finally we are left with a free parameter b− which when
chosen large enough will give us the invariance we are after.

Remark 3.1.2. Ideally we would like to let Ω be any finite set of types of
renormalization. However, our approach relies heavily on the fact that we
can choose b− large since this allows us to do some analysis. Also, we
restrict ourselves to monotone combinatorics (i.e. of type (01 · · · 1, 10 · · · 0))
since arbitrary types are more difficult to handle.

We will now show how to choose the constants defining K and Ω. Let

(3.1) ε− = α−σb− , ε+ = κα−(b
−(1−σr+)−a+)/α,

where σ ∈ (0, 1), r+ = a+ + 1 − α − α−b+ , and κ is a constant which is
defined in (3.14).

The parameter δ will be assumed to be small, δ = o(1/b−) suffices.
However, δ must not be smaller than the bounds for the distortion of R f
in (3.15). For example, we may pick δ = (1/b−)2.

Assume that σ, a− and a+ have been chosen so that

(3.2) a− > α− 1 + α−b− , a+ ≤ 2α− 1,
α− r−

α2 − r−r+
< σ ≤ 1

a+ + 1− α
,

where r− = a− + 1− α− α−b− . Finally, choose b+ such that

(3.3)
1
α

(
r−(1− σr+) + α2σ

α
· b− − b+ + a− − a+r−

α

)
→ ∞, b− → ∞.

Remark 3.1.3. Let us briefly discuss the choice of constants. It is important
to realize that they do not represent necessary conditions and as such are
not optimal in any way.

In order for ε− < ε+ to hold we need 1− σr+ > 0 and σ ≥ (1− σr+)/α,
both of which follow from the bounds on σ in (3.2).

The lower bound on a− is used to control the distortion of the return
maps in the proof of Theorem 3.1.5. The upper bound on a+ ensures that
the lower bound on σ in (3.2) is positive.

The lower bound on σ is equivalent to the constant in front of b− in (3.3)
being strictly larger than 1. This shows that b+ can be chosen so that b+ −
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b− → ∞ as b− grows, which is important since we want Ω to be “as large
as possible.”

Finally, the condition (3.3) is used to prove that ε(R f ) ≥ ε−.

Example 3.1.4. One possible choice that will satisfy the above constraints is

σ = 1/α, a− = bαc, a+ = b2α− 1c.

(If α = n− λ for some n ∈ N and λ > 0 very close to 0, then b− may need
to be increased so that the lower bound on a− holds.)

We now state the theorem which exactly expresses what kind of ‘invari-
ance’ we have for K.

Theorem 3.1.5 (Invariance). If f ∈ LS
Ω and c+1 (R f ) ≤ 1/2 ≤ c−1 (R f ), then

f ∈ K =⇒ R f ∈ K,

for b− large enough.

The condition on the critical values of the renormalization excludes
maps which are degenerate in some sense. There is nothing magical about
the number 1/2 here, all we want is for c−1 (R f ) to be bounded away from 0
and c+1 (R f ) to be bounded away from 1. An alternative (weaker) statement
which we will also use is:

Corollary 3.1.6. If both f ∈ LS
Ω andR f ∈ LS

Ω, then

f ∈ K =⇒ R f ∈ K.

for b− large enough.

Proof. Since f ∈ LS
Ω ∩ K we can apply Lemma 3.1.9 which shows that

c−1 (R f ) → 1 and c+1 (R f ) → 0 as b− → ∞. Hence Theorem 3.1.5 ap-
plies.

Remark 3.1.7. The full family theorem (Martens and de Melo, 2001) implies
that there exists f which satisfies the conditions of the corollary. This shows
that both the corollary and the theorem are not vacuous.

The main reason for introducing the set K is the following:

Proposition 3.1.8. K is relatively compact in L0.
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Proof. Clearly [ε−, ε+] is compact in (0, 1). Hence we only need to show that
the ball B = {φ ∈ D1([0, 1]) | Dist φ ≤ δ} is relatively compact inD0([0, 1]).
This is an application of the Arzelà–Ascoli theorem; if {φn ∈ B} then
|φn(y)− φn(x)| ≤ eδ|y− x| hence this sequence is equicontinuous (as well
as uniformly bounded), so it has a uniformly convergent subsequence.

The rest of this section is devoted to the proof of Theorem 3.1.5. We will
need the following expressions for the inverse branches of f :

f−1
0 (x) = c− c

(
|φ−1([x, c−1 ])|
|φ−1([0, c−1 ])|

)1/α

,(3.4)

f−1
1 (x) = c + (1− c)

(
1− |ψ

−1([x, 1])|
|ψ−1([c+1 , 1])|

)1/α

.(3.5)

Lemma 3.1.9. There exists K such that if f ∈ L1
Ω ∩K, then 1− c−1 < Kε2. Also,

c+1 → 0 exponentially in b− as b− → ∞.

Proof. For monotone combinatorics c+1 < f−b
0 (c) and c−1 > f−a

1 (c), so the
idea is to look for bounds on the backward orbits of c. We claim that

f−1
1 (c)− c

ε
≥ µ,(3.6)

c− f−n
0 (c)
c

≥
(
µε
)α−n

·
(
c/eδ

)1/(α−1),(3.7)

where µ ≥ 1− Kε.
Assume that the claim is true. Then (3.6) shows that

1− c−1 < 1− f−1
1 (c) ≤ 1− c− µε = ε(1− µ) ≤ Kε2,

which proves the statement about about c−1 .
Next, let n = dlogα b−e. Then α−n ≤ 1/b− and (µε)α−n ≥ (µε)1/b− , so

f−n
0 (c)

c
≤ 1− (µε−)1/b−(c/eδ)1/(α−1) ≤ 1− µ

(
(1− ε+)/eδ

)1/(α−1)
α−σ.

Thus f−n
0 (c) is a uniform distance away from c. Since b− − dlogα b−e → ∞,

and since 0 is an attracting fixed point for f−1
0 with uniform bound on the
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multiplier, it follows that f−b
0 (c) approaches 0 exponentially as b− → ∞.

This proves the statement about c+1 .

We now prove the claim. We first show that

f−1
1 (c)− c ≥ ε ·

(
1− eδε

c− f−b
0 (c)

)1/α

,(3.8)

c− f−n
0 (c) ≥

(
cα/eδ

)1/(α−1) ·
(

f−1
1 (c)− c

)α−n

.(3.9)

Equation (3.8) follows from a computation using (3.5) and the fact that 1−
c+1 > c− f−b

0 (c) holds for monotone combinatorics.
To prove (3.9), first apply (3.4) to get

f−1
0 (x) ≤ c− c

(
e−δ c−1 − x

c−1

)1/α

.

This gives

(3.10) f−1
0 (c) ≤ c− c · e−δ/α(c−1 − c)1/α,

and if x < c then

f−1
0 (x) ≤ c− c · e−δ/α

(
1− x

c

)1/α
.

An induction argument on the last inequality leads to

f−n
0 (x) ≤ c−

(
ce−δ/α

)1+···+α−(n−1)

·
(

1− x
c

)α−n

,

which together with (3.10), 1 + · · · + α−n < α/(α − 1), and c−1 > f−1
1 (c)

proves (3.9).
Having proved (3.8) and (3.9) we now continue the proof of the claim.

Note that the left-hand side of (3.8) appears in the right-hand side of (3.9)
and vice versa. Thus we can iterate these inequalities once we have some
bound for either of them. To this end, suppose f−1

1 (c)− c ≥ tε, for some
t > 0. If we plug this into (3.9) and then plug the resulting bound into (3.8),
we will get a new bound on f−1

1 (c)− c. This defines a map

t 7→ h(t) =

(
1−

(
eδ

c

)α/(α−1)

· ε1−α−b

tα−b

)1/α

.
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One can check that h is increasing and has two fixed points — one close to 0
which is repelling, and another close to 1 which is attracting. Explicitly, the
fixed point equation t = h(t) gives

tα−b
(1− tα) = ε1−α−b(

eδ/c
)α/(α−1).

If t ↑ 1 then the solution is approximately

t1 =
(

1−
(
eδ/c

)α/(α−1)
ε1−α−b

)1/α
,

and if t ↓ 0 then the approximate solution is

t0 =
(
eδ/c

)αb+1/(α−1)
εαb−1.

Hence the proof is complete if we have some initial bound f−1
1 (c)− c ≥ t′ε

such that t′ > t0, because then hn(t′)→ t1.
To get an initial bound we use the fact that f−1

1 (c)− c > |R| and look
for a bound on |R|. Since R f is nontrivial we have f b+1(R) ⊃ R, which
implies

|R| ≤ | f b ( f (R))| ≤ max
x<c

f ′(x)b · eδ|Q(R)| ≤ (eδuα/c)beδv (|R|/ε)α

and thus

f−1
1 (c)− c > |R| ≥ ε ·

(
cε1/b

αeδ(b+1)/b

)b/(α−1)

= εt′.

Here t′ is of the order ε1/(α−1)α−b whereas t0 is of the order εαb
, so t′ > t0

for b− large enough (since ε ∼ α−b−···).

Lemma 3.1.10. There exists K such that if f ∈ L1
Ω ∩K then

K−1 ≤D f−a
1 (x) · αaε−a ≤ K, ∀x > f−1

0 (c),

K−1 ≤D f−b
0 (x) · αbε1−α−b ≤ K, ∀x ≤ c.

Proof. The proof makes use of the following expressions for the derivatives
of f−1

D f−1
0 (x) =

c
α
· Dφ−1(x)

u

(
|φ−1([0, c−1 ])|
|φ−1([x, c−1 ])|

)1−1/α

,(3.11)

D f−1
1 (x) =

ε

α
· Dψ−1(x)

v

(
|ψ−1([c+1 , 1])|
|ψ−1([c+1 , x])|

)1−1/α

.(3.12)
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We start by proving the lower bound on D f−a
1 . From (3.12) we get

D f−1
1 (x) ≥ e−δε/α and hence

D f−a
1 (x) ≥ e−aδ(ε/α)a, ∀x ∈ [c+1 , 1].

Note that e−aδ has a uniform bound since a < b− and δb− → 0 by assump-
tion.

Next consider the upper bound on D f−a
1 . By assumption

x > f−1
0 (c) ≥ c

(
1− (eδε)1/α

)
,

where we have used (3.4). This together with (3.12) implies

D f−a
1 (x) ≤ (ε/α)a(eδ/v)a

(
eaδ( f−1

0 (c)− c+1 )
−a
)1−1/α

≤ K(ε/α)a.

It remains to show that K is uniformly bounded. Briefly, this follows from

va ≥ (1− eδc+1 )
a ≥ 1− aeδc+1 → 1

and from(
f−1
0 (c)− c+1

)−a
≤
((

1− ε
)a(1− (eδε)1/α

)a(1− c+1 / f−1
0 (c)

)a
)−1

≤
((

1− aε
)(

1− a(eδε)1/α
)(

1− ac+1 / f−1
0 (c)

))−1
→ 0,

as b− → ∞. (We have used Lemma 3.1.9 to get ac+1 → 0; aδ→ 0 and aε→ 0
follows from the choice of K and Ω.)

We now turn to proving the bounds on D f−b
0 . We claim that

(3.13)

e−δ/(α−1) ≤
c−1 − f−n

0 (x)
c−1

·
(

c−1 − x
c−1

)−α−n

≤
(

eδ/α(1 + O(ε1−1/α))
)α/(α−1)

,

which together with (3.12) gives(
c

c−1 e2δ(1 + O(ε1−1/α))

)b

≤ D f−b
0 (x) · αb

b−1

∏
i=0

(
c−1 − x

c−1

)(α−1)/αi+1

≤
(

e2δc
c−1

)b

.
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The product can be rewritten as ((c−1 − x)/c−1 )
1−α−b

which is proportional
to ε1−α−b

by Lemma 3.1.9, so all we need to do is to prove that the constants
above are uniformly bounded. This follows from a similar argument to the
above and the fact that bεt → 0 for every t > 0, and bδ→ 0, as b− → ∞ (by
the assumptions made on K and Ω).

To finish the proof, let us prove the claim (3.13). The lower bound fol-
lows from (3.4) and the estimate

c−1 − f−1
0 (x)

c−1
> 1−

f−1
0 (x)

c
≥ e−δ/α

(
c−1 − x

c−1

)1/α

.

An induction argument finishes the proof of the lower bound.
For the upper bound we assume x ≤ c and use (3.4) again to get

c−1 − f−1
0 (x)

c−1
=

c
c−1
·

c−1 − f−1
0 (x)

c− f−1
0 (x)

·
c− f−1

0 (x)
c

≤ µeδ/α

(
c−1 − x

c−1

)1/α

,

where

µ =
c

c−1
·

c−1 − f−1
0 (c)

c− f−1
0 (c)

=
c

c−1
+

c−1 − c
c−1

· c
c− f−1

0 (c)

< 1 + ε

(
e−δ c−1 − c

c−1

)−1/α

≤ 1 + O(ε1−1/α).

Another induction argument finishes the proof for the upper bound.

Lemma 3.1.11. If f ∈ L1
Ω ∩K and c+1 (R f ) ≤ 1/2 ≤ c−1 (R f ), then

1
2e2δ
≤
(

c
ε
· |R||L|

)α

· v
u
· D f b(y)

D f a(x)
≤ 2e2δ,

for some x ∈ f (L) and y ∈ f (R).

Remark 3.1.12. This lemma can be stated in much greater generality (the
proof remains unchanged). In particular, we do not use the bounds on ε
and it works for any type of renormalization.

Proof. From 0 ≤ c+1 (R f ) ≤ 1/2 ≤ c−1 (R f ) ≤ 1 we get

1/2 ≤ | f
a+1(L)|
|C| ≤ 1 and 1/2 ≤ | f

b+1(R)|
|C| ≤ 1.
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The mean value theorem implies that there exists x ∈ f (L) and y ∈ f (R)
such that

D f a(x)| f (L)| = | f a+1(L)| and D f b(y)| f (R)| = | f b+1(R)|.

From f (L) = φ ◦Q0(L) and f (R) = ψ ◦Q1(R) we get

e−δ ≤ | f (L)|
u · (|L|/c)α

≤ eδ and e−δ ≤ | f (R)|
v · (|R|/ε)α

≤ eδ.

Now combine these equations to finish the proof:

v
u

(
c
ε
· |R||L|

)α

≤ e2δ | f (R)|
| f (L)| ≤ e2δ D f a(x)

D f b(y)
· | f

b+1(R)|
| f a+1(L)| ≤ 2e2δ D f a(x)

D f b(y)
.

The lower bound follows from a similar argument.

Proof of Theorem 3.1.5. The proof is divided up into three steps: (1) show
that the distortion of f b| f (R) is small, (2) show that ε− ≤ ε(R f ) ≤ ε+,
(3) determine explicit bounds on the distortion for the renormalization.

Step 1. The map f−b
0 |C extends continuously to [0, c−1 ] so in order to use

the Koebe lemma we need to show that both components of [0, c−1 ] \ C are
large compared to C. The relative length of the left component is large since
|C| is at most of order ε1/α, so we focus on the right component only.

There are two cases to consider: either |L| ≥ |R|, or |R| > |L| (the latter
will turn out not to hold, but we do not know that yet).

Assume |R| > |L|. For monotone combinatorics we have

f (R) ⊂ ( f−b−1
0 (c), f−b+1

0 (c)),

thus
| f−b+1

0 (c)− f−b−1
0 (c)| ≥ | f (R)| ≥ ε−δv(|R|/ε)α,

and consequently

|R|
ε
≤
(

eδ

v
· | f−b+1

0 (c)− f−b−1
0 (c)|

)1/α

→ 0, as b− → ∞.

This shows that the relative length of the right component of [0, c−1 ] \ C
tends to infinity and hence the distortion of f b| f (R) tends to zero.
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Next, assume that |L| ≥ |R|. Since f is renormalizable f (L) ⊂ C and
hence

2|L| ≥ |C| = D f a(x)| f (L)| ≥ D f a(x)e−δu(|L|/c)α,

for some x ∈ f (L). Now apply Lemma 3.1.10 to get that

|L| ≤ Kεa/(α−1).

By assumption (3.2) a > α− 1 so once again we get that the relative length
of the right component tends to infinity as we increase b−.

Step 2. We first show that ε(R f ) ≤ ε+. Apply Lemma 3.1.11 to get

ε(R f ) =
|R|

|L|+ |R| <
|R|
|L| ≤

ε

c

(
u
v
·

D f−b
0 (y)

D f−a
1 (x)

· 2e2δ

)1/α

,

for some x ∈ f (L) and some y ∈ f (R). Now apply Lemma 3.1.10 and
Step 12 to get

(3.14) ε(R f ) ≤ κ
(

α−b+aεα−a−1+α−b
)1/α

.

(This defines the constant κ of (3.1).) The exponent of ε is negative by as-
sumption (3.2) so inserting ε ≥ ε− gives us ε(R f ) ≤ κα−t, where

t =
b−(1− σr+)− a+

α
.

This shows that ε(R f ) ≤ ε+.
We now show that ε(R f ) ≥ ε−. A similar argument to the above shows

that |R|/|L| ≥ kα−t, where

t =
1
α

(
b+ − r−(1− σr+)

α
· b− − a− +

a+r−

α

)
.

Recall that ε− = α−σb− so we would like σb− > t, which is equivalent to

1
α

(
r−(1− σr+) + α2σ

α
· b− − b+ + a− − a+r−

α

)
> 0.

2We need Step 1 to get a bound on D f−b
0 (y), since we do not know if y ≤ c and this is

the only case Lemma 3.1.10 treats.
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By assumption (3.3) the left-hand side tends to ∞ as b− grows. Hence

|R|/|L| ≥ kασb−−tε−,

so the right-hand side is greater than ε− if b− is sufficiently large. Conse-
quently this is also true for ε(R f ) since

ε(R f ) =
|R|

|L|+ |R| =
|R|
|L| ·

(
1 +
|R|
|L|

)−1

and |R|/|L| is small. Thus, ε(R f ) ≥ ε− if b− is sufficiently large.

Step 3. We now use the Koebe lemma to get explicit bounds on the dis-
tortion forR f . From Step 2 we know that |L| > |R| and thus the arguments
of Step 1 shows that |C| is at most of the order εa/(α−1). Hence Lemma 3.1.9
shows that the right component of (c+1 , c−1 ) \C has length of order ε and the
left component has length of order 1.

The inverses of the return maps f a| f (L) and f b| f (R) extend continuously
(at least) to (c+1 , c−1 ) so the Koebe lemma implies that the distortion of the
return maps is of the order εt, where t = −1 + a/(α− 1) > 0. That is

(3.15) Dist φ(R f ) ≤ Kεt and Dist ψ(R f ) ≤ Kεt.

Note that Kεt � δ if we e.g. choose δ = (1/b−)2.
This concludes the proof of Theorem 3.1.5.

Many of the results used to prove Theorem 3.1.5 do not rely on the as-
sumption that c+1 (R f ) ≤ 1/2 ≤ c−1 (R f ). Note that without this assump-
tion we cannot say anything about the critical point of the renormalization,
nor can we ensure that the distortion of the diffeomorphic parts shrink un-
der renormalization. In other words, we can not prove invariance of K
without this extra assumption. We collect these results and state them here
as one proposition as they will be needed later.

Proposition 3.1.13. If f ∈ LS
Ω ∩K, then

1. 1− c−1 < Kε2 for some K not depending on f ,
2. c+1 → 0 exponentially in b− as b− → ∞,
3. D f a

1 |U � (ε/α)a,
4. D f b

0 |V � α−bε−1+α−b
.
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Remark 3.1.14. We use the notation g(x) � y to mean that there exists K <
∞ not depending on g such that K−1y ≤ g(x) ≤ Ky for all x in the domain
of g.

Proof. The first two items are proven in Lemma 3.1.9. The last two follow
from Lemma 3.1.10 and Step 1 of the proof of Theorem 3.1.5.

3.2 A priori bounds

In this section we begin exploiting the existence of the relatively compact
‘invariant’ set of Theorem 3.1.5. An important consequence of this theo-
rem is the existence of so-called a priori bounds (or real bounds) for infinitely
renormalizable maps. We use the a priori bounds to analyze infinitely
renormalizable maps and their attractors.

Theorem 3.2.1 (A priori bounds). If f ∈ LS
ω̄ ∩ K is infinitely renormalizable

with ω̄ ∈ ΩN, then {Rn f }n≥0 is a relatively compact family (in L0).

Proof. This is a consequence of Corollary 3.1.6 and Proposition 3.1.8.

Theorem 3.2.2. If f ∈ LS
ω̄ ∩ K is infinitely renormalizable with ω̄ ∈ ΩN, then

f satisfies the weak Markov property.

Before giving the proof we need the following lemma. Intuitively, it
states that if f is renormalizable and I is a branch of f n, then f n(I) is large
compared with the return interval C, in the sense that f n(I) \ C contains
intervals from both cycles of renormalization. (See the end of Section 2.1
for an explanation of the notation used.)

Lemma 3.2.3. Assume that f is renormalizable. Let C = L ∪ {c} ∪ R be the
return interval, let a + 1 be the return time of L, let b + 1 be the return time of R.
If I is a branch of the transfer map to C, if J ⊃ I is a branch of f n, and if J is
disjoint from C, then there exist i ∈ {1, . . . , a} and j ∈ {1, . . . , b} such that
f i(L) is contained in the right component of f n(J) \ C and f j(R) is contained in
the left component.

Proof. Since J is a branch of f n, either ∂− J = 0 or there exists 0 ≤ l < n
such that ∂−f l(J) = c. In the former case the left component of f n(J) \ C
contains f (R). Assume the latter case holds. By Proposition 2.2.5 f l(J) ⊃ R,
since f l(I) must be disjoint from C. Hence the left component of f n(J) \ C
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contains f n−l(R). Note that n− l ≤ b + 1 since f b+1(R) is mapped over the
critical point (so f is not monotone on f b+1(R)). Furthermore, n− l 6= b+ 1,
since f l(I) ∩ R = ∅ and thus f l+b+1(I) ∩ C = ∅.

Now repeat the same argument for the other boundary point of J.

Proof of Theorem 3.2.2. Since f is infinitely renormalizable there exists a se-
quence C0 ⊃ C1 ⊃ · · · of nice intervals whose lengths tend to zero (i.e. Cn
is the range of the n–th first-return map and this interval is nice since the
boundary consists of periodic points).

Let Tn denote the transfer map to Cn. We must show that Tn is defined
almost everywhere and that it has uniformly bounded distortion.

By a theorem of Singer3 f cannot have a periodic attractor since it would
attract at least one of the critical values. This does not happen for infinitely
renormalizable maps since the critical orbits have subsequences which con-
verge on the critical point. Thus Proposition 2.2.7 shows that Tn is defined
almost everywhere.

In order to prove that Tn has bounded distortion, pick any branch I
of Tn with positive transfer time i = τ(I), and let J be the branch of f i con-
taining I. By Lemma 3.2.3 both components of f i(J) \ Cn contain intervals
from the forward orbit of Cn = cl Ln ∪ Rn, say f ln(Ln) and f rn(Rn) (note
that these do not depend on the choice of branch J). We contend that

(3.16) inf
n
| f ln(Ln)|/|Cn| > 0 and inf

n
| f rn(Rn)|/|Cn| > 0.

Suppose not, and consider the C0–closure of {Rn f }. The a priori bounds
show that this set is compact and hence there exists a subsequence {Rnk f }
which converges to some f∗. But then f∗ is a renormalizable map whose
cycles of renormalization contain an interval of zero diameter. This is im-
possible, hence (3.16) must hold.

This shows that f i(J) contains a δ–scaled neighborhood of Cn and that
δ does not depend on n or J. The Koebe lemma now implies that Tn has
bounded distortion and that the bound does not depend on n.

Theorem 3.2.4. Assume f ∈ LS
ω̄ ∩K is infinitely renormalizable with ω̄ ∈ ΩN.

Let Λ be the closure of the orbits of the critical values. Then:
• Λ is a Cantor set,

3Singer’s theorem is stated for unimodal maps but the statement and proof can easily
be adapted to Lorenz maps.
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• Λ has Lebesgue measure zero,
• the Hausdorff dimension of Λ is strictly inside (0, 1),
• Λ is uniquely ergodic,
• the complement of the basin of attraction of Λ has zero Lebesgue measure.

Proof. Let Ln and Rn denote the left and right half of the return interval of
the n–th first-return map, let in and jn be the return times for Ln and Rn, let
Λ0 = [0, 1], and let

Λn =
in−1⋃
i=0

cl f i(Ln) ∪
jn−1⋃
j=0

cl f j(Rn), n = 1, 2, . . .

Components of Λn are called intervals of generation n and components of
Λn−1 \Λn are called gaps of generation n (see Figure 3.1 on the facing page).

Let I be an interval of generation n, let J ⊂ I be an interval of generation
n + 1, and let G ⊂ I be a gap of generation n + 1. We claim that there exists
constants 0 < µ < λ < 1 such that

µ < |J|/|I| < λ and µ < |G|/|I| < λ,

where µ and λ do not depend on I, J and G. To see this, take the L0–closure
of {Rn f }. This set is compact in L0, so the infimum and supremum of
|J|/|I| over all I and J as above are bounded away from 0 and 1 (otherwise
there would exist an infinitely renormalizable map in L0 with I and J as
above such that |J| = 0 or |I| = |J|). The same argument holds for I and G.
Since {Rn f } is a subset of the closure the claim follows.

Next we claim that Λ =
⋂

Λn. Clearly Λ ⊂ ⋂
Λn (since the critical

values are contained in the closure of f (Ln) ∪ f (Rn) for each n). From the
previous claim |Λn| < λ|Λn−1| so the lengths of the intervals of generation
n tend to 0 as n→ ∞. Hence Λ =

⋂
Λn.

It now follows from standard arguments that Λ is a Cantor set of zero
measure with Hausdorff dimension in (0, 1). That Λ is uniquely ergodic
follows from Theorem 2.3.1 since f has bounded combinatorics due to the
fact that Ω is finite.

It only remains to prove that almost all points are attracted to Λ. Let Tn
denote the transfer map to the n–th return interval Cn. By Proposition 2.2.7
the domain of Tn has full measure for every n and hence almost every point
visits every Cn. This finishes the proof.
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L0 R0c0 1
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1
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Figure 3.1: Illustration of the intervals of generations 0, 1 and 2 for a
(01, 100)–renormalizable map. Here Li

n = f i(Ln) and Ri
n = f i(Rn). The

intersection of all levels n = 0, 1, 2, . . . is a Cantor set, see Theorem 3.2.4.

3.3 Periodic points of the renormalization operator

In this section we prove the existence of periodic points of the renormaliza-
tion operator. The argument is topological and does not imply uniqueness
even though we believe the periodic points to be unique within each com-
binatorial class.4

The notation used here is the same as in Section 3.1, in particular the
sets Ω and K are the same as in that section. The constants ε−, ε+ and δ
appear in the definition of K.

Theorem 3.3.1. For every periodic combinatorial type ω̄ ∈ ΩN there exists a
periodic point ofR in Lω̄.

Remark 3.3.2. We are not saying anything about the periods of the periodic
points. For example, we are not asserting that there exists a period-two
point of type (ω, ω)∞ for some ω ∈ Ω — all we say is that there is a fixed
point of type (ω)∞. The point here is that (ω, ω)∞ is just another way to
write (ω)∞ so these two types are the same.

To begin with we will consider the restriction Rω of R to some ω ∈ Ω
and show thatRω has a fixed point. Let

Y = LS
ω ∩K, and Y ′ = { f ∈ Y | c+1 (R f ) ≤ 1/2 ≤ c−1 (R f )}.

The proof is based on a careful investigation of the boundary of Y and the
action ofR on this boundary. However, we need to introduce the set Y ′ be-
cause we do not have enough information on the renormalization of maps
in Y , see Theorem 3.1.5.

4The conjecture is that the restriction of R to the set of infinitely renormalizable maps
should contract maps of the same combinatorial type and this would imply uniqueness.
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Definition 3.3.3. A branch B of f n is full if f n maps B onto the domain of f ;
B is trivial if f n fixes both endpoints of B.

Proposition 3.3.4. The boundary of Y consists of three parts, namely f ∈ ∂Y if
and only if at least one of the following conditions hold:
(Y1) the left or right branch ofR f is full or trivial,
(Y2) 1− c( f ) = ε( f ) ∈ {ε−, ε+},
(Y3) Dist φ( f ) = δ or Dist ψ( f ) = δ.
Also, each condition occurs somewhere on ∂Y .

Before giving the proof we need to introduce some new concepts and
recall some established facts about families of Lorenz maps.

Definition 3.3.5. A slice (in the parameter plane) is any set of the form

S = [0, 1]2 × {c} × {φ} × {ψ},

where c, φ and ψ are fixed. We will permit ourselves to be a bit sloppy with
notation and write (u, v) ∈ S when it is clear which slice we are talking
about (or if it is irrelevant).

A slice S = [0, 1]2 × {c} × {φ} × {ψ} induces a family of Lorenz maps

S 3 (u, v) 7→ fu,v = (u, v, c, φ, ψ) ∈ L.

Any family induced from a slice is full, by which we mean that it realizes all
possible combinatorics. See (Martens and de Melo, 2001) for a precise defi-
nition and a proof of this statement. For our discussion the only important
fact is the following:

Proposition 3.3.6. Let (u, v) 7→ fu,v be a family induced by a slice. Then this
family intersects Lω̄ for every ω̄ such that Lω̄ 6= ∅. Note that ω̄ can be finite or
infinite.

Proof. This follows from (Martens and de Melo, 2001, Theorem A).

Recall that C = cl L ∪ R is the return interval for a renormalizable map,
and the return times for L and R are a + 1 and b + 1, respectively (see the
end of Section 2.1).
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Lemma 3.3.7. Assume that f is renormalizable. Let (l, c) be the branch of f a+1

containing L and let (c, r) be the branch of f b+1 containing R. Then

f a+1(l) ≤ l and f b+1(r) ≥ r.

Proof. This is a special case of (Martens and de Melo, 2001, Lemma 4.1).

Proof of Proposition 3.3.4. Let us first consider the boundary of L0
ω. If either

branch of R f is full or trivial, then we can perturb f in C0 so that it no
longer is renormalizable. Hence (Y1) holds on ∂L0

ω. If f ∈ L0
ω does not

satisfy (Y1) then any sufficiently small C0–perturbation of f will still be
renormalizable by Lemma 3.3.7. Hence the boundary of renormalization is
exactly characterized by (Y1).

Conditions (Y2) and (Y3) are part of the boundary of K. These bound-
aries intersect LS

ω by Proposition 3.3.6 and hence these conditions are also
boundary conditions for Y .

Fix 1− c0 = ε0 ∈ (ε−, ε+) and let S = [0, 1]2 × {c0} × {id} × {id}. Let
ρt be the deformation retract onto S defined by

ρt(u, v, c, φ, ψ) = (u, v, c + t(c0 − c), (1− t)φ, (1− t)ψ), t ∈ [0, 1].

In order to make sense of this formula it is important to note that the linear
structure on the diffeomorphisms is that induced from C0 via the nonlinear-
ity operator N (see Remark 2.1.4). Hence, for example tφ is by definition
the diffeomorphism N−1(tNφ). Let

Rt = ρt ◦ R.

The choice of slice is somewhat arbitrary in what follows, except that we
will have to be a little bit careful when chosing c0 as will be pointed out in
the proof of the next lemma. However, it is important to note that the slice
intersects Y .

Lemma 3.3.8. It is possible to choose c0 so that Rt has a fixed point on ∂Y ′ for
some t ∈ [0, 1] if and only ifR has a fixed point on ∂Y ′.

Remark 3.3.9. The condition c+1 (R f ) ≤ 1/2 ≤ c−1 (R f ) roughly states that
u(R f ) ≥ 1/2 and v(R f ) ≥ 1/2. Thus Y ′ has another boundary condition
given by equality in either of these two inequalities. Instead of treating
these as separate boundary conditions we subsume them into (Y1) by say-
ing that the left branch is trivial also if c−1 (R f ) = 1/2 and similarly for the
right branch.
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v

u

Figure 3.2: Illustration of the action of ρ1 ◦ R|S . The shaded area corre-
sponds to a full island. The boxes shows what the branches of ρ1 ◦R f look
like on each boundary piece.

Proof. The ‘if’ statement is obvious sinceR = R0, so assume thatR has no
fixed point on ∂Y ′. Let f ∈ ∂Y ′ and assume that Rt f = f for some t > 0.
We will show that this is impossible.

To start off choose ε0 ∈ (ε−, ε+) and let c0 = 1− ε0 as usual (we will be
more specific about the choice of ε0 later).

Note that (Y2) cannot hold for Rt f since ε0 ∈ (ε−, ε+) and hence the
same is true for ε(Rt f ), since t > 0 and ε(R f ) ∈ [ε−, ε+] by Theorem 3.1.5.

Similarly, (Y3) cannot hold for Rt f since the distortion of the diffeo-
morphic parts of R f are not greater than δ (by Theorem 3.1.5) and hence
the distortion of the diffeomorphic parts of Rt f are strictly smaller than δ
(since t > 0).5

The only possibility is that f = Rt f belongs to the boundary part de-
scribed by condition (Y1).

If either branch ofR f is full then corresponding branch ofRt f is full as
well which shows that f cannot be fixed byRt, since a renormalizable map
cannot have a full branch. Thus one of the branches ofR f must be trivial.

5This follows from Dist(1− t)φ < Dist φ if, t > 0 and Dist φ > 0.
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Assume that the left branch of R f is trivial (see Remark 3.3.9). Then
c−1 (R f ) = c(R f ) since c(R f ) > 1/2. In particular, R f is not renormaliz-
able since c−1 for a renormalizable map is away from the critical point by
Lemma 3.1.9. Because of this lemma we can assure that Rs f is not renor-
malizable for all s ∈ [0, 1] by choosing ε0 close to ε−. In particular, Rt f is
not renormalizable and hence cannot equal f .

Assume that the right branch of R f is trivial (see Remark 3.3.9). Then
c+1 (R f ) = 1/2 since c(R f ) > 1/2. In particular R f is not renormalizable
since that requires c+1 (R f ) to be close to 0 by Lemma 3.1.9. The same holds
for Rs f for all s ∈ [0, 1] since 1/2 > ε+. In particular, f cannot be fixed by
Rt since f is renormalizable.

We have shown that f /∈ ∂Y ′ which is a contradiction and hence we
conclude thatRt f 6= f for all t ∈ [0, 1].

The slice S intersects the set Lω of renormalizable maps of type ω by
Proposition 3.3.6. This intersection can in general be a complicated set, but
there will always be at least one connected component I of the interior such
that the restricted family I 3 (u, v) 7→ fu,v is full (see Martens and de Melo,
2001, Theorem B). Such a set I is call a full island. The action of R on a
full island is illustrated in Figure 3.2 on the preceding page. Note that the
action of R on the boundary of I is given by (Y1) which also explains this
figure.

Lemma 3.3.10. Any extension ofR1|∂Y ′ to Y ′ has a fixed point.

Proof. If R1 has a fixed point on ∂Y ′ then there is nothing to prove, so as-
sume that this is not the case.

Let S = [0, 1]2 × {c0} × {id} × {id}. By the above discussion there is a
full island I ⊂ S . Note that ∂I ⊂ ∂Y ′.

Pick any R : I → S such that R|∂I = R1|∂I . Now define the displace-
ment map δ : ∂I → S1 by

δ(x) =
x− R(x)
|x− R(x)| .

This map is well-defined since R1 was assumed not to have any fixed
points on ∂Y ′ and ∂I ⊂ ∂Y ′. The degree of δ is nonzero since I is a full
island. This implies that R has a fixed point in I, otherwise δ would extend
to all of I which would imply that the degree of δ was zero. This finishes
the proof since R was an arbitrary extension ofR1|∂I and ∂I ⊂ ∂Y ′.



62 Chapter 3. Invariance

Proposition 3.3.11. Rω has a fixed point.

Proof. By the previous two lemmas either Rω has a fixed point on ∂Y ′ or
we can apply Theorem A.1.1. In both casesRω has a fixed point.

Proof of Theorem 3.3.1. Pick any sequence (ω0, . . . , ωn−1) with ωi ∈ Ω. The
proof of the previous proposition can be repeated with

R′ = Rωn−1 ◦ · · · ◦ Rω0

in place of R to see that R′ has a fixed point f∗. But then f∗ is a periodic
point ofR and its combinatorial type is (ω0, . . . , ωn−1)

∞.



CHAPTER 4

Decompositions

This chapter introduces decompositions in Section 4.1. Decompositions
can be thought of as generalizations of diffeomorphisms, or perhaps more
fundamentally as the internal structure of the diffeomorphisms that appear
naturally in the study of composition operators. In Section 4.2 the renor-
malization operator is lifted to decomposed Lorenz and it is shown that
renormalization contracts to the subset of pure decomposed Lorenz maps.

4.1 Decompositions

In this section we introduce the notion of a decomposition. We show how
to lift operators from diffeomorphisms to decompositions and also how
decompositions can be composed in order to recover a diffeomorphism.
This section is an adaptation of techniques introduced in Martens (1998).

Definition 4.1.1. A decomposition φ̄ : T → D2([0, 1]) is an ordered se-
quence of diffeomorphisms labelled by a totally ordered and at most count-
able set T. Any such set T will be called a time set. The space D is defined
in Appendix A.2.

The space of decompositions D̄T over T is the direct product

D̄T = ∏
T
D2([0, 1])

together with the `1–norm

‖φ̄‖ = ∑
τ∈T
‖φτ‖.

63
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The notation here is φτ = φ̄(τ). The distortion of a decomposition is de-
fined similarly:

Dist φ̄ = ∑
τ∈T

Dist φτ.

The sum of two time sets T0 ⊕ T1 is the disjoint union

T0 ⊕ T1 = {(x, i) | x ∈ Ti, i = 0, 1},

with order (x, i) < (y, i) if and only if x < y, and (x, 0) < (y, 1) for all x, y.
The sum of two decompositions

φ̄0 ⊕ φ̄1 ∈ D̄T0⊕T1 ,

where φ̄i ∈ D̄Ti , is defined by φ̄0 ⊕ φ̄1(x, i) = φ̄i(x). In other words, φ̄0 ⊕ φ̄1
is the diffeomorphisms of φ̄0 in the order of T0, followed by the diffeomor-
phisms of φ̄1 in the order of T1.

Note that ⊕ is noncommutative on time sets as well as on decomposi-
tions.

Remark 4.1.2. Our approach to decompositions is somewhat different from
that of Martens (1998). In particular, we require a lot less structure on time
sets and as such our definition is much more suitable to general combina-
torics. Intuitively speaking, the structure that Martens (1998) puts on time
sets is recovered from limits of the renormalization operator so we will also
get this structure when looking at maps in the limit set of renormalization.
We simply choose not to make it part of the definition to gain some flexibil-
ity.

Proposition 4.1.3. The space of decompositions D̄T is a Banach space.

Proof. The nonlinearity operator takes D2([0, 1]) bijectively to C0([0, 1]; R).
The latter is a Banach space so the same holds for D̄T.

Definition 4.1.4. Let T be a finite time set (i.e. of finite cardinality) so that
we can label T = {0, 1, . . . , n − 1} with the usual order of elements. The
composition operator O : D̄T → D2 is defined by

Oφ̄ = φn−1 ◦ · · · ◦ φ0.

The composition operator composes all maps in a decomposition in the
order of T. We can also define partial composition operators

O[j,k]φ̄ = φk ◦ · · · ◦ φj, 0 ≤ j ≤ k < n.
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As a notational convenience we will write O≤k instead of O[0,k] etc.

Next, we would like to extend the composition operator to countable
time sets but unfortunately this is not possible in general. Instead of D2 we
will work with the space D3 with the C1–nonlinearity norm:

‖φ‖1 = ‖Nφ‖C1 = max
k=0,1
{|Dk(Nφ)|}, φ ∈ D3.

Define D̄3
T = {φ̄ : T → D3 | ‖φ̄‖1 < ∞}, where

‖φ̄‖1 = ∑‖φτ‖1.

Note that ‖·‖ will still be used to denote the C0–nonlinearity norm.

Proposition 4.1.5. The composition operator O : D̄3
T → D2 continuously ex-

tends to decompositions over countable time sets T.

Remark 4.1.6. It is important to note that there is an inherent loss of smooth-
ness when composing a decomposition over a countable time set. Starting
with a bound on the C1–nonlinearity norm we only conclude a bound on
the C0–nonlinearity norm of the composed map. This can be generalized;
starting with a bound on the Ck+1–nonlinearity norm, we can conclude a
bound on the Ck–nonlinearity norm for the composed map.

The reason why we loose one degree of smoothness is because we use
the mean value theorem for one estimate in the Sandwich Lemma 4.1.9. If
necessary it should be possible to replace this with for example a Hölder
estimate which would lead to a slightly stronger statement.

In order to prove this proposition we will need the Sandwich Lemma
which in itself relies on the following properties of the composition opera-
tor.

Lemma 4.1.7. Let φ̄ ∈ D̄T be a decomposition over a finite time set T, and let
φ = Oφ̄. Then

e−‖φ̄‖ ≤ |φ′| ≤ e‖φ̄‖, |φ′′| ≤ ‖φ̄‖e2‖φ̄‖, and ‖φ‖ ≤ ‖φ̄‖e‖φ̄‖.

If furthermore, φ̄ ∈ D̄3
T, then

‖φ‖1 ≤ (1 + ‖φ̄‖)e2‖φ̄‖‖φ̄‖1.
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Remark 4.1.8. Note that the lemma is stated for finite time sets, but the way
we define the composition operator for countable time sets (see the proof
of Proposition 4.1.5) will mean that the lemma also holds for countable time
sets.

Proof. The bounds on |φ′| and |φ′′| follow from an induction argument us-
ing only Lemma A.2.11.

Since T is finite we can label φ̄ so that φ = φn−1 ◦ · · · ◦ φ0. Let ψi =
O<i(φ̄) and let ψ0 = id. Now the bound on ‖φ‖ follows from

Nφ(x) =
n−1

∑
i=0

Nφi(ψi(x))ψ′i(x),

which in itself is obtained from an induction argument using the chain rule
for nonlinearities (see Lemma A.2.8).

Finally, take the derivative of the above equation to get

(Nφ)′(x) =
n−1

∑
i=0

(Nφi)
′(ψi(x))ψ′i(x)2 + Nφi(ψi(x))ψ′′i (x).

From this the bound on ‖φ‖1 follows.

Lemma 4.1.9 (Sandwich Lemma). Let φ = φn−1 ◦ · · · ◦φ0 and let ψ be obtained
by “sandwiching γ inside φ;” that is,

ψ = φn−1 ◦ · · · ◦ φi ◦ γ ◦ φi−1 ◦ · · · ◦ φ0,

for some i ∈ {0, . . . , n} (with the convention that φn = φ−1 = id).
For every λ there exists K such that if γ, φi ∈ D3 and if ‖γ‖1 + ∑‖φi‖1 ≤ λ,

then ‖ψ− φ‖ ≤ K‖γ‖.

Proof. Let φ+ = φn ◦ · · · ◦ φi, and let φ− = φi−1 ◦ · · · ◦ φ−1. Two applications
of the chain rule for nonlinearities gives∣∣Nψ(x)− Nφ(x)

∣∣ = ∣∣N(φ+ ◦ γ)(φ−(x))− Nφ+(φ−(x))
∣∣ · |φ′−(x)|

=
∣∣Nφ+(γ(y))γ′(y)− Nφ+(y) + Nγ(y)

∣∣ · |φ′−(x)|,

where y = φ−(x). By assumption Nφ+ ∈ C1 so by the mean value theorem
there exists η ∈ [0, 1] such that

Nφ+(γ(y)) = Nφ+(y) + (Nφ+)
′(η) · (φ(y)− y) .
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Hence∣∣Nψ(x)− Nφ(x)
∣∣ ≤ |φ′−(x)|

·
(∣∣Nφ+(y)

∣∣ · |γ′(y)− 1|+
∣∣γ′(y) · (Nφ+)

′(η)
∣∣ · |γ(y)− y|+ |Nγ(y)|

)
≤ K1 ·

(
K2
(
e‖γ‖ − 1

)
+ K3

(
e2‖γ‖ − 1

)
+ ‖γ‖

)
≤ K‖γ‖.

The constants Ki only depend on λ by Lemma 4.1.7. We have also used
Lemma A.2.11 and Lemma A.2.12 in the penultimate inequality.

Proof of Proposition 4.1.5. Let φ̄ ∈ D̄3
T and choose an enumeration θ : N →

T. Let ψn denote the composition of {φθ(0), . . . , φθ(n−1)} in the order in-
duced by T.

We claim that {ψn} is a Cauchy sequence in D2. Indeed, by applying
the Sandwich Lemma with λ = ‖φ̄‖1 we get a constant K only depending
on λ such that:

‖ψn − ψm‖ ≤
m+n−1

∑
i=m
‖ψi+1 − ψi‖ ≤ K

m+n−1

∑
i=m
‖φθ(i)‖ → 0, as m, n→ ∞.

Hence φ = lim ψn exists and φ ∈ D2. This also shows that φ is independent
of the enumeration θ and hence we can define Oφ̄ = φ.

We can now use the composition operator to lift operators fromD to D̄T,
starting with the zoom operators of Definition 2.1.9.

Definition 4.1.10. Let I ⊂ [0, 1] be an interval, let φ̄ ∈ D̄3
T and let Iτ be the

image of I under the diffeomorphism O<τ(φ̄). Define Z(φ̄; I) = ψ̄, where
ψτ = Z(φτ; Iτ), for every τ ∈ T.

Remark 4.1.11. An equivalent way of defining the zoom operators on D̄3
T is

to let Iτ = ψ−1
τ (J), where ψτ = O≥τ(φ̄), J = φ(I), and φ = Oφ̄(I). This is

equivalent since Oφ̄ = O≥τ(φ̄) ◦O<τ(φ̄).
The original definition takes the view of zooming in on an interval in the

domain of the decomposition, whereas the latter takes the view of zooming
in on an interval in the range of the decomposition. We will make use of
both of these points of view.

Zoom operators on diffeomorphisms are contractions for a fixed inter-
val I by Lemma A.2.16. A similar statement holds for decompositions:
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Lemma 4.1.12. Let I ⊂ [0, 1] be an interval. If φ̄ ∈ D̄3
T then

‖Z(φ̄; I)‖ ≤ e‖φ̄‖ ·min{|I|, |φ(I)|} · ‖φ̄‖,

where φ = Oφ̄.

Remark 4.1.13. Since we are only dealing with decompositions with very
small norm this lemma is enough for our purposes. However, in more gen-
eral situations the constant in front of ‖φ̄‖ may not be small enough. A
way around this is to consider decompositions which compose to diffeo-
morphisms with negative Schwarzian derivative. Then all the intervals Iτ

will have hyperbolic lengths bounded by that of J (notation is as in Re-
mark 4.1.11). This can then be used to show that zoom operators contract
and the contraction can be bounded in terms of the hyperbolic length of J.

Proof. Using the notation of Definition 4.1.10 we have

‖Z(φ̄; I)‖ = ∑
τ∈T
‖Z(φτ; Iτ)‖ ≤ ∑

τ∈T
|Iτ| · ‖φτ‖ ≤ sup

τ∈T
|Iτ| · ‖φ̄‖.

For every τ there exists ξτ ∈ I such that |Iτ| = (O<τ(φ̄))′(ξτ) · |I| which
together with Lemma 4.1.7 implies that |Iτ| ≤ e‖φ̄‖ · |I|. Similarly, there
exists ητ ∈ φ(I) such that |φ(I)| = (O≥τ(φ̄))′(ητ) · |Iτ| so by Lemma 4.1.7
|Iτ| ≤ e‖φ̄‖ · |φ(I)| as well.

This contraction property of the zoom operators leads us to introduce
the subspace of pure decompositions (the intuition is that renormalization
contracts towards the pure subspace, see Proposition 4.2.8).

Definition 4.1.14. The subspace of pure decompositions Q̄T ⊂ D̄T consists
of all decompositions φ̄ such that φτ is a pure map for every τ ∈ T.

The subspace of pure maps Q ⊂ D∞ consists of restrictions of xα away
from the critical point, that is

Q =
{

Z(x|x|α−1; I) | int I 63 0
}

.

A property of pure maps is that they can be parametrized by one real vari-
able. We choose to parametrize the pure maps by their distortion with a
sign and call this parameter s. The sign of s is positive for I to the right of 0
and negative for I to the left of 0. With this convention the graphs of pure
maps will look like Figure 4.1 on the facing page.
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s > 0

0 1

1

s = 0

0 1

1

s < 0

0 1

1

Figure 4.1: The graphs of a pure map µs for different values of the signed
distortion s.

Remark 4.1.15. Let µs ∈ Q. A calculation shows that

Dist µs = |log µ′s(1)/µ′s(0)|

and from this it is possible to deduce an expression for µs:

(4.1) µs(x) =

(
1 +

(
exp{ s

α−1} − 1
)

x
)α − 1

exp{ αs
α−1} − 1

, x ∈ [0, 1], s 6= 0,

and µ0 = id. We emphasize that the parametrization is chosen so that |s|
equals the distortion of µs. For this reason we call s the signed distortion
of µs. Figure 4.1 shows the graphs of µs for different values of s. Equa-
tion (4.1) may at first seem to indicate that there is some sort of singular
behavior at s = 0 but this is not the case; the family s 7→ µs is smooth.

The next two lemmas are needed in preparation for Proposition 4.2.8.

Lemma 4.1.16. Let φ ∈ D2 and let I ⊂ [0, 1] be an interval. Then

d(Z(φ; I),Q) ≤ |I| · d(φ,Q),

where the distance d(·, ·) is induced by the C0–nonlinearity norm.

Proof. A calculation shows that

Nµs(x) =
rs(α− 1)
1 + rsx

, rs = exp
{

s
α− 1

}
− 1.
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Let I = [a, b] and let ζ I(x) = a + |I| · x. Then

d(Z(φ; I),Q) = inf
s∈R

max
x∈[0,1]

∣∣N(Z(φ; I))(x)− Nµs(x)
∣∣

= inf
r>−1

max
x∈[0,1]

∣∣∣∣|I| · Nφ(ζ I(x))− r(α− 1)
1 + rx

∣∣∣∣
= inf

r>−1
max
x∈[0,1]

∣∣∣∣|I| · Nφ(ζ I(x))− r(α− 1)
1 + r(ζ I(x)− a)/|I|

∣∣∣∣
= |I| · inf

ρ/∈[− 1
b ,− 1

a ]
max
x∈I

∣∣∣∣Nφ(x)− ρ(α− 1)
1 + ρx

∣∣∣∣,
where ρ = r/(b− (1 + r)a). Note that 1 + ρx has a zero in [0, 1] if ρ ≤ −1,
so the infimum is assumed for ρ > −1. Thus

d(Z(φ; I),Q) = |I| · inf
ρ>−1

max
x∈I

∣∣∣∣Nφ(x)− ρ(α− 1)
1 + ρx

∣∣∣∣.
Taking the max over x ∈ [0, 1] finishes the proof.

Lemma 4.1.17. Let φ̄ ∈ D̄3
T and let I ⊂ [0, 1] be an interval. Then

d
(
Z(φ̄; I), Q̄T

)
≤ e‖φ̄‖ ·min{|I|, |φ(I)|} · d(φ̄, Q̄T),

where φ = Oφ̄.

Proof. Use Lemma 4.1.16 and a similar argument to that employed in the
proof of Lemma 4.1.12.

The pure decompositions have some very nice properties which we will
make use of repeatedly.

Proposition 4.1.18. If φ̄ ∈ Q̄T and ‖φ̄‖ < ∞, then φ = Oφ̄ is in D∞ and φ has
nonpositive Schwarzian derivative.

Remark 4.1.19. Note that ‖φ̄‖ < ∞ is equivalent to Dist φ̄ < ∞, since

Dist µ = exp
{∣∣∣ ∫ 1

0
Nµ(x)dx

∣∣∣} ,

for pure maps µ. Hence the norm bound can be replaced by a distortion
bound and the above proposition still holds.
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Proof. Let η be the nonlinearity of a pure map. A computation gives

Dkη(x) =
(−1)kk!
(α− 1)k · η(x)k+1.

Hence, if η is bounded then so are all of its derivatives (of course, the bound
depends on k). Thus Proposition 4.1.5 shows that φ = Oφ̄ is well-defined
and φ ∈ Dk, for all k ≥ 2 (use Remark 4.1.6).

Finally, every pure map has negative Schwarzian derivative so φ must
have nonpositive Schwarzian deriviative, since negative Schwarzian is pre-
served under composition by Lemma A.3.4.

Notation. We put a bar over objects associated with decompositions to dis-
tinguish them from diffeomorphisms. Hence φ̄ denotes a decomposition,
whereas φ denotes a diffeomorphism. Similarly, D̄ denotes a set of decom-
positions, whereas D is a set of diffeomorphisms.

Given a decomposition φ̄ : T → D, we use the notation φτ to mean φ̄(τ)
and we call this the diffeomorphism at time τ. Moreover, when talking
about φ̄ we consistently write φ to denote the composed map Oφ̄.

We will frequently consider the disjoint union of all decompositions in-
stead of decompositions over some fixed time set T and for this reason we
introduce the notation

D̄ =
⊔
T

D̄T and Q̄ =
⊔
T

Q̄T.

4.2 Renormalization of decomposed maps

In this section we lift the renormalization operator to the space of decom-
posed Lorenz maps (i.e. Lorenz maps whose diffeomorphic parts are re-
placed with decompositions). We prove that renormalization contracts to-
wards the subspace of pure decomposed maps. This will be used in later
sections to compute the derivative ofR on its limit set.

Definition 4.2.1. Let T = (T0, T1) be a pair of time sets, and let D̄T denote
the product D̄T0 ×D̄T1 . The space of decomposed Lorenz maps L̄T over T is
the set [0, 1]2× (0, 1)×D̄T together with structure induced from the Banach
space R3 × D̄T with the max norm of the products.
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Definition 4.2.2. The composition operator induces a map L̄3
T → L2 which

(by slight abuse of notation) we will also denote O. Explicitly, if f̄ =
(u, v, c, φ̄, ψ̄) ∈ L̄T, then f = O f̄ is defined by f = (u, v, c, Oφ̄, Oψ̄).

We will now define the renormalization operator on the space of decom-
posed Lorenz maps. Formally, the definition is identical to the definition of
the renormalization operator on Lorenz maps. To illustrate this, let f = O f̄
be renormalizable. Then, by Lemma 2.1.11,R f = (u′, v′, c′, φ′, ψ′), where

(4.2) u′ = |Q(L)|/|U|, v′ = |Q(R)|/|V|, c′ = |L|/|C|,

φ′ = Z( f a ◦ φ; U) and ψ′ = Z( f b ◦ ψ; V). Zoom operators satisfy

Z(g ◦ h; I) = Z(g; h(I)) ◦ Z(h; I),

so we can write

φ′ = Z(ψ; Q(Ua)) ◦ Z(Q; Ua) ◦ · · · ◦ Z(ψ; Q(U1)) ◦ Z(Q; U1) ◦ Z(φ; U),
ψ′ = Z(φ; Q(Vb)) ◦ Z(Q; Vb) ◦ · · · ◦ Z(φ; Q(V1)) ◦ Z(Q; V1) ◦ Z(ψ; V).

Definition 4.2.3. Define R f̄ = (u′, v′, c′, φ̄′, ψ̄′), where u′, v′, c′ are given
by (4.2) and

φ̄′ = Z(φ̄; U)⊕ Z(Q; U1)⊕ Z(ψ̄; Q(U1))⊕ · · · ⊕ Z(Q; Ua)⊕ Z(ψ̄; Q(Ua)),
ψ̄′ = Z(ψ̄; V)⊕ Z(Q; V1)⊕ Z(φ̄; Q(V1))⊕ · · · ⊕ Z(Q; Vb)⊕ Z(φ̄; Q(Vb)),

where Z(Q; ·) is now interpreted as a decomposition over a singleton time
set. See Figure 4.2 on the facing page for an illustration of the action ofR.

Definition 4.2.4. The domain of R on decomposed Lorenz maps is con-
tained in the disjoint union L̄ =

⊔
T L̄T over all time sets T. Just as before

we let L̄ω denote all ω–renormalizable maps in L̄; L̄ω̄ denotes all maps in
L̄ such thatRi f̄ ∈ L̄ωi , where ω̄ = (ω0, ω1, . . . ); and L̄Ω =

⋃
ω∈Ω L̄ω.

Remark 4.2.5. Note that R takes the renormalizable maps of L̄T into L̄T′ ,
where T′ 6= T in general. This is the reason why we have to work with the
disjoint union

⊔
T L̄T.
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ψ̄Q0 ψ̄Q0φ̄

ψ̄′

V

C

0

c

1

ψ̄ Q1 φ̄

U

C φ̄′

0

c

1

Figure 4.2: Illustration of the renormalization operator acting on decom-
posed Lorenz maps. First the decompositions are ‘glued’ to each other with
Q according to the type of renormalization, here the type is (01, 100). Then
the interval C is pulled back, creating the shaded areas in the picture. The
maps following the dashed arrows from U to C and from V to C represent
the new decompositions before rescaling.

Lemma 4.2.6. The composition operator is a semi-conjugacy. That is, the follow-
ing square commutes ⋃ L̄3

ω
R−−−→ L̄3

O

y yO⋃L2
ω

R−−−→ L2

and O is surjective.

Remark 4.2.7. This lemma shows that we can use the composition operator
to transfer results about decomposed Lorenz maps to Lorenz maps.

Proof. The square commutes by definition so let us focus on the surjectiv-
ity. Fix τ ∈ T and define a map Γτ : D → D̄T by sending φ ∈ D to the
decomposition φ̄ : T → D defined by

φ̄(t) =

{
φ, if t = τ,
id, otherwise.

Then O ◦ Γτ = id which proves that O is surjective on D̄T and hence it is
also surjective on L̄T.
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The main result for the renormalization operator on Lorenz maps was
the existence of the invariant set K for types in the set Ω, see Section 3.1.
It should come as no surprise that K and Ω will be central to our discus-
sion on decomposed maps as well. The first result in this direction is the
following.

Proposition 4.2.8. If f̄ ∈ L̄3
ω̄ is infinitely renormalizable with ω̄ ∈ ΩN, if

‖φ̄‖ ≤ K and ‖ψ̄‖ ≤ K, and if O f̄ ∈ K ∩ LS, then the decompositions of Rn f̄
are uniformly contracted towards the subset of pure decompositions.

Proof. From the definition of the renormalization operator (and using the
fact that d(Z(Q; I),Q) = 0) we get

d(φ̄′, Q̄) =
a

∑
i=1

d(Z(ψ̄; Q(Ui)), Q̄) + d(Z(φ̄; U), Q̄).

Now apply Lemma 4.1.17 to get

d(φ̄′, Q̄) ≤ e‖ψ̄‖
a+1

∑
i=2
|Ui|d(ψ̄, Q̄) + e‖φ̄‖|U1|d(φ̄, Q̄).

From Section 3.1 we get that ∑|Ui| and ∑|Vi| may be chosen arbitrarily
small (by choosing the return times sufficiently large). Now make these
sums small compared with max{e‖φ̄‖, e‖ψ̄‖} to see that there exists µ < 1
(only depending on K) such that

d(φ̄′, Q̄) + d(ψ̄′, Q̄) ≤ µ
[
d(φ̄, Q̄) + d(ψ̄, Q̄)

]
.

Our main goal is to understand the limit set of the renormalization op-
erator and the above proposition will be central to this discussion.

Definition 4.2.9. The set of forward limits of R restricted to types in Ω is
defined by

AΩ =
⋂

n≥1

Rn( ⋃
ω̄∈Ωn

L̄ω̄

)
.

Remark 4.2.10. In other words,AΩ consists of all maps f̄ which have a com-
plete past:

f̄ = Rω−1 f̄−1, f̄−1 = Rω−2 f̄−2, . . . , ωi ∈ Ω.

This also describes how we can associate each f̄ ∈ AΩ with a left infinite
sequence (. . . , ω−2, ω−1).
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Proposition 4.2.11. AΩ is contained in the subset of pure decomposed Lorenz
maps.

Proof. This is a direct consequence of Proposition 4.2.8.

Since AΩ is contained in the set of pure decomposed maps we will re-
strict our attention to this subset from now on. This is extremely convenient
since pure decompositions satisfy some very strong properties, see Propo-
sition 4.1.18, and it will allow us to compute the derivative at all points
in AΩ in Section 5.1.

Next we would like to lift the invariant set K to the decomposed maps,
but simply taking the preimage O−1(K) will yield a set which is too large1

so we will have to be a bit careful.

Definition 4.2.12. Define

K̄ = {(u, v, c, φ̄, ψ̄) | ε− ≤ 1− c ≤ ε+, Dist φ̄ ≤ δ, Dist ψ̄ ≤ δ, φ̄, ψ̄ ∈ Q̄},

and
K̄Ω = { f̄ ∈ K̄ ∩ L̄Ω | c+1 (R f̄ ) ≤ 1/2 ≤ c−1 (R f̄ )}.

Note that K̄ is defined analogously toK but with the additional assumption
that the decompositions are pure. The notation used here is the same as that
of Section 3.1.

Proposition 4.2.13. If b− is sufficiently large, thenR(K̄Ω) ⊂ K̄.

Proof. Let f = O f̄ = (u, v, c, φ, ψ). Note first of all that Dist φ̄ ≤ δ implies
that Dist φ ≤ δ, since Dist satisfies the subadditivity property

Dist γ2 ◦ γ1 ≤ Dist γ1 + Dist γ2.

Hence, f automatically satisfies the conditions of Theorem 3.1.5, so all we
need to prove is that Dist φ̄′ ≤ δ and Dist ψ̄′ ≤ δ. This is the reason why
we define K̄ by a distortion bound instead of a norm bound. Note that f
has nonpositive Schwarzian since the decompositions are pure, see Propo-
sition 4.1.18.

1Any preimage under O contains decompositions whose norm is arbitrarily large. As
an example of how things can go wrong, fix K > 0 and consider φ̄ : N → D defined
by φn+1 = φ−1

n and ‖φn‖ = K for every n. Then φ2n−1 ◦ · · · ◦ φ0 = id for every n, but
∑‖φn‖ = ∞.
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We will first show that the norm is invariant, then we transfer this in-
variance to the distortion. The reason why we consider the norm first is
because it satisfies the contraction property in Lemma 4.1.12 which makes
it easier to work with.

From the definition ofR and Lemma 4.1.12 we get

‖φ̄′‖ = ‖Z(φ̄; U)‖+
a

∑
i=1
‖Z(ψ̄; Q(Ui))‖+ ‖Z(Q; Ui)‖

≤ e‖φ̄‖‖φ̄‖ · |U1|+ e‖ψ̄‖‖ψ̄‖
a+1

∑
i=2
|Ui|+

a

∑
i=1
‖Z(Q; Ui)‖.

The norm of a pure map is determined by how far away its domain is from
the critical point. More precisely, we have that

a

∑
i=1
‖Z(Q; Ui)‖ = (α− 1)

a

∑
i=1

|Ui|
d(c, Ui)

.

Each term in this sum is bounded by cross-ratio of Ui inside [c, 1]. Since
maps with positive Schwarzian contract cross-ratio, since S f < 0, and since
Ui is a pull-back of C under an iterate of f , this cross-ratio is bounded by
the cross-ratio χ of C inside [c+1 , 1]. Thus, the above sum is bounded by
a(α− 1)χ. From the proof of Theorem 3.1.5 we know that χ is of the order
εt for some t > 0. Since a < b− and b−εt → 0 we see that the above sum
has a uniform bound which tends to zero as b− → ∞.

A similar argument for ψ̄′ gives

‖φ̄′‖+ ‖ψ̄′‖ ≤ (‖φ̄‖+ ‖ψ̄‖) exp {‖φ̄‖+ ‖ψ̄‖}
(
∑|Ui|+ ∑|Vi|

)
+ m

= k (‖φ̄‖+ ‖ψ̄‖) + m,

where m = ∑‖Z(Q; Ui)‖ + ∑‖Z(Q; Vi)‖. The arguments above and the
proof of Theorem 3.1.5 show that we can choose b− and δ so that

δ ≥ m
1− k

,

which proves that

‖φ̄‖+ ‖ψ̄‖ ≤ δ =⇒ ‖φ̄′‖+ ‖ψ̄′‖ ≤ δ.
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The final observation which we use to finish the proof is that if γ ∈ Q
then

‖γ‖ = (α− 1) ·
(

exp
{

Dist γ

α− 1

}
− 1
)

.

That is ‖γ‖ ≈ Dist γ for pure maps γ with small distortion. This allows
us to slightly modify the above invariance argument for the norm so that it
holds for the distortion as well.





CHAPTER 5

Differentiable structure

This chapter begins with a calculation of the derivative of the renormal-
ization operator on a subset of the pure decomposed Lorenz maps in Sec-
tion 5.1. The derivative restricted to the parameter plane is orientation-
preserving and this turns out to have strong consequences on the geometry
of the domains of renormalization. This is discussed in Section 5.2. After
this the estimates on the norm of the derivative are used to construct an
expanding invariant cone field in Section 5.3. The cone field is then used in
Section 5.4 to construct unstable manifolds at each point in the limit set of
renormalization.

5.1 The derivative

The tangent space ofR on the pure decomposed Lorenz maps can be writ-
ten X × Y, where X = R2 and Y = R × `1 × `1. The coordinates on X
correspond to the (u, v) coordinates on L̄T. Let (x, y) ∈ X × Y denote the
coordinates on the tangent space and recall that we are using the max norm
on the products. The derivative ofR at f̄ is denoted

DR f̄ = M =

(
M1 M2
M3 M4

)
,

where M1 : R2 → R2, M2 : Y → R2, M3 : R2 → Y and M4 : Y → Y are
bounded linear operators.

79
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Remark 5.1.1. The fact that the derivative on the pure decomposed maps can
be written as an infinite matrix is one of the reasons why we restrict our-
selves to the pure decompositions. Deformations of pure decompositions
are also easy to deal with since they are ‘monotone’ in the sense that the
dynamical intervals that define the renormalization move monotonically
under such deformations. This makes it possible to estimate the elements
of the derivative matrix.

Theorem 5.1.2. There exist constants k and K such that if f̄ ∈ K̄ ∩ L̄Ω, then

‖M1x‖ ≥ k min{|U|−1, |V|−1} · ‖x‖, ‖M2‖ ≤ K|C|−1,

‖M3x‖ ≤ Kρ

(
|x1|
|U| +

|x2|
|V|

)
, ‖M4‖ ≤ Kρ|C|−1,

where ρ = max{ε′, Dist φ̄, Dist ψ̄} and b− is sufficiently large.

Remark 5.1.3. The sets K̄ and K̄Ω are introduced in Definition 4.2.12 and
Ω is given by Section 3.1 as always. Some results in this section are stated
for K̄ but others are only valid for the subset K̄Ω. The main difference
between these two sets is that maps in K̄Ω have good bounds on u, v and
c for the renormalization due to Proposition 4.2.13, whereas for maps in K̄
we cannot say much about the renormalization.

Proof. The proof of this theorem is split up into a few propositions that
are in this section. The estimate for M1 is given in Corollary 5.1.11. The
estimates for M2 and M4 follow from Propositions 5.1.12 and 5.1.15. Finally,
the estimate for M3 follows from Propositions 5.1.12 and 5.1.13.

Notation. Let f̄ = (u, v, c, φ̄, ψ̄) and as always use primes to denote the
renormalization R f̄ = (u′, v′, c′, φ̄′, ψ̄′). We introduce special notation for
the diffeomorphic parts of the renormalization before rescaling:

Φ = f a
1 ◦ φ, Ψ = f b

0 ◦ ψ,(5.1)

so that Φ : U → C, Ψ : V → C, and C = (p, q). Note that p and q are by
definition periodic points of periods a + 1 and b + 1, respectively.

We will use the notation ∂st to denote the partial derivative of t with re-
spect to s. In the formulas below we write ∂t to mean the partial derivative
of t with respect to any direction.

The notation g(x) � y is used to mean that there exists K < ∞ not
depending on g such that K−1y ≤ g(x) ≤ Ky for all x in the domain of g.
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The ∂ operator satisfies the following rules:

Lemma 5.1.4. The following expressions hold whenever they make sense:

∂( f ◦ g)(x) = ∂ f (g(x)) + f ′(g(x))∂g(x),(5.2)

∂
(

f n+1)(x) =
n

∑
i=0

D f n−i( f i+1(x)
)
∂ f
(

f i(x)
)
,(5.3)

∂
(

f−1)(x) = −
∂ f
(

f−1(x)
)

f ′
(

f−1(x)
) .(5.4)

Furthermore, if f (p) = p then

(5.5) ∂p = − ∂ f (p)
f ′(p)− 1

.

Remark 5.1.5. The ∂ operator clearly also satisfies the product rule

(5.6) ∂( f · g)(x) = ∂ f (x)g(x) + f (x)∂g(x).

This and the chain rule gives the quotient rule

(5.7) ∂( f /g)(x) =
∂ f (x)g(x)− f (x)∂g(x)

g(x)2 .

Proof. Equation (5.2) implies the others three. The second equation is an
induction argument and the last two follow from

0 = ∂(x) = ∂
(

f ◦ f−1(x)
)
= ∂ f

(
f−1(x)

)
+ f ′

(
f−1(x)

)
∂
(

f−1(x)
)
,

and
∂(p) = ∂( f (p)) = ∂ f (p) + f ′(p)∂p.

Equation (5.2) itself can be proved by writing fε(x) = f (x) + ε f̂ (x), gε(x) =
g(x) + εĝ(x) and using Taylor expansion:

fε(gε(x)) = fε(g(x)) + ε f ′ε(g(x))ĝ(x) + O(ε2)

= f (g(x)) + ε
{

f̂ (g(x)) + f ′(g(x))ĝ(x)
}
+ O(ε2).

We now turn to computing the derivative matrix M. The first three rows
of M are given by the following formulas.



82 Chapter 5. Differentiable structure

Lemma 5.1.6. The partial derivatives of u′, v′ and c′ are given by

∂u′ =
∂ (Q0(c)−Q0(p))− u′ · ∂

(
Φ−1(q)−Φ−1(p)

)
|U| ,

∂v′ =
∂ (Q1(q)−Q1(c))− v′ · ∂

(
Ψ−1(q)−Ψ−1(p)

)
|V| ,

∂c′ =
∂(c− p)− c′ · ∂(q− p)

|C| .

Proof. Use (4.2), Lemma 5.1.4 and Remark 5.1.5.

Let us first consider how to use these formulas when deforming in the
u, v or c directions (i.e. the first three columns of M). Almost everything in
these formulas is completely explicit — we have expressions for Q0 and Q1
so evaluating for example ∂uQ0(c) is routine. In order to evaluate for ex-
ample the term ∂uΨ−1(q) we make use of (5.4) and (5.3). This involves
estimating the sum in (5.3) which can be done with mean value theorem
estimates. The terms ∂p and ∂q are evaluated using (5.5) and the fact that
p = Φ ◦ Q0(p) and q = Ψ ◦ Q1(q). There are a few shortcuts to make the
calculations simpler as well, for example ∂uΦ = 0 since Φ does not contain
Q0 which is the only term that depends on u, and so on.

Deforming in the φ̄ or ψ̄ directions (there are countably many such di-
rections) is similar. Here we make use of the fact that the decompositions
are pure and we have an explicit formula (4.1) for pure maps where the
free parameter represents the signed distortion (see Remark 4.1.15), so we
can compute their derivative, partial derivative with respect to distortion
etc. These deformations will affect the partial derivatives of any expression
involving Φ or Ψ, but all others will not ‘see’ these deformations. The cal-
culations involved do not make any particular use of which direction we
deform in, so even though there are countably many directions we essen-
tially only need to perform one calculation for φ̄ and another for ψ̄.

We now turn to computing the partial derivatives of φ̄′ and ψ̄′.

Lemma 5.1.7. Let µs′ = Z(µs; I), where µs, µs′ ∈ Q and I = [x, y]. Then

∂s′ = Nµs(y)∂y− Nµs(x)∂x +
∂(Dµs)(y)

Dµs(y)
− ∂(Dµs)(x)

Dµs(x)
.
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Proof. By definition s = log{Dµs(1)/Dµs(0)}. Distortion is invariant un-
der zooming, so this shows that s′ = log{Dµs(y)/Dµs(x)}. A calculation
gives

∂
(

log Dµs(x)
)
=

∂(Dµs)(x)
Dµs(x)

+ Nµs(x)∂x.

By definition φ̄′ consists of maps of the form Z(µs; I) (as well as finitely
many of the form Z(Q; I) but these can be thought of as lims→±∞ Z(µs; I)).
Hence the above lemma shows us how to compute the partial derivatives
at each time in φ̄′. Note that we implicitly identify R with Q via s 7→ µs.

In order to use the lemma we also need a way to evaluate the terms ∂x
and ∂y. One way to do this is to express these in terms of ∂p and ∂q which
have already been computed at this stage. If we let T : I → [p, q] denote
the ‘transfer map’ to C, then p = T(x) and hence (5.2) shows that

∂x =
∂p− ∂T(x)

DT(x)
.

The terms ∂T and DT can be bounded by ∂Φ and DΦ (or ∂Ψ and DΨ) all
of which have already been computed as well.

Proposition 5.1.8. If f ∈ K ∩ LΩ, then

M1 =

 1
|U|

(
1 + 1−u′

u
Q(p)

D f a+1(p)−1

)
− 1
|U|

u′
v

DΨ(Ψ−1(q))
DΦ(Φ−1(q))

1−Q(q)
D f b+1(q)−1

− 1
|V|

v′
u

DΦ(Φ−1(p))
DΨ(Ψ−1(p))

Q(p)
D f a+1(p)−1

1
|V|

(
1 + 1−v′

v
1−Q(q)

D f b+1(q)−1

) + Me
1,

where the error term Me
1 is negligible.

Remark 5.1.9. Note that this proposition does not need any assumptions on
the critical values of the renormalization (cf. Theorem 3.1.5). This will be
important later on when we discuss the structure of the parameter plane.
Also note that the M1 part of the derivative matrix has nothing to do with
decompositions so it is stated for nondecomposed Lorenz maps.

Proof. We begin by computing ∂p and ∂q. Use Φ ◦Q0(p) = p, Ψ ◦Q1(q) =
q, and (5.5) to get

∂u p = −DΦ(Q0(p))∂uQ0(p)
D f a+1(p)− 1

, ∂uq = − ∂uΨ(Q1(q))
D f b+1(q)− 1

,(5.8)

∂v p = − ∂vΦ(Q0(p))
D f a+1(p)− 1

, ∂vq = −DΨ(Q1(q))∂vQ1(q)
D f b+1(q)− 1

.(5.9)
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Here we have used that ∂uΦ = 0 and ∂vΨ = 0.

Next, let us estimate ∂uΨ. Let x ∈ V and let xi = f i ◦ ψ(x). From (5.3)
we get

∂uΨ(x) = ∂u
(

f b ◦ ψ)(x) = ∂u f (xb−1) +
b−1

∑
i=1

D f b−i(xi)∂u f (xi−1),

where ∂u f (x) = φ′(Q0(x))Q0(x)/u. Note that ∂u f (xi−1) ≤ e2δxi/u. In
order to bound the sum we divide the estimate into two parts. Let n < b
be the smallest integer such that D f (xi) ≤ 1 for all i ≥ n. In the part where
i < n we estimate

D f b−i(xi)xi = D f n−i(xi)D f b−n(xn)xi ≤ K1
xn

xi
D f (xb−1)xi ≤ K2ε1−1/α.

Here we have used the mean value theorem to find ξi ≤ xi such that
D f n−i(ξi) = xn/xi and D f n−i(xi) ≤ K1D f n−i(ξi), since φ has very small
distortion. In the part where i ≥ n we estimate

D f b−i(xi)xi ≤ D f (xb−1) ≤ Kε1−1/α.

Summing over the two parts gives us the estimate

b−1

∑
i=1

D f b−i(xi)∂u f (xi−1) ≤ K(b− 1)ε1−1/α.

Hence

(5.10) ∂uΨ(x) = ∂u f
(

f b−1 ◦ ψ(x)
)
+ O

(
bε1−1/α

)
≈ 1.

We will now estimate ∂vΦ. Let x ∈ U and let xi = f i ◦ φ(x). Similarly
to the above, we have

∂vΦ(x) = ∂v f (xa−1) +
a−1

∑
i=1

D f a−i(xi)∂v f (xi−1),

where ∂v f (x) = −ψ′(Q1(x))(1 − Q1(x))/v. By the mean value theorem
there exists ξi ∈ [xi, 1] such that D f a−i(ξi) = (1 − xa)/(1 − xi), since
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f a−i(xi) = xa. From Lemma 3.1.10 it follows that D f a−i(xi) � D f a−i(ξi).
Putting all of this together we get that the sum above is proportional to

a−1

∑
i=1

D f a−i(ξi)(1− xi) = (a− 1)(1− xa).

Thus

(5.11) ∂vΦ(x) � −aε,

since xa ∈ C and hence 1− xa = ε + O(|C|) ≈ ε.

We now have all the ingredients we need to compute M1. Lemma 5.1.6
shows that

|U|∂uu′ = ∂uQ0(c)− ∂uQ0(p)−Q′0(p)∂u p

− u′
(

DΦ−1(q)∂uq− DΦ−1(p)∂u p
)

.

Here we have used ∂uΦ = 0. Now use (5.8) to get

Q′0(p)∂u p = −∂uQ0(p)
D f a+1(p)

D f a+1(p)− 1
, DΦ−1(p)∂u p = − ∂uQ0(p)

D f a+1(p)− 1
.

Thus

(5.12) |U|∂uu′ = 1 +
(1− u′)∂uQ0(p)

D f a+1(p)− 1
+

u′∂uΨ(Q1(q))
DΦ(Φ−1(q))(D f b+1(q)− 1)

.

The last term is much smaller than one because of (5.10) and since |DΦ| �
1 (and also D f b+1(q) ≈ α/ε′ > α).

From Lemma 5.1.6 we get

|V|∂vv′ = ∂vQ1(q) + Q′1(q)∂vq− ∂vQ1(c)

− v′
(

DΨ−1(q)∂vq− DΨ−1(p)∂v p
)

.

Here we have used ∂vΨ = 0. Now use (5.9) to get

Q′1(q)∂vq = −∂vQ1(q)D f b+1(q)
D f b+1(q)− 1

, DΨ−1(q)∂vq = − ∂vQ1(q)
D f b+1(q)− 1

.
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Thus

(5.13) |V|∂vv′ = 1− (1− v′)∂vQ1(q)
D f b+1(q)− 1

− v′∂vΦ(Q0(p))
DΨ(Ψ−1(p))(D f a+1(p)− 1)

.

The last term is much smaller than one by (5.11) and since |DΨ| � 1 (and
also D f a+1(p) ≈ α/c′ > α).

From Lemma 5.1.6 we get

|U|∂vu′ = −Q′0(p)∂v p− u′
(

∂vΦ−1(q) + DΦ−1(q)∂vq

−∂vΦ−1(p)− DΦ−1(p)∂v p
)

.

Let us prove that that the dominating term is the one with ∂vq. From (5.9)
we get

∂vq = −∂vQ1(q)
Q′1(q)

D f b+1(q)
D f b+1(q)− 1

,

which diverges as b− → ∞, since |R|/ε → 0 and hence Q′1(q) → 0 (by
Proposition 3.1.13). From (5.9) and (5.11) we get that ∂v p→ 0, which shows
that the last term is dominated by the term with ∂vq. Now, ∂vΦ−1(x) =
−∂vΦ(x)/DΦ(x), which combined with (5.11) shows that the term with
∂vq dominates the two terms with ∂vΦ−1. Furthermore

Q′0(p)∂v p = −∂vΦ(Q0(p))
DΦ(Q0(p))

D f a+1(p)
D f a+1(p)− 1

,

which combined with (5.11) shows that the term with ∂vq dominates the
above term. Thus

(5.14) |U|∂vu′ = u′
DΨ(Ψ−1(q))
DΦ(Φ−1(q))

∂vQ1(q)
D f b+1(q)− 1

+ e,

where the error term e is tiny compared with the other term on the right-
hand side.

From Lemma 5.1.6 we get

|V|∂uv′ = Q′1(q)∂uq− v′
(

∂uΨ−1(q) + DΨ−1(q)∂uq

−∂uΨ−1(p)− DΨ−1(p)∂u p
)

.
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Let us prove that that the dominating term is the one with ∂u p. From (5.8)
we get

∂u p = −∂uQ0(p)
Q′0(p)

D f a+1(p)
D f a+1(p)− 1

,

which diverges as b− → ∞, since |L|/c → 0 and hence Q′0(p) → 0. From
(5.8) and (5.10) we get that ∂uq is bounded and hence the ∂u p term domi-
nates the second term involving ∂uq. Now, ∂uΨ−1(x) = −∂uΨ(y)/DΨ(y),
y = Ψ−1(x), which combined with (5.10) shows that the ∂u p term domi-
nates the two terms involving ∂uΨ−1. Furthermore

Q′1(q)∂uq = −∂uΨ(Q1(q))
DΨ(Q1(q))

D f b+1(q)
D f b+1(q)− 1

,

which combined with (5.10) shows that the ∂u p term dominates the above
term. Thus

(5.15) |V|∂uv′ = −v′
DΦ(Φ−1(p))
DΨ(Ψ−1(p))

∂uQ0(p)
D f a+1(p)− 1

+ e,

where the error term e is tiny compared with the other term on the right-
hand side.

Corollary 5.1.10. If f ∈ K ∩ LΩ, then det M1 > 0 for b− large enough.

Proof. Let

t =
DΦ(Φ−1(p))
DΦ(Φ−1(q))

DΨ(Ψ−1(q))
DΨ(Ψ−1(p))

.

From Lemma 3.1.10 and Proposition 3.1.13 we know that the distortion of
Φ and Ψ tend to zero as b− → ∞. Hence t→ 1.

From Proposition 5.1.8 we get

|U||V|det M1 > 1− t
u′v′

uv
Q(p)(1−Q(q))

(D f a+1(p)− 1)(D f b+1(q)− 1)
.

Note that D f a+1(p) ≈ α/c′ and D f b+1(q) ≈ α/ε′. If u′, v′ ≥ 1/2, then
ε′ � 1 by Theorem 3.1.5 and so det M1 > 0. If not, then we can estimate

|U||V|det M1 > 1− t
2uv

c′ε′

(α− c′)(α− ε′)
> 1− t

2uv
1

4(α− 1/2)2 > 0,

since u and v are close to one and t can be assumed to be close to one by
the above.



88 Chapter 5. Differentiable structure

Corollary 5.1.11. There exists k > 0 such that if f is as above, then

‖M1x‖ ≥ k ·min{|U|−1, |V|−1} · ‖x‖.

Proof. Write M1 as

M1 =

(
a
|U| −

b
|V|

− c
|U|

d
|V|

)
.

(Here we have used that the distortion of Φ and Ψ are small, so DΦ/DΨ �
|V|/|U|.) Then

M−1
1 = (ad− bc)−1

(
d|U| b|U|
c|V| a|V|

)
.

We are using the max-norm, hence

‖M−1
1 ‖ = (ad− bc)−1 ·max{(b + d)|U|, (c + a)|V|}.

It can be checked that (b + d)/(ad− bc) and (a + c)/(ad− bc) are bounded
by some K. Let k = 1/K to finish the proof.

Proposition 5.1.12. If f ∈ K ∩ LΩ, then

∂cu′ � −|C|−1, ∂cv′ � |C|−1, ∂cc′ � −c′ε′|C|−1,

∂uc′ � c′ε′|U|−1, ∂vc′ � −c′ε′|V|−1.

Proof. A straightforward calculation shows that

(5.16)
∂cQ0(x)
Q′0(x)

= − x
c

and
∂cQ1(x)
Q′1(x)

= −1− x
1− c

.

This together with Φ ◦Q0(p) = p, Ψ ◦Q1(q) = q, (5.1) and (5.5) gives

∂c p =
p
c D f a+1(p)− ∂cΦ(Q0(p))

D f a+1(p)− 1
, ∂cq =

1−q
ε D f b+1(q)− ∂cΨ(Q1(q))

D f b+1(q)− 1
.

From (5.3) and (5.16) we get

∂cΦ(x) = −1
ε

a−1

∑
i=0

D f a−i(xi) · (1− xi), xi = f i ◦ φ(x), x ∈ U,

∂cΨ(x) = −1
c

b−1

∑
i=0

D f b−i(xi) · xi, xi = f i ◦ ψ(x), x ∈ V.
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Using a similar argument as in the proof of Proposition 5.1.8 this shows
that

∂cΦ(x) � −a and ∂cΨ(x) = −O(bε1−1/α),

and hence ∂c p � 1 and ∂cq � 1.
Now apply Lemma 5.1.6 using the fact that Φ−1(p) = Q0(p) to get

|U|∂cu′ = −(1− u′)∂c
(
Q0(p)

)
− u′∂c

(
Φ−1(q)

)
.

A calculation gives

∂c
(
Q0(p)

)
=

D f a+1(p)
( p

c − ∂cΦ(Q0(p))
)

DΦ(Q0(p)) (D f a+1(p)− 1)
� 1

DΦ(Q0(p))

and

∂c
(
Φ−1(q)

)
=

∂cq− ∂cΦ
(
Φ−1(q)

)
DΦ

(
Φ−1(q)

) � 1
DΦ

(
Φ−1(q)

) .

(In particular, both terms have the same sign.) But DΦ(x) � |C|/|U|, so
this gives ∂cu′ � −|C|−1. The proof that ∂cv′ � |C|−1 is almost identical.

From Lemma 5.1.6 we get

|C|∂cc′ = c′(1− ∂cq) + ε′(1− ∂c p),

and hence

∂cc′ =
c′

ε

ε′D f b+1(q)− ε|C|−1(1− ∂cΨ(Q1(q)))
D f b+1(q)− 1

+
ε′

c
c′D f a+1(p)− c|C|−1(1− ∂cΦ(Q0(p)))

D f a+1(p)− 1

= −
c′
(
1− ∂cΨ(Q1(q))

)
|C|(D f b+1(q)− 1)

−
ε′
(
1− ∂cΦ(Q0(p))

)
|C|(D f a+1(p)− 1)

+ O(c′ε′/ε).

Now use D f b+1(q) ≈ α/ε′ and D f a+1(p) ≈ α/c′ to get ∂cc′ � −c′ε′|C|−1.
(Note that ∂cΦ(x) < 0 and ∂cΨ(x) < 0.)

Apply Lemma 5.1.6 to get

|C|∂uc′ = −c′∂uq− ε′∂u p.

This and the proof of Proposition 5.1.8 shows that

∂uc′ =
c′
(

D f a+1(p)− 1
)
∂uΨ(Q1(q)) + ε′

(
D f b+1(q)− 1

)
DΦ(Q0(p))∂uQ0(p)

|C|
(

D f a+1(p)− 1
)(

D f b+1(q)− 1
) .
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Since c′(D f a+1(p)− 1) � α− c′, ε′(D f b+1(q)− 1) � α− ε′, |∂uΨ| � |DΦ|,
and ∂uQ0(p) ≈ 1, this shows that

∂uc′ � c′ε′
DΦ(Q0(p))
|C| � c′ε′

|U| .

The proof that ∂vc′ � −c′ε′|V|−1 is almost identical.

Notation. We need some new notation to state the remaining propositions.
Each pure map φσ in the decomposition φ̄ can be identified with a real
number which we denote sσ ∈ R, and each ψτ in the decomposition ψ̄ can
be identified with a real number tτ ∈ R:

R 3 sσ ↔ φσ = φ̄(σ) ∈ Q, R 3 tτ ↔ ψτ = ψ̄(τ) ∈ Q.

We put primes on these numbers to denote that they come from the renor-
malization, so s′σ′ ∈ R is identified with φ̄′(σ′) and t′τ′ ∈ R is identified
with ψ̄′(τ′). Note that σ, σ′ are used to denote times for φ̄, φ̄′, and τ, τ′ are
used to denote times for ψ̄, ψ̄′, respectively.

Proposition 5.1.13. There exists K such that if f̄ ∈ K̄ ∩ L̄Ω, then

|∂us′σ′ | ≤ K
|s′σ′ |
|U| , |∂vs′σ′ | ≤ K

|s′σ′ |
|V| , |∂cs′σ′ | ≤ K

|s′σ′ |
|C| ,

|∂ut′τ′ | ≤ K
|t′τ′ |
|U| , |∂vt′τ′ | ≤ K

|t′τ′ |
|V| , |∂ct′τ′ | ≤ K

|t′τ′ |
|C| .

Proof. We will compute ∂vs′σ′ ; the other calculations are almost identical.
There are four cases to consider depending on which time in the decom-
position φ̄′ we are looking at: (1) φ̄′(σ′) = Z(φσ; I), (2) φ̄′(σ′) = Z(ψτ; I),
(3) φ̄′(σ′) = Z(Q0; I), (4) φ̄′(σ′) = Z(Q1; I). In each case let I = [x, y] and
let T : I → C be the ‘transfer map’ to C. This means that T = f i ◦ γ for
some i and γ is a partial composition (e.g. γ = O≥σ(φ̄) in case 1) or a pure
map (in cases 3 and 4).

In case 1 Lemma 5.1.7 gives

∂vs′σ′ =
Nφσ(y)
DT(y)

(∂vq− ∂vT(y))− Nφσ(x)
DT(x)

(∂v p− ∂vT(x)).

By Lemma A.2.16 Nφσ(y) = Nφ′σ′(1)/|I| and hence

Nφσ(y)
DT(y)

�
Nφ′σ′(1)/|I|
|C|/|I| �

s′σ′
|C| .
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Here we have used that the nonlinearity of φ′σ′ does not change sign so
s′σ′ =

∫
Nφ′σ′ and that

∫
Nφ′σ′ ≈ Nφ′σ′(1) since the nonlinearity is close to

being constant (which is true since φ̄′ is pure and has very small norm).
We now need to estimate ∂vT but this can very roughly be bounded by

∂vΦ since
∂vT(y) = ∂v f i

1(γ(y)),

so the estimate that was used for ∂vΦ in the proof of Proposition 5.1.8 can
be employed. From the same proof we thus get that ∂vq dominates both
∂v p and ∂vT.

The above arguments show that

∂vs′σ′ �
s′σ′
|C|∂vq � −

s′σ′
|C|

DΨ(Q1(q))
D f b+1(q)− 1

� −
s′σ′
|V|

1
D f b+1(q)− 1

.

This concludes the calculations for case 1.
Case 2 is almost identical to case 1. Case 4 differs in that Lemma 5.1.7

now gives two extra terms

∂vs′σ′ =
NQ1(y)
DT(y)

(∂vq− ∂vT(y))− NQ1(x)
DT(x)

(∂v p− ∂vT(x))

+
∂vQ′1(y)
Q′1(y)

− ∂vQ′1(x)
Q′1(x)

.

However, ∂vQ1 = 1/v so the last two terms cancel. The rest of the calcula-
tions go exactly like in case 1. Case 3 is similar to case 4.

Remark 5.1.14. A key point in the above proof is that deformations in a
decomposition direction is monotone. This is what allowed us to estimate
the partial derivatives of the ‘transfer map’ T by the partial derivatives of
Φ or Ψ.

Proposition 5.1.15. There exists K and ρ > 0 such that if f̄ ∈ K̄ ∩ L̄Ω, then

|∂?u′| ≤ Kερ

|C| , |∂?v′| ≤ Kερ

|C| , |∂?c′| ≤ Kc′ε′ερ

|C| ,

|∂?s′σ′ | ≤
Kερ|s′σ′ |
|C| , |∂?t′τ′ | ≤

Kερ|t′τ′ |
|C| ,

for ? ∈ {sσ, tτ}.



92 Chapter 5. Differentiable structure

Proof. Let us first consider ∂sσ , that is deformations in the direction of φσ.
Since φσ is pure we can use (4.1) to compute

(5.17) ∂sσ φσ(x) � −x(1− x).

From (5.5) we get

∂sσ p = −
∂sσ Φ

(
Q0(p)

)
D f a+1(p)− 1

and ∂sσ q = −
∂sσ Ψ

(
Q1(q)

)
D f b+1(q)− 1

.

so the first thing to do is to calculate the partial derivatives of Φ and Ψ.
Let x ∈ U, then

∂sσ Φ(x) = ∂sσ

(
f a
1 ◦O>σ(φ̄) ◦ φσ ◦O<σ(φ̄)

)
(x)

= D
(

f a
1 ◦O>σ(φ̄)

)(
O≤σ(φ̄)(x)

)
· ∂sσ φσ

(
O<σ(φ̄)(x)

)
.

Note that we have used that f1 does not depend on sσ. From (5.17) we thus
get that

(5.18) |∂sσ Φ(x)| ≤ K′ · DΦ(x)(1− x) ≤ Kε.

Let x ∈ V and let xi = f i
0 ◦ ψ(x). As in the proof of Proposition 5.1.8 we

have

∂sσ Ψ(x) = ∂sσ f0(xb−1) +
b−1

∑
i=1

D f b−i
0 (xi)∂sσ f0(xi−1).

From (5.17) we get

|∂sσ f0(xi−1)| =
∣∣D(O>σ(φ̄)

)(
O≤σ(φ̄) ◦Q0(xi−1)

)
· ∂sσ

(
O<σ(φ̄) ◦Q0(xi−1)

)∣∣
≤ K|xi|.

Using the same estimate as in the proof of Proposition 5.1.8 this shows that

(5.19) |∂sσ Ψ(x)| ≤ K′(1− xb) + O(bε1−1/α) = O(bε1−1/α).

We can now argue as in the proof of Proposition 5.1.8 to find bounds on
∂sσ? for ? ∈ {u′, v′, c′}. From Lemma 5.1.6 we get

∂sσ u′ =
1− u′

|U| ·
∂sσ Φ(Q(p))
DΦ(Q(p))

· D f a+1(p)
D f a+1(p)− 1

+
u′

|U|
∂sσ Φ

(
Φ−1(q)

)
− ∂sσ q

DΦ
(
Φ−1(q)

) ,

−∂sσ v′ =
1− v′

|V| ·
∂sσ Ψ(Q(q))
DΨ(Q(q))

· D f b+1(q)
D f b+1(q)− 1

+
v′

|V|
∂sσ Ψ

(
Ψ−1(p)

)
− ∂sσ p

DΨ
(
Ψ−1(p)

) ,

∂sσ c′ = c′ ·
∂sσ Ψ

(
Q1(q)

)
D f b+1(q)− 1

+ ε′ ·
∂sσ Φ

(
Q0(p)

)
D f a+1(p)− 1

.



5.2. Archipelagos in the parameter plane 93

Use that Dφ � |C|/|U|, DΨ � |C|/|V|, D f a+1(p) � α/c′ and D f b+1(q) �
α/ε′ to finish the estimates for ∂sσ u′, ∂sσ v′ and ∂sσ c′. Note that bεr → 0 for
any r > 0 so it is clear from (5.18) and (5.19) that we can find a ρ > 0 such
that |∂sσ Φ| < Kερ and |∂sσ Ψ| < Kερ.

In order to find bounds for ? ∈ {s′σ′ , t′τ′} we argue as in the proof of
Proposition 5.1.13. The last two terms from Lemma 5.1.7 are slightly differ-
ent (when nonzero). In this case they are given by

∂sσ

(
Dφσ

)
(y)

Dφσ(y)
−

∂sσ

(
Dφσ

)
(x)

Dφσ(x)
.

Using (5.17) we can calculate this difference. For |sσ| � 1 it is close to y− x
which turns out to be negligible. All other details are exactly like the proof
of Proposition 5.1.13.

The estimates for ∂tτ are handled similarly. The only difference is the
estimates of the partial derivatives of Φ and Ψ. These can be determined
by arguing as in the above and the proof of Proposition 5.1.8 which results
in

(5.20) |∂tτ Φ(x)| ≤ Kε1−1/α and |∂tτ Ψ(y)| ≤ Kaε,

for x ∈ U and y ∈ V. The remaining estimates are handled identically to
the above.

5.2 Archipelagos in the parameter plane

The term archipelago was introduced by Martens and de Melo (2001) to de-
scribe the structure of the domains of renormalizability in the parameter
plane for families of Lorenz maps. In this section we show how the infor-
mation we have on the derivative of the renormalization operator can be
used to prove that the structure of archipelagos must be very rigid.

Fix c∗, φ∗, ψ∗ and let F : [0, 1]2 → L denote the associated family of
Lorenz maps

(u, v) = λ 7→ Fλ = (u, v, c∗, φ∗, ψ∗).

We will assume that: (i) Sφ∗ < 0 and Sψ∗ < 0, (ii) Dist φ∗ ≤ δ and Dist ψ∗ ≤
δ, and (iii) ε− ≤ 1− c∗ ≤ ε+. These conditions ensure that Fλ ∈ K. The
notation Ω, K, δ, ε− and ε+ is introduced in Section 3.1.
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Definition 5.2.1. An archipelago Aω ⊂ [0, 1]2 of type ω ∈ Ω is the set of
λ such that Fλ is ω–renormalizable. An island of Aω is the interior of a
connected component of Aω.

For the family λ 7→ Fλ we have the following very strong structure theo-
rem for archipelagos (this should be contrasted with Martens and de Melo,
2001). Note that c∗, φ∗ and ψ∗ are arbitrary, so the results in this section
holds for any family which satisfies conditions (i) to (iii) above.

Theorem 5.2.2. For every ω ∈ Ω there exists a unique island I such that the
archipelago Aω equals the closure of I. Furthermore, I is diffeomorphic to a square.

Remark 5.2.3. This theorem shows that the structure of Aω is very rigid.
Note that the structure of archipelagos is much more complicated in gen-
eral. There may be multiple islands, islands need not be square, there may
be isolated points, etc.

Corollary 5.2.4. For every ω̄ ∈ ΩN there exists a unique λ such that Fλ has
combinatorial type ω̄. The set of all such λ is a Cantor set.

Proof. By Theorem 5.2.2 there exists a unique sequence of nested squares1

I0 ⊃ I1 ⊃ I2 ⊃ · · ·

such that λ ∈ Ik implies that Fλ is renormalizable of type (ω0, . . . , ωk−1). We
contend that the relative diameter of Ik+1 inside Ik is uniformly bounded
(from above and from below). Otherwise the a priori bounds would give
us a subsequence {λk(j) ∈ Ik(j)} such that Rk(j)Fλk(j)

converges (in L0) to a
renormalizable Lorenz map with a critical value on the boundary. This is a
contradiction since a map cannot be renormalizable if it has critical values
in the boundary. We conclude that the intersection ∩Ik is a point.

The bound on the relative diameters is uniform in both ω and Fλ since
Ω is finite and K is relatively compact. It now follows from a standard
argument that the union of the above intersections over all combinatorial
types in ΩN is a Cantor set.

The family Fλ is monotone, by which we mean that u 7→ F(u,v)(x) is
strictly increasing for x ∈ (0, c∗), and v 7→ F(u,v)(x) is strictly decreasing for
x ∈ (c∗, 1). As a consequence, if we let

M+
(u,v) = {(x, y) | x ≥ u, y ≤ v} and M−

(u,v) = {(x, y) | x ≤ u, y ≥ v},
1By a square we mean any set diffeomorphic to the unit square.
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then

µ ∈ M+
λ =⇒ Fµ(x) > Fλ(x) and µ ∈ M−λ =⇒ Fµ(x) < Fλ(x),

for all x ∈ (0, 1) \ {c}. In other words, deformations in M+
λ moves both

branches up, deformations in M−λ moves both branches down. This simple
observation is key to analyzing the structure of archipelagos.

Definition 5.2.5. Let πS : R3 → R2 be the projection which takes the rect-
angle [c, 1]× [1− c, 1]× {c} onto S = [1/2, 1]2

πS(x, y, c) =
(

1− 1− x
2(1− c)

, 1− 1− y
2c

)
,

and let H be the map which takes (u, v, c, φ, ψ) to the height of its branches
(c is kept around because πS needs it)

H(u, v, c, φ, ψ) = (φ(u), 1− ψ(1− v), c).

Now define R : Aω → S by

R(λ) = πS ◦ H ◦ R(Fλ).

Remark 5.2.6. The action of R can be understood by looking at Figure 5.1
on the next page. The boundary of an island I is mapped into the bound-
ary of the wedge W by the map H ◦ R. The four boundary pieces of the
wedge correspond to when the renormalization has at least one full or triv-
ial branch. Note that the image of ∂I in ∂W will not in general lie in a
plane, instead it will be bent around somewhat. For this reason we project
down to the square S via the projection πS. This gives us the final opera-
tor R : Aω → S.

Proposition 5.2.7. Let I ⊂ Aω be an island. Then R is an orientation-preserving
diffeomorphism that takes the closure of I onto S.

Remark 5.2.8. This already shows that the structure of archipelagos is very
rigid. First of all every island is full, but there are also exactly one of each
type of extremal points, and exactly one of each type of vertex. In other
words, there are no degenerate islands of any type! Extremal points and
vertices are defined in Martens and de Melo (2001), see also the caption of
Figure 5.2 on page 97.
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(c∗, 1− c∗, c∗)

H ◦ R ◦ G

c

c−1

1− c+1

W

Figure 5.1: Illustration of the action of R on the family Fλ. The dark
gray island is mapped onto a set which is wrapped around the wedge W.
That is, the boundary of the island is mapped into the boundary of W
with nonzero degree. Note that in this illustration we project the image
of R to R3 via the map H. The maps H and G convert between criti-
cal values (c−1 , c+1 ) and (u, v)–parameters. Explicitly G(c−1 , 1 − c+1 , c∗) =
(φ−1
∗ (c−1 ), 1− ψ−1

∗ (c+1 ), c∗, φ∗, ψ∗).

Proof. By definition R maps I into S and ∂I into ∂S. We claim that DRλ is
orientation-preserving for every λ ∈ cl I.2 Assume that the claim holds (we
will prove this soon).

We contend that R maps cl I onto S. If not, then R(∂I) must be strictly
contained in ∂S, since the boundaries are homeomorphic to the circle and
R is continuous. But then DRλ must be singular for some λ ∈ ∂I which
contradicts the claim.

Hence R : cl I → S maps a simply connected domain onto a simply
connected domain, and DR is a local isomorphism. Thus R is in fact a
diffeomorphism.

We now prove the claim. A computation gives

DπS(x, y, c) =
(
(2(1− c))−1 0 ?

0 (2c)−1 ?

)
,

2The notation DRλ is used to denote the derivative of R at the point λ.



5.2. Archipelagos in the parameter plane 97

(φ−1
∗ (c∗), 1− ψ−1

∗ (c∗))

(1, 1)

λ1

λ2

λ3

λ4

RFλ1

RFλ2

RFλ3

RFλ4

Figure 5.2: Illustration of a full island for the family Fλ. The boundary cor-
responds to when at least one branch of the renormalization RFλ is either
full or trivial. The top right and bottom left corners are extremal points; the
top left and bottom right corners are vertices.

and

DH(u,v,c,φ,ψ) =

φ′(u) 0 . . .
0 ψ′(1− v) . . .
? ? . . .

 .

The top-left 2 × 2 matrix is orientation-preserving in both cases and the
same is true for DR by Corollary 5.1.10. Thus DRλ is orientation-preserving.

Lemma 5.2.9. Assume f m(c−1 ) = c = f n(c+1 ) for some m, n > 0. Let (l, c)
and (c, r) be branches of f m and f n, respectively. Then f m(l) ≤ l and f n(r) ≥ r.
In particular, f is renormalizable to a map with trivial branches.

Proof. In order to reach a contradiction we assume that f m(l) > l. Then
f im(l) ↑ x for some point x ∈ (l, c] as i → ∞, since f m(c−1 ) = c. Since l
is the left endpoint of a branch there exists t such that f t(l) = c+1 . Hence
f m−t(c+1 ) = l so the orbit of c+1 contains the orbit of l. But the orbit of c+1
was periodic by assumption which contradicts f im(l) ↑ x. Hence f m(l) ≤ l.

Now repeat this argument for r to complete the proof.
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Definition 5.2.10. Define

γ−triv =
{

λ ∈ [0, 1]2
∣∣ Fa+1

λ (c−∗ ) = c∗ and Fi
λ(c
−
∗ ) > c∗, i = 1, . . . , a

}
,

γ+
triv =

{
λ ∈ [0, 1]2

∣∣ Fb+1
λ (c+∗ ) = c∗ and Fi

λ(c
+
∗ ) < c∗, i = 1, . . . , b

}
.

(The notation here is g(c−∗ ) = limx↑c∗ g(x) and g(c+∗ ) = limx↓c∗ g(x).)

Lemma 5.2.11. The set γ−triv is the image of a curve v 7→ (g(v), v). The map g is
differentiable and takes [1− ψ−1

∗ (c∗), 1] into [φ−1
∗ (c∗), 1).

Similarly, γ+
triv is the image of a curve u 7→ (u, h(u)) where h is differentiable

and takes [φ−1
∗ (c∗), 1] into [1− ψ−1

∗ (c∗), 1).

Proof. Define

g(v) = φ−1
∗ ◦ (ψ∗ ◦Q1)

−a(c∗) and h(u) = 1− ψ−1
∗ ◦ (φ∗ ◦Q0)

−b(c∗).

Note that Q1 depends on v and Q0 depends on u so g and h are well-defined
maps. It can now be checked that these maps define γ−triv and γ+

triv.

Lemma 5.2.12. Assume that γ−triv crosses γ+
triv and let λ ∈ γ−triv ∩ γ+

triv. Then
the crossing is transversal and there exists ρ > 0 such that if r < ρ, then the
complement of γ−triv ∪ γ+

triv inside the ball Br(λ) consists of four components and
exactly one of these components is contained in the archipelago Aω.

Proof. To begin with assume that the crossing is transversal so that the com-
plement of γ−triv ∪ γ+

triv in Br(λ) automatically consists of four components
for r small enough. Note that γ−triv ∪γ+

triv does not intersect M+
λ ∪M−λ \ {λ}.

Hence, precisely one component will have a boundary point µ ∈ γ−triv such
that γ+

triv intersects M+
µ . Denote this component by N. Note that if we move

from µ inside N ∩M+
µ then the left critical value of the return map moves

above the diagonal. If we move in N ∩ M+
µ from a point in γ+

triv then the
right critical value of the return map moves below the diagonal.

By Lemma 5.2.9 Fλ is renormalizable and moreover the periodic points
pλ and qλ that define the return interval of Fλ are hyperbolic repelling by
the minimum principle. Hence, if we deform Fλ into N it will still be renor-
malizable since N consists of µ such that Fa+1

µ (c−) is above the diagonal
and Fb+1

µ (c+) is below the diagonal. By choosing r small enough all of N
will be contained in Aω.

Note that if we deform into any other component (other than N) then at
least one of the critical values of the return map will be on the wrong side
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(1, 1)

λ

µ

E
γ−triv

γ+
triv

Figure 5.3: Illustration of the proof of Theorem 5.2.2. Both λ and µ must be
in the boundary of islands, which lie inside the shaded areas. These two
islands have opposite orientation which is impossible.

of the diagonal and hence the corresponding map is not renormalizable.
Thus only the component N intersects Aω.

Now assume that the crossing is not transversal. Then we may pick
λ in the intersection γ−triv ∩ γ+

triv so that it is on the boundary of an island
(by the above argument). But then λ must be at a transversal intersection
since islands are square by Proposition 5.2.7 and the curves γ−triv and γ+

triv
are differentiable. Hence every crossing is transversal.

Proof of Theorem 5.2.2. From Proposition 5.2.7 we know that every island
must contain an extremal point which renormalizes to a map with only
trivial branches, and hence every island must be adjacent to a crossing be-
tween the curves γ−triv and γ+

triv. We claim that there can be only one such
crossing and hence uniqueness of islands follows. Note that there is always
at least one island by Proposition 3.3.6.

By Lemma 5.2.11 γ−triv and γ+
triv terminate in the upper and right bound-

ary of [0, 1]2, respectively. Let λ be the crossing nearest the points of termi-
nation in these boundaries. Let E be the component in the complement of
γ−triv ∪ γ+

triv in [0, 1]2 that contains the point (1, 1). The geometrical configu-
ration of γ−triv and γ+

triv is such that E must contain the piece of Aω adjacent
to λ as in Lemma 5.2.12. To see this use the fact that deformations in the
cones M+

λ moves both branches of Fλ up.
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In order to reach a contradiction assume that there exists another cross-
ing µ between γ−triv and γ+

triv (see Figure 5.3 on the previous page). By
Lemma 5.2.12 there is an island attached to this crossing but the config-
uration of γ−triv and γ+

triv at µ is such that this island is oriented opposite to
the island inside E. But R is orientation-preserving so both islands must be
oriented the same way and hence we reach a contradiction. The conclusion
is that there can be no more than one crossing between γ−triv and γ+

triv as
claimed.

Finally, the entire archipelago equals the closure of the island since the
derivative of R is nonsingular at every point in the archipelago. Hence
every point in the archipelago must either be contained in an island or on
the boundary of an island.

5.3 Invariant cone field

A standard way of showing hyperbolicity of a linear map is to find an in-
variant cone field with expansion inside the cones and contraction in the
complement of the cones. In this section we show that the derivative of the
renormalization operator has an invariant cone field and that it expands
these cones. However, our estimates on the derivative are not sufficient to
prove contraction in the complement of the cones so we cannot conclude
that the derivative is hyperbolic. The results in this section are used in Sec-
tion 5.4 to construct unstable manifolds in the limit set of renormalization.

Let
H( f̄ , κ) = {(x, y) | ‖y‖ ≤ κ‖x‖}

denote the standard horizontal κ–cone on the tangent space at f̄ ∈ K̄Ω,
where

K̄Ω = { f̄ ∈ K̄ ∩ L̄Ω | c+1 (R f̄ ) ≤ 1/2 ≤ c−1 (R f̄ )}.
As always, K and Ω are the same as in Section 3.1. Recall that we decom-
pose the tangent space into a two-dimensional subspace with coordinate
x and a codimension two subspace with coordinate y. The x–coordinate
corresponds to the (u, v)–subspace in K̄Ω. We use the max-norm so if
z = (x, y) then ‖z‖ = max{‖x‖, ‖y‖}.

Proposition 5.3.1. Assume f̄ ∈ K̄Ω and define

κ−( f̄ ) = K−max{ε, Dist φ̄, Dist ψ̄} and κ+( f̄ ) = K+ min
{
|C|
|U| ,

|C|
|V|

}
.
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It is possible to choose K+, K− (not depending on f̄ ) such that if κ ≤ κ+( f̄ ), then

DR f̄
(

H( f̄ , κ)
)
⊂ H

(
R f̄ , κ−(R f̄ )

)
.

In particular, the cone field f̄ 7→ H( f̄ , 1) is mapped strictly into itself by DR.

Remark 5.3.2. Note that as b− increases, κ− ↓ 0 and κ+ ↑ ∞. Thus a fatter
and fatter cone is mapped into a thinner and thinner cone. In particular,
the invariant subspaces inside the thin cone and the complement of the fat
cone eventually line up with the coordinate axes.

Proof. Assume ‖y‖ ≤ κ‖x‖. Let z′ = Mz where z′ = (x′, y′) and z = (x, y).
Then

‖x′‖
‖y′‖ ≥

∣∣‖M1x‖ − ‖M2‖‖y‖
∣∣

‖M3x‖+ ‖M4‖‖y‖
≥

∣∣‖M1
x
‖x‖‖ − κ‖M2‖

∣∣
‖M3

x
‖x‖‖+ κ‖M4‖

.

We are interested in a lower bound on ‖x′‖/‖y′‖ so this shows that we need
to minimize

g(x) =

∣∣‖M1x‖ − κ‖M2‖
∣∣

‖M3x‖+ κ‖M4‖
,

subject to the constraint ‖x‖ = max{|x1|, |x2|} = 1.
By Proposition 5.1.8, asymptotically

‖M1x‖ = max
{∣∣∣∣ x1

|U| −
ε′x2

α|V|

∣∣∣∣, ∣∣∣∣− x1

(α− 1)|U| +
x2

|V|

∣∣∣∣} .

Here we have used that f̄ ∈ K̄Ω and hence 1 − u′ � 1, 1 − v′ � 1,
D f a+1(p) � α, D f b+1(q) � α/ε′, and DΦ(x)/DΨ(y) � |V|/|U| for x ∈ U,
y ∈ V.

Let ρ′ = max{ε′, Dist φ̄′, Dist ψ̄′}. By Theorem 5.1.2

‖M3x‖ ≤ ρ′
(

A|x1|
|U| +

B|x2|
|V|

)
,

so we are lead to minimize

g1(t) =
max

{∣∣∣ 1
|U| −

ε′t
α|V|

∣∣∣, ∣∣∣ 1
(α−1)|U| −

t
|V|

∣∣∣}− κ‖M2‖

ρ′
(

A
|U| +

Bt
|V| + κ‖M4‖/ρ′

) ,
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(corresponding to x1 = ±1) and

g2(t) =
max

{∣∣∣ t
|U| −

ε′

α|V|

∣∣∣, ∣∣∣ t
(α−1)|U| −

1
|V|

∣∣∣}− κ‖M2‖

ρ′
(

At
|U| +

B
|V| + κ‖M4‖/ρ′

) ,

(corresponding to x2 = ±1) over t ∈ [0, 1]. Note that we have to assume
that α(α− 1) > ε′ here or the numerators might be zero (we can assure that
this is the case by increasing b− if necessary). These maps are piecewise
monotone so the minimum is assumed on a boundary point. The points
t = 0, t = 1 are boundary points of both g1 and g2. Let

t0 =
|V|
|U| ·

2− α

α− 1
· α

α− ε′
and t1 =

|V|
|U| ·

α

α− 1
· α

α + ε′
.

If α < 2, then t0 is a boundary point of g1 if t0 < 1, otherwise t−1
0 is a

boundary point of g2. For α > 1, if t1 < 1 then t1 is a boundary point of g1,
else t−1

1 is a boundary point of g2.
It is now routine to check the values of gi in these boundary points.

Instead of writing down all the calculations, let us just do one:

g2(0) =
|V|−1 − κ‖M2‖

ρ′ (B|V|−1 + κ‖M4‖/ρ′)
≥ 1− κK2|V|/|C|

ρ′ (B + κK4|V|/|C|)
.

Hence, if for example κ < |C|/(2K2|V|), then g2(0) ≥ (ρ′(2B + K4/K2))−1.
The other boundary points will lead to similar conclusions, but perhaps
with |U|/|C| instead of |V|/|C| dictating the choice of κ. Now define K+

as the smallest constant in the bound on κ and define K− as the largest
constant next to ρ′ that comes out of the evaluations at the boundary points.

Proposition 5.3.3. Let f̄ ∈ K̄Ω. Then DR is strongly expanding on the cone
field f̄ 7→ H( f̄ , 1). Specifically, there exists k > 0 (not depending on f̄ ) such that

‖DR f̄ z‖ ≥ k ·min{|U|−1, |V|−1} · ‖z‖, ∀z ∈ H( f̄ , 1) \ {0}.

Proof. Use Corollary 5.1.11 to get

‖Mz‖ ≥ ‖M1x + M2y‖ ≥
∣∣k ·min{|U|−1, |V|−1} − ‖M2‖

∣∣ · ‖x‖.
Now use the fact that ‖z‖ = ‖x‖ for z ∈ H( f̄ , 1) to finish the proof.
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5.4 Unstable manifolds

The norm used on the tangent space does not give good enough estimates
to see a contracting subspace so we cannot quite prove that the limit set
ofR is hyperbolic. However, these estimates did give an expanding invari-
ant cone field and in this section we will show how this gives us unstable
manifolds at each point of the limit set.

Instead of trying to appeal to the stable and unstable manifold theorem
for dominated splittings to get local unstable manifolds we directly con-
struct global unstable manifolds by using all the information we have about
the renormalization operator and its derivative. This is done by defining a
graph transform and showing that it contracts some suitable metric simi-
larly to the Hadamard proof of the stable and unstable manifold theorem.
We are only able to show that the resulting graphs are C1 since we do not
have hyperbolicity. Our proof is an adaptation of the proof of Theorem 6.2.8
in Katok and Hasselblatt (1995).

Definition 5.4.1. Let AΩ be as in Definition 4.2.9 and define the limit set of
renormalization for types in Ω by

ΛΩ = AΩ ∩ L̄ΩN .

Remark 5.4.2. Here L̄ΩN denotes the set of infinitely renormalizable maps
with combinatorial type in ΩN andAΩ can intuitively be thought of as the
attractor forR. The set Ω is the same as in Section 3.1, as always.

Note that
ΛΩ ⊂ [0, 1]2 × (0, 1)× Q̄2,

where Q̄ denotes the set of pure decompositions, see Definition 4.1.14.

Theorem 5.4.3. For every f̄ = (u, v, c, φ̄, ψ̄) ∈ ΛΩ there exists a unique global
unstable manifoldWu( f̄ ). The unstable manifold is a graph

Wu( f̄ ) = {
(
λ, σ(λ)

)
| λ ∈ I},

where σ : I → (0, 1) × Q̄ × Q̄ is κ–Lipschitz for some κ � 1 (not depending
on f̄ ). The domain I is essentially given by

π
(
R(L̄ω) ∩

(
[0, 1]2 × {c} × {φ̄} × {ψ̄}

))
,

where π is the projection onto the (u, v)–plane, and ω is defined by f̄ being in the
imageR(L̄ω). Additionally,Wu is C1.
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Remark 5.4.4. Note that in stark contrast to the situation in the ‘regular’ sta-
ble and unstable manifold theorem we get global unstable manifolds which
are graphs and that these are almost completely straight due to the Lipschitz
constant being very small. The statement about the domain I is basically
that I is “as large as possible.” This will be elaborated on in the proof.

Another thing to note is that we cannot say anything about the unique-
ness of f̄ ∈ ΛΩ for a given combinatorics. That is, given

ω̄ = (. . . , ω−1, ω0, ω1, . . . )

we cannot prove that there exists a unique f̄ ∈ ΛΩ realizing this combina-
torics. Instead we see a foliation of the set of maps with type ω̄ by unstable
manifolds. If we had a hyperbolic structure on ΛΩ this problem would go
away.

Corollary 5.4.5. Let f̄ ∈ ΛΩ and let ω̄ ∈ ΩN. ThenWu( f̄ ) intersects the set of
infinitely renormalizable maps of combinatorial type ω̄ in a unique point, and the
union of all such points over ω̄ ∈ ΩN is a Cantor set.

Proof. Theorem 5.4.3 shows that the unstable manifolds are straight (see
the above remark) and hence Lemma 5.4.6 enables us to apply the same
arguments as in Corollary 5.2.4.

Lemma 5.4.6. There exists κ close to 1 such that if γ : [0, 1]2 → (0, 1)× Q̄2 is
κ–Lipschitz and graph γ ⊂ K̄, then L̄ω ∩ graph γ is diffeomorphic to a square,
for every ω ∈ Ω.

Proof. By Theorem 5.2.2 the set L̄ω ∩ K̄ is a tube for every ω ∈ Ω. Take a
tangent vector at a point in the image of ∂L̄ω ∩ K̄. Such a tangent will lie
in the complement of a cone Hκ = {‖y‖ ≤ κ‖x‖} for κ < 1 close to 1, since
the projection of the image of a tube to the (u, v, c)–subspace will look like
a (slightly deformed) cut-off part of the wedge in Figure 5.1 on page 96.
By Proposition 5.3.1,R−1 maps the complement of Hκ into itself and hence
every tube “lies in the complement of Hκ”. That is, a tangent vector at a
point in the boundary of a tube lies in Hκ, so the tubes cut the (u, v)–plane
at an angle which is smaller than 1/κ.

Now if we choose κ as above, then the graph of κ will also intersect ev-
ery tube on an angle. Hence the intersection is diffeomorphic to a square.
The main point here is that with κ chosen properly, γ cannot ‘fold over’
a tube and in such a way create an intersection which is not simply con-
nected.
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Proof of Theorem 5.4.3. The proof is divided into three steps: (1) definition
of the graph transform Γ, (2) showing that Γ is a contraction, (3) proof of
C1–smoothness of the unstable manifold.

Step 1. From Proposition 3.1.13 we know that the critical values for any
map in K̄ are uniformly close to 1 so there exists µ � 1 such that if we
define the ‘block’

B̄ = [1− µ, 1]2 × (0, 1)× Q̄2 ∩ K̄,

then L̄Ω ∩ K̄ ⊂ B̄, 1− µ > φ−1(c) and µ > ψ−1(c) for all (u, v, c, φ, ψ) ∈
O(B̄). In other words, the block B̄ is defined so that it contains all maps
in K̄ which are renormalizable of type in Ω and the square [1 − µ, 1]2 is
contained in the projection of the imageR(L̄Ω ∩ K̄) onto the (u, v)–plane.

Fix f̄0 ∈ ΛΩ and κ ∈ (κ−, 1), where κ− is the supremum of κ−( f̄ ) de-
fined in Proposition 5.3.1 and κ is small enough so that Lemma 5.4.6 ap-
plies. Associated with f̄0 are two bi-infinite sequences {ωi}i∈Z and { f̄i}i∈Z

such that Rωi f̄i = f̄i+1 for all i ∈ Z. Now define Gi, the “unstable graphs
centered on f̄i,” as the set of κ–Lipschitz maps γi : [1− µ, 1]2 → (0, 1)× Q̄2

such that graph γi ⊂ B̄ and γi(λi) = (ci, φ̄i, ψ̄i), where f̄i = (λi, ci, φ̄i, ψ̄i).
Let G = ∏i Gi. We will now define a metric on G. Let

di(γi, θi) = sup
λ∈[1−µ,1]2

|γi(λ)− θi(λ)|
|λ− λi|

, γi, θi ∈ Gi,

and define
d(γ, θ) = sup

i∈Z

di(γi, θi), γ, θ ∈ G.

This metric turns (G, d) into a complete metric space. Note that it is not
enough to simply use a C0–metric since we do not have a contracting sub-
space of DR. The denominator in the definition of di is thus necessary to
turn the graph transform into a contraction.

We can now define the graph transform Γ : G → G for f̄0. Let γi ∈ Gi
and define Γi(γi) to be the γ′i+1 ∈ Gi+1 such that

graph γ′i+1 = Rωi(graph γi ∩ L̄ωi) ∩ B̄.

Let us discuss why this is a well-defined map Γi : Gi → Gi+1. Lemma 5.4.6
shows that Rωi(graph γi ∩ L̄ωi) is the graph of some map I ⊂ R2 →
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(0, 1) × Q̄2, where I is simply connected. That I ⊃ [1− µ, 1]2 is a conse-
quence of how B̄ was chosen. Finally, this map is κ–Lipschitz by Proposi-
tion 5.3.1.

Actually, we have cheated a little bit here since Proposition 5.3.1 is
stated for maps satisfying the extra condition

c+1 (R f ) ≤ 1/2 ≤ c−1 (R f ).

In defining the graph transform we should intersect L̄ωi with the set de-
fined by this condition before mapping it forward byRωi . Otherwise we do
not have enough information to deduce that the entire image is κ–Lipschitz
as well. However, this problem is artificial. We could have chosen the con-
stant 1/2 closer to 1 and still gotten the invariant cone field. All this means
is that domain I of the theorem is slightly smaller than it should be (we
have to cut out a small part of the graph where v is very close to 0 but v is
still allowed to range all the way up to 1 so this amounts to a very small
part of the domain). This is one reason why we say that “I is essentially
given by . . . ” in the statement of the theorem. The other reason is that the
intersection withR(L̄ω) should be taken with a surface with a small angle
and not a surface which is parallel to the (u, v)–plane.

The graph transform is now defined by

Γ(γ) =
{

Γi(γi)
}

i∈Z
, γ = {γi}i∈Z ∈ G.

We claim that Γ is a contraction on (G, d) and hence the contraction
mapping theorem implies that Γ has a unique fixed point γ∗ ∈ G. The
global unstable manifolds along { f̄i} are then given by

Wu( f̄i+1) = graph Γi(γ
∗
i ), ∀i ∈ Z.

In particular, this proves existence and uniqueness of the global unstable
manifold at f̄0. That these are the global unstable manifolds is a conse-
quence of L̄Ω ∩ K̄ ⊂ B̄. Furthermore, the Lipschitz constant for these
graphs is much smaller than 1 since we can pick κ close to κ−. Again,
we are cheating a little bit here since we have to cut out a small part of the
domain of the graph as discussed above.

Step 2. We now prove that Γ is a contraction. The focus will be on
Γi for now and to avoid clutter we will drop subscripts on elements of Gi
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and Gi+1. Pick γ, θ ∈ Gi and let γ′ = Γi(γ) and θ′ = Γi(θ). Note that
γ′, θ′ ∈ Gi+1.

We write
R f̄ = (A(λ, η), B(λ, η)),

where f̄ = (λ, η), λ ∈ R2 and A(λ, η) ∈ R2. Let Aγ(λ) = A(λ, γ(λ)) and
similarly Bγ(λ) = B(λ, γ(λ)). With this notation the action of Γi is given
by (

λ, γ(λ)
)
7→
(

Aγ(λ), Bγ(λ)
)
=
(
λ′, γ′(λ′)

)
.

Hence

di+1(γ
′, θ′) = sup

λ′

‖γ′(λ′)− θ′(λ′)‖
‖λ′ − λi+1‖

= sup
Aγ(λ)

‖γ′ ◦ Aγ(λ)− θ′ ◦ Aγ(λ)‖
‖Aγ(λ)− Aγ(λi)‖

.

Recall that the notation here is (λi, γ(λi)) = f̄i and (λi+1, γ′(λi+1) = f̄i+1.
The last numerator can be estimated by

‖γ′ ◦ Aγ(λ)− θ′ ◦ Aγ(λ)‖
≤ ‖γ′ ◦ Aγ(λ)− θ′ ◦ Aθ(λ)‖+ ‖θ′ ◦ Aγ(λ)− θ′ ◦ Aθ(λ)‖
≤ ‖Bγ(λ)− Bθ(λ)‖+ κ‖Aγ(λ)− Aθ(λ)‖
≤ (‖M4‖+ κ‖M2‖) ‖γ(λ)− θ(λ)‖.

The denominator can bounded by Proposition 5.3.3

‖Aγ(λ)− Aγ(λi)‖ ≥ k ·min{|U|−1, |V|−1} · ‖λ− λi‖.

Thus

di+1(γ
′, θ′) ≤ (‖M4‖+ κ‖M2‖)

k ·min{|U|−1, |V|−1}di(γ, θ) = νdi(γ, θ).

Theorem 5.1.2 shows that ν � 1 uniformly in the index i. Hence Γ is a
(very strong) contraction.

Step 3. Going from Lipschitz to C1 smoothness of the unstable mani-
fold is a standard argument. See for example Katok and Hasselblatt (1995,
Chapter 6.2).





Part II

Existence of a hyperbolic
renormalization fixed point
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CHAPTER 6

Computer assisted proof

This chapter contains excerpts from (Winckler, 2010).
The main result of this chapter is that the renormalization operator has

a hyperbolic fixed point of combinatorial type (01, 100)∞, which is proved
using the contraction mapping theorem on an associated operator. We use
a computer to rigorously compute estimates to show that this associated
operator is indeed a contraction. This method was pioneered by Lanford
(1982) when he proved the existence of a fixed point of the period-doubling
operator on unimodal maps (see also Lanford, 1984). However, Lanford’s
paper only gives a brief outline of the method he employs without an ac-
tual proof, so we have gone through quite a lot of pains to include all the
missing details (many of which were borrowed from Koch et al., 1996).

6.1 Existence of a hyperbolic fixed point

We choose a different set of coordinates for Lorenz maps in this part in
order to simplify the implementation of the computer estimates. Instead
of keeping the domain fixed and letting the critical point vary we fix the
critical point at 0 and let the domain vary. We also choose the domain to
be the smallest invariant domain which contains the critical point. Lastly,
instead of considering Ck maps we will only consider maps whose branches
are restrictions of analytic maps.

111
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Figure 6.1: A Lorenz map in the “smallest invariant domain coordinates” of
Definition 6.1.1. This is the actual graph of the fixed point of Theorem 6.1.3.

Definition 6.1.1. A Lorenz map f on a closed interval I = [l, r], where
l < 0 < r, is a monotone increasing continuous function from I \ {0} to I
such that f (0−) = r, f (0+) = l (see Figure 6.1).

We require that f (x) = ϕ(|x|α) for all x ∈ (l, 0), where ϕ is a symmetric1

analytic map defined on some complex neighborhood of [l, 0], and similarly
f (x) = ψ(|x|α) for x ∈ (0, r), where ψ is a symmetric analytic map defined
on some complex neighborhood of [0, r].

The definition of the renormalization operator for this choice of coordi-
nates is almost identical to the definition in Section 2.1 so we avoid restating
it here. However, we would like to make one important remark regarding
the choice of smoothness.

Remark 6.1.2. When defined on the space of Lorenz maps with analytic
branches the renormalization operator is differentiable and its derivative
is a compact linear operator. This follows from the fact thatR f only evalu-
ates f on a strict subset of the domain of f (see Sections 7.4.4 and 7.4.5). On

1Here ‘symmetric’ means ϕ(z̄) = ϕ̄(z), where bar denotes complex conjugation.
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the other hand, if we only were to demand Cr–smoothness for the branches
of our Lorenz maps then R would no longer be differentiable, see de Faria
et al. (2006) and de Melo and van Strien (1993, Ch. VI.1.1).

We now state the main theorem of this part:

Theorem 6.1.3. Let ω = (01, 100). The restricted renormalization operator Rω

acting on the space of Lorenz maps with critical exponent α = 2 has a hyperbolic
fixed point.

Remark 6.1.4. The fixed point of Theorem 6.1.3 is the simplest nonunimodal
fixed point of R. By this we mean that if ω = (01, 10) then the fixed point
of the period-doubling operator on unimodal maps corresponds to a fixed
point forRω as follows.

Let g : [−1, 1] → [−1, 1] be the fixed point for the period-doubling
operator normalized so that g(0) = 1. Then g is an even map that satisfies
the Cvitanović–Feigenbaum functional equation

g(x) = −λ−1g2(λx), λ = −g(1).

Now define a Lorenz map f by f |[−1,0) = g and f |(0,1] = −g. It is easy
to check that the first-return map f̃ to U = [−λ, λ] is f̃ = f 2 and that U is
maximal. Thus

R f (x) = λ−1 f̃ (λx) =

{
−λ−1g2(λx) = g(x) if x < 0,
λ−1g2(λx) = −g(x) if x > 0,

which shows that f is a fixed point ofRω.

6.2 Consequences

The existence of a hyperbolic renormalization fixed point has very strong
dynamical consequences, some of which we will give a brief overview of
here. Throughout this section let R denote the restricted renormalization
operator Rω, where ω = (01, 100), and let f? denote the fixed point of
Theorem 6.1.3.

Corollary 6.2.1 (Stable manifold). There exists a local stable manifoldW s
loc at f?

consisting of maps in a neighbourhood of f? which under iteration of R remain in
this neighbourhood and converge with an exponential rate to f?.
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Figure 6.2: Illustration of the dynamical intervals of generations 0, 1, 2 for
renormalization of type ω = (01, 100).

The local stable manifold extends to a global stable manifoldW s consisting of
maps which converge to f? under iteration of R. If f ∈ W s then f is infinitely
renormalizable.

Proof. The existence of a stable manifold is a direct consequence of the sta-
ble and unstable manifold theorem. If f converges to f?, then Rn f is de-
fined for all k > 0, which is the same as saying that f is infinitely renormal-
izable.

We now turn to studying the dynamical properties of maps on the stable
manifold. Let f ∈ W s, then the times of closest return (an, bn) are given by
the recursion {

an+1 = an + bn, a1 = 2,
bn+1 = 2an + bn, b1 = 3,

These determine the first-return interval Un = cl{Ln ∪ Rn} for the n–th
renormalization, by

Ln =
(

f bn(0+), 0
)
, Rn =

(
0, f an(0−)

)
.

In other words: the first-return map f̃n to Un is given by f̃n(x) = f an(x) if
x ∈ Ln and f̃n(x) = f bn(x) if x ∈ Rn.

Define {
Lk

n = f k(Ln), k = 0, . . . , an − 1,
Rk

n = f k(Rn), k = 0, . . . , bn − 1.

The collection of these intervals (over k) form a pairwise disjoint collection
for each n, called the intervals of generation n (see Figure 6.2).
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Theorem 6.2.2 (Cantor attractor). If f ∈ W s then the closure of the critical
orbits of f is a measure zero Cantor set Λ f which attracts almost every point in
the domain of f .

Proof. The critical orbits make up the endpoints of the dynamical intervals
{Lk

n} ∪ {Rk
n}, so Λ f is contained in

(6.1)
⋂
n

cl{En ∪ Fn}, where En =
⋃
k

Lk
n and Fn =

⋃
k

Rk
n .

Note that En+1 ⊂ En and Fn+1 ⊂ Fn.
First assume that f = f?. Then the first-return maps f̃n are all equal to f

itself (up to a linear change of coordinates) so the total lengths of En and Fn
shrink with an exponential rate (the position of Un+1 inside Un is the same
for all n, so we can apply the Macroscopic and Infinitesimal Koebe princi-
ples as in the proof of the “real bounds” in de Melo and van Strien, 1993).
Hence the intersection (6.1) is a measure zero Cantor set, and consequently
Λ f is as well.

Now, if f is an arbitrary map inW s then R f converges to f?. In other
words, the first-return maps { f̃n} converge to f? (up to a linear change of
coordinates). Now use the same arguments as above.

Finally, the above arguments can be adapted to prove that f satisfies the
weak Markov property as in Theorem 3.2.2 and hence the basin of Λ f has
full measure.

Theorem 6.2.3 (Rigidity). If f , g ∈ W s then there exists a homeomorphism
h : Λ f → Λg conjugating f and g on their respective Cantor attractors. If fur-
thermore f , g ∈ W s

loc, then h extends to a C1+α diffeomorphism on the entire
domain of f .

Proof. Define h( f n(0−)) = gn(0−) and h( f n(0+)) = gn(0+). This extends
continuously to a map on Λ f as in the proof of de Melo and van Strien
(1993, Proposition VI.1.4).

If f , g ∈ W s
loc then there exists C > 0 and λ < 1 such that d( f n, gn) <

Cλn so we can use an argument similar to that in de Melo and van Strien
(1993, Theorem VI.9.4) to prove the second statement.

Remark 6.2.4 (Universality). The second conclusion of Theorem 6.2.3 is a
strong version of what is known as “metric universality”: the small scale
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geometric structure of the Cantor attractor does not depend on the map it-
self (only on the combinatorial type and the critical exponent). That is, if
we take two maps f , g ∈ W s

loc and zoom in around the same spot on their
Cantor attractors then their structures are almost identical since a differ-
entiable map (i.e. the extended h) is almost linear if one zooms in closely
enough.

For example, the limit of |Ln+1|/|Ln| as n → ∞ exists and is indepen-
dent of f (it equals the ratio |L2( f?)|/|L1( f?)| for f?). More generally, the
multifractal spectrum (and Hausdorff measure in particular) of Λ f does not
depend on f (only on f?).

6.3 Outline of the computer assisted proof

In this section we give a brief outline of the method of proof and how to
calculate rigorous estimates with a computer.

6.3.1 Method of proof

Given a Fréchet differentiable operator T with compact derivative on a Ba-
nach space X of analytic functions we would like to prove that T has a
hyperbolic fixed point. The main tool is the following consequence of the
contraction mapping theorem:

Proposition 6.3.1. Let Φ be a Fréchet differentiable operator on a Banach space X,
let f0 ∈ X, and let Br( f0) ⊂ X be the closed ball of radius r centered on f0. If there
are positive numbers ε, θ such that

1. ‖DΦ f ‖ < θ, for all f ∈ Br( f0),
2. ‖Φ f0 − f0‖ < ε,
3. ε < (1− θ)r,

then there exists f? ∈ Br( f0) such that Φ f? = f? and Φ has no other fixed points
inside Br( f0). Furthermore, ‖ f? − f0‖ < ε/(1− θ).

Our strategy is to find a good approximation f0 of a fixed point of T
and then use a computer to verify that the conditions on r, ε, θ hold if r is
chosen small enough. Unfortunately, this is not possible for T itself since in
our case it is not a contraction so first we have to turn T into a contraction
without changing the set of fixed points. This is done by using Newton’s
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method to solve the equation T f − f = 0, which results in the iteration

f 7→ f − (DTf − I)−1(T f − f ),

where I denotes the identity operator on X. The operator we use is a slight
simplification of this, namely

Φ f = f − (Γ− I)−1(T f − f ) = (Γ− I)−1(Γ− T) f ,

where Γ is a finite-rank linear approximation of DTf0 (chosen so that Γ− I
is invertible). The operator Φ is a contraction if f0 and Γ are chosen care-
fully.2 Note that Φ f = f if and only if T f = f , so once we verify that the
conditions of Proposition 6.3.1 hold for Φ it follows that T has a fixed point.

To prove hyperbolicity we need to do some extra work. The derivative
of Φ is

DΦ f = (Γ− I)−1(Γ− DTf ).

At this stage we will have already checked that the norm of this is bounded
from above by 1. By strengthening this estimate to

‖(Γ− eit I)−1(Γ− DTf )‖ < 1, ∀t ∈ R, ∀ f ∈ Br( f0),

we also get that DTf? is hyperbolic at the fixed point f?. To see this, as-
sume that eit is an eigenvalue of DTf? with eigenvector h normalized so
that ‖h‖ = 1. Then

‖(Γ− eit I)−1(Γ− DTf?)h‖ = ‖(Γ− eit I)−1(Γ− eit I)h‖ = ‖h‖ = 1,

which is impossible. Since DT was assumed to be compact we know that
the spectrum is discrete, so the lack of eigenvalues on the unit circle implies
hyperbolicity.

6.3.2 Rigorous computer estimates

In order to verify the above estimates on a computer we are faced with
two fundamental problems: (i) arithmetic operations on real numbers are
carried out with finite precision which leads to rounding problems, (ii) the

2Here is how to choose f0 and Γ: use the Newton iteration on polynomials of some
fixed degree to determine f0 and set Γ = DTf0 . The hardest part is finding an initial guess
such that the iteration converges.
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space of analytic functions is infinite dimensional so any representation of
an analytic function needs to be truncated.

The general idea to deal with these problems is to compute with sets
which are guaranteed to contain the exact result instead of computing with
points: real numbers are replaced with intervals, analytic functions are re-
placed with rectangle sets A0× · · · × Ak × {C} in Rn representing all func-
tions of the form

{a0 + · · ·+ akzk + zdh(z) | aj ∈ Aj, j = 0, . . . , k, ‖h‖ ≤ C},

where {Aj} are intervals. This takes care of the truncation problem and the
rounding problem is taken care of roughly by “rounding outwards” (lower
bounds are rounded down, upper bounds are rounded up). Once these
set representations have been chosen we lift operations on points to opera-
tions on sets. Since the form of these sets are most likely not preserved by
such operations, this lifting involves finding bounds by sets of the chosen
form (e.g. if F and G are rectangle sets of analytic functions and we want
to lift composition of functions, then we have to find a rectangle set which
contains the set { f ◦ g | f ∈ F, g ∈ G}.)

Section 7.2 contains all the details for computing with intervals and Sec-
tion 7.4 contains all the details for computing with rectangle sets of analytic
functions.

Let us make one final remark concerning the evaluation of the operator
norm of a linear operator L on the space of analytic functions. In order to
get good enough bounds on the estimate of the operator norm we will use
the `1–norm on the Taylor coefficients of analytic functions. The reason for
this is that estimating the operator norm with

‖L‖ = sup
‖ f ‖≤1

‖L f ‖

will usually result in really bad estimates. With the `1–norm, if we think
of L as an infinite matrix (in the basis {zk}), the operator norm is found by
taking the supremum over the norms of the columns of this matrix, that is

‖L‖ = sup
k≥0
‖Lξk‖, ξk(z) = zk.

Evaluating the norms of columns gives much better estimates and for this
reason we choose this norm. See Section 7.4.11 for the specifics.
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6.4 The proof

First we restate the definition of the restricted renormalization operator,
then we change coordinates and restate Theorem 6.1.3.

6.4.1 Definition of the operator

From now on we fix the domain of our Lorenz maps to some interval
[−1, r]. The right endpoint cannot be fixed since it generally changes un-
der renormalization (we will soon change coordinates so that the domain
is fixed).

Instead of dealing with functions with a discontinuity we represent a
Lorenz map F by a pair ( f , g), with f : [−1, 0] → [−1, r], f (0) = r, and
g : [0, r]→ [−1, r], g(0) = −1.

With this notation, the first-return map to some interval U will be of the
type (Fa, Fb)|U if F is renormalizable. For the type ω = (01, 100), we can
be more precise: in this case a = 2, b = 3 and the first-return map is of the
form (g ◦ f , f ◦ f ◦ g)|U if it is renormalizable.

Let T denote the restricted renormalization operator Rω, and fix the
critical exponent α = 2. If T( f , g) = ( f̂ , ĝ) then T is defined by

f̂ (z) = λ−1g ◦ f (λz),

ĝ(z) = λ−1 f ◦ f ◦ g(λz),

λ = − f 2(−1).

6.4.2 Changing coordinates

To ensure the correct normalization (g(0) = −1) and the correct critical
exponent (α = 2) we make two coordinate changes and calculate how the
operator T transforms. We will also carefully choose the domain of T so
that all compositions are well-defined (e.g. λz is in the domain of f etc.).
This is checked automatically by the computer (and also shows that T is
differentiable with compact derivative, since f and g are analytic). Finally,
it is important to realize that the choice of coordinates may greatly affect the
operator norm of the derivative; not every choice will give a good enough
estimate.

The domain of T is chosen to be contained in the set of Lorenz maps
( f , g) with representation f (z) = φ(z2) and g(z) = ψ(z2), where φ and ψ
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have domains {z : |z− 1| < s} and {z : |z| < t}, respectively (the constants
s and t will soon be specified). Rewriting T in terms of φ and ψ gives

φ̂(z) = λ−1ψ(φ(λ2z)2)

ψ̂(z) = λ−1φ(φ(ψ(λ2z)2)2)

λ = −φ(φ(1)2)

This coordinate change ensures the correct critical exponent.
The next coordinate change is to fix the normalization and also to bring

the domain of all functions to the unit disk. Fixing the normalization has
the benefit that the error involved in the evaluation of λ is minimized (since
we only need to evaluate f close to z = 0, see Section 7.4.8). Changing all
domains to the unit disk simplifies the implementation of the computer
estimates.

Definition 6.4.1. Define X to be the Banach space of symmetric (with re-
spect to the real axis) analytic maps on the unit disk with finite `1–norm.
That is, if f ∈ X then f (z) = ∑ akzk with ak ∈ R and ‖ f ‖ = ∑|ak| < ∞.

Definition 6.4.2. Define Y = X× X with the norm

‖( f , g)‖Y = ‖ f ‖X + ‖g‖X

and with linear structure defined by

α( f , g) + β( f ′, g′) = (α f + β f ′, αg + βg′).

Clearly Y is a Banach space (since X is).

Change coordinates from φ, ψ to ( f , g) ∈ Y (note that f and g are not
the same as above) as follows

φ(z) = f ([z− 1]/s),
ψ(z) = −1 + z · g(z/t),

where we will choose s = 2.2 and t = 0.5. Rewriting T in terms of f and g
gives

f̂ (w) = λ−1
{
−1 + f

(
λ2 [w + 1

s

]
− 1

s

)2 · g
(

1
t f
(
λ2 [w + 1

s

]
− 1

s

)2
)}

,

ĝ(w) =
1

tw

{
1 + λ−1 f

(
1
s f
(
λ2twg

(
λ2w

) [
λ2twg

(
λ2w

)
− 2
] 1

s

)2 − 1
s

)}
,

λ = − f
(
[ f (0)2 − 1]/s

)
.

This is the final form of the operator that will be studied.
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6.4.3 Computing the derivative

In order to simplify the computation of the derivative of T we break the
computation down into several steps as follows:

p f (w) = λ2 · (w + s−1)− s−1 pg(w) = λ2w

f1 = f ◦ p f g1 = g ◦ pg

f2 = f 2
1 g2 = t · pg · g1

f3 = f2/t g3 = g2 · (g2 − 2)/s
f4 = g ◦ f3 g4 = f ◦ g3

f5 = −1 + f2 · f4 g5 = (g2
4 − 1)/s

f6 = f5/λ g6 = f ◦ g5

g7 = g6/λ

g8(w) = (g7(w) + 1)/(t · w)

With this notation we have that T( f , g) = ( f6, g8). Note that the result of
g7(w) + 1 is a function with zero as constant coefficient so in the imple-
mentation of g8 we will not actually divide by w, instead we will ‘shift’ the
coefficients to the left.

It is now fairly easy to derive expressions for the derivative. If f is
perturbed by δ f and g is perturbed by δg, then the above functions are
perturbed as follows:

δp f (w) = 2 · λ · δλ · (w + s−1) δpg(w) = 2 · λ · δλ · w
δ f1 = D f ◦ p f · δp f + δ f ◦ p f δg1 = Dg ◦ pg · δpg + δg ◦ pg

δ f2 = 2 f1δ f1 δg2 = t · (δpg · g1 + pg · δg1)

δ f3 = δ f2/t δg3 = δg2 · (g2 − 2)/s + g2 · δg2/s
δ f4 = Dg ◦ f3 · δ f3 + δg ◦ f3 δg4 = D f ◦ g3 · δg3 + δ f ◦ g3

δ f5 = δ f2 · f4 + f2 · δ f4 δg5 = 2 · g4 · δg4/s

δ f6 = δ f5/λ− f5 · δλ/λ2 δg6 = D f ◦ g5 · δg5 + δ f ◦ g5

δg7 = δg6/λ− g6 · δλ/λ2

δg8(w) = δg7(w)/(t · w)

With this notation we have that DT( f ,g)(δ f , δg) = (δ f6, δg8).
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6.4.4 New statement

We now state Theorem 6.1.3 in the form it will be proved. The discussion
in Section 6.3.1 shows how this result can be used to deduce Theorem 6.1.3.

Theorem 6.4.3. There exists a Lorenz map F0 and a matrix Γ such that the sim-
plified Newton operator Φ = (Γ− I)−1(Γ− T) is well-defined and satisfies:

1. ‖DΦF‖ < 0.2, for all ‖F− F0‖ ≤ 10−7,
2. ‖ΦF0 − F0‖ < 5 · 10−9.
3. ‖(Γ− eit I)−1(Γ− DTF)‖ < 0.9, for all t ∈ R, ‖F− F0‖ ≤ 10−7.

Proof. The remainder of this part is dedicated to rigorously checking the
first two estimates with a computer. The third estimate is verified by cov-
ering the unit circle with small rectangles and using the same techniques
as in the first two estimates to get rigorous upper bounds on the operator
norm. However, we have left out the source code for this estimate to keep
the page count down and also because the running time of the program
went from a few seconds to several hours (we had to cover the unit circle
with 50000 rectangles in order for the estimate to work).

Remark 6.4.4. The approximate fixed point F0 and approximate derivative Γ
at the fixed point are found by performing a Newton iteration eight times
on an initial guess (which was found by trial-and-error). We will not spend
too much time talking about these approximations but they could poten-
tially be used to compute e.g. the Hausdorff dimension of the Cantor at-
tractor of maps on the local stable manifold.

We did however compute the eigenvalues of Γ and it turns out that Γ
has two simple expanding eigenvalues λs ≈ 23.36530 and λw ≈ 12.11202,
and the rest of the spectrum is strictly contained in the unit disk. Since Γ is a
good approximation of DTf? and both operators are compact it seems clear
that the spectrum of DTf? also must have exactly two unstable eigenvalues.

Lanford (1984) claims that in the case of the period-doubling operator
if an analog of the third estimate of Theorem 6.4.3 holds and “if Γ has spec-
trum inside the unit disk except for a single simple expanding eigenvalue,
then the same will be true for DTf? .” It seems plausible that a similar state-
ment holds in the present situation with two simple expanding eigenvalues
but have not yet managed to prove this (it is easy to see that if Γ and DTf?
were both diagonal then the third estimate would imply that they have the
same number of unstable eigenvalues).



CHAPTER 7

Implementation of estimates

This chapter was previously published online as “supplementary material”
to (Winckler, 2010).

In this chapter we implement the computer program which performs
the estimates needed to prove Theorem 6.1.3. The literature on this type of
computer assisted proof seems to have a tradition of never including these
details, most likely because it would require an order of thousands of lines
of source code. We make a conscious break from this tradition and show
how to implement all estimates in only 166 lines of source code.1 The key
behind this reduction in size is to use a pure functional programming lan-
guage since it allows us to program in a declarative style: we specify what
the program does, not how it is accomplished. Purity means that functions
cannot have side-effects (the output from a function only depends on its in-
put) which makes it easier to reason about the source code. In our context
this is important since it means that we can check the correctness of each
function in complete isolation from the rest of the source code (and a typi-
cal function is only one or two lines long which simplifies the verification
of individual functions). To further minimize the risk of programming er-
rors we choose a strongly typed language since these are good at catching
common programming errors during compilation.

We would like to take this opportunity to advocate the programming
language Haskell for tasks similar to the one at hand — it has all the benefits

1This includes: definition of main operator and its derivative (40 lines), an interval
arithmetic library (30 lines), a library for computing with analytic functions (65 lines), a
linear equation solver (15 lines).
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mentioned above and more, but at the same time manages to produce code
which runs very fast (thanks to the GHC compiler). Unfortunately, many
readers will probably have had little prior exposure to Haskell and for this
reason we have in Section 7.9 included a brief overview of Haskell as well
as a table highlighting its syntax to aid the reader in understanding the
source code.

7.1 Verification of contraction

In this section we implement the main operator and compute the estimates
of Theorem 6.4.3. Before reading this section it may be a good idea to take a
quick glance at the beginning of Section 7.4 in order to understand the way
analytic functions are represented. It may also be helpful to use Table 7.1 in
Section 7.9 to look up unfamiliar syntax in the source code.

7.1.1 The main program

To begin with we import two functions from the standard library that will
be needed later:

1 import Data.List (maximumBy,transpose)

The entry point of the program is the function main, all that is done here
is to print the result of the computations to follow:

2 main = do putStrLn $ "radius = " ++ show beta

putStrLn $ "|Phi(f)-f| < " ++ show eps

putStrLn $ "|DPhi| < " ++ show theta

The initial guess2 is first improved by iterating a polynomial approxima-
tion3 of the operator Φ eight times (the derivative is recomputed in each
iteration, so this is a Newton iteration):

5 approxFixedPt = iterate (\t -> approx $ opPhi (gamma t) t) guess !! 8

Compute the approximation Γ of the derivative DT at the approximate
fixed point:

6 approxDeriv = gamma approxFixedPt

2See Section 7.7
3See Section 7.4.10
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Compute an upper bound on the distance4 between the approximate fixed
point and its image under Φ:

7 eps = upper $ dist approxFixedPt (opPhi approxDeriv approxFixedPt)

Construct a ball5 of radius β centered around the approximate fixed point
and then compute the supremum of the operator norm6 of the derivative
on this ball:

8 theta = opnorm $ opDPhi approxDeriv (ball beta approxFixedPt)

The rest of this section will detail the implementation of the operator
Φ and its derivative. The generic routines for rigorous computation with
floating point numbers and analytic functions are discussed in the sections
that follow. All input to the program (d, sf, sg, guess, beta) is collected
in Section 7.7. Instructions on how to run the program and the output it
produces is given in Section 7.8.

7.1.2 The main operator

The operator T is computed in a function called mainOp which takes a
Lorenz map ( f , g) ∈ Y and a sequence of tangent vectors {(δ fk, δgk) ∈
Y}n

k=1 and returns (T( f , g), {DT( f ,g)(δ fk, δgk)}n
k=1). We perform both com-

putations in one function since the derivative uses a lot of intermediate
results from the computation of T( f , g).

Given a Lorenz map (f,g) and a list of tangent vectors ds, first compute
f6 and g8 as in Section 6.4.3 and split the result so that the polynomial parts
have degree at most d − 1. Then compute the derivatives and return the
result of these two computations in a pair:

9 mainOp (f,g) ds = ((split d f6,split d g8), mainDer ds) where

l = lambda f

pf = F [(l^2-1)/sf,l^2] 0 ; g1 = compose g pg

pg = F [0,l^2] 0 ; g2 = pg * g1 .* sg

f1 = compose f pf ; g3 = g2 * (g2 - 2) ./ sf

f2 = f1^2 ; g4 = compose f g3

f3 = f2 ./ sg ; g5 = (g4^2 - 1) ./ sf

f4 = compose g f3 ; g6 = compose f g5

f5 = -1 + f2*f4 ; g7 = g6 ./ l

f6 = f5 ./ l ; g8 = lshift g7 ./ sg

4See Section 7.4.3
5See Section 7.4.12
6See Section 7.4.11
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The actual computation of the derivative is performed next inside a local
function to mainOp. If there are no tangent vectors, no computation is per-
formed:

19 mainDer [] = []

Otherwise, recurse over the list of tangent vectors and compute δ f6 and
δg8 and again split the result so that the polynomial parts have degree at
most d− 1:

20 mainDer ((df,dg):ds) = (split d df6,split d dg8) : mainDer ds where

dl = dlambda f df

dpf = F ([2*l*dl]*[1/sf,1]) 0 ; dg1 = dcompose g pg dg dpg

dpg = F [0,2*l*dl] 0 ; dg2 = (dpg*g1 + pg*dg1) .* sg

df1 = dcompose f pf df dpf ; dg3 = 2*(dg2*g2 - dg2) ./ sf

df2 = 2*f1*df1 ; dg4 = dcompose f g3 df dg3

df3 = df2 ./ sg ; dg5 = 2*g4*dg4 ./ sf

df4 = dcompose g f3 dg df3 ; dg6 = dcompose f g5 df dg5

df5 = df2*f4 + f2*df4 ; dg7 = dg6./l - g6.*(dl/l^2)

df6 = df5./l - f5.*(dl/l^2) ; dg8 = lshift dg7 ./ sg

Note that the constants s and t of Section 6.4.3 are called sf and sg respec-
tively in the source code.

The above function can be used to compute the action of T by passing an
empty list of tangent vectors and extracting the first element of the returned
pair:

30 opT fg = fst $ mainOp fg []

Similarly, we can evaluate DT by extracting the second element:

31 opDT fg ds = snd $ mainOp fg ds

Using this function we compute an approximation Γ of DT( f ,g) by evaluat-
ing the derivative at the 2d first basis vectors7 of Y and approximating the
result with polynomials and packing them into a 2d× 2d matrix (transpos-
ing the resulting matrix is necessary because the linear algebra routines8

we use require the matrix to be stored in row-major order):

32 gamma fg = transpose $ map (interleavePoly . approx)

$ opDT fg (take (2*d) basis)

7See Section 7.4.11.
8See Section 7.5.
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Finally, the operator Φ (and its derivative) is implemented by taking a
Newton step9 with T (for convenience we pass the approximate derivative
as the parameter m):

34 opPhi m x = newton m (opT x) x

opDPhi m x ds = [ newton m a b | (a,b) <- zip (opDT x ds) ds ]

7.1.3 The rescaling factor

With our choice of coordinates the rescaling factor λ only depends on f
(and not on g):

λ( f ) = − f
(
[ f (0)2 − 1]/s

)
The implementation is straightforward:

36 lambda f = -eval f (((eval f 0)^2-1)/sf)

If f ∈ X is perturbed by δ f ∈ X then λ is perturbed by δλ, where

δλ = −2 · s−1 · f (0) · δ f (0) · D f
(
[ f (0)2 − 1]/s

)
− δ f

(
[ f (0)2 − 1]/s

)
.

Derivative evaluation has to be handled carefully since we are using the
`1–norm, see Section 7.4.4. If y = [ f (0)2 − 1]/s, then y lies in the closed
disk of radius |y| but since we need to evaluate the derivative on an open
disk we first enlarge the bound on |y| to get the radius µ and then evaluate
the derivative on this slightly larger disk:

37 dlambda f df = -2/sf * f0 * eval df 0 * eval (deriv mu f) y - eval df y

where f0 = eval f 0

y = (f0^2 - 1)/sf

mu = enlarge $ abs y

7.2 Computation with floating point numbers

We discuss how to control rounding and avoid overflow and underflow
when computing with floating point numbers. We show how to lift opera-
tions on floating point numbers to intervals and then how to bound these
operations.

9See Section 7.4.13.
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7.2.1 Safe numbers

In order to avoid overflow and underflow during the course of the proof
we restrict all computations to the set of safe numbers (Koch et al., 1996)
which we define as the subset of double precision floating point numbers
(referred to as floats from now on) x such that x = 0 or 2−500 < |x| < 2500.
We say that y is a safe upper bound on x 6= 0 iff x < y (strict inequality)
and y is a safe number; safe lower bounds are defined analogously. If x = 0,
then y = 0 is both a safe upper and lower bound and there are no other safe
bounds on x (this will make sense after reading the assumption below).

Safe numbers allow us to perform rigorous computations on any com-
puter conforming to the IEEE 754 standard since such a computer must
satisfy the following assumption:10

Assumption. Let x̄ be a float resulting from an arithmetic operation on safe num-
bers performed by the computer and let x be the exact result of the same operation.
If x̄ 6= 0 then either x̄ = x− or x̄ = x+, where x− is the largest float such that
x− ≤ x and x+ is the smallest float such that x ≤ x+. Furthermore, x̄ = 0 if and
only if x = 0.

Under this assumption we know that the exact result must lie within
any safe upper and lower bounds on x̄, and we know that when the com-
puter returns a result of 0 then the computation must be exact.

Given a float x we now show how to find safe upper and lower bounds
on x.

Check if a number is safe:

41 isSafe x = let ax = abs x in x == 0 || (ax > 2^^(-500) && ax < 2^500)

Use this function to assert that a number is safe, abort the program oth-
erwise:

42 assertSafe x | isSafe x = x

| otherwise = error "assertSafe: not a safe number"

Given a float we can ‘step’ to an adjacent float as follows:

44 stepFloat n 0 = 0

stepFloat n x = let (s,e) = decodeFloat x in encodeFloat (s+n) e

10This statement follows from: (1) the fact that IEEE 754 guarantees correct rounding,
(2) the result of an arithmetic operation on safe numbers is a normalized float so silent
underflow to zero cannot occur.
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That is, stepFloat 1 x is the smallest float larger than x, and similarly
stepFloat (-1) x is the largest float smaller than x, unless x = 0 in which
case x is returned in both cases. (The function decodeFloat converts a float
to the form s · 2e, where s, e ∈ Z, and encodeFloat converts back to a float.)

Now finding a safe upper or lower bound is easy, just step to the next
float and assert that it is safe:

46 safeUpperBound = assertSafe . stepFloat 1

safeLowerBound = assertSafe . stepFloat (-1)

7.2.2 The Scalar data type

The Scalar data type represents safe lower and upper bounds on a num-
ber:

48 data Scalar = S !Double !Double deriving (Show,Eq)

The first number is the lower bound, the second the upper bound. The
following function returns the upper bound:

49 upper (S _ u) = u

We bound operations on real numbers by first lifting them to operations
on Scalar values and then bound the resulting operations by enlarging the
bound to safe lower and upper bounds. An operation is exact if it does not
involve any rounding (in which case there is no need to enlarge a bound).

The function that takes a Scalar with lower bound l and upper bound
u, then finds a safe lower bound on l and a safe upper bound on u is imple-
mented as follows:

50 enlarge (S l u) = S (safeLowerBound l) (safeUpperBound u)

For convenience we provide a function to convert a number x to a
Scalar with x as both lower and upper bound:

51 toScalar x = S x x

7.2.3 Arithmetic on scalars

We make Scalar an instance of the Num type class so that we can perform
arithmetic on scalars (addition (+), subtraction (-), negation, multiplica-
tion (*) and nonnegative integer exponentiation (^)).

52 instance Num Scalar where
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If x ∈ [l, u] then −x ∈ [−u,−l]; negation is exact on safe number so we do
not need to enlarge the bound:

53 negate (S l u) = S (-u) (-l)

If x ∈ [l, u] then |x| ∈ [max{0, l,−u},−min{0, l,−u}] (it is easy to check
that this is correct regardless of the signs of l and r). All operations involved
are exact on safe numbers so we do not need to enlarge the bound:

54 abs (S l u) = S (maximum xs) (-minimum xs)

where xs = [0, l, -u]

If x ∈ [l, u] and y ∈ [l′, u′], then x + y ∈ [l + l′, u + u′]. This operation is not
exact so we enlarge the bound:

56 (S l u) + (S l’ u’) = enlarge (S (l + l’) (u + u’))

If x ∈ [l, u] and y ∈ [l′, u′], then x ∗ y ∈ [a, b] where a is the minimum of
the numbers {l ∗ l′, l ∗ u′, u ∗ l′, u ∗ u′} and b is the maximum of the same
numbers. This operation is not exact so we enlarge the bound:

57 (S l u) * (S l’ u’) = enlarge (S (minimum xs) (maximum xs))

where xs = [l*l’, l*u’, u*l’, u*u’]

The last two methods are required to complete the implementation of the
Num instance (fromInteger provides implicit conversion of integer literals
to Scalar values):

59 fromInteger = toScalar . fromInteger

signum (S l u) = error "S.signum: not defined"

In order to be able to divide Scalar values using (/) we must also add
Scalar to the Fractional type class.

61 instance Fractional Scalar where

If x ∈ [l, u] and if l, u have the same sign, then the reciprocal is well-defined
for x and 1/x ∈ [1/u, 1/l]. This operation is not exact so we enlarge the
bound:

62 recip (S l u) | l*u > 0 = enlarge (S (1/u) (1/l))

| otherwise = error "S.recip: not well-defined"

The last method is required; it provides implicit conversion of decimal lit-
erals to Scalar values:

64 fromRational = toScalar . fromRational
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7.2.4 Ordering of scalars

In order to be able to compare Scalar values, e.g. using (<), we add Scalar

to the Ord type class. If two bounds overlap we declare them incomparable
and halt the program, otherwise comparison is implemented in the obvious
way.

65 instance Ord Scalar where

compare (S l u) (S l’ u’)

| u < l’ = LT

| l > u’ = GT

| l == l’ && u == u’ = EQ

| otherwise = error "S.compare: uncomparable"

7.3 Computation with polynomials

We show how to lift operations on polynomials (of degree d− 1) to rectan-
gle sets in Rd and then how to bound these operations.

7.3.1 Representation of polynomials

Polynomials are represented as a list of Scalar values (with the first ele-
ment representing the constant coefficient). Hence what we refer to as a
‘polynomial’ of degree d− 1 is actually a rectangle set in Rd. In this section
we lift operations on actual polynomials to such rectangles. We do not need
to find any bounds on these lifts since this was already done implicitly in
the previous section.

7.3.2 Arithmetic with polynomials

Add polynomials to the Num type class so that we can perform arithmetic
operations on polynomials. (This implementation is a bit more general
since it adds [a] to the Num type class for any type a in the Num type class.)

71 instance (Num a) => Num [a] where

Addition: [c1 + zq1(z)] + [c2 + zq2(z)] = [c1 + c2] + z[q1(z) + q2(z)].
72 (c1:q1) + (c2:q2) = c1 + c2 : q1 + q2

[] + p2 = p2

p1 + [] = p1

Multiplication: [c1 + zq1(z)] · [c2 + zq2(z)] = [c1 · c2] + z[c1 · q2(z) + q1(z) ·
p2(z)], where p2(z) = c2 + zq2(z).
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75 (c1:q1) * p2@(c2:q2) = c1*c2 : [c1]*q2 + q1*p2

_ * _ = []

The remaining methods are straightforward:

77 negate p = map negate p

fromInteger c = [fromInteger c]

abs = error "abs not implemented for polynomials"

signum = error "signum not defined for polynomials"

7.3.3 Polynomial evaluation

Evaluation of the polynomial c + zq(z) at the point t is done using the ob-
vious recursion:

81 peval (c:q) t = c + t * peval q t

peval [] _ = 0

7.3.4 Norm of polynomial

We use the `1–norm on polynomials, i.e. ‖a0 + · · ·+ anzn‖ = |a0|+ · · ·+
|an|:

83 pnorm = sum . map abs

7.3.5 Derivative of polynomial

The derivative of c + zq(z) is implemented using the recursion suggested
by D(c + zq(z)) = q(z) + zDq(z):

84 pderiv (c:q) = q + (0 : pderiv q)

pderiv [] = []

7.4 Computation with analytic functions

We show how to lift operations on analytic functions to rectangle subsets
in X and how to bound these operations.

7.4.1 The Function data type

Functions in X are represented as

f (z) = p(z) + zdh(z),
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where p is a polynomial (not necessarily of degree less than d) and ‖h‖ < K,
where h ∈ X. We refer to p as the polynomial part of f and h is called the
error of f . The value for the degree d is specified in Appendix 7.7.

The Function data type represents an analytic function on the above
form (the first parameter is the polynomial part, the second parameter is
the bound on the error):

86 data Function = F ![Scalar] !Scalar deriving (Show,Eq)

That is, Function represents rectangle subsets of X of the form

{a0 + · · ·+ anzn + zdh(z) | ak ∈ Ak, k = 0, . . . , n, ‖h‖ ∈ I},

where {Ak} and I are intervals. Only the upper bound on the error term
is needed so we do not take care to ensure that the lower bound is correct.
Hence, the lower bound will be meaningless in general.

Note that we do allow n ≥ d in the above representation but in gen-
eral we adjust our computations to ensure n < d. We call this operation
splitting: if

f (z) = a0 + · · ·+ anzn + zdh(z),

with n ≥ k ≥ d, then we can split f at degree k into

f (z) = a0 + · · ·+ ak−1zk−1 + zd[akzk−d + · · ·+ anzn−d + h(z)]

= p′(z) + zd[r(z) + h(z)].

Thus the polynomial part of f after splitting is p′ and the error is bounded
by ‖r‖+ ‖h‖ (by the triangle inequality). The implementation of this oper-
ation is:

87 split k (F p e) = let (p’,r) = splitAt k p in F p’ (e + pnorm r)

We will now lift operations on analytic functions to the above type of
rectangles and then find bounds on these operations.

7.4.2 Arithmetic with analytic functions

In what follows we let fi(z) = pi(z) + zdhi(z) for i = 1, 2, 3, and let f1 � f2 =
f3 where � is the operation under consideration.

Make Function an instance of the Num type class so that we can perform
arithmetic operations on functions (addition (+), subtraction (-), negation,
multiplication (*) and nonnegative integer exponentiation (^)).
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88 instance Num Function where

Addition of two functions is performed by adding the polynomial part and
the error separately, p3 = p1 + p2 and h3 = h1 + h2, so that ‖h3‖ ≤ ‖h1‖+
‖h2‖ by the triangle inequality:

89 (F p1 e1) + (F p2 e2) = F (p1 + p2) (e1 + e2)

Multiplication of two analytic functions is given by the equation

f1(z) f2(z) = p1(z)p2(z) + zd
[

p1(z)h2(z) + p2(z)h1(z) + zdh1(z)h2(z)
]

,

so that ‖h3‖ ≤ ‖p1‖‖h2‖+ ‖p2‖‖h1‖+ ‖h1‖‖h2‖. To ensure that the degree
of the polynomial part does not increase too much we split it at degree
d + 1:11

90 (F p1 e1) * (F p2 e2) = split (d+1) (F (p1*p2) e3)

where e3 = e2*pnorm p1 + e1*pnorm p2 + e1*e2

The negation of f is−p(z) + zd(−h(z)) but the error is unchanged since we
only keep a bound on its norm:

92 negate (F p e) = F (negate p) e

The remaining methods are required to complete the implementation of the
Num instance (fromInteger provides implicit conversion of integer numer-
als to Function values):

93 fromInteger c = F [fromInteger c] 0

abs = error "abs not implemented for Function"

signum = error "signum not defined for Function"

7.4.3 Norm of analytic functions

The triangle inequality gives ‖p(z) + zdh(z)‖ ≤ ‖p‖+ ‖h‖ (since |z| < 1):
96 norm (F p e) = pnorm p + e

The norm on the Cartesian product Y = X× X is ‖( f , g)‖ = ‖ f ‖+ ‖g‖:
97 sumnorm (f,g) = norm f + norm g

The distance induced by the norm on Y:
98 dist (f,g) (f’,g’) = sumnorm (f-f’,g-g’)

11We choose to split at degree d + 1 (instead of the perhaps more natural choice of de-
gree d) because the division by z in the definition of the operator T would otherwise cause
g8 to have degree at most d− 2.
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7.4.4 Differentiation

The implementation of differentiation of f ∈ X is complicated by the use
of the `1–norm on X, since ‖ f ‖ < ∞ does not imply that ‖D f ‖ < ∞.
This problem is overcome by only computing the derivative of functions
restricted to a disk of radius strictly smaller than one. That is, we need to
know a-priori that the function we are differentiating only will be evaluated
on this smaller disk. Usually we get this information from the fact that we
compute derivatives like D f1 ◦ f2 and we have bounds on the image of f2.

Given f ∈ X we will estimate D f |{|z|<µ} where µ < 1. If f (z) = p(z) +
zdh(z), then D f (z) = Dp(z) + dh(z)zd−1 + zdDh(z) = p1(z) + zdh1(z).
Here we are faced with the problem that we only know the norm of h so
all we can say about the polynomial part is that p1(z) = Dp(z) + sdzd−1,
where s ∈ [−‖h‖, ‖h‖].

Let h(z) = ∑ akzk, then the error can be crudely approximated as fol-
lows:

‖Dh(z) |{|z|<µ}‖ = ‖Dh(µz)‖ = ∑
k≥1

kµk−1|ak| ≤ sup
k≥1

kµk−1‖h‖

≤ ‖h‖∑
k≥1

kµk−1 =
‖h‖

(1− µ)2

Putting all this together we arrive at the following implementation:

99 deriv mu (F p e) | mu < 1 = F p1 e1

| otherwise = error "deriv: mu is not < 1"

where p1 = pderiv p + [S (-s) s] * [0,1]^(d-1)

e1 = e / (1 - mu)^2

s = fromIntegral d * upper e

Note that µ is passed as a parameter by the caller of this function (it
is not a constant). As mentioned earlier, usually this function is used to
compute expressions like D f1 ◦ f2 in which case µ will be an upper bound
on the radius of a disk containing the image of f2.

7.4.5 Composition

The implementation of composition of analytic functions f1 ◦ f2 is split up
into two parts. First we consider the special case when f1 = p1 is a polyno-
mial, then we treat the general case.
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Polynomials are defined on all of C so the composition p1 ◦ f2 is always
defined. If p1(z) = c + zq(z) then we may use the recursion suggested by
p1 ◦ f2(z) = c + f2(z) · q ◦ f2(z):

104 compose’ (c:q) f2 = (F [c] 0) + f2 * compose’ q f2

The recursion ends when the polynomial is the zero polynomial, in which
case p1 ◦ f2 = 0:

105 compose’ [] _ = 0

In the general case we have to take care to ensure that the image of f2
is contained in the domain of f1 for the composition to be well-defined. A
sufficient condition for this to hold is ‖ f2‖ < 1 since the domain of f1 is
the unit disk. Under this assumption we compute f1 ◦ f2 = p1 ◦ f2 + ( f2)d ·
h1 ◦ f2. These two terms are split at degree d + 1 to get p1 ◦ f2(z) = p̃1(z) +
zdh̃1(z) and f2(z)d = p̃2(z) + zdh̃2(z).12 Then f1 ◦ f2(z) = p3(z) + zdh3(z)
with p3 = p̃1 + p̃2 · h1 ◦ f2 and h3 = h̃1 + h̃2 · h1 ◦ f2. Only the norm of h1 is
given so from this we can only draw the conclusion that p3(z) = p̃1(z) + s ·
p̃2(z) for s ∈ [−‖h1‖, ‖h1‖] (s is in fact a function but we may think of it as a
constant since we are really computing with sets of polynomials). The error
is approximated using the triangle inequality, ‖h3‖ ≤ ‖h̃1‖+ ‖h̃2‖‖h1‖.

106 compose (F p1 e1) f2 | norm f2 < 1 = F (p1’ + [s]*p2’) (e1’ + e1*e2’)

| otherwise = error "compose: |f2| is too large"

where (F p1’ e1’) = split (d+1) (compose’ p1 f2)

(F p2’ e2’) = split (d+1) (f2^d)

s = S (-upper e1) (upper e1)

The term s · p̃2(z) can introduce devastating errors into the computation
since s lies in an interval which has positive upper bound and a negative
lower bound (if p̃2 has a coefficient with small error but a large magnitude
relative to s, then after multiplying with s that coefficient will have an error
that is bigger than the magnitude of the coefficient). We work around this
problem by choosing the degree d large, since this tends to make the term s
smaller. Another way to deal with this problem is to include a “general
error” term in the representation of analytic functions (Koch et al., 1996).

12See the footnote near the definition of multiplication of analytic functions for an expla-
nation of the choice of degree d + 1.
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7.4.6 Derivative of the composition operator

Let S( f , g) = f ◦ g, then the derivative is given by

DS( f ,g)(δ f , δg) = D f ◦ g · δg + δ f ◦ g.

Note that when computing D f we must specify as a first parameter the
radius of a disk strictly contained in the unit disk to which D f is restricted
(see Section 7.4.4). In the present situation we know that the image of g is
contained in a disk with radius ‖g‖, so D f only needs to be evaluated on
the disk of radius ‖g‖:

111 dcompose f g df dg = (deriv (norm g) f ‘compose‘ g) * dg + (df ‘compose‘ g)

7.4.7 Division by z

If f (z) = a1z + · · ·+ anzn + zdh(z), then

f (z)/z = a1 + · · ·+ anzn−1 + zd−1h(0) + zdh̃(z),

where |h(0)| ≤ ‖h‖ and ‖h̃‖ ≤ ‖h‖. Since we do not know the value of
h(0) we estimate the coefficient it with s ∈ [−‖h‖, ‖h‖]. We think of this
operation as a “left shift”, whence the name of this function:

112 lshift (F (c:q) e) = F (q + [0,1]^(d-1) * [S (-upper e) (upper e)]) e

lshift (F [] e) = F ([0,1]^(d-1) * [S (-upper e) (upper e)]) e

If the polynomial part of f has a constant coefficient a0 6= 0 then this func-
tion will not return the correct result, so we take care to only use it when
we know that a0 = 0.

7.4.8 Point evaluation

If f (z) = p(z) + zdh(z), then f (t) = p(t) + td · s for some s ∈ [−‖h‖, ‖h‖].
We also check that t is in the unit disk otherwise the program is terminated
with an error:

114 eval (F p e) t | abs t < 1 = peval p t + t^d * (S (-upper e) (upper e))

| otherwise = error ("eval: not in domain t=" ++ show t)

Note that the further away t is from 0, the more error is introduced in the
evaluation. For t = 0 the error term has no influence on the evaluation.
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7.4.9 Scaling

As a convenience we define operators to scale an analytic function by a
scalar on the on the right. The precedence for these operators are the same
as for their ’normal’ counterparts.

Multiplication satisfies [p(z) + zdh(z)] · x = x · p(z) + zd[x · h(z)] and
division is handled similarly. Note that the error term is affected:

116 infixl 7 .*, ./

(F p e) .* x = F (p * [x]) (e * abs x)

(F p e) ./ x = F (p * [1/x]) (e / abs x)

7.4.10 Polynomial approximation

Let f (z) = p(z) + zdh(z). To approximate f by a polynomial we first dis-
card the error term zdh(z), then we disregard the errors in the coefficients
of p. That is, for p(z) = a0 + · · · + anzn with ak ∈ [a−k , a+k ] we replace ak
with the mean ãk = (a−k + a+k )/2 (we ‘collapse’ the bounds on ak). Finally,
we lift this operation to pairs of functions:

119 approx (f,g) = (approx’ f, approx’ g)

where approx’ (F p _) = F (map (toScalar . collapse) p) 0

collapse (S l u) = (l+u)/2

7.4.11 Operator norm

Let ξk(z) = zk so that {ξk}k≥0 is a basis for X. A basis for Y is {ηk}k≥0,
where η2k = (ξk, 0) and η2k+1 = (0, ξk). This set is implemented as follows:

122 basis = interleave (zip basis’ (repeat 0)) (zip (repeat 0) basis’)

where basis’ = map xi [0..]

xi k = F (replicate k 0 ++ [1]) 0

Proposition 7.4.1. If L : Y → Y is a linear and bounded operator, then

‖L‖ = max{‖Lη0‖, . . . , ‖Lη2d−1‖, sup
h∈Bd

‖L(h, 0)‖, sup
h∈Bd

‖L(0, h)‖},

where Bd = {zdh(z) | ‖h‖ < 1}.

This is a consequence of using the `1–norm on X.
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Given a linear operator op acting on a list of tangent vectors13, we es-
timate the operator norm by applying it to the first 2d basis vectors and to
the sets Bd × 0 and 0× Bd. Then we compute the upper bound of the norm
of the results and take the maximum:

125 opnorm op = maximum $ map (upper . sumnorm) $ op tangents

where tangents = (F [] 1,0) : (0,F [] 1) : take (2*d) basis

Note that Bd is represented by the set of functions with no polynomial part
and an error bounded by 1, which is the same as F [] 1.

7.4.12 Construction of balls

We cannot exactly represent arbitrary balls in X with the Function type.
Instead we construct a rectangle set which is guaranteed to contain the ball.

Thus, a bound on a ball of radius r centered on an analytic function (in
our case it is always a polynomial, i.e. e=0) can be implemented as follows:

127 ball r (f,g) = (ball’ r f, ball’ r g)

where ball’ r (F p e) = F (map (+ S (-r) r) p) (e + toScalar r)

7.4.13 Newton’s method

This is our variant of Newton’s method on Y:

( f , g) 7→ (M− I)−1(M− T)( f , g),

where M is a 2d × 2d matrix passed as the first parameter. The second
parameter is T( f , g) and the third parameter is ( f , g). When lifting M into Y
we project the error term to zero by letting s = 0 and when lifting (M− I)−1

we preserve the error term by letting s = 1 (see below for how this lifting
is done):

129 newton m (tf,tg) fg = fg’

where (mf,mg) = liftPolyOp 0 (apply m) fg

fg’ = liftPolyOp 1 (solve $ subtractDiag m 1) (mf-tf,mg-tg)

Let f = p(z) + zdh(z) where deg p < d and let A be the linear operator
represented (in the basis {zk}) by the infinite matrix(

M 0
0 sI

)
13The linear operator acts on a sequence of tangent vectors since this is how we have

implemented the derivative of the main operator.
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where M is a d× d matrix and I is the infinite identity matrix. We lift the
linear operator A into X by

A f (z) = Mp(z) + zd(s · h(z)).

The following function implements this lifting into Y. We split f and g
to ensure that their degrees are at most d− 1, and since our linear algebra
routines require its input in one vector we interleave the polynomial parts.
Also, instead of passing M we pass a linear operator op which allows us to
use one function to lift matrix multiplication (apply) and solution of linear
equations (solve):

132 liftPolyOp s op (f,g) = (F pf’ (s*ef), F pg’ (s*eg))

where fg@(F pf ef, F pg eg) = (split d f, split d g)

(pf’,pg’) = uninterleave $ op (interleavePoly fg)

When interleaving the polynomial parts of two functions we first pad the
polynomials with zeros to ensure their lengths are exactly d (e.g. a0 + a1z is
padded to a0 + a1z + 0z2 + · · ·+ 0zd−1). Hence the resulting vector always
has length 2d:

135 interleavePoly (F p _, F q _) = interleave (pad p) (pad q)

where pad x = take d $ x ++ (repeat 0)

7.5 Linear algebra routines

In this section we implement a simple linear algebra library to compute
matrix-vector products and to solve linear equations.

A matrix is represented as a list of its rows and a row is a list of its
elements. A vector is just a list of elements (we think of them as column
vectors). This is a very simplistic library so no checking is done to ensure
that matrices have the correct dimensions (e.g. it is quite possible to create
a ‘matrix’ with rows of differing lengths).

7.5.1 Matrix-vector product

Computing the matrix-vector product Mx is fairly straightforward:

137 apply m x = map (dotProduct x) m

The dot product of vectors a and b:

138 dotProduct a b = sum $ zipWith (*) a b
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Note that if a and b have different lengths, then the above function will
treat the longer vector as if it had the same length as the shorter.

7.5.2 Linear equation solver

The following function solves the linear system of equations Mx = b. It is
a simple wrapper around a function which solves a linear system given an
augmented matrix.

139 solve m b = solveAugmented $ augmentedMatrix m b

The augmented matrix for M and b is
[
M b

]
, i.e. the matrix with b ap-

pended as the last column of M:

140 augmentedMatrix = zipWith (\x y -> x ++ [y])

We now implement a linear equation solver which takes an augmented
matrix as its only parameter. It is implemented using Gaussian elimina-
tion with partial pivoting. The only novelty compared with a traditional
imperative implementation is that we solve the equations recursively.

Given a n× (n+ 1) augmented matrix M′ first perform partial pivoting,
i.e. the row whose first element has the largest magnitude is moved to the
top to form the matrix M. Assuming that we already have the solution
for x2, . . . , xn we can compute x1 = (m1,n+1 − ∑n

j=2 m1jxj)/m11 and we are
done. The solution for x2, . . . , xn is found recursively as follows: perform
a Gaussian elimination on M to ensure that all rows except the first start
with a zero to get a matrix M̃. Throw away the first row and column of M̃
to get a (n− 1)× n matrix N′ and solve the linear system with augmented
matrix N′. The solution to this system is x2, . . . , xn.

141 solveAugmented [] = []

solveAugmented m’ = (last m1t - dotProduct m1t x) / m11 : x

where m@((m11:m1t):_) = partialPivot m’

x = solveAugmented $ eliminate m

Partial pivoting is done by first finding a list of all possible ways to split
the matrix M into a top and a bottom half. This list is searched for the split
which has a maximal first element in the bottom half. The maximal split is
then reassembled into one matrix by moving the top row of the bottom half
to the top of the matrix.

145 partialPivot m = piv:mtop ++ mbot

where (mtop,piv:mbot) = maximumBy comparePivotElt (splits m)

comparePivotElt (_,(a:_):_) (_,(b:_):_) = compare (abs a) (abs b)
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The following routine uses Gaussian elimination to ensure that the first
element of all rows except the first starts with a zero. That is, we add a
suitable multiple of the first row to the other rows one at a time:

148 eliminate ((m11:m1t):mbot) = foldl appendScaledRow [] mbot

where appendScaledRow a (r:rs) = a ++ [scaleAndAdd (-r/m11) m1t rs]

scaleAndAdd s a b = zipWith (+) (map (*s) a) b

Remark 7.5.1. When using the above linear equation solver with matrices
and vectors over intervals (of type Scalar) there is a question of what the
‘solution’ represents. As always, we are computing bounds on solutions:
if M is in some rectangle set [M] of matrices and b is in some rectangle set
[b] of vectors, then the above routine will compute a rectangle set [x] such
that if x is a solution to Mx = b then x ∈ [x].

Note that our solver will compute rather loose bounds on the solution
set, see e.g. Jansson and Rump (1991) for ways of finding sharper bounds.

7.6 Supporting functions

Given a square matrix M and a number x compute M− xI, i.e. subtract x
from every diagonal element of M:

151 subtractDiag m x = foldl f [] (zip m [0..])

where f m’ (r,k) = let (h,t:ts) = splitAt k r

in m’ ++ [h ++ [t-x] ++ ts]

Given a list, return all possible ways to split the list in two:

154 splits x = splits’ [] x

where splits’ _ [] = []

splits’ x y@(yh:yt) = (x,y) : splits’ (x ++ [yh]) yt

Interleave two lists a and b, i.e. construct a new list by taking the first el-
ement from a, then the first element from b and repeating for the remaining
elements.

157 interleave a b = concat $ zipWith (\x y -> [x,y]) a b

Perform the ‘inverse’ of the above function, i.e. take a list c and con-
struct a pair of lists (a,b) such that interleave a b = c:

158 uninterleave = unzip . pairs

Given a list, partition it into pairs of adjacent elements:
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159 pairs [] = []

pairs (x:y:rest) = (x,y) : pairs rest

pairs _ = error "list must have even length"

7.7 Input to the main program

The degree of the error term in our representation of analytic functions:
162 d = 13 :: Int

The radius of the ball on which Φ is a contraction:
163 beta = 1.0e-7 :: Double

The radii for the domains of φ and ψ:
164 sf = 2.2 :: Scalar

sg = 0.5 :: Scalar

The initial guess for the fixed point:
166 guess = (F [-0.75, -2.5] 0, F [6.2,-2.1] 0)

7.8 Running the main program

This document contains all the Haskell source code needed to compile the
program into an executable. Given a copy of the LATEX source of this doc-
ument (assuming the file is named lmca.lhs), use the following command
to compile it:14

ghc --make -O2 lmca.lhs

This produces an executable called lmca (or lmca.exe if you are using Win-
dows) which when called will execute the main function.

Here is the output of running the main program:

radius = 1.0e-7,

|Phi(f)-f| < 4.830032057738462e-9,

|DPhi| < 0.1584543808202988

This output was taken from a sample run using GHC 6.12.1 on Mac OS X
10.6.2. The running time on an 1.8 GHz Intel Core 2 Duo was less than
10 seconds.

14The GHC compiler can be downloaded for free from http://haskell.org.
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7.9 Haskell mini-reference

This section introduces some of the features and syntax of Haskell to help
anybody unfamiliar with the language read the source code. It is assumed
that the reader has some prior experience with an imperative language
(Java, C, etc.) but is new to functional programming languages. Table 7.1
below collects examples of Haskell syntax used in the source code and can
be used to look up unfamiliar expressions. For more information on the
Haskell language go to http://haskell.org.

Haskell is a functional language. Such languages differ from imperative
languages in several significant ways, e.g.: there are no control structures
such as for loops and data is immutable so there is no concept of variables
(memory locations) that can be written to.

Basic types include: booleans (True, False), numbers (e.g. -1, 2.3e3, in-
tegers of any magnitude are supported), tuples (e.g. (1,’a’,0.3), elements
can have different types), and lists (e.g. [1,2,3], all elements must have the
same type). Functions are on the same level as basic types so they can e.g.
be passed as parameters to other functions.

Functions are defined like f parameters = expression where f is the func-
tion name and there can be zero or more parameters. Note that there are
no parentheses around parameters and that parameters are separated by
spaces. Function calls have very high precedence, so f x^2 is the same as
(f x)^2, not f (x^2). The keywords let .. in and where can be used to
bind expressions to function-local definitions (i.e. local functions or vari-
ables).

New data types can be defined using the data construct. For example,
data Interval = I Double Double defines a type called Interval which
consists of two double precision floating point numbers (i.e. the endpoints
of the interval). New values of this type are constructed using the value
constructor which we called I, e.g. I 0 1 defines the unit interval.

Functions can be defined with pattern matching on built-in and custom
data types. For example, len (I a b) = abs (b-a) defines a function len

which returns the length of an interval (for the custom data type Interval).
We often use pattern matching on lists, where [] matches the empty

list and (x:xs) matches a list with a least one element and binds the first
element to x and the rest to xs (read as plural of x). The notation v@(x:xs)

can be used to bind the entire list to v on a match.
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The notation _ may be used to match anything without binding the
match to a variable, e.g. firstZero (x:_) = x == 0 defines a function
which returns True if the first element of a nonempty list is equal to zero
(and throws an exception if called on the empty list []).

Type classes are a way of declaring that a custom data type supports
a certain predefined collection of functions and also allow for ‘overload-
ing’ of functions (and operators, which can be turned into functions as
noted in the example for (+) in Table 7.1). We only mention type classes
because we come across them when implementing Scalar and Function.
The pre-defined type classes we use are Num (for (+), (-), (*), (^), abs),
Fractional (for (/), (^^)), Eq (test for equality), and Show (for conversion
to strings).

Expression Description
f1 x = 2*x define a function f1 which doubles its argument
f2 x y = x+y define a function f2 which adds its two arguments
f1 3 apply f1 to 3 (=6)
f2 3 4 apply f2 to 3 and 4 (= 7)
f2 2 (f1 3) apply f2 to 2 and 6 (the result of f1 3) (= 8)
f2 2 $ f1 3 same as above (the operator $ is often used in this

way to avoid overuse of parentheses)
f2 2 f1 3 error (this means: compute f2 2 f1 and apply the

result to 3, but 2+f1 does not make sense)
\x -> 2*x define the anonymous function x 7→ 2x
f2 3 apply f2 to 3 (= the function \x -> 3+x)
f1 . f2 3 composition (= the function \x -> 2*(3+x))
3 ‘f2‘ 4 turn function (in backticks) into an operator (=7)
(+) 3 4 turn operator (in parentheses) into a function (=7)
(3*) fix first parameter to 3 (= the function \x -> 3*x)
g x | x<0 = -1

| x>0 = 1

| x==0 = 0

define the sign function g using guards (the | sym-
bols)

num [] = 0

num (_:xs)

= 1+num xs

define a function which counts the number of ele-
ments in a list using pattern matching

Continued on the next page. . .
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Expression Description
[1,2] a list (all elements must have the same type)
[] the empty list
[1..] the list of all positive integers
[2..5] list enumeration with bounds (=[2,3,4,5])
1 : [2,3] append element to beginning of list (=[1,2,3])
[1,2,3] !! 0 access list elements by zero-based index (=1)
[1,2] ++ [3] concatenate two lists (=[1,2,3])
’a’ a character
"abc" a string, i.e. a list of characters (=[’a’,’b’,’c’])
2^3 nonnegative integer exponentiation (=8)
2^^(-1) integer exponentiation (=0.5)
(’a’,2) a pair (the elements need not have the same type)
fst (’a’,2) access first element in a pair (=’a’)
snd (’a’,2) access second element in a pair (=2)
map f1 [1..] apply f1 to all elements in the list (=[2,4,8,..])
[f2 a b |

a <- [1,2],

b <- [3..5]]

list comprehension, i.e. { f2(a, b) | a ∈ {1, 2}, b ∈
{3, 4, 5}} (= [4,5,6,5,6,7])

foldl f2 1 [3,5] fold over list (compute f2 1 3 = 4, then f2 4 5) (=9)
iterate f1 1 compute orbit of 1 under f1 (=[1,2,4,8,..])
maximum [1,4,2] return maximum element in a list (=4)
maximumBy f x as above, but using f to compare elements of the

list x
minimum [1,4,2] return minimum element in a list (=1)
splitAt 2 [1,4,2]split list in two at given index (=([1,4],[2]))
take 3 [7..] take the first 3 elements from the list (=[7,8,9])
zip [1..] [3,4] join two lists into a list of pairs (=[(1,3),(2,4)])
unzip [(1,3),

(2,4)]

‘inverse’ of zip (=([1,2],[3,4]))

zipWith f2 [1..]

[3,4]

like zip, but use f2 to join elements (=[4,6])

repeat 0 infinite list with one element repeated (=[0,0,..])
replicate 3 0 finite list with one element repeated (=[0,0,0])

Continued on the next page. . .
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Expression Description
sum [3,-1,4] sum of elements in list (=6)
transpose m the transpose of the matrix m (m is a list of lists)
putStrLn "hi" print hi to standard out and and append a new line
show 1.2 turn the number 1.2 into the string "1.2"

error "ohno" abort program with error message ohno

Table 7.1: Examples of Haskell syntax used in the source code.





APPENDIX A

Background material

The purpose of this appendix is to collect some background material that
is used throughout the text. Section A.1 contains a topological fixed point
theorem which is suitable for proving the existence of periodic points for
renormalization operators in general. Sections A.2 and A.3 contains basic
facts about the nonlinearity operator and the Schwarzian derivative, re-
spectively.

A.1 A fixed point theorem

The following theorem is an adaptation of Granas and Dugundji (2003,
Theorem 4.7).

Theorem A.1.1. Let X ⊂ Y where X is closed and Y is a normal topological
space. If f : X → Y is homotopic to a map g : X → Y with the property that
every extension of g|∂X to X has a fixed point in X, and if the homotopy ht has no
fixed point on ∂X for every t ∈ [0, 1], then f has a fixed point in X.

Remark A.1.2. Note that the statement is such that X must have nonempty
interior. This follows from the assumption that g has a fixed point (since it
is an extension of g|∂X) but the requirement on the homotopy implies that
g has no fixed point on ∂X.

Proof. Let Ft be the set of fixed points of ht and let F =
⋃

Ft. Since g must
have a fixed point F is nonempty. Since ht has no fixed points on ∂X for
every t, F and ∂X are disjoint.

149
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We claim that F is closed. To see this, let {xn ∈ F} be a convergent
sequence, let x = lim xn. Note that x ∈ X since F ⊂ X and X is closed. By
definition there exists tn ∈ [0, 1] such that xn = h(xn, tn). Pick a convergent
subsequence tnk → t. Since xn is convergent h(xnk , tnk) = xnk → x, but at
the same time h(xnk , tnk)→ h(x, t) since h is continuous. Hence h(x, t) = x,
that is x ∈ F which proves the claim.

Since Y is normal and ∂X and F are disjoint closed sets there exists a
map λ : X → [0, 1] such that λ|F = 0 and λ|∂X = 1. Define ḡ(x) =
h(x; λ(x)). Then ḡ is an extension of g|∂X since if x ∈ ∂X, then ḡ(x) =
h(x, 1) = g(x). Hence ḡ has a fixed point p ∈ X. However, p must also be a
fixed point of f since p = ḡ(p) = h(p, λ(p)) so that p ∈ F and consequently
p = ḡ(p) = h(p, 0) = f (p).

A.2 The nonlinearity operator

Definition A.2.1. Let Ck(A; B) denote the set of k times continuously dif-
ferentiable maps f : A → B and let Dk(A; B) ⊂ Ck(A; B) denote the subset
of orientation-preserving homeomorphisms whose inverse lie in Ck(B; A).

As a notational convenience we write Ck(A) instead of Ck(A; A), and Ck

instead of Ck(A; B) if there is no need to specify A and B (and similarly for
Dk).

Definition A.2.2. The nonlinearity operator N : D2(A; B) → C0(A; R) is
defined by

(A.1) Nφ = D log Dφ.

We say that Nφ is the nonlinearity of φ.

Remark A.2.3. Note that

Nφ =
D2φ

Dφ
.

Definition A.2.4. The distortion of φ ∈ D1(A; B) is defined by

Dist φ = sup
x,y∈A

log
Dφ(x)
Dφ(y)

.
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Remark A.2.5. We think of the nonlinearity of φ ∈ D2(A; B) as the density
for its distortion. To understand this remark, let dµ = Nφ(t)dt. Assuming
Nφ is a positive function, then µ is a measure and

Dist φ =
∫

A
dµ,

since by (A.1) ∫ y

x
Nφ(t)dt = log

Dφ(y)
Dφ(x)

.

If Nφ is negative, then −Nφ(t) is a density. The only problem with the
interpretation of Nφ as a density occurs when it changes sign. Intuitively
speaking, we can still think of the nonlinearity as a local density of the dis-
tortion (away from the zeros of Nφ).

Note that Nφ does not change sign in the important special case of φ
being a pure map (i.e. a restriction of xα). So the (absolute value of the)
nonlinearity is the density for the distortion of pure maps.

Lemma A.2.6. The kernel of N : D2(A; B) → C0(A; R) equals the orientation-
preserving affine map that takes A onto B.

Lemma A.2.7. The nonlinearity operator N : D2(A; B) → C0(A; R) is a bijec-
tion. In the specific case of A = B = [0, 1] the inverse is given by

(A.2) N−1 f (x) =

∫ x
0 exp{

∫ s
0 f (t)dt}ds∫ 1

0 exp{
∫ s

0 f (t)dt}ds
.

Lemma A.2.8 (The chain rule for the nonlinearity operator). If φ, ψ ∈ D2

then

(A.3) N(ψ ◦ φ) = Nψ ◦ φ · Dφ + Nφ.

Proof. Use the chain rule of differentiation:

N(ψ ◦ φ) = D log D(ψ ◦ φ) = D log(Dψ ◦ φ · Dφ)

= D log(Dψ ◦ φ) + D log Dφ =
D2ψ ◦ φ · Dφ

Dψ ◦ φ
+ Nφ

= (D log Dψ) ◦ φ · Dφ + Nφ = Nψ ◦ φ · Dφ + Nφ.
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Definition A.2.9. We turn D2(A; B) into a Banach space by inducing the
usual linear structure and uniform norm of C0(A; R) via the nonlinearity
operator. That is, we define

αφ + βψ = N−1 (αNφ + βNψ) ,(A.4)
‖φ‖ = sup

t∈A
|Nφ(t)|,(A.5)

for φ, ψ ∈ D2(A; B) and α, β ∈ R.

Lemma A.2.10. If φ ∈ D2(A; B) then

(A.6) N(φ−1)(y) = −Nφ(φ−1(y))
Dφ(φ−1(y))

, ∀y ∈ B.

Proof. Let x = φ−1(y), then

N(φ−1)(y) = D log D(φ−1)(y) = D log
[

Dφ(x)−1
]

= −D2φ(x)
Dφ(x)

· D(φ−1)(y) = −Nφ(x)
Dφ(x)

.

Lemma A.2.11. If φ ∈ D2(A; B) then

e−|y−x|·‖φ‖ ≤ Dφ(y)
Dφ(x)

≤ e|y−x|·‖φ‖,(A.7)

|B|
|A| · e

−‖φ‖ ≤ Dφ(x) ≤ |B||A| · e
‖φ‖,(A.8)

|D2φ(x)| ≤ |B||A| · ‖φ‖ · e
‖φ‖,(A.9)

for all x, y ∈ A.

Proof. Integrate the nonlinearity to get∫ y

x
Nφ(t)dt = log

Dφ(y)
Dφ(x)

,

as well as ∫ y

x
Nφ(t)dt ≤ |y− x|‖φ‖.
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Combine these two equations to get (A.7).
By the mean value theorem we may chose y such that Dφ(y) = |B|/|A|,

so (A.8) follows from (A.7).
Finally, since

Nφ(x) = D log Dφ(x) =
D2φ(x)
Dφ(x)

,

we get |D2φ(x)| ≤ |Dφ(x)| · ‖φ‖. Now apply (A.8) to get (A.9).

Lemma A.2.12. If φ, ψ ∈ D2(A; B) then

|φ(x)− ψ(x)| ≤
(
e2‖φ−ψ‖ − 1

)
·min{φ(x), 1− φ(x)},(A.10)

e−‖φ−ψ‖ ≤ Dφ(x)
Dψ(x)

≤ e‖φ−ψ‖,(A.11)

for all x ∈ A.

Lemma A.2.13. The set B = {φ ∈ D2 : ‖φ‖ ≤ K} is relatively compact in C0.

Proof. Maps in B are uniformly bounded by definition and since maps in B
have uniformly bounded derivative (by (A.8)) they are equicontinuous.
The theorem of Arzelà–Ascoli now says that any sequence in B has a subse-
quence which converges uniformly (to a map in C0). Thus, the C0–closure
of B is compact in C0.

Definition A.2.14. Let ζ J : [0, 1] → J be the affine orientation-preserving
map taking [0, 1] onto an interval J.

Define the zoom operator Z : D2(A; B)→ D2([0, 1]) by

(A.12) Zφ = ζ−1
B ◦ φ ◦ ζA.

Remark A.2.15. Note that if φ ∈ D(A; B), then B = φ(A) so Zφ only de-
pends on φ and A (not on B). We will often write Z(φ; A) instead of Zφ in
order to emphasize the dependence on A.

Lemma A.2.16. If φ ∈ D2(A; B) then

Z(φ−1) = (Zφ)−1,(A.13)
N(Zφ) = |A| · Nφ ◦ ζA,(A.14)
‖Zφ‖ = |A| · ‖φ‖.(A.15)
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Proof. The first equation is just a calculation

Z(φ−1) = ζ−1
A ◦ φ−1 ◦ ζB = (ζ−1

B ◦ φ ◦ ζA)
−1 = (Zφ)−1.

To see the second equation, apply the chain rule for nonlinearities and
use the fact that affine maps have zero nonlinearity

N(Zφ) = N(ζ−1
B ◦ φ ◦ ζA) = N(φ ◦ ζA) = Nφ ◦ ζA · DζA.

This implies the third equation

‖Zφ‖ = sup
x∈[0,1]

|Nφ ◦ ζA(x)| · |A| = sup
x∈A
|Nφ(x)| · |A| = ‖φ‖ · |A|.

A.3 The Schwarzian derivative

In this appendix we collect some results on the Schwarzian derivative.
Proofs can be found in de Melo and van Strien (1993, Chapter IV).

Definition A.3.1. The Schwarzian derivative S : D3(A; B) → C0(A; R) is
defined by

(A.16) S f = D(N f )− 1
2
(N f )2.

Remark A.3.2. Note that

S f =
D3 f
D f
− 3

2

[
D2 f
D f

]2

Lemma A.3.3. The kernel of S : D3(A; B) → C0(A; R) is the set of orientation-
preserving Möbius maps which take A onto B.

Lemma A.3.4 (The chain rule for the Schwarzian derivative). If f , g ∈ D3,
then

(A.17) S( f ◦ g) = S f ◦ g · (Dg)2 + Sg.
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Proof. Use the chain rule for nonlinearities:

S( f ◦ g) = D(N( f ◦ g))− 1
2
(

N( f ◦ g)
)2

= D(N f ◦ g · Dg + Ng)− 1
2
(

N f ◦ g · Dg + Ng
)2

= D(N f ) ◦ g · (Dg)2 + N f ◦ g · D2g + D(Ng)

− 1
2
(N f ◦ g)2 · (Dg)2 − N f ◦ g · Dg · Ng− 1

2
(Ng)2

=
[
D(N f ) ◦ g− 1

2
(N f ◦ g)2] · (Dg)2 + Sg

= S f ◦ g · (Dg)2 + Sg.

(In the fourth step we used the fact that Dg · Ng = D2g.)

Lemma A.3.5. S f < 0 if and only if S( f−1) ≥ 0.

Lemma A.3.6 (Koebe Lemma). If f ∈ D3((a, b); R) and S f ≥ 0, then

(A.18) |N f (x)| ≤ 2 ·
[

min{|x− a|, |x− b|}
]−1.

Proof. A proof for this particular statement of the Koebe lemma can be
found in Jiang (1996, Lemma 2.4). A more general version of the Koebe
lemma can be found in de Melo and van Strien (1993, Section IV.3).

Corollary A.3.7. Let τ > 0 and let f ∈ D3(A; B). If f extends to a map F ∈
D3(I; J) with SF < 0 and if J \ B has two components, each having length at least
τ|B|, then

‖Z f ‖ ≤ e2/τ · 2/τ.

Proof. Since SF < 0 it follows that S(F−1) ≥ 0 so the Koebe lemma and
(A.15) imply that

‖Z( f−1)‖ = |B| · ‖ f−1‖ ≤ |B| · 2
τ|B| =

2
τ

.

Now apply Lemmas A.2.10, A.2.11(A.8) and A.2.16(A.13)

‖Z f ‖ ≤ exp{‖(Z f )−1‖} · ‖(Z f )−1‖ = exp{‖Z( f−1)‖} · ‖Z( f−1)‖
≤ e2/τ · 2/τ.
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