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1 Introduction

Throughout, S is a smooth (unless stated otherwise) projective surface over C.
These are expository notes written as a study guide for my oral examination.

As such, we follow Beauville, Complex Algebraic Surfaces, and the material has
been expanded and worked out where necessary.

2 Preliminary Material

Recall that we can define Pic(S) as the group of invertible sheaves on S up to
isomorphism. One can show that invertible sheaves (or line bundles) are in a
one to one correspondence with divisors, up to linear equivalence. We briefly
outline this correspondence.

Let D be an effective divisor on S, with local defining functions {fα}. We
define the line bundle associated to D, OS(D) by the transition functions gαβ =
fα
fβ

. Hence the local sections of OS(D) are f−1α , and there exists a global section

of OS(D); s with div(s) = D. We define OS(D) for every divisor by linearity.
Conversely, starting with a line bundle L, we can associate a divisor (divisor of
zeros), which gives an isomorphism.

2.1 Intersection Theory

In order to study the geometry of surfaces, it is useful to study divisors, which
in our case are formal linear combinations of irreducible curves. We want to
define the right notion of intersection, led by our intuition.

Definition 2.1. Let C,C ′ be two distinct irreducible curves on S, x ∈ C ∩ C ′.
If f, g are local equations for C,C ′ in Ox, define intersection multiplicity

mx(C ∩ C ′) = dimCOx/(f, g).

Define

C · C ′ =
∑

x∈C∩c′
mx(C ∩ C ′).

By the Nullstellensatz, Ox/(f, g) is a finite dimensional vector space over C,
and we see that mx(C ∩ C ′) = 1 if and only if (f, g) = mx, the maximal ideal
at x. In this case, we say that C,C ′ intersect transversally.
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Theorem 2.2. Let L,F ∈ Pic(S), and define

L · F = χ(OS)− χ(L−1)− χ(F−1) + χ(L−1 ⊗F−1).

Then (·) is symmetric bilinear form on Pic(S) such that if C,C ′ are two curves
then

OS(C) · OS(C ′) = C · C ′.

At first glance this seems rather contrived; however it does ’count what we
want’. We see that if we have two curves which intersect transversally, this
intersection pairing honestly counts the intersection points, hence is the correct
notion. There are ’better’ definitions, which one can prove are equivalent to the
one given.

Facts:

• D,D′ two divisors, then D ·D = OS(D) · OS(D′).

• OS(C) · L = deg(L|C) = degC(L ⊗OC).

• (Serre) D divisor on S, H a hyperplane section of S. Then there exists
n ≥ 0 such that D+nH is a hyperplane section (for another embedding).
In particular, can write

D ≡ A−B

for A,B smooth curves on S.

Proposition 2.3. We have the following

1. Let C be a smooth curve, f : S → C a surjective morphism, F a fibre of
f . Then F 2 = 0.

2. Let S′ another surface, g : S → S′ a generically finite morphism of degree
d, D,D′ divisors on S. Then

g∗D · g∗D′ = d(D ·D′).

Proof. (1.) Let x ∈ C. Then F = f∗[x]. There exists a divisor A on C such
that A ≡ x, but x 6∈ A, hence F ≡ f∗A. Then F 2 = F · f∗A = 0.
(2.) See Hartshorne.

We state Serre Duality and will use it freely without proof.

Theorem 2.4. Let S be a surface, L ∈ Pic(S). Let ωS be Ω2
S . Then H2(S, ωS)

is a one dimensional vector space, and for 0 ≤ i ≤ 2 the cup product pairing

Hi(S,L)⊗H2−i(S, ωS ⊗ L−1)→ H2(S, ω) ∼= C

defines a duality.

Hence in divisor language, hi(S,OS(D)) = h2−i(S,OS(KS −D)).

Theorem 2.5 (Riemann-Roch). For L ∈ Pic(S),

χ(L) = χ(OS) +
1

2
(L2 − L · ωS).
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In divisor language,

h0(D)− h1(D) + h0(KS −D) = χ(OS) +
1

2
(D2 −D ·KS).

Proof. We have (L−1 · L ⊗ ω−1S ) = χ(OS)− χ(L)− χ(ωS ⊗ L−1) + χ(ωS).
By Serre Duality, χ(ωS) = χ(OS) and χ(ωS ⊗ L−1) = χ(L) so rearrange to get
result.

More Facts/Formulas:

• Noether’s formula: χ(OS) = 1
12 (K2

S + χtop(S)).

• Genus Formula: 2g(C)− 2 = C2 + C ·KS .

Proof. We have the following exact sequence:

0 OS(−C) OS OC 0

Then χ(OC) = 1 − g(C) by definition, and χ(OC) = χ(OS) − χ(OS(−C)).
Hence

1− g(C) = χ(OS)− χ(OS)− 1

2
(C2 + C ·KS)

g(C) = 1 +
1

2
(C2 + C ·KS).

• Adjunction: (KS + C) · C = KC

We end with some useful definitions and criteria for ampleness.

Definition 2.6. We say that L is very ample if there exists a closed immersion
i : X → PN such that L ∼= i∗(O(1)).
We say that L is ample if for all coherent sheafs F on X, there exists N > 0
such that for all n ≥ N , F ⊗ L is generated by global sections. Equivalently, L
is ample if Lm is very ample for some large enough m.

The following is a useful trick that is used time and time again.

Proposition 2.7. Let D be an effective divisor, C an irreducible curve with
C2 ≥ 0. Then D · C ≥ 0.

Proof. Write D ∼ D′ + nC where D′ does not contain C, n ≥ 0. Then D · C =
D′C + nC2 = nC2 ≥ 0.

3 Birational Maps

Definition 3.1. Let S be a surface, p ∈ S a point. Then there exists a surface
S̃ and a morphism π : S̃ → S unique up to isomorphism such that

• S \ {p} ∼= S̃ \ π−1(p);
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• π−1(p) = E, the exceptional curve, is isomorphic to P1.

The strict transform of a curve C, denoted C̃, is the closure of π−1(C\{p})
in S̃ and is an irreducible curve on S̃.

Facts:

• π∗C = C̃ +mE where m is multiplicity at p.

• Pic(S̃) ∼= Pic(S)⊕ Z.

• (π∗D) · (π∗D̃′) = D ·D′.

• KS̃ = π∗KS + E.

3.1 Linear Systems and Rational Maps

Let D be a divisor on a surface S, and denote |D| = {effective divisorsD′ ≡ D}.
Every non vanishing section of OS(D) defines an element of |D|, and vice versa.
Thus we can identify |D| with the projective space associated to H0(S,OS(D)).

A linear supbspace P ⊂ |D| is called a linear system, and is identified with
a vector subspace of H0(S,OS(D)).

Let φ : S 99K PN such that φ(S) is not contained in any hyperplane. Let
H be a generic hyperplane in PN , and consider φ∗|H|. Then this has dimen-
sion N , since x0, . . . , xn ∈ H0(PN ,O(1)), and so φ∗(x0), . . . φ∗(xN ) generate
H0(S, φ∗O(1)).

There are several useful theorems about these rational maps.

Theorem 3.2 (Elimination of Indeterminacy). Let φ : S 99K X be a rational
map from a surface to a projective variety. Then there exist a surface S′, a
morphism η : S′ → S which is a composite of a finite number of blow ups, and
a morphism f : S′ → X such that the diagram is commutative.

S′

S X

η f

φ

Theorem 3.3 (Universal Property of Blowing Up). Let f : X → S be a bira-
tional morphism of surfaces, and suppose that the rational map f−1 is undefined

at a point p ∈ S. Then f factorises as X S̃ S
g π where g is bira-

tional morphism and π is the blow up of S at p.

The proof involves the following lemma which we present due to usefulness.

Lemma 3.4. Let φ : S 99K S′ be a birational map of surfaces such that φ−1

is undefined at a point p ∈ S′. Then there exists a curve C on S such that
φ(C) = {p}; i.e φ contracts C.

Following this, we can prove some very strong theorems relating the structure
of birational maps/morphisms to blow ups.

Theorem 3.5. Let f : S → S0 be a birational morphism of surfaces. Then there
exists a sequence of blow ups πk : Sk → Sk−1 and an isomorphism S → Sn such
that f = π1 ◦ · · · ◦ πn ◦ u.

4



Following this, we can prove the strong factorisation theorem for surfaces.
Note that this does not hold for varieties in general, due to the fact that in
higher dimension, blow ups become more complicated to handle.

Corollary 3.5.1 (Strong Factorisation for Surfaces). Let φ : S 99K S′ be a bira-
tional map of surfaces. Then there is a surface S̃ and a commutative diagram:

S̃

S S′

f g

φ

where f, g are composites of blowups and isomorphisms.

This is a very useful result in the classification of surfaces problem - we want
to classify surfaces up to birational morphism. However, we want to know that
we can still control the geometry of a surface when we blow up a point. We
have the following fact:

Let f : S → S′ be a birational morphism which is a composit of n blow ups.
Then

Pic(S) ∼= Pic(S′)⊕ Zn ; NS(S) ∼= NS(S)⊕ Zn.
This tells us that the number of blowups is uniquely determined, independent

on the factorisation of f .
From this we can see that we want to be able to classify a surface depending

on its birational class, but the issue is to now pick a suitably ”good” represen-
tative.

Let B(S) denote the set of isomorphism classes of surfaces birationaly equiv-
alent to S. We say that for S1, S2 ∈ B(S), S1 dominates S2 if there exists a
birational morphism S1 → S2. In this way, we can define an ordering on B(S).

Definition 3.6. A surface S is minimal if its class in B(S) is minimal, i.e
every birational isomorphism S → X is an isomorphism of surfaces.

Proposition 3.7. Every surface dominates a minimal surface.

We see this because the rank of Pic(S) increases with each blow up. We call
the minimal such surface in BS(S) the minimal model of S. Elements of B(S)
are obtained from successive blowups of a minimal surface.

Now the classification problem is reduced to classifying the so called minimal
surfaces. We can characterise such surfaces as those without exceptional curves.
By the very nature of a blow up, a curve E ⊂ S is exceptional if π : S → S′

such that π(E) = {p}, and we’ve shown E ∼= P1, and E2 = −1. Hence a surface
is minimal if and only if it contains no (−1) curves.

Theorem 3.8 (Castelnuovo’s Contractibility Criterion). Let S be a surface,
E ⊂ S a curve isomorphic to P1 with E2 = −1. Then E is an exceptional curve
on S.

4 Invariants

In order to help classify surfaces, we will use various numerical invariants. Of
course, the best of these will be birational invariants, but we also will use topo-
logical invariants.
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4.1 Topological Invariants

Of course, our complex projective surface S is also a real 4-manifold, and hence
we have the usual singular cohomology. So our first invariants are Betti numbers.

Definition 4.1. The ith Betti number is defined as bi = dimHi(X,Z). By
Poincaré duality, we have that bi = b4−i, and we know since S is simply con-
nected, b0 = 1.

Hence the important Betti numbers are b1(S), b2(S).
Note that Poincaré duality gives a perfect pairing on H2(S,Z)×H2(S,Z)→

Z, and when considered as a matrix over R we can diagonalize. Thus we have
a signature (b+2 , b

−
2 ) and b2 = b+2 + b−2 .

4.2 Holomorphic/Algebraic Invariants

Definition 4.2. We define the following invariants:

1. The irregularity of S : q(S) = h1(S,OS);

2. The geometric genus : pg = h2(S,OS) = h0(S,OS(KS));

3. The plurigenera of S : Pn = h0(S,OS(nKS).

Note that χ(OS) = 1− q + pg.

4.3 Hodge Theory

Now let us consider Hi(S,C). By Hodge theory, we have the Hodge decompo-
sition

Hi(S,C) =
⊕
p+q=i

Hq(S,Ωp).

If we look at i = 1, this tells us that b1 = h1(S,C) = h1(S,OS)+h0(S,Ω1) =
2q(S). Hence

b1 = 2q.

Let h1,1 = h1(S,Ω1
S). Then a similar calculation shows that

b2 = 2pg + h1,1.

We state the following for completion.

Theorem 4.3 (Hodge Index Theorem). The intersection pairing on H2(S,R)
has signature (2pg + 1, h1,1 − 1).

Theorem 4.4. The integers q, pg, Pn are indeed birational invariants.

We will use these time and time again in our pursuit of a classification up
to birational morphism.
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5 Ruled Surfaces

Definition 5.1. A surface S is called ruled if it is birationally equivalent to
C × P1, where C is a smooth curve. If C = P1, S is rational.

We shall soon see that ruled surfaces are the only class of surfaces with-
out a unique minimal model; in order to classify them, we need the following
definition.

Definition 5.2. Let C be a smooth curve. A geometrically ruled surface
over C is a surface S together with a smooth morphism p : S → C whose fibres
are isomorphic to P1.

The first natural question to ask is whether geometrically ruled surfaces are
actually ruled. The answer due to Noether and Enriques, is yes:

Theorem 5.3. Let S be a surface, p a morphism p : S → C. Suppose there
exists x ∈ C such that p−1(x) ≡ P1. Then there exists a Zariski open subset
U ⊂ C containing x and an isomorphism p−1(U) ∼= U×P1 such that the diagram
below is commutative.

p−1(U) U × P1

U

p pr1

The converse is not true; however when we are considering minimal models
of ruled surfaces, we can reduce the study to that of geometrically ruled surfaces.

Theorem 5.4. Let C be a smooth, irrational curve. The minimal models of
C × P1 are the geometrically ruled surfaces over C.

Proof. Let S be a minimal surface, φ : S 99K C×P1 birational, and q : C×P1 →
C projection. Then by elimination of indeterminancy, there exists a surface S′

fitting in to the following diagram:

S′

S C
fg

q◦φ

where g = π1 ◦ · · · ◦πn are successive blow ups, and f is a morphism. Assume n
is the minimum number of blow ups necessary. Suppose n > 0, and let E be the
exceptional curve of πn. Since C is not rational, f(E) = point, do f factorises as
f ′ ◦πn, contradicting the minimality of n. Hence n = 0 and q ◦φ is a morphism
with generic fibre isomorphic to P1, Hence S is geometrically ruled.

We now just need to classify geometrically ruled surfaces, which we can do
easily thanks to the following theorem.

Theorem 5.5. Every geometrically ruled surface over C is C−isomorphic to
PC(E) for some rank 2 vector bundle E over C.

This is our first step in the search for a classification of minimal surfaces.
However, PC(E) ∼= PC(E′) whenever E = E′ ⊗ L where L is a line bundle,
so minimal ruled surfaces are far from unique. On the bright side, we shall
soon see that for all other surfaces (apart from ruled and rational), we do have
uniqueness of the minimal model.
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6 Rational Surfaces

By definition, a rational surface S is birational to P1 × P1, or to p2 (equivalent
definitions).

First let us consider the ruled rational surfaces, i.e geometrically ruled sur-
faces birational to P1 × P1. These are called the Hirzebruch surfaces, and by
definiton are given by

Fn = PP1(OP1 ⊕OP1(n)),

for n ≥ 0.
A calculation of intersection numbers proves the following result.

Proposition 6.1. If n > 0, there exists a unique irreducible curve B on Fn with
negative self intersection. Further, B2 = (−n). Fn and Fm are not isomorphic
unless n = m.

From this, we can see for n 6= 1 the surface Fn are minimal, since they
contain no (−1) curves. However, F1 is isomorphic to P2 blown up in a point
(using Castlenuovo’s criterion).

Let S be a rational surface. Since the invariants q, Pn are birational invari-
ants, we have that q(S) = 0 = Pn(S) for n ≥ 1. In order to find the minimal
models for rational surfaces, we need the following non-trivial fact.

Proposition 6.2. Let S be a minimal surface with q = P2 = 0. Then there
exists a smooth rational curve C on S such that C2 ≥ 0.

One can now prove the following:

Theorem 6.3. Let S be a minimal rational surface. Then S is isomorphic
either to P2 or to one of the Fn for n 6= 1.

Hence we have found the minimal models for rational surfaces. A similar
proof technique is used to prove the following numerical criteria for being ratio-
nal.

Theorem 6.4 (Casteluovo’s Rationality Criterion). Let S be a surface with
q = P2 = 0. Then S is rational.

Note that the condition P2 = 0 implies that pg = 0: indeed we have the
exact sequence

0→ OS(−K)→ OS → OK → 0,

and twisting by 2K and taking the long exact sequence of homology shows that
0→ H0(OS(K))→ H0(OS(2K)) = 0 hence pg = 0.

In fact, it was a conjecture that one could replace the condition P2 = 0 with
pg = 0; however this is false. Enriques provided an example of a surface of
general type with pg = 0, which was far from being rational (we shall see later).

Using this criteria along with the theory of Albanese varieties, one can prove
the following uniqueness theorem.

Theorem 6.5. Every non ruled surface admits a unique minimal model.
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7 Kodaira Dimension

We saw in the previous section that having numerical invariants such as q =
P2 = 0 was particularily useful. We can extend this idea in order to classify the
remaining surfaces. Furst, we can numerically classify ruled surfaces.

Theorem 7.1 (Enriques). Let S be a surface with P4 = P6 = 0(equivalently
P12 = 0). Then S is ruled.

From the above, we see that the plurigenera play an important role in the
classification of surfaces. This leads us to the definition of Kodaira dimension.

Definition 7.2. Let V be a smooth, projective variety, K a canonical divisor,
and φnK the rational map associated to |nK|. We define the Kodaira dimen-
sion of V to be the maximum dimension of the images φnK(V ), for n ≥ 1, and
denote it by κ(V ).

If |nK| = ∅ for all n, then we say κ(V ) = −∞.
Now let S be a surface. We have the following options:

• κ(S) = −∞ ⇔ h0(nK) = 0 for all n, i.e Pn = 0. Note that by Enriques
theorem, these are exactly the ruled surfaces. If q = 0, we have the rational
surfaces.

• κ(S) = 0⇔ Pn = 0 or 1, and there exists an N such that PN = 1.

• κ(S) = 1 ⇔ there exists an N such that PN ≥ 2 and for all n φnK(S) is
at most a curve.

• κ(S) = 2⇔ for some n φnK(S) is a surface.

Let’s give some examples. The easiest example one could think of are prod-
ucts of curves.

Proposition 7.3. Let C,D be smooth curves, S = C ×D. Then:

1. If either C,D are rational, then S is ruled, and κ(S) = −∞.

2. If C,D are both elliptic, then κ(S) = 0.

3. If C is elliptic and g(D) ≥ 2, κ(S) = 1.

4. If C,D both have genus ≥ 2, then κ(S) = 2

The next easiest type of examples are hypersurfaces, or more generally com-
plete intersections of hypersurfaces. Recall that if S ⊂ Pr+2 is the complete
intersection of r hypersurfaces of degree di, then by adjunction OS(KS) ≡
OS(

∑
di − r − 3). Then we can prove the following by simple calculation.

Proposition 7.4. Let Sd1,...dr denote the surface in Pr+2 which is complete
intersection of r hypersurfaces of degree di. Then:

1. S2, S3, S2,2 are rational (κ = −∞).

2. S4, S2,3, S2,2,2 have K ∼= 0 and κ = 0.

3. All other Sd1,...dr have κ = 2.
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8 Kodaira Dimension −∞
By Enriques theorem, we have seen that these are exactly the ruled surfaces.
We’ve discussed that a surface ruled over a curve C can be classified by classi-
fying the rank two vector bundles over C.

What is left to discuss are a special set of rational surfaces, namely del Pezzo
surfaces. We shall consider r distinct points p1, . . . pr ∈ P2 (r ≤ 6), in general
position. Let π : Sd → P2 be the blow up of these r points, and d = 9− r.

Proposition 8.1. Suppose p1 . . . pr are in general position. Then the linear
system of cubics passing through the pi on P2 defines an embedding Sr → Pd,
and the image is a surface of degree d in Pd; a del Pezzo of degree d.

Since the space of cubics on P2 is given by | −KP2 |, we have embedded Sd
by the anticanonical system. One can show that del Pezzo surfaces are the only
surfaces where this can happen.

We have the following classical theorem:

Theorem 8.2. Let S ⊂ P3 be a smooth cubic surface. Then S is a del Pezzo
surface of degree 3. Moreover, S contains 27 lines.

8.1 Surfaces with pg = 0, q ≥ 1

In general, pg(S) = 0 does not imply that S is ruled. However, we can prove
more with slightly stronger assumptions.

Lemma 8.3. Let S be a surface with pg = 0, q ≥ 1. Then K2 ≤ 0, and K2 < 0
unless q = 1, b2 = 2. Further, if S is a minimal surface with K2 < 0, then
pg = 0 and q ≥ 1.

Thus we have the following:

Proposition 8.4. Let S be minimal with K2 < 0. Then S is ruled.

Hence the remaining surfaces with pg = 0, q ≥ 1 necessarily have K2 =
0, q = 1, b2 = 2. These are the so called elliptic surfaces, which have higher
Kodaira dimension.

9 Kodaira Dimension 0

We shall just consider minimal surfaces S with κ(S) = 0. By the previous
proposition, K2

S ≥ 0.

Lemma 9.1. Let S be a surface with κ(S) ≥ 0, and D an effective divisor on
S. Then KS ·D ≥ 0.

Proof. Write D
∑
niCi. If KS · D < 0, then Ci · K < 0 for some Ci. Then

C2 ≥ 0, and hence |nK| = 0 for all n by the useful remark, and S is ruled - a
contradiction.

Using this, we can get a thorough classification of surfaces with Kodaira
dimension 0. Before we state, a definition.
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Definition 9.2. A surface S is called bielliptic if S = (E ×F )/G where E,F
are elliptic curves, G is a group of translations of E acting on F such that
F/G ≡ P1.

Theorem 9.3. Let S be a minimal surface with κ = 0. Then S belongs to one
of the following families:

• pg = 0, q = 0; then 2KS = 0 and S is an Enriques Surface.

• pg = 0, q = 1; then S is a Bielliptic Surface.

• pg = 1, q = 0; then KS = 0 and S is a K3 Surface.

• pg = 1, q = 2; then S is an Abelian Surface.

Proof. We have that pg ≤ 1. First suppose that pg = 0.

• If q = 0, then since S is not rational P2 ≥ 1 by Castelnuovo criteria, i.e
P2 = 1. By Rieman Roch, h0(−2K) + h0(3K) ≥ 1. Now P3 = 0, (if not,
this implies P1 = 1, a contradiction), so h0(−2K) ≥ 1. Then there exists
an effective D ∈ | − 2K|, and D · C ≥ 0 for irreducible curve C. But
−2(K · C) < 0, hence 2K = 0.

• If q ≥ 1, one can classify such surfaces using quite heavy machinery, and
get a complete list of bielliptic surfaces.

Now suppose pg = 1. Then since χ(OS) ≥ 0, q = 0, 1, 2.

• If q = 0, then by using Riemann Roch for −K we see h0(−K)+h0(2K) ≥
χ(OS) = 2, so h0(−K) = 1 which implies that K = 0.

• If q = 1, then simple calculations give a contradiction.

• If q = 2, we get abelian surfaces. This is hard, so we omit the details.

We shall now delve deeper into some examples.

9.1 K3 Surfaces

Throughout this section, let S be a K3 surface. By definition, KS = 0, q = 0.
Since KS = 0, S is automatically minimal.

Noether’s formula gives that 12χ(OS) = χtop(S), hence a small calculation
shows b2 = 22.

Some examples of K3 surfaces are the complete intersections S4, S2,3, S2,2,2.
We’ve already seen that those listed are the only complete intersections with
trivial canonical. Hence they are K3 by the following lemma:

Lemma 9.4. Let X ⊂ Pn be a d-dimensional complete intersection. Then
Hi(X,OX) = 0 for 0 < i < d.

Proof. We’ll actually prove that Hi(X,OX(k)) = 0 for 0 < i < d, k ∈ Z.
It is enough to show that if the statement holds for X, then it holds for the
section W of V by a hypersurface of degree r. Use the ideal sheaf sequence, and
induction!
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Another class of examples are that of Kummer Surface, which we will
describe the construction. Let A be an abelian surface, and let τ : a → −a be
an involution. Now there are 16 fixed points for this involution of order 2. Let
π : Â → A be the blow up in those 16 points p1, . . . p16, and let Ei = π−1(pi)
be the exceptional curves. We can extend the involution τ to an involution σ
on Â. Denote X = Â/{1.σ}.

Proposition 9.5. X as constructed above is a K3 surface, the Kummer surface
of A.

The proof exploits the geometry of C and first shows that the projection
Â→ X is étale, and that X is smooth. We omit the details.

The fact that the canonical bundle is trivial allows us to say a lot about the
geometry of K3 surfaces - the numerical properties are more manageable. We
describe some in the following proposition.

Proposition 9.6. Let S be a K3 surface, C ⊂ S a smooth curve of genus g.
Then:

1. C2 = 2g − 2 and h0(S,OS(C)) = g + 1.

2. If g ≥ 1, the system |C| is base point free, so defines a morphism φ : S →
Pg and the restriction to C is given by |KC |.

3. If g = 2, φ : S → P2 is a morphism of degree 2, whose branch locus is a
sextic of P2.

4. Suppose g ≥ 3. Then either

(a) φ is a birational morphism, and a generic curve of |C| is non-hyperelliptic;
or

(b) φ is a 2-1 morphism to a rational surface (possibly singular) of degree
g − 1 in Pg, and a generic curve of |C| is hyperelliptic.

5. If g ≥ 3 (resp 2) then φ|2C| (resp φ|3C|) is birational.

Proof. 1. Using the genus formula and the fact that K = 0, we see C2 = 2g−
2. Now using Riemann Roch, we have that h0(C)−h1(C)+h0(−C) = g+1.
Since C is a irreducible curve h0(−C) = 0, then using the long exact
sequence applied to the ideal sheaf sequence we see that h1(C) = 0.

2. Since K = 0, by adjunction ωC = OS(C)|C . Consider the exact sequence

0→ OS → OS(C)→ ωC → 0,

and looking at the long exact sequence of cohomology and using the fact
that q(S) = 0, we see that H0(S,OS(C))→ H0(C,ωC) is surjective, hence
a section of ωC extends to a section of OS(C). Now |ωC | has no base point
on C, hence |C| has no base points.

3. If g = 2, then C2 = 2, so φ : S → P2 is a degree 2 map. Let R ⊂ P2 be
the ramification divisor. Then φ∗KP2 = KS − R. We know that KS = 0,
and that KP2 ∼ −3L where L is a line. Hence φ∗KP2 = 2.(−3L) = −6L.
Hence R = 6L, and φ is branched over a sextic.
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4. Suppose C is not hyperelliptic. Then φ|C is an embedding, and since
φ−1(φ(C) = C, φ is birational.

If φ is not birational, every smooth curve in |C| is hyperelliptic, then for
a general x ∈ S, |φ−1(φ(x))| = 2, so φ is a 2-1 map. Since C2 = 2g − 1,
the image of φ is a possibly singular surface Σ of degree g − 1 in Pg,
whose hyperplane sections are the rational curves φ(C). It follows that Σ
is rational.

5. The restriction to C of φ|2C| is the two-canonical morphism which is an
embedding (degD > 2g+ 1, then |D| defines an embedding). This implies
that φ|2C| is birational.

Let us explore more about divisors on a K3 surface S. We follow Friedman
here.

Lemma 9.7. Let S be a K3 surface, C an irreducible curve on S. Then
OC(C) = ωC . Thus C2 ≥ −2, and if C2 = −2 then C is a smooth rational
curve. If C2 = 0, then the g(X) = 1. In all other cases, C is nef and big.

Proof. By adjunction, we see KC = (KS +C)|C = C|C hence ωC = OC(C). By
genus formula, C2 = 2g(C) − 2, hence the following claims. Recall C is nef if
C ·C ′ ≥ 0 for all irreducible curves, and C is nef and big if C is nef and C2 > 0.
Since a K3 is minimal, C2 6= −1, hence C is big and nef if C is nef. Hence C≥1.
Let C ′ be another irreducible curve on S - then C ′ is effective, hence by useful
remark C · C ′ ≥ 0.

We want to know more about the effective divisors on a K3 surface, and due
to the vanishing of the canonical we have more numerical results.

Lemma 9.8. Let D be a divisor on S with D2 ≥ −2. Then either D is effective
or −D is effective.

Proof. First, note that χ(OS) = 2. Then by Riemann-Roch we have:

h0(D) + h2(D) ≥ 2 +
D2

2
≥ 1.

Hence either h0(D) 6= 0, in which case D is effective, or h2(D) = h0(−D) 6= 0,
where −D is effective.

In Proposition 9.6, we saw for a smooth curve C of genus g on S we had
h0(C) = g + 1 = 2 + C2/2. In fact, we can do better - this is true for arbitrary
nef and big divisors. Before we can prove it however, we need the generalised
Kodaira Vanishing theorem.

Theorem 9.9 (Generalized Kodaira Vanishing). Let D be a big and nef divisor
on the smooth surface X. Then Hi(X,OX(−D)) = 0 for i = 0, 1 or equivalently
Hj(OX(KX +D) = 0 for j = 1, 2.

Lemma 9.10. Let D be a big and nef divisor on K3 surface S. Then h0(D) =
2 +D2/2
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Proof. Since D is nef, D · H ≥ 0 for every ample H. If there exists an ample
divisor H such that D ·H = 0, then D2 ≤ 0 by Hodge Index Theorem, but this
contradicts bigness. Hence D·H > 0 for any ample H. Thus (−D)·H < 0 and so
−D is not effective. By previous, this implies D is effective, and so h0(D) 6= 0..
Since D is big and nef, by generalized Kodaira vanishing, H1(D) = 0. Thus we
have

h0(D) = 2 +
D2

2

by Riemann-Roch.

The following result gives a complete description of big and nef divisors on
a K3 surface, which we state without proof.

Theorem 9.11. Let D be a big and nef divisor on the K3 surface S. Then |D|
has a base point if and only if |D| has a fixed curve if and only if D = kE +R,
where E is a smooth elliptic curve, R is a smooth rational curve, R ·E = 1, and
k ≥ 2. In this last case 2D has no base points.

Thus, every big and nef divisor on S is eventually base point free, and de-
fines a morphism from S onto a normal surface with only rational double point
singularities.

9.2 Enriques Surfaces

Let S be an Enriques surface. By definition, pg(S) = 0 = q(S), thus χ(S) = 1,
and 2KS = 0.

If X is a variety, L ∈ Pic(X) a line bundle such that L ⊗ L = OX , then L
corresponds to an étale double cover π : X̃ → X such that π∗L ≡ OX̃ . One

can take X̃ = {u ∈ L|α(u ⊗ u) = 1} and π the projection of L → X. Then
X̃ → X̃ ×X L = π∗L defined by u 7→ (u, u) defines a nowhere vanishing section
of π∗L, hence it is a trivial line bundle.

Proposition 9.12. Let S be an Enriques surface, and π : S̃ → S the étale dou-
ble cover corresponding to ωS of order 2. Then S̃ is a K3 surface. Conversely,
the quotient of a K3 surface by a fixed point free involution is an Enriques
surface.

Proof. For étale covers of degree n, we have that K2
S̃

= nK2
S , χ(OS̃) = nχ(OS),

and χtop(S̃) = nχtop(S). Thus we have already that KS̃ = π∗KS = 0 by

construction of the double cover. Since χtop(S̃) = 2χtop(S) = 2, we have that

1 = h1(OS̃) + h0(OS̃(K)), and one calculates q = h1(OS̃) = 0, and S̃ is a K3
surface.

Conversely, let X be a K3 surface with a fixed point free involution σ. Then
S = X/σ is a smooth surface, and π : X → X/σ = S is an étale double cover.
Since π∗KS = KX = 0, then 0 = π∗π

∗KS = 2KS . Since χ(OX) = 2, we have
that χ(OS) = 1, and thus S is an Enriques surface.

Hence we have a one to one correspondence between K3 surfaces with a fixed
point involution, and Enriques surfaces. Now for an examples

Let Qi(X0, X1, X2), Q′i(X3, X4, X5) be quadratic forms in three variables for
i = 1, 2, 3. Let X ⊂ P5 be the intersection of the three quadrics

Qi(X0, X1, X2) +Q′i(X3, X4, X5) = 0.
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For a generic choice ofQi, Q
′
i will be smooth, and thus a K3. Define σ(X0, X1, X2, X3, X4, X5) =

(X0, X1, X2,−X3,−X4,−X5). Thus σ|X : X → X, and the fixed locus contains
the two planes X0 = X1 = X2 = 0 and X3 = X4 = X5 = 0. For a generic
choice of the Qi, Q

′
i, the three conics Q1, Q2, Q3 (respectively Q′1, Q

′
2, Q

′
3) in

these planes hace no points in common. Thus σ is a fixed point free involution
of X, hence X/σ is an Enriques surface.

10 Kodaira Dimension 1

We wish to classify all surfaces S with κ(S) = 1.

Proposition 10.1. Let S be a minimal surface with κ(S) = 1. Then

1. K2
S = 0.

2. There exists a smooth curve B and a surjective morphism p : S → B
whose generic fibre is an elliptic curve.

Definition 10.2. A surface S is called elliptic if there exists a surjective mor-
phism S → B where B is a smooth curve and a generic fibre is an elliptic
curve.

Theorem 10.3. All surfaces with κ(S) = 1 are elliptic surfaces.

The converse is clearly false - for example, ruled surfaces over an elliptic
curve.

We describe one example here. Let B be a smooth curve, and let |D| be a
base point free linear system on B. Consider the system |pr∗1OB(D)⊗pr∗2OP2(3)|
on the product B × P2. Then a general element of this system S is a smooth
surface, and the restriction pr1 : S → B is a fibration by plane cubics, hence
elliptic curves. We have that KS = pr∗1(KB+D), and when deg(D) > 2−2g(B),
we have κ(S) = 1.

11 Kodaira Dimension 2

We begin with the following proposition.

Proposition 11.1. Let S be a minimal surface. The following are equivalent:

1. κ(S) = 2;

2. K2
S > 0 and S is irrational;

3. there exists an integer N such that φnKS is a birational map of S onto its
image for n ≥ N .

If these conditions hold, then we say S is a surface of general type.

Most surfaces fall into this category, hence there are a lot of examples. On
the downside, we do not know too much about their geometry. We shall end
this surface classification with a few examples here.

• Complete intersections are of general type (except S2, S3, S4, S2,2, S2,3, S2,2,2).

15



• Any product of curves of genus greater than or equal to 2.

• Let f : S′ → S be surjective. If S is of general type, then S′ is too.

• Godeaux Surface: Take S′ ⊂ P3 given by the equation

X5 + Y 5 + Z5 + T 5 = 0.

Consider a G = Z5 action given by σ(X,Y, Z, T ) = (X, ξY, ξ2z, ξ3T ) where
ξ5 = 1. Then G acts without any fixed points, hence S = S′/G is smooth.
By Lefschetz Hyperplane theorem, q(S′) = 0, and OS′(KS′) = OS′(1) by
adjunction. Thus pg(S

′) = 4,K2
S′ = 5. Now S′ → S has degree 5, thus

K2
S′ = 5K2

S , and χ(OS′) = 5χ(OS), hence K2
S = 1, χ(OS) = 1, hence S is

an example of a surface of general type with pg = q = 0.
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