Project II MAT312 Group Isomormpisms

Let $G_n \subset \mathbb{Z}_n$ be the set of invertible congruence classes.

Question 1: Show that if $a, b \in G_n$ then

•
$$ab \in G_n$$

- $a^{-1} \in \overset{n}{G}_n$ • ab = ba

Question 2: Construct the multiplication tables for G_3 and G_4 .

Question 3: Relabel the elements of G_3 with a and b:

$$1 \mapsto a \text{ and } 2 \mapsto b$$

Such a relabelling is called an *isomorphism*. Rewrite the multiplication table of G_3 in terms of a and b. Same for G_4 . What is the meaning of the results?

Question 4: Construct the multiplication tables for G_5 , G_8 , G_{10} and G_{12} . Why are they symmetric?

Question 5: Construct the addition table for \mathbb{Z}_4 . Relable the elements of \mathbb{Z}_4 with a, b, c, d as follows

 $0 \mapsto a \text{ and } 1 \mapsto b \text{ and } 2 \mapsto c \text{ and } 3 \mapsto d$

and rewrite the addition table for \mathbb{Z}_4 in terms of a, b, c, d.

Question 6: Which *Groups* of among G_5 , G_8 , G_{10} and G_{12} can be relabelled such that their multiplication tables become the same as the addition table for \mathbb{Z}_4 (use the letters a, b, c, d)?

Question 7: are there relabellings of G_8 and G_{12} such that their multiplication tables become the same?

are there relabellings of G_7 and G_9 such that their Question 8: multiplication tables become the same?

Question 9: Can you relable G_9 and \mathbb{Z}_6 such that the multiplication table of G_9 becomes the same as the addition table for \mathbb{Z}_6 ?

You have two weeks to finish the report. It should be readable by anybody and just a couple of pages. In essence the report should just answer the six questions.