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1 Introduction

These are a typed up version of my personal notes during Géométrie Algébrique
en Libertié XXVII held in Bucharest June 2019. These are the notes from one
of the mini courses entitled ‘Birational Geometry and Fano Varieties’ by Cinzia
Casagrande.
As such, it is highly possible that these notes will contain several errors, typos,
and unjustified statements. These notes are intended as a personal learning tool
focusing on the birational geometry part of the minicourse, thus why the Fano
Varieties portion is currently omitted. Any comments any readers may have are
welcome -you can email me at: lisa DOT marquand AT stonybrook DOT edu.

2 Preliminaries

Throughout, we work over C.
Let X be a normal, projective variety, and D a divisor on X. We say that

D is Q-Cartier if mD is Cartier for some m ∈ N.
We can define an intersection number D ·C ∈ Q defined for all irreducible

curves C ⊂ X as follows. Let π : C ′ → C → X be the normalisation of C. Then

D · C =
1

m
degπ∗OX(mD).

We say that X is Q factorial if all divisors are Q Cartier. Recall the following
definition of numerical equivalence:

Definition 2.1. Let D,D′ be two Q Cartier divisors on X. Then we say
D ≡ D′ if and only if D · C = D′ · C for all irreducible curves C.

If Γ,Γ′ are two 1-cycles on X, then Γ ≡ Γ′ if and only if Γ ·D = Γ′ ·D for
all Cartier divisors D.

We denote by N 1(X) the vector space of Cartier divisors, with real coef-
ficients, up to numerical equivalence. Dually, we denote by N1(X) the vector
space of 1-cycles, again with real coefficients and up to numerical equivalence.
Its dimension is denoted ρX and is called the Picard number/rank.
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2.1 Cones

The vector space N 1(X) contains three important cones.
The effective cone is the convex cone in N1(X) spanned by effective divi-

sors, denoted Eff(X). It is not in general closed.
The nef cone is the cone of classes of divisors in N 1(X) having nonnegative

intersection with all curves in X. This is closed by definition, but is not in
general rational or polyhedral.

Finally, recall that a Cartier divisor D in X is movable if its stable base
locus B(D) has codimension at least 2, where

codim ∩m∈N Bs|mD|.

The movable cone is the convex cone in N 1(X) spanned by the classes of
movable divisors.

Note that Nef(X) = NE(X)
?

where NE(X) is the closure of the convex
cone spanned by effective curves in N1(X).

Recall that a divisor D is ample if and only if DdimY · Y > 0 for every
subvariety Y ⊂ X. In particular, D · C > 0, and hence [D] ∈ intNef(X).

We have inclusions

Nef(X) ⊂ Mov(X) ⊂ Eff(X).

Note that a divisor D is big if there exists some m ∈ N such that the map
associated to the linear system |mD| is birational onto its image. In face, D is
big if and only if [D] ∈ intEff(X).

3 Contractions and Semiample divisors

We begin with some definitions; X is a normal, projective, Q-factorial variety
as before.

Definition 3.1. A contraction of X is a surjective morphism with connected
fibers f : X → Y , where Y is normal and projective. The map f can either be
birational, or of fiber type.

We say that f : X → Y is small if it is birational and the codimension of
the exceptional locus is at least 2.

3.1 Pullback and Pushforward of classes

Let C ⊂ X be an irreducibe curve. recall that

f∗C =

{
0 if C is contracted.

degf |Cf(C) if f(C) is a curve.

Hence f∗C is a 1-cycle in Y , and we can extend linearly.
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We have the following Projection Formula: for all 1-cycles Γ in X and
divisor D in Y ,

f∗D · Γ = D · f∗Γ.

We have the following lemma, which we state without proof:

Lemma 3.2. If D ≡ 0, then f∗D ≡ 0 for D divisor on Y .

Thus we have the following induced maps:

f∗ : N1(X)� N1(Y )

f∗ : N 1(Y ) ↪→ N 1(X)

3.2 Contractions

Let NE(f) be the convex cone of curve classes contracted by f . This is a subcone
of NE(X), the Mori cone.

Lemma 3.3 (Rigidity Lemma). If f and g are both contractions with NE(f) =
NE(g), then f = g (up to isomorphism of the the target).

3.3 Semiample Divisors

We state the definition.

Definition 3.4. A Cartier divisor D is semiample if there exists some m ∈ N
such that mD is base point free.

Lemma 3.5. Let f : X → Y be a contraction, and A an ample cartier divisor
on Y . Then D = f∗A is semiample, and f = f|mD| for m >> 0. Conversely,
given D semiample, there exists a contraction f : X → Y such that mD = f∗A
for some m ∈ N and some ample divisor A on Y .

Note that this implies that if D is semiample, then D is nef.

4 Mori Dream Spaces

A Mori Dream Space will be a normal, Q-factorial projective variety which sat-
isfies three additional properties P1, P2, P3. We will first list the simplest two,
and then discuss the many consequences, before finally giving the full definition.

P1. We assume that h1(OX) = 0. This is equivalent to saying that Pic(X)
is finitely generated.

P2. We assume that Nef(X) is generated by the classes of finitely many semi
ample divisors (as a cone). We discuss some consequences.
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• P1 implies that if D1, D2 are Cartier on X such that D1 ≡ D2, then there
exists some m ∈ N such that mD1 ∼ mD2, where ≡ denotes numerical
equivalence, and ∼ denotes linear equivalence.

• Nef(X) is a rational polyhedral cone.

• Every nef Cartier divisor is semiample.

• NE(X) is rational polyhedral. In particular, it is closed.

Let us discuss the third consequence. Note that NE(X) = Nef(X)∗, which is
rational polyhedral by above. Hence we need to show that NE(X) is closed. Let
R be an extremal ray of NE(X) (a one-dimensional face). We shall construct a
curve C in X such that [C] ∈ R, which shows that R ⊂ NE(X).

Consider the hyperplane R⊥, and let σ := R⊥ ∩ Nef(X). Then σ is a facet
of the Nef cone, i.e a face of codimension one. Let D be a Cartier divisor such
that [D] ∈ relative interior(σ). Then R = NE(X) ∩D⊥.

Since D is nef, it is semiample, and so there exists a contraction f : X → Y
such that mD = f∗A with A an ample divisor on Y , and f = f|mD|. Thus

NE(f) = D⊥ ∩ NE(X) ⊂ R. This implies that [D] belongs to the boundary of
the Nef Cone, and so D is non ample. Hence there exists some curve C such
that mD · C = 0, and so C is contracted by f , and C ⊂ NE(f) ⊂ R.

Thus NE(F ) = R, and since the map f∗ : N 1(Y ) → N 1(X) is injective,
we have that f∗(Nef(Y )) = Nef(X) ∩ R⊥ = σ, so f∗(Nef(Y )) is a facet of
Nef(X) dual to NE(f). Note that ρY = dimNef(Y ) = dimNef(Y ) = ρX − 1, so
ρX − ρY = 1.

We continue with the consequences:

• For every contraction f : X → Y , we have that

– NE(f) is a face of NE(X) of dimension ρX − ρY
– f∗Nef(Y ) is a face of Nef(X) of dimension ρy.

This gives a bijection between:

{ contractions of X} ↔ {faces of NE(X)}

This is clearly a very strong property - in particular, there are finitely many
contractions.

Given a contraction f : X → Y , let σ = f∗Nef(Y ). Then there are two
possibilities:

• f is not birational, i.e fiber type if and only if σ ⊂ ∂Eff(X).

• f is not small, i.e f is birational but codimension of the exceptional is less
than 1, if and only if σ ⊂ ∂Mov(X).

The first is a consequence of the properties of bigness, the second is much less
elementary and we omit the proof.

4



Definition 4.1. Let f : X → Y be a contraction. Then we say f is an ele-
mentary contraction if ρX − ρy = 1.

Thus if f is an elementary contraction, NE(f) is an extremal ray, and
f∗Nef(Y ) is a facet. These are essentially the simplest possible contraction
type.

If f is an elementary, birational contraction which is not small, then let
Exc(f) denote the exceptional locus of f . In this case, Exc(f) is a prime
divisor, and Exc(f) · D < 0 for all D ∈ NE(f), and Y is Q-factorial. In this
situation, we say that f is divisorial.

4.1 Negativity of Contractions

Before we discuss the third property, we shall discuss negatitvity. Let f : X → Y
be an elementary contraction that is not small, i.e Exc(f) is codimension 1.
Thus there exists a prime divisor E ⊂ Exc(f).

Note that if B is a divisor on X such that B ·NE(f) ≤ 0, then B is effective
if and only if f∗B is effective. We apply this fact to (−E). Since f∗(−E) = 0
which is effective, we must have that

(−E) ·NE(f) > 0,

hence E ·NE(f) < 0.
Thus for every contracted curve C, we have that E · C < 0, which implies

that C ⊂ E, hence Exc(f) = E.
We want to show that Y is also Q factorial in this situation. Let D be a

prime divisor in Y , and let D̃ ⊂ X be the strict transform. Since E ·NE(f) < 0,
there exists λ ∈ Q, λ ≥ 0 such that

(D̃ + λE) ·NE(f) = 0.

This implies that [D̃ + λE] ∈ f∗N 1(Y ). Thus there exists a, b ∈ Z with
a > 0, b ≥ 0 such that aD̃ + bE ∼ f∗B where B is some Cartier divisor on
Y . Thus we can assume aD̃ + bE = f∗B for B an effective divisor supported
on D. Hence D is Q-Cartier, and Y is Q-factorial.

Remark. If f : X → Y is an elementary small contraction, then Y is never
Q-Cartier. Indeed, let D be a prime divisor on X, and let DY = f(D) ⊂ Y. If
DY is Q-Cartier, then f∗DY = D, and D ·NE(f) = 0. However, we can always
pick D such that D ·NE(f) > 0.

Definition 4.2. Let f : X → Y be an elementary contraction, D a divisor in

X. We say that f is


D − negative if D ·NE(f) < 0;

D − positive if D ·NE(f) > 0;

D − trivial if D ·NE(f) = 0.

Definition 4.3. A small Q-factorial modification (SQM) of X is a bira-
tional map

ϕ : X 99K X ′
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where X ′ is normal, projective, Q-factorial and there exists open sets U ⊂ X,
U ′ ⊂ X such that

ϕ|U : U → U ′

is an isomorphism, and codim(X \ U) ≥ 2, codim(X ′ \ U ′) ≥ 2.

Note the following facts:

• If ϕ is a SQM, then so is ϕ−1.

• We see that ϕ is an isomorphism between the domain of ϕ and the domain
of ϕ−1. This follows from the fact that ϕ is an isomorphism in codimension
1 and the fact that both X,X ′ are Q-factorial.

• If D is a divisor in X ′, then ϕ∗D is a divisor in X.

• We see that D ≡ 0 if and only if ϕ∗D ≡ 0.

Hence it follows that ϕ induces an isomorphism

ϕ∗ : N 1(X ′) ∼= N 1(X),

and so ρX = ρX′ . We also have that ϕ∗(Eff(X ′) = Eff(X), and ϕ∗Mov(X ′) =
Mov(X).

We state the following fact without proof.
Fact: Let A be an ample Cartier divisor on X ′, and let D = ϕ∗A. Then

ϕ = f|mD|

for some m >> 0. If D is nef, then this implies that ϕ is regular, hence ϕ is an
isomorphism. If this is not the case, then Nef(X) and Nef(X ′) can only intersect
along the boundaries.

We can now give the full definition of a Mori Dream Space.

Definition 4.4. Let X be a normal, Q-factorial, projective variety. We say
that X is a Mori Dream Space (MDS) if it satisfies the following:

P1. We assume that h1(OX) = 0. This is equivalent to saying that Pic(X)
is finitely generated.

P2. We assume that Nef(X) is generated by the classes of finitely many semi
ample divisors (as a cone).

P3. There exists finitely many small Q-factorial modifications ϕi : X 99K Xi

such that each Xi satisfies P2 and

Mov(X) =
⋃
i

ϕ∗iNef(Xi).

We state some remarks:
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• If ρX = 1, we only need h1(OX) = 0.

• If X is a MDS, then every Xi is too.

• The cones ϕ∗iNef(Xi) intersect along common faces, and they form a fan
σX in N 1(X), supported on Mov(X).

• Mov(X) is a rational polyhedral cone.

Proposition 4.5. Let X be an MDS. Let E ⊂ X be a prime divisor such that
[E] 6∈ Mov(X). Then there exists a SQM ϕ : X 99K Xi and an elementary
divisorial contraction f : Xi → Y such that Exc(f) is the transform of E.

Corollary 4.5.1. We see that Eff(X) is a rational polyhedral cone

This is due to the fact that there can only be finitely many SQM, hence finitely
many Exc(f).

Sketch Proof of the Proposition. There exists a hyperplane H such that H ∩
Mov(X) is a facet, and H separates [E] from Mov(X). There also exists an i
such that ϕ∗iNef(Xi) has a facet σ alongH. Thus σ corresponds to an elementary
contraction f : Xi → Y, and ]sigma cannot be contained in ∂Eff(X) since it
separates [E] from Mov(X). Thus f is birational. Since σ ∈ ∂Mov(X), f is
divisorial. Since E · Nef(X) < 0, then the image in Xi Ei is contained in the
exceptional locus of f , hence Exc(f) is the transform of E.

Definition 4.6. Let X be a normal, Q-factorial projective variety and f : X →
Y an elementary small contraction. The flip of f is a SQM

ϕ : X 99K X ′

such that ϕ is not an isomorphism, and f ′ = f ◦ϕ−1 is a regular small elemen-
tary contraction.

When the flip exists, it is unique. If D is a divisor in X, we say that the flip

is


D negative

D positive

D trivial

if f is. Note that f∗N 1(Y ) = ϕ∗(f ′∗N 1(Y )),

If f is D-negative, then f ′ is D′ positive.

5 MMP for Mori Dream Spaces

Let X be a Mori Dream space. Recall: If f : X → Y is a small elementary
contraction, then the flip of f exists. Each flip corresponds to a wall crossing.
Fact: Every Small Q− factorial modification of X factors as a finite sequence
of flips.

Let D be a divisor on X, considered up to numerical equivalence and multi-
ples. We describe the MMP Algorithm.
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Step 1. Is D nef? If yes, then D is already semiample, and we stop the
program. If not, then there exists some D-negative elementary contraction.
Choose one f : X → Y.

Step 2. What is the type of f?

• If fiber type: then X is covered by curves C with D · C < 0, and
D 6∈ Eff(X). We stop the program.

• If divisorial: replace (X,D) by (Y, f∗D) and go to step 1.

• If small: Let ϕ : X 99K X ′ be the flip of f , D′ the transform of D.
Replace (X,D) with (X ′, D′) and go to step 1.

Notice that this algorithm is not unique - it depends on a choice. What do
we need to check? In order to continue with the algorithm, we need (Y, f∗D) to
be a Mori dream space. This is solved with the following proposition.

Proposition 5.1. Let X be a MDS, and f : X → Y an elementary divisorial
contraction. Then Y is a MDS.

Another problem is termination. In the divisorial case, this is clear - the
Picard rank drops by one for each divisorial contraction, and so this process
will terminate. The termination of flips is not so clear.

Proposition 5.2. Let X be a MDS, D a divisor and

X = X0 X1 . . . Xk−1 Xk
ξ0 ξ1 ξk−2 ξk−1

be a sequence of D negative flips. Then ξk−1 ◦ · · · ◦ ξ0 : X 99K Xk cannot be an
isomorphism.

This solves the termination of flips for MDS, but the proof is non trivial.

5.1 Outcome of MMP

What we are left with is a finite sequence of varieties Xi and birational maps

X = X0 X1 . . . Xk−1 Xk
ξ0 ξ1 ξk−2 ξk−1

where:

• each Xi is a normal, projective, Q factorial Mori Dream space;

• each ξi is either

– a Di-negative elementary divisorial contraction - we set Di+1 =
(ξi)∗Di;

– a Di-negative flip - we set Di+1 to be the transform of Di.
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Hence at the end of the algorithm, we are left with Dk such that either

1. Dk is semiample, hence ]Dk] ∈ Eff(Xk);

2. there exists ξk : Xk → Y a Dk-negative elementary contraction of fiber
type, hence [Dk] 6∈ Eff(Y ).

Lemma 5.3. MMP ends with Dk semiample if and only if D ∈ Eff(X).
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